1
|
Kotorová K, Končeková J, Bona M, Bonová P. New alternative approaches to stroke treatment: the blood cell-derived secretome shows promise in individuals with obesity. Metab Brain Dis 2024; 40:56. [PMID: 39641824 PMCID: PMC11624225 DOI: 10.1007/s11011-024-01491-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
Ischaemic tolerance induced by remote ischaemic conditioning (RIC) has been extensively demonstrated in several preclinical models of cerebral ischaemia. However, animals with common stroke-related comorbidities do not benefit from the recent advances of RIC. Therefore, we investigated two alternative approaches for obese animals with stroke: (1) the efficacy of an additional round of the standard RIC protocol, and (2) the paracrine potential of the blood cell-derived secretome derived from RIC-induced healthy young rats. We found that a second round of remote ischaemic postconditioning (RIPostC) stimulus reduced neurodegeneration and exerted antioxidant effects but failed to decrease the infarct volume and alter glutamate homeostasis. However, when obese rats were administered the secretome from healthy, young RIC-stimulated rats, they exhibited improved neurological post-stroke outcomes. Intravenous administration of the tolerant secretome activated several endogenous mechanisms, including a reduction in the infarct volume and neurodegeneration in the penumbra. Furthermore, the blood cell-derived secretome accelerated brain-to-blood glutamate efflux in obese rats, and demonstrated antioxidant properties that may have contributed to the induction of tolerance in obese rats with stroke. These findings indicate that the blood cell-derived secretome has unique abilities and represents a new potential treatment for individuals with obesity and ischaemic stroke.
Collapse
Affiliation(s)
- Klaudia Kotorová
- Biomedical Research Center of the Slovak Academy of Sciences, Institute of Neurobiology, Soltesovej 4-6, 040 01, Košice, Slovak Republic
| | - Jana Končeková
- Biomedical Research Center of the Slovak Academy of Sciences, Institute of Neurobiology, Soltesovej 4-6, 040 01, Košice, Slovak Republic
| | - Martin Bona
- Department of Medical Physiology, Faculty of Medicine, University of Pavol Jozef Safarik, Košice, 040 01, Slovak Republic
| | - Petra Bonová
- Biomedical Research Center of the Slovak Academy of Sciences, Institute of Neurobiology, Soltesovej 4-6, 040 01, Košice, Slovak Republic.
| |
Collapse
|
2
|
Končeková J, Kotorová K, Némethová M, Bona M, Bonová P. Effectiveness of remote ischaemic conditioning is not affected by hyper-inflammation in a rat model of stroke. Sci Rep 2024; 14:20750. [PMID: 39237655 PMCID: PMC11377586 DOI: 10.1038/s41598-024-71328-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 08/27/2024] [Indexed: 09/07/2024] Open
Abstract
The inflammation and coagulopathy during coronavirus disease (COVID-19) impairs the efficiency of the current stroke treatments. Remote ischaemic conditioning (RIC) has shown potential in recent years to protect the brain and other organs against pathological conditions. This study aimed to evaluate the efficiency of RIC in brain infarct size using TTC staining and lung injury reduction by H&E staining during the hyper-inflammatory response in rats. The inflammation and coagulopathy were assessed by sedimentation rate, haematocrit, systemic oxidative stress and clotting time. Moreover, we observed changes in the cytokine profile. The results of the first part of the experiment showed that the inflammation and lung injury are fully developed after 24 h of intratracheal LPS administration. At this time, we induced focal brain ischaemia and examined the effect of RIC pre- and post-treatment. Our results showed that RIPre-C reduced the infarct size by about 23%, while RIPost-C by about 30%. The lung injury was also reduced following both treatments. Moreover, RIC modulated systemic inflammation. The level of chemokines CINC-1, LIX and RANTES decreased after 24 h of post-ischaemic reperfusion in treated animals compared to non-treated. The RIC-mediated decrease of inflammation was reflected in improved sedimentation rate and hematocrit, as well as reduced systemic oxidative stress. The results of this work showed neuroprotective and lung protective effects of RIC with a decrease in inflammation response. On the basis of our results, we assume that immunomodulation through the chemokines CINC-1, LIX, and RANTES play a role in RIC-mediated protection.
Collapse
Affiliation(s)
- Jana Končeková
- Institute of Neurobiology, Biomedical Research Center of the Slovak Academy of Sciences, Soltesovej 4-6, 040 01, Kosice, Slovak Republic
| | - Klaudia Kotorová
- Institute of Neurobiology, Biomedical Research Center of the Slovak Academy of Sciences, Soltesovej 4-6, 040 01, Kosice, Slovak Republic
| | - Miroslava Némethová
- Institute of Neurobiology, Biomedical Research Center of the Slovak Academy of Sciences, Soltesovej 4-6, 040 01, Kosice, Slovak Republic
| | - Martin Bona
- Department of Medical Physiology, Faculty of Medicine, University of Pavol Jozef Safarik, Trieda SNP 1, 040 01, Kosice, Slovak Republic
| | - Petra Bonová
- Institute of Neurobiology, Biomedical Research Center of the Slovak Academy of Sciences, Soltesovej 4-6, 040 01, Kosice, Slovak Republic.
| |
Collapse
|
3
|
Knezic A, Budusan E, Saez NJ, Broughton BRS, Rash LD, King GF, Widdop RE, McCarthy CA. Hi1a Improves Sensorimotor Deficit following Endothelin-1-Induced Stroke in Rats but Does Not Improve Functional Outcomes following Filament-Induced Stroke in Mice. ACS Pharmacol Transl Sci 2024; 7:1043-1054. [PMID: 38638162 PMCID: PMC11022283 DOI: 10.1021/acsptsci.3c00328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/07/2024] [Accepted: 03/04/2024] [Indexed: 04/20/2024]
Abstract
Activation of acid-sensing ion channel 1a (ASIC1a) plays a major role in mediating acidosis-induced neuronal injury following a stroke. Therefore, the inhibition of ASIC1a is a potential therapeutic avenue for the treatment of stroke. Venom-peptide Hi1a, a selective and highly potent ASIC1a inhibitor, reduces the infarct size and functional deficits when injected into the brain after stroke in rodents. However, its efficacy when administered using a clinically relevant route of administration remains to be established. Therefore, the current investigation aims to examine the efficacy of systemically administered Hi1a, using two different models of stroke in different species. Mice were subjected to the filament model of middle cerebral artery occlusion (MCAO) and treated with Hi1a systemically using either a single- or multiple-dosing regimen. 24 h poststroke, mice underwent functional testing, and the brain infarct size was assessed. Rats were subjected to endothelin-1 (ET-1)-induced MCAO and treated with Hi1a intravenously 2 h poststroke. Rats underwent functional tests prior to and for 3 days poststroke, when infarct volume was assessed. Mice receiving Hi1a did not show any improvements in functional outcomes, despite a trend toward reduced infarct size. This trend for reduced infarct size in mice was consistent regardless of the dosing regimen. There was also a trend toward lower infarct size in rats treated with Hi1a. More specifically, Hi1a reduced the amount of damage occurring within the somatosensory cortex, which was associated with an improved sensorimotor function in Hi1a-treated rats. Thus, this study suggests that Hi1a or more brain-permeable ASIC1a inhibitors are a potential stroke treatment.
Collapse
Affiliation(s)
- Adriana Knezic
- Cardiovascular Disease Program, Monash Biomedicine
Discovery Institute (BDI), Department of Pharmacology, Monash
University, Clayton, VIC 3800, Australia
| | - Elena Budusan
- School of Biomedical Sciences, Faculty of Medicine,
The University of Queensland, St Lucia, QLD 4072,
Australia
| | - Natalie J. Saez
- Institute for Molecular Bioscience, The
University of Queensland, St Lucia, QLD 4072,
Australia
- Australian Research Council Centre of Excellence for
Innovations in Peptide and Protein Science, The University of
Queensland, St Lucia, QLD 4072, Australia
| | - Brad R. S. Broughton
- Cardiovascular Disease Program, Monash Biomedicine
Discovery Institute (BDI), Department of Pharmacology, Monash
University, Clayton, VIC 3800, Australia
| | - Lachlan D. Rash
- School of Biomedical Sciences, Faculty of Medicine,
The University of Queensland, St Lucia, QLD 4072,
Australia
| | - Glenn F. King
- Institute for Molecular Bioscience, The
University of Queensland, St Lucia, QLD 4072,
Australia
- Australian Research Council Centre of Excellence for
Innovations in Peptide and Protein Science, The University of
Queensland, St Lucia, QLD 4072, Australia
| | - Robert E. Widdop
- Cardiovascular Disease Program, Monash Biomedicine
Discovery Institute (BDI), Department of Pharmacology, Monash
University, Clayton, VIC 3800, Australia
| | - Claudia A. McCarthy
- Cardiovascular Disease Program, Monash Biomedicine
Discovery Institute (BDI), Department of Pharmacology, Monash
University, Clayton, VIC 3800, Australia
| |
Collapse
|
4
|
Kotorová K, Končeková J, Gottlieb M, Bona M, Bonová P. Obesity as a Limiting Factor for Remote Ischemic Postconditioning-Mediated Neuroprotection after Stroke. J Obes Metab Syndr 2024; 33:76-87. [PMID: 38049179 PMCID: PMC11000512 DOI: 10.7570/jomes23038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/09/2023] [Accepted: 09/21/2023] [Indexed: 12/06/2023] Open
Abstract
Background Remote ischemic postconditioning (RIPostC) may protect the brain from ischemia/reperfusion (I/R) injury. The association between RIPostC and obesity has not yet been extensively studied. Methods Twelve-week-old male Zucker diabetic fatty (ZDF; n=68) and Zucker diabetic lean (ZDL; n=51) rats were subjected to focal cerebral ischemia for 90 minutes, followed by 24 hours of reperfusion. RIPostC was performed with 5-minute I/R cycles using a tourniquet on the right hind limb. Results The results showed a negative association between obesity and neurological impairment in ischemic animals. We observed a 70% greater infarct size in ZDF rats compared with their lean counterparts, as evaluated by 2,3,5-triphenyltetrazolium chloride staining. To measure the total fragmented DNA in peripheral lymphocytes, comet assay was performed. Obese rats exhibited higher levels of DNA damage (by approximately 135%) in peripheral blood lymphocytes even before the induction of stroke. RIPostC did not attenuate oxidative stress in the blood in obese rats subjected to ischemia. Focal cerebral ischemia increased core and penumbra tissue glutamate release in the brain and decreased it in the blood of ischemic ZDL rats, and these changes improved following RIPostC treatment. However, changes in blood and tissue glutamate content were not detected in ischemic ZDF rats or after RIPostC intervention. Conclusion Our findings suggest that obese animals respond more severely to ischemia-reperfusion brain injury. However, obese animals did not achieve neuroprotective benefits of RIPostC treatment.
