1
|
Waxman S, Quinn M, Donahue C, Falo LD, Sun D, Jakobs TC, Sigal IA. Individual astrocyte morphology in the collagenous lamina cribrosa revealed by multicolor DiOlistic labeling. Exp Eye Res 2023; 230:109458. [PMID: 36965593 PMCID: PMC10152998 DOI: 10.1016/j.exer.2023.109458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 03/27/2023]
Abstract
Astrocytes in the lamina region of the optic nerve head play vital roles in supporting retinal ganglion cell axon health. In glaucoma, these astrocytes are implicated as early responders to stressors, undergoing characteristic changes in cell function as well as cell morphology. Much of what is currently known about individual lamina astrocyte morphology has been learned from rodent models which lack a defining feature of the human optic nerve head, the collagenous lamina cribrosa (LC). Current methods available for evaluation of collagenous LC astrocyte morphology have significant shortcomings. We aimed to evaluate Multicolor DiOlistic labeling (MuDi) as an approach to reveal individual astrocyte morphologies across the collagenous LC. Gold microcarriers were coated with all combinations of three fluorescent cell membrane dyes, DiI, DiD, and DiO, for a total of seven dye combinations. Microcarriers were delivered to 150 μm-thick coronal vibratome slices through the LC of pig, sheep, goat, and monkey eyes via MuDi. Labeled tissues were imaged with confocal and second harmonic generation microscopy to visualize dyed cells and LC collagenous beams, respectively. GFAP labeling of DiOlistically-labeled cells with astrocyte morphologies was used to investigate cell identity. 3D models of astrocytes were created from confocal image stacks for quantification of morphological features. DiOlistic labeling revealed fine details of LC astrocyte morphologies including somas, primary branches, higher-order branches, and end-feet. Labeled cells with astrocyte morphologies were GFAP+. Astrocytes were visible across seven distinct color channels, allowing high labeling density while still distinguishing individual cells from their neighbors. MuDi was capable of revealing tens to hundreds of collagenous LC astrocytes, in situ, with a single application. 3D astrocyte models allowed automated quantification of morphological features including branch number, length, thickness, hierarchy, and straightness as well as Sholl analysis. MuDi labeling provides an opportunity to investigate morphologies of collagenous LC astrocytes, providing both qualitative and quantitative detail, in healthy tissues. This approach may open doors for research of glaucoma, where astrocyte morphological alterations are thought to coincide with key functional changes related to disease progression.
Collapse
Affiliation(s)
- Susannah Waxman
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Marissa Quinn
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Cara Donahue
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Louis D Falo
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Daniel Sun
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Tatjana C Jakobs
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Ian A Sigal
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA; Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
2
|
Greenfield EA, DeCaprio J, Brahmandam M. Selecting the Antigen. Cold Spring Harb Protoc 2021; 2021:2021/12/pdb.top099945. [PMID: 34853124 DOI: 10.1101/pdb.top099945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The classical method for generating polyclonal or monoclonal antibodies relies on the in vivo humoral response of animals. Here we describe the factors that antigens can have that might influence the strength and quality of an antibody response. This introduction is divided into three sections: (1) an overview of immunogenicity, (2) choosing the best form for the immunogen, and (3) methods for modifying antigens to make them more immunogenic.
Collapse
|
3
|
Augustine SM, Cherian AV, Seiling K, Di Fiore S, Raven N, Commandeur U, Schillberg S. Targeted mutagenesis in Nicotiana tabacum ADF gene using shockwave-mediated ribonucleoprotein delivery increases osmotic stress tolerance. PHYSIOLOGIA PLANTARUM 2021; 173:993-1007. [PMID: 34265107 DOI: 10.1111/ppl.13499] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 06/25/2021] [Indexed: 06/13/2023]
Abstract
DNA-free genome editing involves the direct introduction of ribonucleoprotein (RNP) complexes into cells, but this strategy has rarely been successful in plants. In the present study, we describe a new technique for the introduction of RNPs into plant cells involving the generation of cavitation bubbles using a pulsed laser. The resulting shockwave achieves the efficient transfection of walled cells in tissue explants by creating transient membrane pores. RNP-containing cells were rapidly identified by fluorescence microscopy, followed by regeneration and the screening of mutant plants by high-resolution melt analysis. We used this technique in Nicotiana tabacum to target the endogenous phytoene desaturase (PDS) and actin depolymerizing factor (ADF) genes. Genome-edited plants were produced with an efficiency of 35.2% for PDS and 16.5% for ADF. Further we evaluated the physiological, cellular and molecular effects of ADF mutations in T2 mutant plants under drought and salinity stress. The results suggest that ADF acts as a key regulator of osmotic stress tolerance in plants.
Collapse
Affiliation(s)
- Sruthy Maria Augustine
- Institute of Molecular Biotechnology, RWTH Aachen University, Worringer Weg 1, Aachen, Germany
- Department of Plant breeding, IFZ Research Center for Biosystems, Land Use and Nutrition, Justus Liebig University, Heinrich-Buff-Ring 26, Giessen, Germany
| | - Anoop Vadakan Cherian
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstraße 6, Aachen, Germany
- Center for Infection and Genomics of the Lung (CIGL), Justus-Liebig-Universität Gießen - Institut für Klinische Immunologie und Transfusionsmedizin, Aulweg 132, Giessen, Germany
| | - Kerstin Seiling
- Institute of Molecular Biotechnology, RWTH Aachen University, Worringer Weg 1, Aachen, Germany
- Institute for Anatomy and Molecular neurobiology, Universitätsklinikum Münster, Vesaliusweg 2-4, Münster, Germany
| | - Stefano Di Fiore
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstraße 6, Aachen, Germany
| | - Nicole Raven
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstraße 6, Aachen, Germany
| | - Ulrich Commandeur
- Institute of Molecular Biotechnology, RWTH Aachen University, Worringer Weg 1, Aachen, Germany
| | - Stefan Schillberg
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstraße 6, Aachen, Germany
| |
Collapse
|
4
|
Kaladharan K, Kumar A, Gupta P, Illath K, Santra TS, Tseng FG. Microfluidic Based Physical Approaches towards Single-Cell Intracellular Delivery and Analysis. MICROMACHINES 2021; 12:631. [PMID: 34071732 PMCID: PMC8228766 DOI: 10.3390/mi12060631] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 12/20/2022]
Abstract
The ability to deliver foreign molecules into a single living cell with high transfection efficiency and high cell viability is of great interest in cell biology for applications in therapeutic development, diagnostics, and drug delivery towards personalized medicine. Various physical delivery methods have long demonstrated the ability to deliver cargo molecules directly to the cytoplasm or nucleus and the mechanisms underlying most of the approaches have been extensively investigated. However, most of these techniques are bulk approaches that are cell-specific and have low throughput delivery. In comparison to bulk measurements, single-cell measurement technologies can provide a better understanding of the interactions among molecules, organelles, cells, and the microenvironment, which can aid in the development of therapeutics and diagnostic tools. To elucidate distinct responses during cell genetic modification, methods to achieve transfection at the single-cell level are of great interest. In recent years, single-cell technologies have become increasingly robust and accessible, although limitations exist. This review article aims to cover various microfluidic-based physical methods for single-cell intracellular delivery such as electroporation, mechanoporation, microinjection, sonoporation, optoporation, magnetoporation, and thermoporation and their analysis. The mechanisms of various physical methods, their applications, limitations, and prospects are also elaborated.
Collapse
Affiliation(s)
- Kiran Kaladharan
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu 300044, Taiwan; (K.K.); (A.K.)
| | - Ashish Kumar
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu 300044, Taiwan; (K.K.); (A.K.)
| | - Pallavi Gupta
- Department of Engineering Design, Indian Institute of Technology Madras, Chennai 600036, India; (P.G.); (K.I.)
| | - Kavitha Illath
- Department of Engineering Design, Indian Institute of Technology Madras, Chennai 600036, India; (P.G.); (K.I.)
| | - Tuhin Subhra Santra
- Department of Engineering Design, Indian Institute of Technology Madras, Chennai 600036, India; (P.G.); (K.I.)
| | - Fan-Gang Tseng
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu 300044, Taiwan; (K.K.); (A.K.)
| |
Collapse
|
5
|
An improved biolistic delivery and analysis method for evaluation of DNA and CRISPR-Cas delivery efficacy in plant tissue. Sci Rep 2021; 11:7695. [PMID: 33833247 PMCID: PMC8032657 DOI: 10.1038/s41598-021-86549-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 03/05/2021] [Indexed: 12/03/2022] Open
Abstract
Biolistic delivery is widely used for genetic transformation but inconsistency between bombardment samples for transient gene expression analysis often hinders quantitative analyses. We developed a methodology to improve the consistency of biolistic delivery results by using a double-barrel device and a cell counting software. The double-barrel device enables a strategy of incorporating an internal control into each sample, which significantly decreases variance of the results. The cell counting software further reduces errors and increases throughput. The utility of this new platform is demonstrated by optimizing conditions for delivering DNA using the commercial transfection reagent TransIT-2020. In addition, the same approach is applied to test the efficacy of multiple gRNAs for CRISPR-Cas9-mediated gene editing. The novel combination of the bombardment device and analysis method allows simultaneous comparison and optimization of parameters in the biolistic delivery. The platform developed here can be broadly applied to any target samples using biolistics, including animal cells and tissues.