Collapse
Affiliation(s)
- Klaudia Kotorová
- Institute of Neurobiology, Biomedical Research Center of the Slovak Academy of Sciences, Kosice, Slovak Republic
| | - Jana Končeková
- Institute of Neurobiology, Biomedical Research Center of the Slovak Academy of Sciences, Kosice, Slovak Republic
| | - Miroslav Gottlieb
- Institute of Neurobiology, Biomedical Research Center of the Slovak Academy of Sciences, Kosice, Slovak Republic
| | - Martin Bona
- Department of Medical Physiology, Faculty of Medicine, University of Pavol Jozef Safarik, Kosice, Slovak Republic
| | - Petra Bonová
- Institute of Neurobiology, Biomedical Research Center of the Slovak Academy of Sciences, Kosice, Slovak Republic
| |
Collapse
|
5
|
Telianidis J, Hunter A, Widdop R, Kemp-Harper B, Pham V, McCarthy C, Chai SY. Inhibition of insulin-regulated aminopeptidase confers neuroprotection in a conscious model of ischemic stroke. Sci Rep 2023; 13:19722. [PMID: 37957163 PMCID: PMC10643421 DOI: 10.1038/s41598-023-46072-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
Stroke is a leading cause of mortality and morbidity with a paucity of effective pharmacological treatments. We have previously identified insulin-regulated aminopeptidase (IRAP) as a potential target for the development of a new class of drugs for the treatment of stroke, as global deletion of this gene in mice significantly protected against ischemic damage. In the current study, we demonstrate that small molecular weight IRAP inhibitors reduce infarct volume and improve neurological outcome in a hypertensive animal model of ischemic stroke. The effects of two structurally distinct IRAP inhibitors (HFI419 or SJM164) were investigated in a model of stroke where the middle cerebral artery was transiently occluded with endothelin-1 in the conscious spontaneously hypertensive rat. IRAP inhibitor was administered into the lateral ventricle at 2 or 6 h after stroke, with subsequent doses delivered at 24, 48 and 70 h post-stroke. Functional outcomes were assessed prior to drug treatment, and on day 1 and 3 post-stroke. Histological analyses and neuroinflammatory cytokine profiling were conducted at 72 and 24 h post-stroke respectively. IRAP inhibitor treatment following stroke significantly reduced infarct volume and improved neurological and motor deficits. These protective effects were maintained even when the therapeutic window was extended to 6 h. Examination of the cellular architecture at 72 h post-stroke demonstrated that IRAP expression was upregulated in CD11b positive cells and activated astrocytes. Furthermore, IRAP inhibitor treatment significantly increased gene expression for interleukin 6 and C-C motif chemokine ligand 2 in the ischemic core. This study provides proof-of-principle that selective inhibition of IRAP activity with two structurally distinct IRAP inhibitors reduces infarct volume and improves functional outcome even when the first dose is administered 6 h post-stroke. This is the first direct evidence that IRAP inhibitors are a class of drug with potential use in the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Jonathon Telianidis
- Department of Physiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Andrew Hunter
- Department of Physiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Robert Widdop
- Department Pharmacology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Barbara Kemp-Harper
- Department Pharmacology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Vi Pham
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Claudia McCarthy
- Department Pharmacology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Siew Yeen Chai
- Department of Physiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia.
| |
Collapse
|
6
|
Brain to blood efflux as a mechanism underlying the neuroprotection mediated by rapid remote preconditioning in brain ischemia. Mol Biol Rep 2020; 47:5385-5395. [DOI: 10.1007/s11033-020-05626-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 06/26/2020] [Indexed: 12/21/2022]
|
7
|
Bonova P, Jachova J, Nemethova M, Macakova L, Bona M, Gottlieb M. Rapid remote conditioning mediates modulation of blood cell paracrine activity and leads to the production of a secretome with neuroprotective features. J Neurochem 2019; 154:99-111. [DOI: 10.1111/jnc.14889] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 10/03/2019] [Accepted: 10/07/2019] [Indexed: 12/27/2022]
Affiliation(s)
- Petra Bonova
- Institute of Neurobiology Biomedical Research Center of Slovak Academy of Sciences Kosice Slovak Republic
| | - Jana Jachova
- Institute of Neurobiology Biomedical Research Center of Slovak Academy of Sciences Kosice Slovak Republic
| | - Miroslava Nemethova
- Institute of Neurobiology Biomedical Research Center of Slovak Academy of Sciences Kosice Slovak Republic
| | - Lubica Macakova
- Institute of Neurobiology Biomedical Research Center of Slovak Academy of Sciences Kosice Slovak Republic
| | - Martin Bona
- Department of Medical Physiology Faculty of Medicine Pavol Jozef Safarik University in Kosice Kosice Slovak Republic
| | - Miroslav Gottlieb
- Institute of Neurobiology Biomedical Research Center of Slovak Academy of Sciences Kosice Slovak Republic
| |
Collapse
|
8
|
Cisneros-Mejorado A, Gottlieb M, Ruiz A, Chara JC, Pérez-Samartín A, Marambaud P, Matute C. Blockade and knock-out of CALHM1 channels attenuate ischemic brain damage. J Cereb Blood Flow Metab 2018; 38:1060-1069. [PMID: 28597712 PMCID: PMC5999001 DOI: 10.1177/0271678x17713587] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Overactivation of purinergic receptors during cerebral ischemia results in a massive release of neurotransmitters, including adenosine triphosphate (ATP), to the extracellular space which leads to cell death. Some hypothetical pathways of ATP release are large ion channels, such as calcium homeostasis modulator 1 (CALHM1), a membrane ion channel that can permeate ATP. Since this transmitter contributes to postischemic brain damage, we hypothesized that CALHM1 activation may be a relevant target to attenuate stroke injury. Here, we analyzed the contribution of CALHM1 to postanoxic depolarization after ischemia in cultured neurons and in cortical slices. We observed that the onset of postanoxic currents in neurons in those preparations was delayed after its blockade with ruthenium red or silencing of Calhm1 gene by short hairpin RNA, as well as in slices from CALHM1 knockout mice. Subsequently, we used transient middle cerebral artery occlusion and found that ruthenium red, a blocker of CALHM1, or the lack of CALHM1, substantially attenuated the motor symptoms and reduced significantly the infarct volume. These results show that CALHM1 channels mediate postanoxic depolarization in neurons and brain damage after ischemia. Therefore, targeting CALHM1 may have a high therapeutic potential for treating brain damage after ischemia.
Collapse
Affiliation(s)
- Abraham Cisneros-Mejorado
- 1 Achucarro Basque Center for Neuroscience, Departamento de Neurociencias and CIBERNED, Universidad del País Vasco (UPV/EHU), Leioa, Spain.,2 Neurotek-UPV/EHU, Parque Tecnológico de Bizkaia, Zamudio, Spain
| | - Miroslav Gottlieb
- 1 Achucarro Basque Center for Neuroscience, Departamento de Neurociencias and CIBERNED, Universidad del País Vasco (UPV/EHU), Leioa, Spain.,3 Institute of Neurobiology, Slovak Academy of Sciences, Kosice, Slovak Republic
| | - Asier Ruiz
- 1 Achucarro Basque Center for Neuroscience, Departamento de Neurociencias and CIBERNED, Universidad del País Vasco (UPV/EHU), Leioa, Spain.,2 Neurotek-UPV/EHU, Parque Tecnológico de Bizkaia, Zamudio, Spain
| | - Juan C Chara
- 1 Achucarro Basque Center for Neuroscience, Departamento de Neurociencias and CIBERNED, Universidad del País Vasco (UPV/EHU), Leioa, Spain.,2 Neurotek-UPV/EHU, Parque Tecnológico de Bizkaia, Zamudio, Spain
| | - Alberto Pérez-Samartín
- 1 Achucarro Basque Center for Neuroscience, Departamento de Neurociencias and CIBERNED, Universidad del País Vasco (UPV/EHU), Leioa, Spain.,2 Neurotek-UPV/EHU, Parque Tecnológico de Bizkaia, Zamudio, Spain
| | | | - Carlos Matute
- 1 Achucarro Basque Center for Neuroscience, Departamento de Neurociencias and CIBERNED, Universidad del País Vasco (UPV/EHU), Leioa, Spain.,2 Neurotek-UPV/EHU, Parque Tecnológico de Bizkaia, Zamudio, Spain
| |
Collapse
|
9
|
Bonova P, Nemethova M, Matiasova M, Bona M, Gottlieb M. Blood cells serve as a source of factor-inducing rapid ischemic tolerance in brain. Eur J Neurosci 2016; 44:2958-2965. [DOI: 10.1111/ejn.13422] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 09/07/2016] [Accepted: 09/30/2016] [Indexed: 02/07/2023]
Affiliation(s)
- Petra Bonova
- Institute of Neurobiology; Slovak Academy of Sciences; Soltesovej 4/6 Kosice SK-040 01 Slovakia
| | - Miroslava Nemethova
- Institute of Neurobiology; Slovak Academy of Sciences; Soltesovej 4/6 Kosice SK-040 01 Slovakia
| | - Milina Matiasova
- Institute of Neurobiology; Slovak Academy of Sciences; Soltesovej 4/6 Kosice SK-040 01 Slovakia
| | - Martin Bona
- Department of Anatomy; Faculty of Medicine; Pavol Jozef Safarik University; Kosice Slovakia
| | - Miroslav Gottlieb
- Institute of Neurobiology; Slovak Academy of Sciences; Soltesovej 4/6 Kosice SK-040 01 Slovakia
| |
Collapse
|
10
|
McCarthy CA, Rash LD, Chassagnon IR, King GF, Widdop RE. PcTx1 affords neuroprotection in a conscious model of stroke in hypertensive rats via selective inhibition of ASIC1a. Neuropharmacology 2015; 99:650-7. [DOI: 10.1016/j.neuropharm.2015.08.040] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 08/18/2015] [Accepted: 08/24/2015] [Indexed: 12/18/2022]
|
11
|
Cisneros-Mejorado A, Gottlieb M, Cavaliere F, Magnus T, Koch-Nolte F, Scemes E, Pérez-Samartín A, Matute C. Blockade of P2X7 receptors or pannexin-1 channels similarly attenuates postischemic damage. J Cereb Blood Flow Metab 2015; 35:843-50. [PMID: 25605289 PMCID: PMC4420860 DOI: 10.1038/jcbfm.2014.262] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 12/19/2014] [Accepted: 12/22/2014] [Indexed: 11/09/2022]
Abstract
The role of P2X7 receptors and pannexin-1 channels in ischemic damage remains controversial. Here, we analyzed their contribution to postanoxic depolarization after ischemia in cultured neurons and in brain slices. We observed that pharmacological blockade of P2X7 receptors or pannexin-1 channels delayed the onset of postanoxic currents and reduced their slope, and that simultaneous inhibition did not further enhance the effects of blocking either one. These results were confirmed in acute cortical slices from P2X7 and pannexin-1 knockout mice. Oxygen-glucose deprivation in cortical organotypic cultures caused neuronal death that was reduced with P2X7 and pannexin-1 blockers as well as in organotypic cultures derived from mice lacking P2X7 and pannexin 1. Subsequently, we used transient middle cerebral artery occlusion to monitor the neuroprotective effect of those drugs in vivo. We found that P2X7 and pannexin-1 antagonists, and their ablation in knockout mice, substantially attenuated the motor symptoms and reduced the infarct volume to ~50% of that in vehicle-treated or wild-type animals. These results show that P2X7 receptors and pannexin-1 channels are major mediators of postanoxic depolarization in neurons and of brain damage after ischemia, and that they operate in the same deleterious signaling cascade leading to neuronal and tissue demise.
Collapse
Affiliation(s)
- Abraham Cisneros-Mejorado
- Achucarro Basque Center for Neuroscience, Departamento de Neurociencias and CIBERNED, Universidad del País Vasco (UPV/EHU), Leioa, Spain
| | - Miroslav Gottlieb
- 1] Achucarro Basque Center for Neuroscience, Departamento de Neurociencias and CIBERNED, Universidad del País Vasco (UPV/EHU), Leioa, Spain [2] Institute of Neurobiology, Slovak Academy of Sciences, Kosice, Slovak Republic
| | - Fabio Cavaliere
- 1] Achucarro Basque Center for Neuroscience, Departamento de Neurociencias and CIBERNED, Universidad del País Vasco (UPV/EHU), Leioa, Spain [2] Neurotek-UPV/EHU, Parque Tecnológico de Bizkaia, Zamudio, Spain
| | - Tim Magnus
- Department of Neurology, University Hospital Hamburg, Hamburg, Germany
| | | | - Eliana Scemes
- Dominick P. Purpura Department of Neurosciences, Albert Einstein College of Medicine, New York, New York, USA
| | - Alberto Pérez-Samartín
- 1] Achucarro Basque Center for Neuroscience, Departamento de Neurociencias and CIBERNED, Universidad del País Vasco (UPV/EHU), Leioa, Spain [2] Neurotek-UPV/EHU, Parque Tecnológico de Bizkaia, Zamudio, Spain
| | - Carlos Matute
- 1] Achucarro Basque Center for Neuroscience, Departamento de Neurociencias and CIBERNED, Universidad del País Vasco (UPV/EHU), Leioa, Spain [2] Neurotek-UPV/EHU, Parque Tecnológico de Bizkaia, Zamudio, Spain
| |
Collapse
|
12
|
Bonova P, Gottlieb M. Blood as the carrier of ischemic tolerance in rat brain. J Neurosci Res 2015; 93:1250-7. [PMID: 25787695 DOI: 10.1002/jnr.23580] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 01/20/2015] [Accepted: 02/09/2015] [Indexed: 11/08/2022]
Abstract
This study provides clear evidence that the factor inducing tolerance to ischemia is transmitted via the circulating blood. By using the remote ischemia and the cross-circulation model, the tolerance to ischemia was transmitted from donor to recipient. For this study, the following experimental groups were designed: I, sham control group; II, group of tolerant hindlimb tourniquet-treated rats; III, positive control group; IV, control for cross-circulation influence; preconditioned animals: V, tolerant animals subjected to middle cerebral artery occlusion (MCAO); VI, tolerant animals cross-circulated with SHC, followed by MCAO; VII, SHC animals cross-circulated with tolerant animals and subsequently subjected to MCAO; VIII, tolerant animals cross-circulated with ischemic rats, followed by MCAO; IX, SHC animals cross-circulated with ischemic animals and subjected to MCAO; postconditioned animals: X, ischemic animals treated with a remote limb tourniquet; XI, ischemic animals cross-circulated with SHC control rats; and XII, ischemic animals cross-circulated with tolerant rats. Results confirmed that remote ischemia induced reduction of infarct volume in the preconditioned (V, 60%) as well as in the postconditioned group (X, 52%). Significant diminution was also observed in group XII (56.6%). In the preconditioned group, decreased infarct volume was detected in groups VI and VII (about 65%) and in group IX (about 50%). The greatest infarct reduction (84%) was induced by the presence of ischemic blood in a tolerant rat before ischemia induction. In summary, the factor inducing tolerance to ischemia is generated by remote ischemia and by ischemia itself; from the site of origin to the rest of the body, it is transported by the systemic blood circulation and can be transferred from animal to animal. The effect of conditioning with two different ischemic events (brain and hindlimb ischemia) led to a cumulative, stronger tolerance response.
Collapse
Affiliation(s)
- Petra Bonova
- Institute of Neurobiology, Slovak Academy of Sciences, Kosice, Slovak Republic
| | - Miroslav Gottlieb
- Institute of Neurobiology, Slovak Academy of Sciences, Kosice, Slovak Republic
| |
Collapse
|
13
|
McCann SK, Dusting GJ, Roulston CL. Nox2 knockout delays infarct progression and increases vascular recovery through angiogenesis in mice following ischaemic stroke with reperfusion. PLoS One 2014; 9:e110602. [PMID: 25375101 PMCID: PMC4222846 DOI: 10.1371/journal.pone.0110602] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 09/23/2014] [Indexed: 12/14/2022] Open
Abstract
Evidence suggests the NADPH oxidases contribute to ischaemic stroke injury and Nox2 is the most widely studied subtype in the context of stroke. There is still conjecture however regarding the benefits of inhibiting Nox2 to improve stroke outcome. The current study aimed to examine the temporal effects of genetic Nox2 deletion on neuronal loss after ischaemic stroke using knockout (KO) mice with 6, 24 and 72 hour recovery. Transient cerebral ischaemia was induced via intraluminal filament occlusion and resulted in reduced infarct volumes in Nox2 KO mice at 24 h post-stroke compared to wild-type controls. No protection was evident at either 6 h or 72 h post-stroke, with both genotypes exhibiting similar volumes of damage. Reactive oxygen species were detected using dihydroethidium and were co-localised with neurons and microglia in both genotypes using immunofluorescent double-labelling. The effect of Nox2 deletion on vascular damage and recovery was also examined 24 h and 72 h post-stroke using an antibody against laminin. Blood vessel density was decreased in the ischaemic core of both genotypes 24 h post-stroke and returned to pre-stroke levels only in Nox2 KO mice by 72 h. Overall, these results are the first to show that genetic Nox2 deletion merely delays the progression of neuronal loss after stroke but does not prevent it. Additionally, we show for the first time that Nox2 deletion increases re-vascularisation of the damaged brain by 72 h, which may be important in promoting endogenous brain repair mechanisms that rely on re-vascularisation.