Collapse
|
6
|
Hamad MIK, Daoud S, Petrova P, Rabaya O, Jbara A, Melliti N, Stichmann S, Reiss G, Herz J, Förster E. Biolistic transfection and expression analysis of acute cortical slices. J Neurosci Methods 2020; 337:108666. [PMID: 32119875 DOI: 10.1016/j.jneumeth.2020.108666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 02/21/2020] [Accepted: 02/27/2020] [Indexed: 12/28/2022]
Abstract
BACKGROUND Biolistic gene gun transfection has been used to transfect organotypic cultures (OTCs) or dissociated cultures in vitro. Here, we modified this technique to allow successful transfection of acute brain slices, followed by measurement of neuronal activity within a few hours. NEW METHOD We established biolistic transfection of murine acute cortical slices to measure calcium signals. Acute slices are mounted on plasma/thrombin coagulate and transfected with a calcium sensor. Imaging can be performed within 4 h post transfection without affecting cell viability. RESULTS Four hours after GCaMP6s transfection, acute slices display remarkable fluorescent protein expression level allowing to study spontaneous activity and receptor pharmacology. While optimal gas pressure (150 psi) and gold particle size used (1 μm) confirm previously published protocols, the amount of 5 μg DNA was found to be optimal for particle coating. COMPARISON WITH EXISTING METHODS The major advantage of this technique is the rapid disposition of acute slices for calcium imaging. No transgenic GECI expressing animals or OTC for long periods are required. In acute slices, network interaction and connectivity are preserved. The method allows to obtain physiological readouts within 4 h, before functional tissue modifications might come into effect. Limitations of this technique are random transfection, low expression efficiency when using specific promotors, and preclusion or genetic manipulations that require a prolonged time before physiological changes become measurable, such as expression of recombinant proteins that require transport to distant subcellular localizations. CONCLUSION The method is optimal for short-time investigation of calcium signals in acute slices.
Collapse
Affiliation(s)
- Mohammad I K Hamad
- Institute for Anatomy and Clinical Morphology, School of Medicine, Faculty of Health, University of Witten/Herdecke, Witten, Germany; Department of Neuroanatomy and Molecular Brain Research, Ruhr University Bochum, Medical Faculty, Bochum, Germany.
| | - Solieman Daoud
- Department of Neuroanatomy and Molecular Brain Research, Ruhr University Bochum, Medical Faculty, Bochum, Germany
| | - Petya Petrova
- Department of Neuroanatomy and Molecular Brain Research, Ruhr University Bochum, Medical Faculty, Bochum, Germany
| | - Obada Rabaya
- Department of Neuroanatomy and Molecular Brain Research, Ruhr University Bochum, Medical Faculty, Bochum, Germany
| | - Abdalrahim Jbara
- Department of Neuroanatomy and Molecular Brain Research, Ruhr University Bochum, Medical Faculty, Bochum, Germany
| | - Nesrine Melliti
- Institute for Anatomy and Clinical Morphology, School of Medicine, Faculty of Health, University of Witten/Herdecke, Witten, Germany
| | - Sarah Stichmann
- Department of Neuroanatomy and Molecular Brain Research, Ruhr University Bochum, Medical Faculty, Bochum, Germany
| | - Gebhard Reiss
- Institute for Anatomy and Clinical Morphology, School of Medicine, Faculty of Health, University of Witten/Herdecke, Witten, Germany
| | - Joachim Herz
- Departments of Molecular Genetics, Neuroscience, Neurology and Neurotherapeutics, Center for Translational Neurodegeneration Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Eckart Förster
- Department of Neuroanatomy and Molecular Brain Research, Ruhr University Bochum, Medical Faculty, Bochum, Germany
| |
Collapse
|
7
|
Linsley JW, Tripathi A, Epstein I, Schmunk G, Mount E, Campioni M, Oza V, Barch M, Javaherian A, Nowakowski TJ, Samsi S, Finkbeiner S. Automated four-dimensional long term imaging enables single cell tracking within organotypic brain slices to study neurodevelopment and degeneration. Commun Biol 2019; 2:155. [PMID: 31069265 PMCID: PMC6494885 DOI: 10.1038/s42003-019-0411-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 03/18/2019] [Indexed: 02/08/2023] Open
Abstract
Current approaches for dynamic profiling of single cells rely on dissociated cultures, which lack important biological features existing in tissues. Organotypic slice cultures preserve aspects of structural and synaptic organisation within the brain and are amenable to microscopy, but established techniques are not well adapted for high throughput or longitudinal single cell analysis. Here we developed a custom-built, automated confocal imaging platform, with improved organotypic slice culture and maintenance. The approach enables fully automated image acquisition and four-dimensional tracking of morphological changes within individual cells in organotypic cultures from rodent and human primary tissues for at least 3 weeks. To validate this system, we analysed neurons expressing a disease-associated version of huntingtin (HTT586Q138-EGFP), and observed that they displayed hallmarks of Huntington's disease and died sooner than controls. By facilitating longitudinal single-cell analyses of neuronal physiology, our system bridges scales necessary to attain statistical power to detect developmental and disease phenotypes.
Collapse
Affiliation(s)
- Jeremy W Linsley
- Gladstone Center for Systems and Therapeutics, San Francisco, CA 94158 USA
| | - Atmiyata Tripathi
- Gladstone Center for Systems and Therapeutics, San Francisco, CA 94158 USA
| | - Irina Epstein
- Gladstone Center for Systems and Therapeutics, San Francisco, CA 94158 USA
| | - Galina Schmunk
- 2Department of Anatomy, University of California, San Francisco, CA 94158 USA
| | - Elliot Mount
- Gladstone Center for Systems and Therapeutics, San Francisco, CA 94158 USA
| | - Matthew Campioni
- Gladstone Center for Systems and Therapeutics, San Francisco, CA 94158 USA
| | - Viral Oza
- Gladstone Center for Systems and Therapeutics, San Francisco, CA 94158 USA
| | - Mariya Barch
- Gladstone Center for Systems and Therapeutics, San Francisco, CA 94158 USA
| | - Ashkan Javaherian
- Gladstone Center for Systems and Therapeutics, San Francisco, CA 94158 USA
| | - Tomasz J Nowakowski
- 2Department of Anatomy, University of California, San Francisco, CA 94158 USA
| | - Siddharth Samsi
- 3Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Luxembourg, L-4367 Luxembourg
- 9Present Address: MIT Lincoln Laboratory, Lexington, MA 02421 USA
| | - Steven Finkbeiner
- Gladstone Center for Systems and Therapeutics, San Francisco, CA 94158 USA
- 4Neuroscience Graduate Program, University of California, San Francisco, CA 94158 USA
- 5Biomedical Sciences and Neuroscience Graduate Program, University of California, San Francisco, CA 94143 USA
- 6Taube/Koret Center for Neurodegenerative Disease, Gladstone Institutes, San Francisco, CA 94158 USA
- 7Department of Neurology, University of California, San Francisco, CA 94158 USA
- 8Department of Physiology, University of California, San Francisco, CA 94158 USA
| |
Collapse
|
8
|
Zhang N, Chin JS, Chew SY. Localised non-viral delivery of nucleic acids for nerve regeneration in injured nervous systems. Exp Neurol 2018; 319:112820. [PMID: 30195695 DOI: 10.1016/j.expneurol.2018.09.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 08/31/2018] [Accepted: 09/05/2018] [Indexed: 02/07/2023]
Abstract
Axons damaged by traumatic injuries are often unable to spontaneously regenerate in the adult central nervous system (CNS). Although the peripheral nervous system (PNS) has some regenerative capacity, its ability to regrow remains limited across large lesion gaps due to scar tissue formation. Nucleic acid therapy holds the potential of improving regeneration by enhancing the intrinsic growth ability of neurons and overcoming the inhibitory environment that prevents neurite outgrowth. Nucleic acids modulate gene expression by over-expression of neuronal growth factor or silencing growth-inhibitory molecules. Although in vitro outcomes appear promising, the lack of efficient non-viral nucleic acid delivery methods to the nervous system has limited the application of nucleic acid therapeutics to patients. Here, we review the recent development of efficient non-viral nucleic acid delivery platforms, as applied to the nervous system, including the transfection vectors and carriers used, as well as matrices and scaffolds that are currently used. Additionally, we will discuss possible improvements for localised nucleic acid delivery.
Collapse
Affiliation(s)
- Na Zhang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 637459, Singapore
| | - Jiah Shin Chin
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 637459, Singapore; NTU Institute of Health Technologies, Interdisciplinary Graduate School, Nanyang Technological University, 639798, Singapore
| | - Sing Yian Chew
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 637459, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, 308232, Singapore.
| |
Collapse
|
9
|
Cilz NI, Porter JE, Lei S. A protocol for preparation and transfection of rat entorhinal cortex organotypic cultures for electrophysiological whole-cell recordings. MethodsX 2017; 4:360-371. [PMID: 29071214 PMCID: PMC5651549 DOI: 10.1016/j.mex.2017.10.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 10/11/2017] [Indexed: 01/30/2023] Open
Abstract
Understanding how neuromodulators influence synaptic transmission and intrinsic excitability within the entorhinal cortex (EC) is critical to furthering our understanding of the molecular and cellular aspects of this region. Organotypic cultures can provide a cost-effective means to employ selective molecular biological strategies in elucidating cellular mechanisms of neuromodulation in the EC. We therefore adapted our acute slice model for organotypic culture applications and optimized a protocol for the preparation and biolistic transfection of cultured horizontal EC slices. Here, we present our detailed protocol for culturing EC slices. Using an n-methyl-d-glucamine (NMDG)-containing cutting solution, we obtain healthy EC slice cultures for electrophysiological recordings. We also present our protocol for the preparation of "bullets" carrying one or more constructs and demonstrate successful transfection of EC slices. We build upon previous methods and highlight specific aspects in our method that greatly improved the quality of our results. We validate our methods using immunohistochemical, imaging, and electrophysiological techniques. The novelty of this method is that it provides a description of culturing and transfection of EC neurons for specifically addressing their functionality. This method will enable researchers interested in entorhinal function to quickly adopt a similar slice culture transfection system for their own investigations.
Collapse
Affiliation(s)
| | | | - Saobo Lei
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA
| |
Collapse
|
10
|
Hosseini HS, Garcia KE, Taber LA. A new hypothesis for foregut and heart tube formation based on differential growth and actomyosin contraction. Development 2017; 144:2381-2391. [PMID: 28526751 DOI: 10.1242/dev.145193] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 05/10/2017] [Indexed: 01/14/2023]
Abstract
For decades, it was commonly thought that the bilateral heart fields in the early embryo fold directly towards the midline, where they meet and fuse to create the primitive heart tube. Recent studies have challenged this view, however, suggesting that the heart fields fold diagonally. As early foregut and heart tube morphogenesis are intimately related, this finding also raises questions concerning the traditional view of foregut formation. Here, we combine experiments on chick embryos with computational modeling to explore a new hypothesis for the physical mechanisms of heart tube and foregut formation. According to our hypothesis, differential anisotropic growth between mesoderm and endoderm drives diagonal folding. Then, active contraction along the anterior intestinal portal generates tension to elongate the foregut and heart tube. We test this hypothesis using biochemical perturbations of cell proliferation and contractility, as well as computational modeling based on nonlinear elasticity theory including growth and contraction. The present results generally support the view that differential growth and actomyosin contraction drive formation of the foregut and heart tube in the early chick embryo.
Collapse
Affiliation(s)
- Hadi S Hosseini
- Department of Biomedical Engineering, Washington University, St Louis, MO 63130, USA.,Department of Physics, Washington University, St Louis, MO 63130, USA
| | - Kara E Garcia
- Department of Biomedical Engineering, Washington University, St Louis, MO 63130, USA
| | - Larry A Taber
- Department of Biomedical Engineering, Washington University, St Louis, MO 63130, USA
| |
Collapse
|
11
|
Hough LH, Brown ME. Labeling of neuronal morphology using custom diolistic techniques. J Neurosci Methods 2017; 282:43-51. [PMID: 28274738 DOI: 10.1016/j.jneumeth.2017.03.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 03/01/2017] [Accepted: 03/03/2017] [Indexed: 11/19/2022]
Abstract
BACKGROUND Diolistic labeling is increasingly utilized in neuroscience as an efficient, reproducible method for visualization of neuronal morphology. The use of lipophilic carbocyanine dyes, combined with particle-mediated biolistic delivery allows for non-toxic fluorescent labeling of multiple neurons in both living and fixed tissue. Since first described, this labeling method has been modified to fit a variety of research goals and laboratory settings. NEW METHOD Diolistic labeling has traditionally relied on commercially available devices for the propulsion of coated micro-particles into tissue sections. Recently, laboratory built biolistic devices have been developed which allow for increased availability and customization. Here, we discuss a custom biolistic device and provide a detailed protocol for its use. RESULTS Using custom diolistic labeling we have characterized alterations in neuronal morphology of the lateral/dentate nucleus of the rat cerebellum. Comparisons were made in developing rat pups exposed to abnormally high levels of 5-methyloxytryptamine (5-MT) pre-and postnatally. Using quantitative software; dendritic morphology, architecture, and synaptic connections, were analyzed. COMPARISON WITH EXISTING METHOD(S) The rapid nature of custom diolistics coupled with passive diffusion of dyes and compatibility with confocal microscopy, provides an unparalleled opportunity to examine features of neuronal cells at high spatial resolution in a three-dimensional tissue environment. CONCLUSIONS While decreasing the associated costs, the laboratory-built device also overcomes many of the obstacles associated with traditional morphological labeling, to allow for reliable and reproducible neuronal labeling. The versatility of this method allows for its adaptation to a variety of laboratory settings and neuroscience related research goals.
Collapse
Affiliation(s)
- Lyon H Hough
- Department of Biomedical Sciences, Missouri State University, Springfield, MO 65897, USA.
| | - Michael E Brown
- Department of Pathology, Saint Louis University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
12
|
Hadjizadeh A, Ghasemkhah F, Ghasemzaie N. Polymeric Scaffold Based Gene Delivery Strategies to Improve Angiogenesis in Tissue Engineering: A Review. POLYM REV 2017. [DOI: 10.1080/15583724.2017.1292402] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Afra Hadjizadeh
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Farzaneh Ghasemkhah
- Institute of Nanotechnology, Amirkabir University of Technology, Tehran, Iran
| | - Niloofar Ghasemzaie
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| |
Collapse
|
13
|
McGregor KM, Bécamel C, Marin P, Andrade R. Using melanopsin to study G protein signaling in cortical neurons. J Neurophysiol 2016; 116:1082-92. [PMID: 27306679 DOI: 10.1152/jn.00406.2016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 06/13/2016] [Indexed: 11/22/2022] Open
Abstract
Our understanding of G protein-coupled receptors (GPCRs) in the central nervous system (CNS) has been hampered by the limited availability of tools allowing for the study of their signaling with precise temporal control. To overcome this, we tested the utility of the bistable mammalian opsin melanopsin to examine G protein signaling in CNS neurons. Specifically, we used biolistic (gene gun) approaches to transfect melanopsin into cortical pyramidal cells maintained in organotypic slice culture. Whole cell recordings from transfected neurons indicated that application of blue light effectively activated the transfected melanopsin to elicit the canonical biphasic modulation of membrane excitability previously associated with the activation of GPCRs coupling to Gαq-11 Remarkably, full mimicry of exogenous agonist concentration could be obtained with pulses as short as a few milliseconds, suggesting that their triggering required a single melanopsin activation-deactivation cycle. The resulting temporal control over melanopsin activation allowed us to compare the activation kinetics of different components of the electrophysiological response. We also replaced the intracellular loops of melanopsin with those of the 5-HT2A receptor to create a light-activated GPCR capable of interacting with the 5-HT2A receptor interacting proteins. The resulting chimera expressed weak activity but validated the potential usefulness of melanopsin as a tool for the study of G protein signaling in CNS neurons.
Collapse
Affiliation(s)
- K M McGregor
- Department of Pharmacology, Wayne State University, Detroit, Michigan; and
| | - C Bécamel
- Institut de Génomique Fonctionnelle, CNRS UMR5203, INSERM U1191, Université de Montpellier, Montpellier, France
| | - P Marin
- Institut de Génomique Fonctionnelle, CNRS UMR5203, INSERM U1191, Université de Montpellier, Montpellier, France
| | - R Andrade
- Department of Pharmacology, Wayne State University, Detroit, Michigan; and
| |
Collapse
|
14
|
Hough LH, Segal S. Effects of developmental hyperserotonemia on the morphology of rat dentate nuclear neurons. Neuroscience 2016; 322:178-94. [PMID: 26892293 DOI: 10.1016/j.neuroscience.2016.02.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 01/14/2016] [Accepted: 02/10/2016] [Indexed: 11/18/2022]
Abstract
Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder characterized by deficits in social cognition, disordered communication, restricted interests and repetitive behaviors. Furthermore, abnormalities in basic motor control, skilled motor gestures, and motor learning, are common in ASD. These characteristics have been attributed to a possible defect in the pre- and postnatal development of specific neural networks including the dentate-thalamo-cortical pathway, which is involved in motor learning, automaticity of movements, and higher cognitive functions. The current study utilized custom diolistic labeling and unbiased stereology to characterize morphological alterations in neurons of the dentate nucleus of the cerebellum in developing rat pups exposed to abnormally high levels of the serotonergic agonist 5-methyloxytryptamine (5-MT) pre-and postnatally. Occurring in as many as 30% of autistic subjects, developmental hyperserotonemia (DHS) is the most consistent neurochemical finding reported in autism and has been implicated in the pathophysiology of ASD. This exposure produced dramatic changes in dendritic architecture and synaptic features. We observed changes in the dendritic branching morphology which did not lead to significant differences (p>0.5) in total dendritic length. Instead, DHS groups presented with dendritic trees that display changes in arborescence, that appear to be short reaching with elaborately branched segments, presenting with significantly fewer (p>0.001) dendritic spines and a decrease in numeric density when compared to age-matched controls. These negative changes may be implicated in the neuropathological and functional/behavioral changes observed in ASD, such as delays in motor learning, difficulties in automaticity of movements, and deficits in higher cognitive functions.
Collapse
Affiliation(s)
- L H Hough
- Department of Biomedical Sciences, Missouri State University, Springfield, MO 65897, USA.
| | - S Segal
- Department of Surgery, Center for Anatomical Sciences and Education, Saint Louis University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
15
|
Te’o VSJ, Nevalainen KMH. Use of the Biolistic Particle Delivery System to Transform Fungal Genomes. Fungal Biol 2015. [DOI: 10.1007/978-3-319-10142-2_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
16
|
Arsenault J, Nagy A, Henderson JT, O'Brien JA. Regioselective biolistic targeting in organotypic brain slices using a modified gene gun. J Vis Exp 2014:e52148. [PMID: 25407047 PMCID: PMC4249736 DOI: 10.3791/52148] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Transfection of DNA has been invaluable for biological sciences and with recent advances to organotypic brain slice preparations, the effect of various heterologous genes could thus be investigated easily while maintaining many aspects of in vivo biology. There has been increasing interest to transfect terminally differentiated neurons for which conventional transfection methods have been fraught with difficulties such as low yields and significant losses in viability. Biolistic transfection can circumvent many of these difficulties yet only recently has this technique been modified so that it is amenable for use in mammalian tissues. New modifications to the accelerator chamber have enhanced the gene gun's firing accuracy and increased its depths of penetration while also allowing the use of lower gas pressure (50 psi) without loss of transfection efficiency as well as permitting a focused regioselective spread of the particles to within 3 mm. In addition, this technique is straight forward and faster to perform than tedious microinjections. Both transient and stable expression are possible with nanoparticle bombardment where episomal expression can be detected within 24 hr and the cell survival was shown to be better than, or at least equal to, conventional methods. This technique has however one crucial advantage: it permits the transfection to be localized within a single restrained radius thus enabling the user to anatomically isolate the heterologous gene's effects. Here we present an in-depth protocol to prepare viable adult organotypic slices and submit them to regioselective transfection using an improved gene gun.