Collapse
Affiliation(s)
- Sarah K. McCann
- Stroke Injury and Repair Team, O'Brien Institute, St Vincent's Hospital, Melbourne, Victoria, Australia
- Department of Surgery, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria, Australia
| | - Gregory J. Dusting
- Cytoprotection Pharmacology Program, Centre for Eye Research, the Royal Eye and Ear Hospital, Melbourne, Victoria, Australia
- Department of Ophthalmology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria, Australia
| | - Carli L. Roulston
- Stroke Injury and Repair Team, O'Brien Institute, St Vincent's Hospital, Melbourne, Victoria, Australia
- Department of Medicine, Faculty of Medicine, Dentistry and Health Sciences, St Vincent's Campus, University of Melbourne, Melbourne, Victoria, Australia
- * E-mail:
| |
Collapse
|
14
|
Abeysinghe HCS, Bokhari L, Dusting GJ, Roulston CL. Brain remodelling following endothelin-1 induced stroke in conscious rats. PLoS One 2014; 9:e97007. [PMID: 24809543 PMCID: PMC4029108 DOI: 10.1371/journal.pone.0097007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 04/14/2014] [Indexed: 01/20/2023] Open
Abstract
The extent of stroke damage in patients affects the range of subsequent pathophysiological responses that influence recovery. Here we investigate the effect of lesion size on development of new blood vessels as well as inflammation and scar formation and cellular responses within the subventricular zone (SVZ) following transient focal ischemia in rats (n = 34). Endothelin-1-induced stroke resulted in neurological deficits detected between 1 and 7 days (P<0.001), but significant recovery was observed beyond this time. MCID image analysis revealed varying degrees of damage in the ipsilateral cortex and striatum with infarct volumes ranging from 0.76–77 mm3 after 14 days, where larger infarct volumes correlated with greater functional deficits up to 7 days (r = 0.53, P<0.05). Point counting of blood vessels within consistent sample regions revealed that increased vessel numbers correlated significantly with larger infarct volumes 14 days post-stroke in the core cortical infarct (r = 0.81, P<0.0001), core striatal infarct (r = 0.91, P<0.005) and surrounding border zones (r = 0.66, P<0.005; and r = 0.73, P<0.05). Cell proliferation within the SVZ also increased with infarct size (P<0.01) with a greater number of Nestin/GFAP positive cells observed extending towards the border zone in rats with larger infarcts. Lesion size correlated with both increased microglia and astrocyte activation, with severely diffuse astrocyte transition, the formation of the glial scar being more pronounced in rats with larger infarcts. Thus stroke severity affects cell proliferation within the SVZ in response to injury, which may ultimately make a further contribution to glial scar formation, an important factor to consider when developing treatment strategies that promote neurogenesis.
Collapse
Affiliation(s)
- Hima C. S. Abeysinghe
- Department of Surgery, St Vincent’s Campus, University of Melbourne, Victoria, Australia
- * E-mail:
| | - Laita Bokhari
- Neurotrauma Research team, Department of Medicine, St Vincent’s Campus, University of Melbourne, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Victoria, Australia
| | - Gregory J. Dusting
- Cytoprotection Pharmacology Program, Centre for Eye Research, The Royal Eye and Ear Hospital Melbourne, Victoria, Australia
- Department of Opthamology, Faculty of Medicine, University of Melbourne, Victoria, Australia
| | - Carli L. Roulston
- Neurotrauma Research team, Department of Medicine, St Vincent’s Campus, University of Melbourne, Victoria, Australia
| |
Collapse
|
15
|
Direct angiotensin AT2 receptor stimulation using a novel AT2 receptor agonist, compound 21, evokes neuroprotection in conscious hypertensive rats. PLoS One 2014; 9:e95762. [PMID: 24752645 PMCID: PMC3994132 DOI: 10.1371/journal.pone.0095762] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 03/29/2014] [Indexed: 01/10/2023] Open
Abstract
Background In this study, the neuroprotective effect of a novel nonpeptide AT2R agonist, C21, was examined in a conscious model of stroke to verify a class effect of AT2R agonists as neuroprotective agents. Methods and Results Spontaneously hypertensive rats (SHR) were pre-treated for 5 days prior to stroke with C21 alone or in combination with the AT2R antagonist PD123319. In a separate series of experiments C21 was administered in a series of 4 doses commencing 6 hours after stroke. A focal reperfusion model of ischemia was induced in conscious SHR by administering endothelin-1 to the middle cerebral artery (MCA). Motor coordination was assessed at 1 and 3 days after stroke and post mortem analyses of infarct volumes, microglia activation and neuronal survival were performed at 72 hours post MCA occlusion. When given prior to stroke, C21 dose dependently decreased infarct volume, which is consistent with the behavioural findings illustrating an improvement in motor deficit. During the pre-treatment protocol C21 was shown to enhance microglia activation, which are likely to be evoking protection by releasing brain derived neurotrophic factor. When drug administration was delayed until 6 hours after stroke, C21 still reduced brain injury. Conclusion These results indicate that centrally administered C21 confers neuroprotection against stroke damage. This benefit is likely to involve various mechanisms, including microglial activation of endogenous repair and enhanced cerebroperfusion. Thus, we have confirmed the neuroprotective effect of AT2R stimulation using a nonpeptide compound which highlights the clinical potential of the AT2R agonists for future development.
Collapse
|
16
|
Moldthan HL, Hirko AC, Thinschmidt JS, Grant MB, Li Z, Peris J, Lu Y, Elshikha AS, King MA, Hughes JA, Song S. Alpha 1-antitrypsin therapy mitigated ischemic stroke damage in rats. J Stroke Cerebrovasc Dis 2014; 23:e355-63. [PMID: 24582784 DOI: 10.1016/j.jstrokecerebrovasdis.2013.12.029] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 11/01/2013] [Accepted: 12/17/2013] [Indexed: 02/07/2023] Open
Abstract
Our objective is to develop a new therapy for the treatment of stroke. Currently, the only effective therapy for acute ischemic stroke is the thrombolytic agent recombinant tissue plasminogen activator. α1-Antitrypsin (AAT), a serine proteinase inhibitor with potent anti-inflammatory, anti-apoptotic, antimicrobial, and cytoprotective activities, could be beneficial in stroke. The goal of this study is to test whether AAT can improve ischemic stroke outcome in an established rat model. Middle cerebral artery occlusion was induced in male rats via intracranial (i.c.) microinjection of endothelin-1. Five to 10 minutes after stroke induction, rats received either i.c. or intravenous delivery of human AAT. Cylinder and vibrissae tests were used to evaluate sensorimotor function before and 72 hours after middle cerebral artery occlusion. Infarct volumes were examined via either 2,3,5-triphenyltetrazolium chloride assay or magnetic resonance imaging 72 hours after middle cerebral artery occlusion. Despite equivalent initial strokes, at 72 hours, the infarct volumes of the human AAT treatment groups (local and systemic injection) were statistically significantly reduced by 83% and 63% (P < .0001 and P < .05, respectively) compared with control rats. Human AAT significantly limited sensory motor system deficits. Human AAT could be a potential novel therapeutic drug for the protection against neurodegeneration after ischemic stroke, but more studies are needed to investigate the protective mechanisms and efficacy in other animal models.
Collapse
Affiliation(s)
- Huong L Moldthan
- Department of Pharmaceutics, University of Florida College of Pharmacy, Gainesville, Florida
| | - Aaron C Hirko
- Department of Pharmacology and Therapeutics, University of Florida College of Medicine, Gainesville, Florida
| | - Jeffrey S Thinschmidt
- Department of Pharmacology and Therapeutics, University of Florida College of Medicine, Gainesville, Florida
| | - Maria B Grant
- Department of Pharmacology and Therapeutics, University of Florida College of Medicine, Gainesville, Florida
| | - Zhimin Li
- Department of Pharmacodynamics, University of Florida College of Pharmacy, Gainesville, Florida
| | - Joanna Peris
- Department of Pharmacodynamics, University of Florida College of Pharmacy, Gainesville, Florida
| | - Yuanqing Lu
- Department of Pharmaceutics, University of Florida College of Pharmacy, Gainesville, Florida
| | - Ahmed S Elshikha
- Department of Pharmaceutics, University of Florida College of Pharmacy, Gainesville, Florida; Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig, Sharkia, Egypt
| | - Michael A King
- Department of Pharmacology and Therapeutics, University of Florida College of Medicine, Gainesville, Florida; Department of Veterans Affairs Medical Center, Gainesville, Florida
| | | | - Sihong Song
- Department of Pharmaceutics, University of Florida College of Pharmacy, Gainesville, Florida.
| |
Collapse
|
17
|
Weston RM, Lin B, Dusting GJ, Roulston CL. Targeting oxidative stress injury after ischemic stroke in conscious rats: limited benefits with apocynin highlight the need to incorporate long term recovery. Stroke Res Treat 2013; 2013:648061. [PMID: 23401848 PMCID: PMC3557625 DOI: 10.1155/2013/648061] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 12/14/2012] [Indexed: 02/02/2023] Open
Abstract
NADPH oxidase is a major source of superoxide anion following stroke and reperfusion. This study evaluated the effects of apocynin, a known antioxidant and inhibitor of Nox2 NADPH, on neuronal injury and cell-specific responses to stroke induced in the conscious rat. Apocynin treatment (50 mg/kg i.p.) commencing 1 hour prior to stroke and 24 and 48 hours after stroke significantly reduced infarct volume in the cortex by ~ 60%, but had no effect on striatal damage or neurological deficits. In situ detection of reactive oxygen species (ROS) using dihydroethidium fluorescence revealed that increased ROS detected in OX-42 positive cells following ischemia was reduced in apocynin-treated rats by ~ 51%, but surprisingly increased in surrounding NeuN positive cells of the same rats by ~ 27%, in comparison to the contralateral hemisphere. Reduced ROS from activated microglia/macrophages treated with apocynin was associated with reduced Nox2 immunoreactivity without change to the number of cells. These findings confirm the protective effects of apocynin and indicate a novel mechanism via reduced Nox2 expression. We also reveal compensatory changes in neuronal ROS generation as a result of Nox2 inhibition and highlight the need to assess long term individual cell responses to inhibitors of oxidative stress.