Collapse
Affiliation(s)
- Jason Arsenault
- Leslie Dan Faculty of Pharmacy, University of Toronto; MRC-Laboratory of Molecular Biology, Cambridge, UK
| | - Andras Nagy
- Leslie Dan Faculty of Pharmacy, University of Toronto
| | | | | |
Collapse
|
17
|
Role of Girdin in intimal hyperplasia in vein grafts and efficacy of atelocollagen-mediated application of small interfering RNA for vein graft failure. J Vasc Surg 2014; 60:479-489.e5. [DOI: 10.1016/j.jvs.2013.06.080] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 06/19/2013] [Accepted: 06/29/2013] [Indexed: 12/14/2022]
|
18
|
Weyer SW, Zagrebelsky M, Herrmann U, Hick M, Ganss L, Gobbert J, Gruber M, Altmann C, Korte M, Deller T, Müller UC. Comparative analysis of single and combined APP/APLP knockouts reveals reduced spine density in APP-KO mice that is prevented by APPsα expression. Acta Neuropathol Commun 2014; 2:36. [PMID: 24684730 PMCID: PMC4023627 DOI: 10.1186/2051-5960-2-36] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 03/07/2014] [Indexed: 11/21/2022] Open
Abstract
Synaptic dysfunction and synapse loss are key features of Alzheimer's pathogenesis. Previously, we showed an essential function of APP and APLP2 for synaptic plasticity, learning and memory. Here, we used organotypic hippocampal cultures to investigate the specific role(s) of APP family members and their fragments for dendritic complexity and spine formation of principal neurons within the hippocampus. Whereas CA1 neurons from APLP1-KO or APLP2-KO mice showed normal neuronal morphology and spine density, APP-KO mice revealed a highly reduced dendritic complexity in mid-apical dendrites. Despite unaltered morphology of APLP2-KO neurons, combined APP/APLP2-DKO mutants showed an additional branching defect in proximal apical dendrites, indicating redundancy and a combined function of APP and APLP2 for dendritic architecture. Remarkably, APP-KO neurons showed a pronounced decrease in spine density and reductions in the number of mushroom spines. No further decrease in spine density, however, was detectable in APP/APLP2-DKO mice. Mechanistically, using APPsα-KI mice lacking transmembrane APP and expressing solely the secreted APPsα fragment we demonstrate that APPsα expression alone is sufficient to prevent the defects in spine density observed in APP-KO mice. Collectively, these studies reveal a combined role of APP and APLP2 for dendritic architecture and a unique function of secreted APPs for spine density.
Collapse
Affiliation(s)
- Sascha W Weyer
- Department of Bioinformatics and Functional Genomics, Ruprecht-Karls University Heidelberg, Institute of Pharmacy and Molecular Biotechnology, Im Neuenheimer Feld 364, Heidelberg D-69120, Germany
| | - Marta Zagrebelsky
- TU Braunschweig, Zoological Institute, Cellular Neurobiology, Spielmannstr. 7, Braunschweig D-38106, Germany
| | - Ulrike Herrmann
- TU Braunschweig, Zoological Institute, Cellular Neurobiology, Spielmannstr. 7, Braunschweig D-38106, Germany
| | - Meike Hick
- Department of Bioinformatics and Functional Genomics, Ruprecht-Karls University Heidelberg, Institute of Pharmacy and Molecular Biotechnology, Im Neuenheimer Feld 364, Heidelberg D-69120, Germany
| | - Lennard Ganss
- Department of Bioinformatics and Functional Genomics, Ruprecht-Karls University Heidelberg, Institute of Pharmacy and Molecular Biotechnology, Im Neuenheimer Feld 364, Heidelberg D-69120, Germany
- Present address: Department of Applied Tumor Biology, Ruprecht-Karls University Heidelberg, Institute of Pathology, University of Heidelberg, Heidelberg D-69120, Germany
| | - Julia Gobbert
- Department of Bioinformatics and Functional Genomics, Ruprecht-Karls University Heidelberg, Institute of Pharmacy and Molecular Biotechnology, Im Neuenheimer Feld 364, Heidelberg D-69120, Germany
| | - Morna Gruber
- Goethe University Frankfurt, Institute of Clinical Neuroanatomy, Neuroscience Center, Theodor-Stern-Kai 7, Frankfurt am Main D-60596, Germany
| | - Christine Altmann
- Goethe University Frankfurt, Institute of Clinical Neuroanatomy, Neuroscience Center, Theodor-Stern-Kai 7, Frankfurt am Main D-60596, Germany
| | - Martin Korte
- TU Braunschweig, Zoological Institute, Cellular Neurobiology, Spielmannstr. 7, Braunschweig D-38106, Germany
| | - Thomas Deller
- Goethe University Frankfurt, Institute of Clinical Neuroanatomy, Neuroscience Center, Theodor-Stern-Kai 7, Frankfurt am Main D-60596, Germany
| | - Ulrike C Müller
- Department of Bioinformatics and Functional Genomics, Ruprecht-Karls University Heidelberg, Institute of Pharmacy and Molecular Biotechnology, Im Neuenheimer Feld 364, Heidelberg D-69120, Germany
| |
Collapse
|
19
|
Enriquez-Barreto L, Cuesto G, Dominguez-Iturza N, Gavilán E, Ruano D, Sandi C, Fernández-Ruiz A, Martín-Vázquez G, Herreras O, Morales M. Learning improvement after PI3K activation correlates with de novo formation of functional small spines. Front Mol Neurosci 2014; 6:54. [PMID: 24427113 PMCID: PMC3877779 DOI: 10.3389/fnmol.2013.00054] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 12/09/2013] [Indexed: 11/13/2022] Open
Abstract
PI3K activation promotes the formation of synaptic contacts and dendritic spines, morphological features of glutamatergic synapses that are commonly known to be related to learning processes. In this report, we show that in vivo administration of a peptide that activates the PI3K signaling pathway increases spine density in the rat hippocampus and enhances the animals' cognitive abilities, while in vivo electrophysiological recordings show that PI3K activation results in synaptic enhancement of Schaffer and stratum lacunosum moleculare inputs. Morphological characterization of the spines reveals that subjecting the animals to contextual fear-conditioning training per se promotes the formation of large spines, while PI3K activation reverts this effect and favors a general change toward small head areas. Studies using hippocampal neuronal cultures show that the PI3K spinogenic process is NMDA-dependent and activity-independent. In culture, PI3K activation was followed by mRNA upregulation of glutamate receptor subunits and of the immediate-early gene Arc. Time-lapse studies confirmed the ability of PI3K to induce the formation of small spines. Finally, we demonstrate that the spinogenic effect of PI3K can be induced in the presence of neurodegeneration, such as in the Tg2576 Alzheimer's mouse model. These findings highlight that the PI3K pathway is an important regulator of neuronal connectivity and stress the relationship between spine size and learning processes.
Collapse
Affiliation(s)
- Lilian Enriquez-Barreto
- Structural Synaptic Plasticity Lab, Center for Biomedical Research of La Rioja Logroño, La Rioja, Spain ; Department of Biochemistry and Molecular Biology, Neuroscience Institute, Universitat Autònoma de Barcelona Barcelona, Spain
| | - Germán Cuesto
- Structural Synaptic Plasticity Lab, Center for Biomedical Research of La Rioja Logroño, La Rioja, Spain
| | - Nuria Dominguez-Iturza
- Structural Synaptic Plasticity Lab, Center for Biomedical Research of La Rioja Logroño, La Rioja, Spain
| | - Elena Gavilán
- Instituto de Biomedicina de Sevilla, Universidad de Sevilla Sevilla, Spain
| | - Diego Ruano
- Instituto de Biomedicina de Sevilla, Universidad de Sevilla Sevilla, Spain
| | - Carmen Sandi
- Brain Mind Institute, École Polytechnique Fédérale de Lausanne Lausanne, Switzerland
| | - Antonio Fernández-Ruiz
- Experimental and Computational Electrophysiology Lab, Instituto Cajal, Consejo Superior de Investigaciones Científicas Madrid, Spain
| | - Gonzalo Martín-Vázquez
- Experimental and Computational Electrophysiology Lab, Instituto Cajal, Consejo Superior de Investigaciones Científicas Madrid, Spain
| | - Oscar Herreras
- Experimental and Computational Electrophysiology Lab, Instituto Cajal, Consejo Superior de Investigaciones Científicas Madrid, Spain
| | - Miguel Morales
- Structural Synaptic Plasticity Lab, Center for Biomedical Research of La Rioja Logroño, La Rioja, Spain
| |
Collapse
|
20
|
Optimized heterologous transfection of viable adult organotypic brain slices using an enhanced gene gun. BMC Res Notes 2013; 6:544. [PMID: 24354851 PMCID: PMC3878247 DOI: 10.1186/1756-0500-6-544] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 12/16/2013] [Indexed: 12/24/2022] Open
Abstract
Background Organotypic brain slices (OTBS) are an excellent experimental compromise between the facility of working with cell cultures and the biological relevance of using animal models where anatomical, morphological, and cellular function of specific brain regions can be maintained. The biological characteristics of OTBS can subsequently be examined under well-defined conditions. They do, however, have a number of limitations; most brain slices are derived from neonatal animals, as it is difficult to properly prepare and maintain adult OTBS. There are ample problems with tissue integrity as OTBS are delicate and frequently become damaged during the preparative stages. Notwithstanding these obstacles, the introduced exogenous proteins into both neuronal cells, and cells imbedded within tissues, have been consistently difficult to achieve. Results Following the ex vivo extraction of adult mouse brains, mounted inside a medium-agarose matrix, we have exploited a precise slicing procedure using a custom built vibroslicer. To transfect these slices we used an improved biolistic transfection method using a custom made low-pressure barrel and novel DNA-coated nanoparticles (40 nm), which are drastically smaller than traditional microparticles. These nanoparticles also minimize tissue damage as seen by a significant reduction in lactate dehydrogenase activity as well as propidium iodide (PI) and dUTP labelling compared to larger traditional gold particles used on these OTBS. Furthermore, following EYFP exogene delivery by gene gun, the 40 nm treated OTBS displayed a significantly larger number of viable NeuN and EYFP positive cells. These OTBS expressed the exogenous proteins for many weeks. Conclusions Our described methodology of producing OTBS, which results in better reproducibility with less tissue damage, permits the exploitation of mature fully formed adult brains for advanced neurobiological studies. The novel 40 nm particles are ideal for the viable biolistic transfection of OTBS by reducing tissue stress while maintaining long term exogene expression.
Collapse
|
21
|
Cell-type specific increases in female hamster nucleus accumbens spine density following female sexual experience. Brain Struct Funct 2013; 219:2071-81. [PMID: 23934655 DOI: 10.1007/s00429-013-0624-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 08/02/2013] [Indexed: 01/01/2023]
Abstract
Female sexual behavior is an established model of a naturally motivated behavior which is regulated by activity within the mesolimbic dopamine system. Repeated activation of the mesolimbic circuit by female sexual behavior elevates dopamine release and produces persistent postsynaptic alterations to dopamine D1 receptor signaling within the nucleus accumbens. Here we demonstrate that sexual experience in female Syrian hamsters significantly increases spine density and alters morphology selectively in D1 receptor-expressing medium spiny neurons within the nucleus accumbens core, with no corresponding change in dopamine receptor binding or protein expression. Our findings demonstrate that previous life experience with a naturally motivated behavior has the capacity to induce persistent structural alterations to the mesolimbic circuit that can increase reproductive success and are analogous to the persistent structural changes following repeated exposure to many drugs of abuse.
Collapse
|
22
|
Meacham JM, Durvasula K, Degertekin FL, Fedorov AG. Physical methods for intracellular delivery: practical aspects from laboratory use to industrial-scale processing. ACTA ACUST UNITED AC 2013; 19:1-18. [PMID: 23813915 DOI: 10.1177/2211068213494388] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Effective intracellular delivery is a significant impediment to research and therapeutic applications at all processing scales. Physical delivery methods have long demonstrated the ability to deliver cargo molecules directly to the cytoplasm or nucleus, and the mechanisms underlying the most common approaches (microinjection, electroporation, and sonoporation) have been extensively investigated. In this review, we discuss established approaches, as well as emerging techniques (magnetofection, optoinjection, and combined modalities). In addition to operating principles and implementation strategies, we address applicability and limitations of various in vitro, ex vivo, and in vivo platforms. Importantly, we perform critical assessments regarding (1) treatment efficacy with diverse cell types and delivered cargo molecules, (2) suitability to different processing scales (from single cell to large populations), (3) suitability for automation/integration with existing workflows, and (4) multiplexing potential and flexibility/adaptability to enable rapid changeover between treatments of varied cell types. Existing techniques typically fall short in one or more of these criteria; however, introduction of micro-/nanotechnology concepts, as well as synergistic coupling of complementary method(s), can improve performance and applicability of a particular approach, overcoming barriers to practical implementation. For this reason, we emphasize these strategies in examining recent advances in development of delivery systems.
Collapse
|
23
|
O'Brien JA, Lummis SCR. Biolistic transfection of neurons in organotypic brain slices. Methods Mol Biol 2013; 940:157-66. [PMID: 23104341 DOI: 10.1007/978-1-62703-110-3_13] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Transfection of postmitotic neurons is one of the most challenging goals in the field of gene delivery. Currently most procedures use dissociated cell cultures but organotypic slice preparations have significant advantages as an experimental system; they preserve the three-dimensional architecture and local environment of neurons, yet still allow access for experimental manipulations and observations. However exploring the effects of novel genes in these preparations requires a technique that can efficiently transfect cells deep into tissues. Here we show that biolistic transfection is an effective and straightforward technique with which to transfect such cells.
Collapse
Affiliation(s)
- John A O'Brien
- Division of Neurobiology, MRC Laboratory of Molecular Biology, Cambridge, UK
| | | |
Collapse
|
24
|
Aseyev N, Roshchin M, Ierusalimsky VN, Balaban PM, Nikitin ES. Biolistic delivery of voltage-sensitive dyes for fast recording of membrane potential changes in individual neurons in rat brain slices. J Neurosci Methods 2013; 212:17-27. [DOI: 10.1016/j.jneumeth.2012.09.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2012] [Revised: 09/03/2012] [Accepted: 09/05/2012] [Indexed: 11/17/2022]
|
25
|
Li X, Uchida M, Alpar HO, Mertens P. Biolistic transfection of human embryonic kidney (HEK) 293 cells. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2012; 940:119-32. [PMID: 23104338 DOI: 10.1007/978-1-62703-110-3_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Abstract
Due to its excellent transfectability, the human embryonic kidney (HEK) 293 cell line is widely used as an in vitro model system for transfection experiments. Particle bombardment, or biolistics technology, provides a physical transfection approach that can deliver transgene materials efficiently into many different cell lines. Transfection of 293 cells by gene gun, allows examination of transgene expression in epithelial cells, as well as studies concerning a variety of questions in neurobiology. The present study of transfection of HEK 293 cells by biolistics technology uses the plasmids gWIZ-luc encoding luciferase and gWIZ-GFP encoding green fluorescence protein (GFP) as model transgenes. This system can be routinely used at varying bombarding conditions that can be adjusted according to experimental requirements and purpose, such as gene gun helium pressure, the sizes and the amount of the gold particles and the length of the spacer. The results obtained show that the Bio-Rad spacer for the gene gun should be optimized for travel distance and spreading of gold particles over a relatively small area, when used for biolistic transfection of cells dispersed in multi-well plate.
Collapse
Affiliation(s)
- Xiongwei Li
- Department of Pharmaceutics, School of Pharmacy, University of London, London, UK
| | | | | | | |
Collapse
|
26
|
Aggressive experience increases dendritic spine density within the nucleus accumbens core in female Syrian hamsters. Neuroscience 2012; 227:163-9. [PMID: 23041760 DOI: 10.1016/j.neuroscience.2012.09.064] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Revised: 09/21/2012] [Accepted: 09/25/2012] [Indexed: 11/20/2022]
Abstract
Activity within the mesolimbic dopamine system is associated with the performance of naturally motivated behaviors, one of which is aggression. In male rats, aggressive behavior induces neurochemical changes within the nucleus accumbens, a key structure within the mesolimbic dopamine system. Corresponding studies have not been done in females. Female Syrian hamsters live as isolates and when not sexually responsive are aggressive toward either male or female intruders, making them an excellent model for studying aggression in females. We took advantage of this naturally expressed behavior to examine the effects of repeated aggressive experience on the morphology of medium spiny neurons in the nucleus accumbens and caudate nucleus, utilizing a DiOlistic labeling approach. We found that repeated aggressive experience significantly increased spine density within the nucleus accumbens core, with no significant changes in any other brain region examined. At the same time, significant changes in spine morphology were observed in all brain regions following repeated aggressive experience. These data are significant in that they demonstrate that repeated exposure to behaviors that form part of an animal's life history will alter neuronal structure in a way that may shift neurobiological responses to impact future social interactions.
Collapse
|
27
|
Abstract
Transient transfection of hair cells has proven challenging. Here we describe modifications to the Bio-Rad Helios Gene Gun that, along with an optimized protocol, improve transfection of bullfrog, chick, and mouse hair cells. The increased penetrating power afforded by our method allowed us to transfect mouse hair cells from the basal side, through the basilar membrane; this configuration protects hair bundles from damage during the procedure. We characterized the efficiency of transfection of mouse hair cells with fluorescently-tagged actin fusion protein using both the optimized procedure and a published procedure; while the efficiency of the two methods was similar, the morphology of transfected hair cells was improved with the new procedure. In addition, using the improved method, we were able to transfect hair cells in the bullfrog sacculus and chick cochlea for the first time. We used fluorescent-protein fusions of harmonin b (USH1C) and PMCA2 (ATP2B2; plasma-membrane Ca2+-ATPase isoform 2) to examine protein distribution in hair cells. While PMCA2-EGFP localization was similar to endogenous PMCA2 detected with antibodies, high levels of harmonin-EGFP were found at stereocilia tapers in bullfrog and chick, but not mouse; by contrast, harmonin-EGFP was concentrated in stereocilia tips in mouse hair cells.