Collapse
Affiliation(s)
- Robert M. Weston
- Stroke Injury and Repair Team, O'Brien Institute, St Vincent's Hospital Melbourne, Fitzroy, Victoria, Australia
| | - Bin Lin
- Stroke Injury and Repair Team, O'Brien Institute, St Vincent's Hospital Melbourne, Fitzroy, Victoria, Australia
| | - Gregory J. Dusting
- Cytoprotection Pharmacology Program, Centre for Eye Research, The Royal Eye and Ear Hospital Victoria, Melbourne, Victoria, Australia
- Department of Ophthalmology, Faculty of Medicine, The University of Melbourne, Victoria, Australia
| | - Carli L. Roulston
- Stroke Injury and Repair Team, O'Brien Institute, St Vincent's Hospital Melbourne, Fitzroy, Victoria, Australia
- Department of Surgery, Faculty of Medicine, The University of Melbourne, Victoria, Australia
| |
Collapse
|
18
|
Arbeloa J, Pérez-Samartín A, Gottlieb M, Matute C. P2X7 receptor blockade prevents ATP excitotoxicity in neurons and reduces brain damage after ischemia. Neurobiol Dis 2011; 45:954-61. [PMID: 22186422 DOI: 10.1016/j.nbd.2011.12.014] [Citation(s) in RCA: 157] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Revised: 11/09/2011] [Accepted: 12/04/2011] [Indexed: 12/22/2022] Open
Abstract
Overactivation of subtype P2X7 receptors can induce excitotoxic neuronal death by calcium (Ca(2+)) overload. In this study, we characterize the functional properties of P2X7 receptors using electrophysiology and Ca(2+) monitoring in primary cortical neuron cultures and in brain slices. Both electrical responses and Ca(2+) influx induced by ATP and benzoyl-ATP were reduced by Brilliant Blue G (BBG) at concentrations which specifically inhibit P2X7 receptors. In turn, oxygen-glucose deprivation (OGD) caused neuronal death that was reduced with BBG application. OGD in neuron cultures and brain slices generated an inward current, which was delayed and reduced by BBG. To assess the relevance of these in vitro findings, we used middle cerebral artery occlusion in rats as a model of transient focal cerebral ischemia to study the neuroprotective effect of BBG in vivo. Treatment with BBG (twice per day, 30 mg/kg) produced a 60% reduction in the extent of brain damage compared to treatment with vehicle alone. These results show that P2X7 purinergic receptors mediate tissue damage after OGD in neurons and following transient brain ischemia. Therefore, these receptors are a relevant molecular target for the development of new treatments to attenuate brain damage following stroke.
Collapse
Affiliation(s)
- Joana Arbeloa
- CIBERNED and Laboratory of Neurobiology, Department of Neurosciences, University of the Basque Country, 48940-Leioa, Spain
| | | | | | | |
Collapse
|
19
|
McCarthy CA, Vinh A, Callaway JK, Widdop RE. Angiotensin AT
2
Receptor Stimulation Causes Neuroprotection in a Conscious Rat Model of Stroke. Stroke 2009; 40:1482-9. [DOI: 10.1161/strokeaha.108.531509] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Claudia A. McCarthy
- From the Department of Pharmacology (C.A.M., A.V., R.E.W.), Monash University, Clayton, Victoria, Australia; and the Department of Pharmacology (J.K.C.), University of Melbourne, Parkville, Victoria, Australia
| | - Antony Vinh
- From the Department of Pharmacology (C.A.M., A.V., R.E.W.), Monash University, Clayton, Victoria, Australia; and the Department of Pharmacology (J.K.C.), University of Melbourne, Parkville, Victoria, Australia
| | - Jennifer K. Callaway
- From the Department of Pharmacology (C.A.M., A.V., R.E.W.), Monash University, Clayton, Victoria, Australia; and the Department of Pharmacology (J.K.C.), University of Melbourne, Parkville, Victoria, Australia
| | - Robert E. Widdop
- From the Department of Pharmacology (C.A.M., A.V., R.E.W.), Monash University, Clayton, Victoria, Australia; and the Department of Pharmacology (J.K.C.), University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
20
|
Endothelin-1 induced MCAO: dose dependency of cerebral blood flow. J Neurosci Methods 2009; 179:22-8. [PMID: 19428507 DOI: 10.1016/j.jneumeth.2009.01.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2008] [Revised: 12/22/2008] [Accepted: 01/08/2009] [Indexed: 12/31/2022]
Abstract
The purpose of this study was to characterize the magnitude and duration of cerebral blood flow (CBF) reduction in the somatosensory cortical region in a rat model of middle cerebral artery occlusion (MCAO) induced by endothelin-1 (ET1) microinjection under isoflurane anesthesia. MCAO was induced by microinjection of ET1 proximal to the MCA in 41 isoflurane-anesthetized male Sprague-Dawley rats. Three doses of ET1 were studied, 60 pmol (Group 1), 150 pmol (Group 2), and 300 pmol (Group 3). CBF was monitored for 4h following injection using a laser Doppler probe stereotaxically inserted into the left somatosensory cortical region. Computed tomography perfusion imaging was used to verify the extent and duration of blood flow reduction in a subset of 12 animals. The magnitude and duration of blood flow reduction was variable (60-92% of baseline). The 300 pmol dose provided the greatest sustained decrease in blood flow. Evidence of tissue damage was obtained in cases where CBF decreased to <40% of baseline. At the doses studied, ET1-induced ischemia in the presence of isoflurane anesthesia can be used as a minimally invasive but variable model of MCAO. The model is well suited for acute imaging studies of ischemia.
Collapse
|
21
|
Cimarosti H, Henley JM. Investigating the mechanisms underlying neuronal death in ischemia using in vitro oxygen-glucose deprivation: potential involvement of protein SUMOylation. Neuroscientist 2008; 14:626-36. [PMID: 19029060 PMCID: PMC3310903 DOI: 10.1177/1073858408322677] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
It is well established that brain ischemia can cause neuronal death via different signaling cascades. The relative importance and interrelationships between these pathways, however, remain poorly understood. Here is presented an overview of studies using oxygen-glucose deprivation of organotypic hippocampal slice cultures to investigate the molecular mechanisms involved in ischemia. The culturing techniques, setup of the oxygen-glucose deprivation model, and analytical tools are reviewed. The authors focus on SUMOylation, a posttranslational protein modification that has recently been implicated in ischemia from whole animal studies as an example of how these powerful tools can be applied and could be of interest to investigate the molecular pathways underlying ischemic cell death.
Collapse
Affiliation(s)
- Helena Cimarosti
- MRC Centre for Synaptic Plasticity, Department of Anatomy, University Walk, University of Bristol, Bristol, UK
| | | |
Collapse
|
22
|
McCann SK, Dusting GJ, Roulston CL. Early increase of Nox4 NADPH oxidase and superoxide generation following endothelin-1-induced stroke in conscious rats. J Neurosci Res 2008; 86:2524-34. [PMID: 18438942 DOI: 10.1002/jnr.21700] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Oxidative stress contributes to the progression of brain injury following ischemic stroke and reperfusion. NADPH oxidase is a well-established source of superoxide in vascular disease, but its contribution to tissue injury following ischemic stroke has yet to be fully elucidated. Here we show the spatiotemporal profile of NADPH oxidase subunits Nox2 and Nox4 and concurrent superoxide generation following stroke induced by middle cerebral artery constriction in conscious rats. Nox2 mRNA was progressively up-regulated in both the ipsilateral cortex and the striatum from 6 hr to 7 days poststroke and reperfusion. Nox4 mRNA was also up-regulated transiently in the cortex at 6 hr poststroke but returned to control levels after this time. In situ detection of superoxide generation with dihydroethidium fluorescence revealed an increase in superoxide within the ischemic core at 6 hr poststroke that was mostly colocalized with the neuronal marker NeuN. By 24 hr, this increase in superoxide production had spread to the boundary zone of the infarct, whereas it disappeared in the ischemic core as neuronal numbers declined. Subsequently, superoxide within the ischemic core again increased at 7 days and was mostly colocalized with the activated microglia/macrophage marker OX-42. Immunoreactivity to Nox2 followed the same spatiotemporal pattern as that of OX-42 immunostaining poststroke. Clearly, NADPH oxidase is an important mediator of oxidative stress and contributes to the progression of brain damage beyond the infarct core, via the activation of two catalytic subunits, Nox2 and Nox4. Selectively blocking these subunits might be useful for intervening in the progression of stroke brain injury.
Collapse
Affiliation(s)
- Sarah K McCann
- Cytoprotection Pharmacology Program, Bernard O'Brien Institute of Microsurgery and Department of Surgery, University of Melbourne, Melbourne, Victoria, Australia
| | | | | |
Collapse
|
23
|
Nicolazzo JA, Nguyen TT, Katneni K, Steuten JA, Smith G, Jarrott B, Callaway JK, Charman SA. Pharmacokinetics and brain uptake of AM-36, a novel neuroprotective agent, following intravenous administration to rats. J Pharm Pharmacol 2008; 60:171-8. [PMID: 18237464 DOI: 10.1211/jpp.60.2.0005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
The plasma pharmacokinetics and brain uptake of the novel neuroprotective agent AM-36 (1-(2-(4-chlorophenyl)-2-hydroxy)ethyl-4-(3,5-bis-(1,1dimethylethyl)-4-hydroxyphenyl) methylpiperazine) were assessed over 72 h following i.v. administration to male Sprague-Dawley rats. At nominal i.v. doses of 0.2, 1 and 3mg kg(-1), AM-36 exhibited an extremely large volume of distribution (18.2-24.6 L kg(-1)) and a long terminal elimination half-life, ranging from 25.2 to 37.7 h. Over this dose range, AM-36 exhibited linear pharmacokinetics, with no apparent change in clearance, volume of distribution or dose-normalised area under the plasma concentration - time curve. AM-36 was very highly bound to plasma proteins (> 99.6%); however, this did not appear to affect the ability of AM-36 to permeate the blood-brain barrier. Following a single i.v. dose of AM-36 at 3mg kg(-1) to rats, brain concentrations were detected for up to 72 h, and the brain-to-plasma ratios were high at all time points (ranging from 8.2 at 5 min post-dose to 0.9 at 72 h post-dose). The very high brain uptake of AM-36 supports previous in-vivo efficacy studies demonstrating the neuroprotective effects of this compound when administered to rats with middle cerebral artery occlusion.