Collapse
|
28
|
Wiedemann D, Kocher A, Bonaros N, Semsroth S, Laufer G, Grimm M, Schachner T. Perivascular administration of drugs and genes as a means of reducing vein graft failure. Curr Opin Pharmacol 2012; 12:203-16. [DOI: 10.1016/j.coph.2012.02.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Revised: 02/20/2012] [Accepted: 02/23/2012] [Indexed: 01/21/2023]
|
29
|
Nickerson JM, Goodman P, Chrenek MA, Bernal CJ, Berglin L, Redmond TM, Boatright JH. Subretinal delivery and electroporation in pigmented and nonpigmented adult mouse eyes. Methods Mol Biol 2012; 884:53-69. [PMID: 22688698 DOI: 10.1007/978-1-61779-848-1_4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Subretinal injection offers one of the best ways to deliver many classes of drugs, reagents, cells and treatments to the photoreceptor, Müller, and retinal pigment epithelium (RPE) cells of the retina. Agents delivered to this space are placed within microns of the intended target cell, accumulating to high concentrations because there is no dilution due to transport processes or diffusion. Dilution in the interphotoreceptor space (IPS) is minimal because the IPS volume is only 10-20 μl in the human eye and less than 1 μl in the mouse eye. For gene delivery purposes, we wished to transfect the cells adjacent to the IPS in adult mouse eyes. Others transfect these cells in neonatal rats to study the development of the retina. In both neonates and adults, electroporation is found to be effective. Here we describe the optimization of electroporation conditions for RPE cells in the adult mouse eye with naked plasmids. However, both techniques, subretinal injection and electroporation, present some technical challenges that require skill on the part of the surgeon to prevent untoward damage to the eye. Here we describe methods that we have used for the past 10 years (Johnson et al. Mol Vis 14: 2211-2226, 2008).
Collapse
Affiliation(s)
- John M Nickerson
- Department of Ophthalmology, Emory University, Atlanta, GA, USA.
| | | | | | | | | | | | | |
Collapse
|
30
|
O'Brien JA, Lummis SCR. Nano-biolistics: a method of biolistic transfection of cells and tissues using a gene gun with novel nanometer-sized projectiles. BMC Biotechnol 2011; 11:66. [PMID: 21663596 PMCID: PMC3144454 DOI: 10.1186/1472-6750-11-66] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Accepted: 06/10/2011] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Biolistic transfection is proving an increasingly popular method of incorporating DNA or RNA into cells that are difficult to transfect using traditional methods. The technique routinely uses 'microparticles', which are ~1 μm diameter projectiles, fired into tissues using pressurised gas. These microparticles are efficient at delivering DNA into cells, but cannot efficiently transfect small cells and may cause significant tissue damage, thus limiting their potential usefulness. Here we describe the use of 40 nm diameter projectiles--nanoparticles--in biolistic transfections to determine if they are a suitable alternative to microparticles. RESULTS Examination of transfection efficiencies in HEK293 cells, using a range of conditions including different DNA concentrations and different preparation procedures, reveals similar behaviour of microparticles and nanoparticles. The use of nanoparticles, however, resulted in ~30% fewer damaged HEK293 cells following transfection. Biolistic transfection of mouse ear tissue revealed similar depth penetration for the two types of particles, and also showed that < 10% of nuclei were damaged in nanoparticle-transfected samples, compared to > 20% in microparticle-transfected samples. Visualising details of small cellular structures was also considerably enhanced when using nanoparticles. CONCLUSIONS We conclude that nanoparticles are as efficient for biolistic transfection as microparticles, and are more appropriate for use in small cells, when examining cellular structures and/or where tissue damage is a problem.
Collapse
Affiliation(s)
- John A O'Brien
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge CB2 2QH, UK
| | - Sarah CR Lummis
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge CB2 2QH, UK
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK
| |
Collapse
|
31
|
Foehring RC, Guan D, Toleman T, Cantrell AR. Whole cell recording from an organotypic slice preparation of neocortex. J Vis Exp 2011:2600. [PMID: 21673642 PMCID: PMC3197031 DOI: 10.3791/2600] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
We have been studying the expression and functional roles of voltage-gated potassium channels in pyramidal neurons from rat neocortex. Because of the lack of specific pharmacological agents for these channels, we have taken a genetic approach to manipulating channel expression. We use an organotypic culture preparation (16) in order to maintain cell morphology and the laminar pattern of cortex. We typically isolate acute neocortical slices at postnatal days 8-10 and maintain the slices in culture for 3-7 days. This allows us to study neurons at a similar age to those in our work with acute slices and minimizes the development of exuberant excitatory connections in the slice. We record from visually-identified pyramidal neurons in layers II/III or V using infrared illumination (IR-) and differential interference contrast microscopy (DIC) with whole cell patch clamp in current- or voltage-clamp. We use biolistic (Gene gun) transfection of wild type or mutant potassium channel DNA to manipulate expression of the channels to study their function. The transfected cells are easily identified by epifluorescence microscopy after co-transfection with cDNA for green fluorescent protein (GFP). We compare recordings of transfected cells to adjacent, untransfected neurons in the same layer from the same slice.
Collapse
Affiliation(s)
- Robert C Foehring
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, USA.
| | | | | | | |
Collapse
|
32
|
Bangash MA, Park JM, Melnikova T, Wang D, Jeon SK, Lee D, Syeda S, Kim J, Kouser M, Schwartz J, Cui Y, Zhao X, Speed HE, Kee SE, Tu JC, Hu JH, Petralia RS, Linden DJ, Powell CM, Savonenko A, Xiao B, Worley PF. Enhanced polyubiquitination of Shank3 and NMDA receptor in a mouse model of autism. Cell 2011; 145:758-72. [PMID: 21565394 PMCID: PMC3110672 DOI: 10.1016/j.cell.2011.03.052] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Revised: 02/03/2011] [Accepted: 03/28/2011] [Indexed: 12/28/2022]
Abstract
We have created a mouse genetic model that mimics a human mutation of Shank3 that deletes the C terminus and is associated with autism. Expressed as a single copy [Shank3(+/ΔC) mice], Shank3ΔC protein interacts with the wild-type (WT) gene product and results in >90% reduction of Shank3 at synapses. This "gain-of-function" phenotype is linked to increased polyubiquitination of WT Shank3 and its redistribution into proteasomes. Similarly, the NR1 subunit of the NMDA receptor is reduced at synapses with increased polyubiquitination. Assays of postsynaptic density proteins, spine morphology, and synapse number are unchanged in Shank3(+/ΔC) mice, but the amplitude of NMDAR responses is reduced together with reduced NMDAR-dependent LTP and LTD. Reciprocally, mGluR-dependent LTD is markedly enhanced. Shank3(+/ΔC) mice show behavioral deficits suggestive of autism and reduced NMDA receptor function. These studies reveal a mechanism distinct from haploinsufficiency by which mutations of Shank3 can evoke an autism-like disorder.
Collapse
Affiliation(s)
- M Ali Bangash
- Department of Neuroscience, Johns Hopkins University School of Medicine Baltimore, MD 21205, USA
| | - Joo Min Park
- Department of Neuroscience, Johns Hopkins University School of Medicine Baltimore, MD 21205, USA
| | - Tatiana Melnikova
- Departments of Pathology and Neurology, Johns Hopkins University School of Medicine Baltimore, MD 21205, USA
| | - Dehua Wang
- The State Key Laboratory of Bio-Therapy, West China Hospital, Sichuan University, Chengdu, China
| | - Soo Kyeong Jeon
- Department of Neuroscience, Johns Hopkins University School of Medicine Baltimore, MD 21205, USA
| | - Deidre Lee
- Departments of Pathology and Neurology, Johns Hopkins University School of Medicine Baltimore, MD 21205, USA
| | - Sbaa Syeda
- Departments of Pathology and Neurology, Johns Hopkins University School of Medicine Baltimore, MD 21205, USA
| | - Juno Kim
- Department of Neuroscience, Johns Hopkins University School of Medicine Baltimore, MD 21205, USA
| | - Mehreen Kouser
- Departments of Neurology and Psychiatry, The University of Texas Southwestern Medical Center, Dallas, Texas 75390-8813, USA
| | - Joshua Schwartz
- Department of Neuroscience, Johns Hopkins University School of Medicine Baltimore, MD 21205, USA
| | - Yiyuan Cui
- The State Key Laboratory of Bio-Therapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xia Zhao
- The State Key Laboratory of Bio-Therapy, West China Hospital, Sichuan University, Chengdu, China
| | - Haley E. Speed
- Departments of Neurology and Psychiatry, The University of Texas Southwestern Medical Center, Dallas, Texas 75390-8813, USA
| | - Sara E. Kee
- Departments of Neurology and Psychiatry, The University of Texas Southwestern Medical Center, Dallas, Texas 75390-8813, USA
| | - Jian Cheng Tu
- Department of Neuroscience, Johns Hopkins University School of Medicine Baltimore, MD 21205, USA
| | - Jia-Hua Hu
- Department of Neuroscience, Johns Hopkins University School of Medicine Baltimore, MD 21205, USA
| | - Ronald S. Petralia
- Laboratory of Neurochemistry, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland 20892
| | - David J. Linden
- Department of Neuroscience, Johns Hopkins University School of Medicine Baltimore, MD 21205, USA
| | - Craig M. Powell
- Departments of Neurology and Psychiatry, The University of Texas Southwestern Medical Center, Dallas, Texas 75390-8813, USA
| | - Alena Savonenko
- Departments of Pathology and Neurology, Johns Hopkins University School of Medicine Baltimore, MD 21205, USA
| | - Bo Xiao
- Department of Neuroscience, Johns Hopkins University School of Medicine Baltimore, MD 21205, USA
- The State Key Laboratory of Bio-Therapy, West China Hospital, Sichuan University, Chengdu, China
| | - Paul F. Worley
- Department of Neuroscience, Johns Hopkins University School of Medicine Baltimore, MD 21205, USA
| |
Collapse
|
33
|
Staffend NA, Meisel RL. DiOlistic labeling in fixed brain slices: phenotype, morphology, and dendritic spines. CURRENT PROTOCOLS IN NEUROSCIENCE 2011; Chapter 2:Unit 2.13. [PMID: 21462159 PMCID: PMC3072225 DOI: 10.1002/0471142301.ns0213s55] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Identifying neuronal morphology is a key component in understanding neuronal function. Several techniques have been developed to address this issue, including Golgi staining, electroporation of fluorescent dyes, and transfection of fluorescent constructs. Ballistic delivery of transgenic constructs has been a successful means of rapidly transfecting a nonbiased population of cells within tissue or culture. Recently, this technique was modified for the ballistic delivery of dye-coated gold or tungsten particles, enabling a nonbiased, rapid fluorescent membrane labeling of individual neurons in both fixed and nonfixed tissue. This unit outlines a step-by-step protocol for the ballistic method of dye delivery ("DiOlistic" labeling) to fixed tissue, including optimal tissue fixation conditions. In addition, a protocol for coupling "DiOlistic" labeling with other immunofluorescent methods is detailed, enabling the association of neuronal morphology with a specific cellular phenotype.