Collapse
Affiliation(s)
- Joseph A Nicolazzo
- Centre for Drug Candidate Optimisation, Victorian College of Pharmacy, Monash University, Parkville, Victoria 3052, Australia
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Roulston CL, Callaway JK, Jarrott B, Woodman OL, Dusting GJ. Using behaviour to predict stroke severity in conscious rats: Post-stroke treatment with 3′, 4′-dihydroxyflavonol improves recovery. Eur J Pharmacol 2008; 584:100-10. [DOI: 10.1016/j.ejphar.2008.01.046] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2007] [Revised: 01/10/2008] [Accepted: 01/24/2008] [Indexed: 11/16/2022]
|
25
|
Weston RM, Jones NM, Jarrott B, Callaway JK. Inflammatory cell infiltration after endothelin-1-induced cerebral ischemia: histochemical and myeloperoxidase correlation with temporal changes in brain injury. J Cereb Blood Flow Metab 2007; 27:100-14. [PMID: 16736051 DOI: 10.1038/sj.jcbfm.9600324] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Accumulation of neutrophils in brain after transient focal stroke remains controversial with some studies showing neutrophils to be deleterious, whereas others suggest neutrophils do not contribute to ischemic injury. Myeloperoxidase (MPO) has been used extensively as a marker for quantifying neutrophil accumulation, but is an indirect method and does not detect neutrophils alone. To elucidate the interaction of macrophages in the neutrophil inflammatory response, we conducted double-label immunofluorescence in brain sections at 0, 1, 2, 3, 7, and 15 days after ischemia. Each of these results was obtained from the same animal to determine correlations between neutrophil infiltration and ischemic damage. It was found that MPO activity increased up to 3 days after cerebral ischemia. Dual-staining revealed that macrophages engulf neutrophils in the brain and that this engulfment of neutrophils increased with time, with 50% of neutrophils in the brain engulfed at 3 days and approximately 85% at 15 days (N=5, P<0.05). Interestingly, at 7 days the amount of dual-staining was decreased to 20% (N=5, P<0.05). Neutrophil infiltration was positively correlated with ischemic damage in both the cortex and striatum (r(2)=0.86 and 0.80, respectively, P<0.01). The results of this study indicate that the MPO from neutrophils phagocytized by macrophages may continue to contribute to the overall MPO activity, and that previous assessments that have utilized this marker to measure neutrophil accumulation may have mis-calculated the number of neutrophils within the ischemic territory and hence their contribution to the evolution of the infarct at later time points. Thus any biphasic infiltration of neutrophils may have been masked by the accumulation of macrophages.
Collapse
Affiliation(s)
- Robert M Weston
- Department of Pharmacology, Monash University, Clayton, Victoria, Australia
| | | | | | | |
Collapse
|
26
|
Weiss TW, Samson AL, Niego B, Daniel PB, Medcalf RL. Oncostatin M is a neuroprotective cytokine that inhibits excitotoxic injury in vitro and in vivo. FASEB J 2006; 20:2369-71. [PMID: 17023520 DOI: 10.1096/fj.06-5850fje] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Oncostatin M (OsM) is a member of the interleukin (IL)-6 family of cytokines and is well known for its role in inflammation, cell proliferation, and hematopoiesis. OsM, together with its glycoprotein 130 containing receptor complex, is expressed and regulated in most cells of the central nervous system (CNS), yet the function of OsM within this compartment is poorly understood. Here we have investigated the effect of OsM using in vitro and in vivo models of excitotoxic injury. Using primary cultures of mouse cortical neurons, OsM was shown to reduce N-methyl-D-aspartate (NMDA) -induced neuronal death by 50% when added simultaneously with NMDA while pretreatment of neurons with OsM fully prevented NMDA toxicity indicating a profound protective effect of this cytokine. OsM was also shown to inhibit NMDA-mediated increase in levels of free intracellular calcium and to selectively reduce neuronal expression of the NR2C subunit of the NMDA receptor. Finally, using an in vivo model of excitotoxic injury, OsM significantly reduced the NMDA-induced lesion volume when coinjected with NMDA into the mouse striatum. Taken together, these results identify OsM as a powerful neuroprotective cytokine and provide a rational foundation to explore the therapeutic potential for OsM in diseases of the CNS.
Collapse
Affiliation(s)
- Thomas W Weiss
- Australian Centre for Blood Diseases, Monash University, 89 Commercial Rd., Prahran 3181, Victoria, Australia
| | | | | | | | | |
Collapse
|
27
|
Weston RM, Jarrott B, Ishizuka Y, Callaway JK. AM-36 modulates the neutrophil inflammatory response and reduces breakdown of the blood brain barrier after endothelin-1 induced focal brain ischaemia. Br J Pharmacol 2006; 149:712-23. [PMID: 17016500 PMCID: PMC2014659 DOI: 10.1038/sj.bjp.0706918] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND AND PURPOSE Following transient focal stroke, rapid accumulation and activation of neutrophils in the ischaemic region is deleterious due to release of reactive oxygen species and myeloperoxidase (MPO). The purpose of this study was to examine whether AM-36, both a Na+ channel blocker and an antioxidant, afforded neuroprotection by modulating neutrophil accumulation into brain, following endothelin-1 (ET-1) induced middle cerebral artery occlusion (MCAo) in conscious rats. EXPERIMENTAL APPROACH AM-36 was administered at 3 and 24 h after ET-1-induced MCAo. Functional recovery was determined using grid-walking and cylinder tests. Image analysis of brain sections was used to determine infarct volume. The effect of AM-36 on neutrophil infiltration and their interaction with macrophages was examined in rats at 48 h following MCAo by both an MPO assay and double-label immunofluorescence. Blood brain barrier (BBB) breakdown was measured by the area stained by intravenous Evans Blue. KEY RESULTS AM-36 reduced functional deficits in both tests such that no difference existed from pre-ischaemic values at 48 h. Neutrophil infiltration, assessed by MPO activity, and infarct volume were significantly reduced following AM-36 administration by 54 and 60% respectively. Similarly, immunofluorescence revealed that AM-36 reduced neutrophil infiltration by approximately 50% in selected brain regions, when compared to controls, and also modulated macrophage phagocytosis of neutrophils. Breakdown of the BBB was significantly reduced by 60% following AM-36 treatment. CONCLUSIONS AND IMPLICATIONS These findings suggest that AM-36 can directly modulate the neutrophil inflammatory response and reduce BBB breakdown following MCAo.
Collapse
Affiliation(s)
- R M Weston
- Department of Pharmacology, Monash University Clayton, Australia
- Howard Florey Institute, The University of Melbourne Parkville, Australia
| | - B Jarrott
- Howard Florey Institute, The University of Melbourne Parkville, Australia
| | - Y Ishizuka
- Department of Pharmacology, Monash University Clayton, Australia
- Department of Psychiatry, Miyazaki Medical College Kihara, Kiyotake, Miyazaki, Japan
| | - J K Callaway
- Howard Florey Institute, The University of Melbourne Parkville, Australia
- Author for correspondence:
| |
Collapse
|
28
|
Gresle MM, Jarrott B, Jones NM, Callaway JK. Injury to axons and oligodendrocytes following endothelin-1-induced middle cerebral artery occlusion in conscious rats. Brain Res 2006; 1110:13-22. [PMID: 16905121 DOI: 10.1016/j.brainres.2006.06.111] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2006] [Revised: 06/10/2006] [Accepted: 06/18/2006] [Indexed: 11/26/2022]
Abstract
Injury to axons and oligodendrocytes has been poorly characterized in most animal models of stroke, and hence has been difficult to target therapeutically. It is therefore necessary to characterize axonal and oligodendroglial injury in these models, in order to rationally design putative protective compounds that minimize this injury. This study aims to characterize injury to axons and oligodendrocytes in the endothelin-1 (ET-1) model of middle cerebral artery occlusion (MCAO) in conscious rats. Transient forebrain ischemia was induced in conscious adult male Long Evans rats by the perivascular microinjection of ET-1. Quantitative histopathology was performed on forebrain sections at 6, 24, 48 and 72 h after ET-1 administration, using ballistic light analyses and immunohistochemistry for amyloid precursor protein (APP), SMI32, and Tau-1. Ballistic light analyses of cortical and striatal lesions revealed that the infarct volume was maximal in these regions by 6 h. APP and SMI32 immunohistochemistry demonstrated that axonal injury was maximal by 6 h in this model; however, some injured axons appeared to maintain good structural integrity up to 72 h after insult. Density measurements for Tau-1-immunopositive oligodendrocytes were significantly elevated within the corpus callosum from 48 h, but reductions in total oligodendrocyte numbers were not apparent up 72 h after ET-1 injection. These results indicate that axonal and oligodendroglial injury should be investigated as potential targets for delayed therapeutic intervention after MCAO.
Collapse
Affiliation(s)
- Melissa M Gresle
- Howard Florey Institute, Brain Injury and Repair Program, University of Melbourne, Parkville, Australia
| | | | | | | |
Collapse
|
29
|
Miller AA, Dusting GJ, Roulston CL, Sobey CG. NADPH-oxidase activity is elevated in penumbral and non-ischemic cerebral arteries following stroke. Brain Res 2006; 1111:111-6. [PMID: 16879806 DOI: 10.1016/j.brainres.2006.06.082] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2005] [Revised: 06/21/2006] [Accepted: 06/27/2006] [Indexed: 11/29/2022]
Abstract
Reactive oxygen species play a role in neuronal damage following cerebral ischemia-reperfusion. We tested whether activity of the superoxide-generating enzyme, NADPH-oxidase, is enhanced in cerebral arteries within, adjacent and distant from the ischemic core. The right middle cerebral artery (MCA) of conscious rats was temporarily occluded by perivascular injection of endothelin-1 to induce stroke (ET-1; n=19). Control rats were injected with saline (n=9). At 24 h or 72 h post-administration of ET-1, the MCA and its branches within the ipsilateral penumbra and infarcted core, corresponding arteries in the contralateral hemisphere, and basilar artery were excised. Anatomically similar arteries were excised from saline-injected rats. At 24 h after stroke, NADPH-stimulated superoxide production by arteries from the infarcted core did not differ from levels generated by arteries from control rats, whereas levels were significantly lower 72 h after stroke. However, at both time points after stroke, superoxide production by arteries from the ischemic penumbra was 8-fold greater than levels generated by arteries from control rats. Surprisingly, even in the non-ischemic arteries from the contralateral hemisphere and in the basilar artery, superoxide production was increased approximately 4- to 6-fold at 24 h, but had returned to normal 72 h after stroke. The NADPH-oxidase inhibitor, diphenyleneiodonium, virtually abolished superoxide production by all arteries. Thus, the activity of NADPH-oxidase is enhanced in cerebral arteries from the ischemic penumbra at 24 h and 72 h following cerebral ischemia. Additionally, NADPH-oxidase activity is temporarily enhanced after cerebral ischemia within arteries from non-ischemic parts of the brain.
Collapse
Affiliation(s)
- Alyson A Miller
- Department of Pharmacology, Monash University, Clayton, Victoria 3800, Australia.
| | | | | | | |
Collapse
|
30
|
Lippoldt A, Reichel A, Moenning U. Progress in the identification of stroke-related genes: emerging new possibilities to develop concepts in stroke therapy. CNS Drugs 2005; 19:821-32. [PMID: 16185092 DOI: 10.2165/00023210-200519100-00002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Stroke is a very complex disease influenced by many risk factors: genetic, environmental and comorbidities, such as hypertension, diabetes mellitus, obesity and having had a previous stroke. Neuroprotective therapies that have been found to be successful in laboratory animals have failed to produce the same benefits in clinical trials. Currently, a re-analysis of the clinical trial failures is underway and new therapeutic approaches using the growing knowledge from neurogenesis and neuroinflammation studies, combined with the information from gene expression studies, are taking place. This review focuses on possible ways to identify therapeutic targets using the new discoveries in neuroinflammation and intrinsic regenerative mechanisms of the brain. Molecular events associated with ischaemia trigger an environment for inflammation. Within the ischaemic region and its penumbra, a battery of chemokines and cytokines are released, which have both detrimental and beneficial effects, depending on the specific timepoint after injury and the current activation status of microglia/macrophages. Preventive therapies and treatments for stroke may be established by identifying the genes that are responsible for the induction of those phenotypic changes of microglia/macrophages that switch them to become players in tissue repair and regeneration processes. To aid in the establishment of new target sources for novel therapeutic agents, animal stroke models should closely mimic stroke in humans. To do so, these models should take into account the various risk factors for stroke. For example, hypertensive animals have a more vulnerable blood-brain barrier that in turn may trigger a greater degree of damage after stroke. Furthermore, in aged animals an accelerated astrocytic and microglial reaction has been observed and the regenerative capacity of aged brains is not as high as young brains. Improvements in animal models may also help to ensure better success rates of potential therapies in clinical studies. Inflammation in the brain is a double-edged sword--characterised by the deleterious effect of nerve cell damage and nerve cell death, as well as the beneficial influence on regeneration. The major challenge to develop successful stroke therapies is to broaden the knowledge regarding the underlying pathologic processes and the intrinsic mechanisms of the brain to drive regenerative and plasticity-related changes. On this basis, new concepts can be created leading to better stroke therapy.
Collapse
Affiliation(s)
- Andrea Lippoldt
- Department of Radiopharmaceuticals Research, Schering AG Berlin, Berlin, Germany.
| | | | | |
Collapse
|
31
|
Reddrop C, Moldrich RX, Beart PM, Farso M, Liberatore GT, Howells DW, Petersen KU, Schleuning WD, Medcalf RL. Vampire bat salivary plasminogen activator (desmoteplase) inhibits tissue-type plasminogen activator-induced potentiation of excitotoxic injury. Stroke 2005; 36:1241-6. [PMID: 15879331 DOI: 10.1161/01.str.0000166050.84056.48] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE In contrast to tissue-type plasminogen activator (tPA), vampire bat (Desmodus rotundus) salivary plasminogen activator (desmoteplase [DSPA]) does not promote excitotoxic injury when injected directly into the brain. We have compared the excitotoxic effects of intravenously delivered tPA and DSPA and determined whether DSPA can antagonize the neurotoxic and calcium enhancing effects of tPA. METHODS The brain striatal region of wild-type c57 Black 6 mice was stereotaxically injected with N-methyl-d-Aspartate (NMDA); 24 hour later, mice received an intravenous injection of tPA or DSPA (10 mg/kg) and lesion size was assessed after 24 hours. Cell death and calcium mobilization studies were performed using cultures of primary murine cortical neurons. RESULTS NMDA-mediated injury was increased after intravenous administration of tPA, whereas no additional toxicity was seen after administration of DSPA. Unlike DSPA, tPA enhanced NMDA-induced cell death and the NMDA-mediated increase in intracellular calcium levels in vitro. Moreover, the enhancing effects of tPA were blocked by DSPA. CONCLUSIONS Intravenous administration of tPA promotes excitotoxic injury, raising the possibility that leakage of tPA from the vasculature into the parenchyma contributes to brain damage. The lack of such toxicity by DSPA further encourages its use as a thrombolytic agent in the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Courtney Reddrop
- Australian Centre for Blood Diseases, Monash University, 6th Floor Burnet Institute, AMREP, 89 Commercial Road, Prahran, Victoria 3181, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Callaway JK, Castillo-Melendez M, Giardina SF, Krstew EK, Beart PM, Jarrott B. Sodium channel blocking activity of AM-36 and sipatrigine (BW619C89): in vitro and in vivo evidence. Neuropharmacology 2004; 47:146-55. [PMID: 15165842 DOI: 10.1016/j.neuropharm.2004.03.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2003] [Revised: 02/12/2004] [Accepted: 03/01/2004] [Indexed: 11/20/2022]
Abstract
Sodium channel blockers are neuroprotective against cerebral ischemia in animal models. A novel neuroprotective compound AM-36, when screened for activity at the most common receptor and ion channel binding sites, revealed activity at site 2 Na+ channels. Studies then investigated this Na+ channel blocking activity in vitro and in vivo relative to other Na+ channel blockers, including the neuroprotective agent sipatrigine (BW619C89). AM-36 inhibited batrachotoxinin (BTX)-sensitive Na+ channel binding in rat brain homogenates with an IC50 of 0.28 microM. Veratridine (100 microM)-induced neurotoxicity in murine cerebellar granule cells was completely inhibited by AM-36 (1.7 microM) compared to only partial inhibition by sipatrigine (26 microM). Veratridine-stimulated glutamate release, as measured through a microdialysis probe in the cortex of anesthetised rats, was inhibited by 90% by superfusion of AM-36 (1000 microM). In the endothelin-1 (ET-1) model of middle cerebral artery occlusion (MCAo) in conscious rats, both AM-36 (6 mg/kg i.p.) and sipatrigine (10 mg/kg i.p.) 30 min post-MCAo significantly reduced cortical, but not striatal infarct volume. As the refractiveness of the striatum is likely to be dependent on the route and time of drug administration, AM-36 (1 mg/kg i.v.) was administered 3 or 5 h after MCAo and significantly reduced both cortical and striatal infarct volumes. The present studies demonstrate Na+ channel blocking activity of AM-36 both in vitro and in vivo, together with significant neuroprotection when administration is delayed up to 5 h following experimental stroke.
Collapse
Affiliation(s)
- J K Callaway
- Department of Physiology, Monash University, Clayton, Vic. 3800, Australia.
| | | | | | | | | | | |
Collapse
|
33
|
Moyanova S, Kirov R, Kortenska L. Multi-unit activity suppression and sensorimotor deficits after endothelin-1-induced middle cerebral artery occlusion in conscious rats. J Neurol Sci 2003; 212:59-67. [PMID: 12810000 DOI: 10.1016/s0022-510x(03)00102-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Conscious Wistar rats with stereotaxically and unilaterally implanted cannula just above the middle cerebral artery (MCA) were injected with the powerful vasoconstrictor peptide endothelin-1 (ET1, 60 pmol in 3 microl). The purpose was to examine the long-term (from the 1st to the 14th day) changes in neuronal bioelectrical activity together with sensorimotor deficits after ET1-induced MCA occlusion (MCAO). Extracellular multi-unit activity (MUA) recorded from the ipsilateral fronto-parietal cortical area (supplied by MCA) and sensorimotor behavior (one postural reflex test and six limb placing tests) were examined. A significant suppression of the multi-unit activity was observed until the 14th day post-ET1. The rats exhibited significant unilateral sensorimotor deficits with a maximum at the 3-7 days after ET1 and a spontaneous partial recovery by days 11-14. A significant correlation was found between the suppression of the multi-unit activity and the sensorimotor deficits between the 3rd and the 10th day post-ET1. The results suggest that studying the bioelectrical activity in combination with the behavioral sensorimotor functions may be of use to assess the functional disturbances associated with focal cerebral ischemia and would help to examine the therapeutic benefits of various cerebroprotective treatments before initiating human clinical trials.