Collapse
Affiliation(s)
- Nancy A. Staffend
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota. Phone: 612-626-6800. Fax: 612-626-5009
| | - Robert L. Meisel
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota. Phone: 612-626-6800. Fax: 612-626-5009
| |
Collapse
|
34
|
Staffend NA, Meisel RL. DiOlistic Labeling of Neurons in Tissue Slices: A Qualitative and Quantitative Analysis of Methodological Variations. Front Neuroanat 2011; 5:14. [PMID: 21427781 PMCID: PMC3049322 DOI: 10.3389/fnana.2011.00014] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Accepted: 02/18/2011] [Indexed: 12/04/2022] Open
Abstract
Fine neuronal morphology, such as dendritic spines, classically has been studied using the Golgi technique; however, Golgi staining is difficult to combine with other histological techniques. With the increasing popularity of fluorescent imaging, a number of fluorescent dyes have been developed that enable the coupling of multiple fluorescent labels in a single preparation. These fluorescent dyes include the lipophilic dialkylcarbocyanine, DiI; traditionally used for anterograde and retrograde neuronal tracing. More recently, DiI labeling has been used in combination with the Gene Gun for "DiOlistic" labeling of neurons in slice preparations. DiI sequesters itself within and diffuses laterally along the neuronal membrane, however once the cell is permeabilized, the DiI begins to leak from the cell membrane. A DiI derivative, Cell Tracker™ CM-DiI, increases dye stability and labeling half-life in permeabilized tissue, however at much greater expense. Here, the DiI and CM-DiI DiOlistic labeling techniques were tested in side-by-side experiments evaluating dye stability within dendritic architecture in medium spiny neurons of the dorsal stratum in both non-permeabilized and permeabilized tissue sections. In tissue sections that were not permeabilized, spine density in DiI labeled sections was higher than in CM-DiI labeling. In contrast, tissue sections that were permeabilized had higher spine densities in CM-DiI labeled neurons. These results suggest that for experiments involving non-permeabilized tissue, traditional DiI will suffice, however for experiments involving permeabilized tissue CM-DiI provides more consistent data. These experiments provide the first quantitative analyses of the impact of methodological permutations on neuronal labeling with DiI.
Collapse
Affiliation(s)
- Nancy A. Staffend
- Department of Neuroscience, University of MinnesotaMinneapolis, MN, USA
| | - Robert L. Meisel
- Department of Neuroscience, University of MinnesotaMinneapolis, MN, USA
| |
Collapse
|
35
|
Staffend NA, Loftus CM, Meisel RL. Estradiol reduces dendritic spine density in the ventral striatum of female Syrian hamsters. Brain Struct Funct 2011; 215:187-94. [PMID: 20953625 PMCID: PMC3057377 DOI: 10.1007/s00429-010-0284-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Accepted: 09/30/2010] [Indexed: 10/18/2022]
Abstract
Estradiol affects a variety of brain regions by modulating physiological and cellular functions as well as neuronal morphology. Within the striatum, estradiol is known to induce physiological and molecular changes, yet estradiol's effects on striatal dendritic morphology have not yet been evaluated. Using ballistic delivery of the lipophilic dye DiI to tissue sections, we were able to evaluate estradiol's effects on striatal morphology in female Syrian hamsters. We found that estradiol significantly decreased spine density within the nucleus accumbens core, with no effect in the nucleus accumbens shell or caudate. Interestingly, estradiol treatment caused a significant deconstruction of spines from more to less mature spine subtypes in both the nucleus accumbens core and shell regardless of changes in spine density. These results are significant in that they offer a novel mechanism for estradiol actions on a wide variety of nucleus accumbens functions such as motivation or reward as well as their pathological consequences (e.g. drug addiction).
Collapse
Affiliation(s)
- Nancy A Staffend
- Department of Neuroscience, University of Minnesota, 6-145 Jackson Hall, 321 Church Street SE, Minneapolis, MN 55455, USA.
| | | | | |
Collapse
|
36
|
|
37
|
Connolly RJ, Lopez GA, Hoff AM, Jaroszeski MJ. Plasma facilitated delivery of DNA to skin. Biotechnol Bioeng 2009; 104:1034-40. [PMID: 19557830 DOI: 10.1002/bit.22451] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Non-viral delivery of cell-impermeant drugs and DNA in vivo has traditionally relied upon either chemical or physical stress applied directly to target tissues. Physical methods typically use contact between an applicator, or electrode, and the target tissue and may involve patient discomfort. To overcome contact-dependent limitations of such delivery methodologies, an atmospheric helium plasma source was developed to deposit plasma products onto localized treatment sites. Experiments performed in murine skin showed that samples injected with plasmid DNA encoding luciferase and treated with plasma demonstrated increased levels of expression relative to skin samples that received injections of DNA alone. Increased response relative to injection alone was observed when either positive or negative voltage was used to generate the helium plasma. Quantitative results over a 26-day follow-up period showed that luciferase levels as high as 19-fold greater than the levels obtained by DNA injection alone could be achieved. These findings indicate that plasmas may compete with other physical delivery methodologies when skin is the target tissue.
Collapse
Affiliation(s)
- Richard J Connolly
- Department of Chemical and Biomedical Engineering, University of South Florida, ENB 118, Tampa, Florida 33620, USA
| | | | | | | |
Collapse
|
38
|
Diana Neely M, Stanwood GD, Deutch AY. Combination of diOlistic labeling with retrograde tract tracing and immunohistochemistry. J Neurosci Methods 2009; 184:332-6. [PMID: 19712695 PMCID: PMC2796483 DOI: 10.1016/j.jneumeth.2009.08.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2009] [Revised: 08/18/2009] [Accepted: 08/18/2009] [Indexed: 10/20/2022]
Abstract
Neuronal staining techniques have played a crucial role in the analysis of neuronal function. Several different staining techniques have been developed to allow morphological analyses of neurons. DiOlistic labeling, in which beads are coated with a lipophilic dye and then ballistically ejected onto brain tissue, has recently been introduced as a useful and simple means to label neurons and glia in their entirety. Although diOlistic labeling provides detailed information on the morphology of neurons, combining this approach with other staining methods is a significant advance. We have developed protocols that result in high quality diOlistically- and retrogradely-labeled or diOlistically-immunohistochemically labeled neurons. These dual-label methods require modification of fixation parameters and the restricted use of detergents for tissue permeabilization, and are readily applicable to a wide range of tracers and antibodies.
Collapse
Affiliation(s)
- M. Diana Neely
- Department of Psychiatry and Vanderbilt Kennedy Center for Research on Human Development, 3066 VPH, Vanderbilt University Medical Center, 1601 23 Avenue South, Nashville, TN 37212, (615) 322 4260, (615) 322 1901 (fax)
| | - Gregg D Stanwood
- Department of Pharmacology and Vanderbilt Kennedy Center for Research on Human Development, 8405 MRBIV, Vanderbilt University Medical Center, Nashville, TN 37232, (615) 936-3861, (615) 936-2202 (fax)
| | - Ariel Y. Deutch
- Department of Psychiatry, Pharmacology and Vanderbilt Kennedy Center for Research on Human Development, 3066 VPH, Vanderbilt University Medical Center, 1601 23 Avenue South, Nashville, TN 37212, (615) 327 7080, (615) 322 1901 (fax)
| |
Collapse
|
39
|
Gan WB, Grutzendler J, Wong RO, Lichtman JW. Ballistic delivery of dyes for structural and functional studies of the nervous system. Cold Spring Harb Protoc 2009; 2009:pdb.prot5202. [PMID: 20147144 PMCID: PMC2916724 DOI: 10.1101/pdb.prot5202] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
This protocol describes detailed procedures for rapid labeling of cells in a variety of preparations by means of particle-mediated ballistic (i.e., Gene Gun) delivery of fluorescent dyes. The method has been used for rapid labeling of cells with either lipid- or water-soluble dyes, in a variety of preparations at different ages. Tissue preparations include fixed mouse brain slices (described here), cell cultures, and tissue explants. This ballistic labeling technique is useful for studying neuronal connectivity, function, and pathology in the nervous system of living as well as fixed specimens.