Collapse
Affiliation(s)
- Slavianka Moyanova
- Institute of Physiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. 23, 1113 Sofia, Bulgaria.
| | | | | |
Collapse
|
34
|
Callaway JK, Lawrence AJ, Jarrott B. AM-36, a novel neuroprotective agent, profoundly reduces reactive oxygen species formation and dopamine release in the striatum of conscious rats after endothelin-1-induced middle cerebral artery occlusion. Neuropharmacology 2003; 44:787-800. [PMID: 12681377 DOI: 10.1016/s0028-3908(03)00068-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Elevated generation of reactive oxygen species (ROS) has been demonstrated during ischemia and reperfusion. Dopamine (DA) autooxidation may contribute to increased ROS generation. The novel neuroprotective agent AM-36 has antioxidant and Na(+) channel blocking activity and reduces neuronal damage in both cortex and striatum after middle cerebral artery (MCA) occlusion. Here we sought in vivo evidence of the ability of AM-36 to inhibit intrastriatal ROS generation and DA release after ischemia. Salicylate hydroxylation coupled with in vivo microdialysis in the striatum of conscious Long Evans rats was performed during MCA occlusion by perivascular microinjection of endothelin-1 (ET-1). AM-36 (6 mg/kg) was administered intraperitoneally 30 min after MCA occlusion. Dialysates were analysed using high performance liquid chromatography with electrochemical detection for the salicylate hydroxylation product, 2,3-dihydroxybenzoic acid (2,3 DHBA) and for DA and metabolites. MCA occlusion resulted in a marked increase in 2,3 DHBA and a secondary increase in all analytes, 180-300 min later. Increased DA release coincided with 2,3 DHBA formation. AM-36 significantly reduced ischemia induced increases in 2,3 DHBA and DA, and infarct volume in the striatum. Significant improvements in a battery of behavioural tests was also found in AM-36 treated rats. This study has demonstrated profound inhibition of ROS generation by a novel compound with antioxidant activity, administered post-ischemia in conscious rats.
Collapse
Affiliation(s)
- J K Callaway
- Department of Pharmacology, PO Box 13E, Monash University, Clayton, Victoria 3800, Australia.
| | | | | |
Collapse
|
35
|
Liberatore GT, Samson A, Bladin C, Schleuning WD, Medcalf RL. Vampire bat salivary plasminogen activator (desmoteplase): a unique fibrinolytic enzyme that does not promote neurodegeneration. Stroke 2003; 34:537-43. [PMID: 12574572 DOI: 10.1161/01.str.0000049764.49162.76] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE Tissue-type plasminogen activator (tPA) promotes excitotoxic and ischemic injury within the brain. These findings have implications for the use of tPA in the treatment of acute ischemic stroke. The plasminogen activator from vampire bat (Desmodus rotundus) saliva (D rotundus salivary plasminogen activator [DSPA]; desmoteplase) is an effective plasminogen activator but, in contrast to tPA, is nearly inactive in the absence of a fibrin cofactor. The purpose of this study was to compare the ability of DSPA and tPA to promote kainate- and N-methyl-D-aspartate (NMDA)-induced neurodegeneration in tPA-/- mice and wild-type mice, respectively. METHODS tPA-/- mice were infused intracerebrally with either tPA or DSPA. The degree of neuronal survival after hippocampal injection of kainate was assessed histochemically. Wild-type mice were used to assess the extent of neuronal damage after intrastriatal injection of NMDA in the presence of tPA or DSPA. Immunohistochemistry and fibrin zymography were used to evaluate DSPA and tPA antigen or activity. RESULTS Infusion of tPA into tPA-/- mice restored sensitivity to kainate-mediated neurotoxicity and activation of microglia. DSPA was incapable of conferring sensitivity to kainate treatment, even when infused at 10-fold higher molar concentration than tPA. The presence of tPA also increased the lesion volume induced by NMDA injection into the striatum of wild-type mice, whereas DSPA had no effect. CONCLUSIONS DSPA does not promote kainate- or NMDA-mediated neurotoxicity in vivo. These results provide significant impetus to evaluate DSPA in patients with ischemic stroke.
Collapse
Affiliation(s)
- Gabriel T Liberatore
- Department of Medicine, Monash University, Box Hill Hospital, Victoria, Australia
| | | | | | | | | |
Collapse
|
36
|
Abstract
1. The neurochemical sequelae following cerebral ischaemia are complex, involving excess release of excitatory amino acids, particularly glutamate, disruption of ionic homeostasis due to Na+ and Ca2+ influx and generation of toxic free radicals, ultimately leading to cell death by both necrosis and apoptosis. 2. Drugs that block components of this biochemical cascade, such as glutamate receptor antagonists, sodium channel blockers and free radical scavengers, have been investigated as putative neuroprotective agents. The knowledge that multiple mechanisms contribute to neuronal injury in ischaemia have led to the general recognition that a single drug treatment is unlikely to be beneficial in the treatment of cerebral ischaemia. 3. AM-36 [1-(2-(4-chlorophenyl)-2-hydroxy)ethyl-4-(3,5-bis(1,1-dimethyl)-4-hydroxyphenyl)methylpiperazine] is one of a series of hybrid molecules designed to incorporate multiple neuroprotective mechanisms within the one structure. Primary screening tests demonstrated that AM-36 inhibited binding to the polyamine site of glutamate receptors, blocked neuronal sodium channels and had potent anti-oxidant activity. In neuronal cell cultures, AM-36 inhibited toxicity induced by N-methyl-D-aspartate (NMDA) and the sodium channel opener veratridine and, in addition, inhibited veratridine-induced apoptosis. 4. In a middle cerebral artery occlusion model of stroke in conscious rats, systemic administration of AM-36 markedly reduced both cortical and striatal infarct volume and significantly improved functional outcome in motor performance, neurological deficit and sensorimotor neglect tests. AM-36 was neuroprotective even when administration was delayed until 3 h systemically, or 5 h intravenously, after induction of stroke. 5. These studies indicate that AM-36 is a unique neuroprotective agent with multiple modes of action, making it an attractive candidate for the treatment of acute stroke in humans.
Collapse
Affiliation(s)
- J K Callaway
- Department of Pharmacology, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
37
|
Kharlamov A, Kim DK, Jones SC. Early visual changes in reflected light on non-stained brain sections after focal ischemia mirror the area of ischemic damage. J Neurosci Methods 2001; 111:67-73. [PMID: 11574121 DOI: 10.1016/s0165-0270(01)00444-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
There is no reliable, simple method for delineation of ischemic regions at early time points after ischemia. We propose that at early times after stroke, ischemic regions can be visualized as a subtle change in reflected light directly in thaw-mounted, dried 20 microm brain sections. In 15 male Sprague-Dawley rats, anesthetized with isoflurane, middle cerebral artery transection and permanent bilateral common carotid artery occlusion was performed and brains were processed in five different ways. Areas of reflective change (RC) on non-stained sections were compared with areas on the adjacent sections delineated by microtubule associated protein 2 (MAP2) antibody, a reliable marker for early post-stroke, in five rats each at 1, 3, and 6 h after focal cerebral ischemia. A statistically significant correlation between ischemic areas (IA) measured on non-stained brain sections (IA(RC)) and adjacent sections immunostained (IM) with MAP2 Ab (IA(IM)) (IA(RC)=0.05+0.88.IA(IM); R2=0.8; n=15; P<0.01) and a small mean difference +/-2 S.D. (-0.9+/-6.0%) indicated that the area measured on non-stained sections reflects the IA measured on MAP2 -IM sections. At 1 and 3 h after ischemia, the ratio between ischemic regions measured on the non-stained sections and on the adjacent sections immunostained with MAP2 Ab were not different from 100% (97.6+/-1.7%, 100.9+/-6.0%). At 6 h post-stroke, the IA measured on the non-stained sections was larger than on the IM sections (109.8+/-2.7%, P<0.01, compared to 100% ratio). Our study demonstrated that this quick and simple method for detection of damaged brain permitted the use of brain tissue for other assays and could be very useful for neuroprotective evaluation and for directed micro-sampling of brain tissue at early times after ischemia.
Collapse
Affiliation(s)
- A Kharlamov
- Department of Anesthesiology, Allegheny General Hospital, 320 East North Avenue, Pittsburgh, PA 15212-4772, USA.
| | | | | |
Collapse
|
38
|
Krstew EV, Jarrott B, Callaway JK. Neuroprotective effects of mild hyperthermia prior to focal ischemia in conscious rats. Neuroreport 2001; 12:1629-33. [PMID: 11409729 DOI: 10.1097/00001756-200106130-00023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Hyperthermia during or after stroke is known to worsen neuronal damage. Paradoxically, when hyperthermia precedes stroke, it can protect against a subsequent ischemic insult. Other stressors including restraint also have a similar pre-conditioning effect. In the present study, we report the unanticipated finding that conscious rats, restrained for the purpose of intravenous infusion, had markedly reduced neuronal and functional deficits after middle cerebral artery occlusion compared with unrestrained rats. Restrained rats had significantly higher body temperature prior to stroke than unrestrained rats. The findings suggest restraint leading to mild hyperthermia may be sufficient to induce adaptive processes which protect against subsequent ischemia.
Collapse
Affiliation(s)
- E V Krstew
- Department of Pharmacology, Monash University, Clayton, Victoria, Australia
| | | | | |
Collapse
|