Collapse
|
40
|
Shen H, Sesack SR, Toda S, Kalivas PW. Automated quantification of dendritic spine density and spine head diameter in medium spiny neurons of the nucleus accumbens. Brain Struct Funct 2008; 213:149-57. [PMID: 18535839 DOI: 10.1007/s00429-008-0184-2] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2008] [Accepted: 05/15/2008] [Indexed: 10/22/2022]
Abstract
Dendritic spines are postsynaptic specializations thought to regulate the strength of synaptic transmission and play a critical role in neuronal plasticity. While changes in dendritic spine density can be pharmacologically- or environmentally-induced, the widespread utility of this important measure of synaptic plasticity in vivo has been hampered by the labor-intensive nature, and potential for bias and inconsistency inherent in manual spine counting. Here we report a method for obtaining high-resolution, three-dimensional confocal images of accumbens spiny neurons labeled with a diolistically delivered lipophilic fluorescence dye (DiI) that permits automated analysis of spine density and spine head diameter. The automated quantification was verified by manual counts of spine density and electron microscopic measures of spine head diameter. The density of spines was relatively constant over 2nd to 4th order dendrites within a neuron, and spine density was normally distributed. The mean spine density (2.68 spines/microm; N = 45 neurons) was higher than previous reports, due in part to analysis in three rather than two dimensions and the capacity of lipophilic dyes to fill very thin spines. The distribution of spine head diameters was continuous and skewed to the right (mean = 0.43 microm; N = 8,891), and approximately 25% of all spines were thin and filopodia-like (< or = 0.20 microm diameter). The density of spines was not correlated with average spine head diameter or with the number of filopodia-like spines. The capacity to rapidly assess spine density and spine head diameter will facilitate quantifying spine plasticity induced by pharmacological and environmental manipulations.
Collapse
Affiliation(s)
- Haowei Shen
- Department of Neurosciences, Medical University of South Carolina, 173 Ashley Avenue, BSB 403, Charleston, SC 29425, USA.
| | | | | | | |
Collapse
|
41
|
Uesaka N, Nishiwaki M, Yamamoto N. Single cell electroporation method for axon tracing in cultured slices. Dev Growth Differ 2008; 50:475-7. [PMID: 18422686 DOI: 10.1111/j.1440-169x.2008.01024.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Axon tracing is an essential method to reveal neuronal connection patterns and characteristics of growing axons during development. Here we introduce an electroporation-based gene transfer technique with a fluorescent protein (FP), which enables us to observe a small number of axons. The result also demonstrates that dynamics of axon behavior can be followed for more than a week. Thus, such labeling with FP is a powerful tool for axon tracing.
Collapse
Affiliation(s)
- Naofumi Uesaka
- Neuroscience Laboratories, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | | | | |
Collapse
|
42
|
O’Brien JA, Lummis SC. Diolistics: incorporating fluorescent dyes into biological samples using a gene gun. Trends Biotechnol 2007; 25:530-4. [PMID: 17945370 PMCID: PMC2649371 DOI: 10.1016/j.tibtech.2007.07.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2007] [Revised: 07/10/2007] [Accepted: 07/31/2007] [Indexed: 01/17/2023]
Abstract
The hand-held gene gun provides a rapid and efficient method of incorporating fluorescent dyes into cells, a technique that is becoming known as diolistics. Transporting fluorescent dyes into cells has, in the past, used predominantly injection or chemical methods. The use of the gene gun, combined with the new generation of fluorescent dyes, circumvents some of the problems of using these methods and also enables the study of cells that have proved difficult traditionally to transfect (e.g. those deep in tissues and/or terminally differentiated); in addition, the use of ion- or metabolite-sensitive dyes provides a route to study cellular mechanisms. Diolistics is also ideal for loading cells with optical nanosensors--nanometre-sized sensors linked to fluorescent probes. Here, we discuss the theoretical considerations of using diolistics, the advantages compared with other methods of inserting dyes into cells and the current uses of the technique, with particular consideration of nanosensors.
Collapse
Affiliation(s)
- John A. O’Brien
- Neurobiology Division, MRC Laboratory of Molecular Biology, Hills Road, Cambridge, UK, CB2 2QH
| | - Sarah C.R. Lummis
- Neurobiology Division, MRC Laboratory of Molecular Biology, Hills Road, Cambridge, UK, CB2 2QH
- Dept of Biochemistry, University of Cambridge, Cambridge UK, CB2 1QW
| |
Collapse
|
43
|
Lang SB, Bonhoeffer T, Lohmann C. Simultaneous imaging of morphological plasticity and calcium dynamics in dendrites. Nat Protoc 2007; 1:1859-64. [PMID: 17487169 DOI: 10.1038/nprot.2006.267] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The structure and function of the nervous system are intricately connected. To investigate their relationship it is essential to image neuronal structure and function simultaneously with high spatio-temporal resolution. For this purpose, we describe here a two-step strategy. First, to visualize neurons and their entire dendritic arborization in neuronal tissue, we use ballistic delivery or single-cell electroporation of a fluorescent calcium indicator and a red fluorescent dye. Second, dual wavelength wide-field fluorescence microscopy or confocal microscopy enables imaging structural plasticity of dendrites (including filopodia and spines) and calcium dynamics together. We routinely apply this strategy to developing neurons in live tissue, but mature neurons can also be loaded and imaged as described. For labeling cells and setting up imaging equipment, approximately 2 h are required.
Collapse
Affiliation(s)
- Susanne B Lang
- Max-Planck Institute of Neurobiology, Am Klopferspitz 18, 82152 Planegg-Martinsried, Germany
| | | | | |
Collapse
|
44
|
Neely MD, Schmidt DE, Deutch AY. Cortical regulation of dopamine depletion-induced dendritic spine loss in striatal medium spiny neurons. Neuroscience 2007; 149:457-64. [PMID: 17888581 PMCID: PMC2094700 DOI: 10.1016/j.neuroscience.2007.06.044] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2007] [Revised: 06/20/2007] [Accepted: 06/22/2007] [Indexed: 11/28/2022]
Abstract
The proximate cause of Parkinson's disease is striatal dopamine depletion. Although no overt toxicity to striatal neurons has been reported in Parkinson's disease, one of the consequences of striatal dopamine loss is a decrease in the number of dendritic spines on striatal medium spiny neurons (MSNs). Dendrites of these neurons receive cortical glutamatergic inputs onto the dendritic spine head and dopaminergic inputs from the substantia nigra onto the spine neck. This synaptic arrangement suggests that dopamine gates corticostriatal glutamatergic drive onto spines. Using triple organotypic slice cultures composed of ventral mesencephalon, striatum, and cortex of the neonatal rat, we examined the role of the cortex in dopamine depletion-induced dendritic spine loss in MSNs. The striatal dopamine innervation was lesioned by treatment of the cultures with the dopaminergic neurotoxin 1-methyl-4-phenylpyridinium (MPP+) or by removing the mesencephalon. Both MPP+ and mesencephalic ablation decreased MSN dendritic spine density. Analysis of spine morphology revealed that thin spines were preferentially lost after dopamine depletion. Removal of the cortex completely prevented dopamine depletion-induced spine loss. These data indicate that the dendritic remodeling of MSNs seen in parkinsonism occurs secondary to increases in corticostriatal glutamatergic drive, and suggest that modulation of cortical activity may be a useful therapeutic strategy in Parkinson's disease.
Collapse
Affiliation(s)
- M D Neely
- Department of Psychiatry, Vanderbilt University Medical Center, Vanderbilt Psychiatric Hospital, Suite 313, 1601 23rd Avenue South, Nashville, TN 37212, USA.
| | | | | |
Collapse
|
45
|
Abstract
This protocol describes a method for making and culturing rat hippocampal organotypic slices on membrane inserts. Supplementary videos are included to demonstrate visually the different steps of the procedure. Cultured hippocampal slices has been increasingly used as a model for synaptic studies of the brain as they allow examination of mid to long term manipulations in a preparation where the gross cytoarchitecture of the hippocampus is preserved. Combining techniques such as molecular biology, electrophysiology and immunohistochemistry to study physiological or pathological processes can easily be applied to organotypic slices. The technique described here can be used to make organotypic slices from other parts of the brain, other rodent species and from a range of ages. This protocol can be completed in 3 h.
Collapse
Affiliation(s)
- Anna De Simoni
- Department of Physiology, University College London, Gower Street, London WCIE 6BT, UK.
| | | |
Collapse
|
46
|
Bestman JE, Ewald RC, Chiu SL, Cline HT. In vivo single-cell electroporation for transfer of DNA and macromolecules. Nat Protoc 2007; 1:1267-72. [PMID: 17406410 DOI: 10.1038/nprot.2006.186] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Single-cell electroporation allows transfection of plasmid DNA or macromolecules into individual living cells using modified patch electrodes and common electrophysiological equipment. This protocol is optimized for rapid in vivo electroporation of Xenopus laevis tadpole brains with DNA, dextrans, morpholinos and combinations thereof. Experienced users can electroporate roughly 40 tadpoles per hour. The technique can be adapted for use with other charged transfer materials and in other systems and tissues where cells can be targeted with a micropipette. Under visual guidance, an electrode filled with transfer material is placed in a cell body-rich area of the tadpole brain and a train of voltage pulses applied, which electroporates a nearby cell. We show examples of successfully electroporated single cells, instances of common problems and troubleshooting suggestions. Single-cell electroporation is an affordable method to fluorescently label and genetically manipulate individual cells. This powerful technique enables observation of single cells in an otherwise normal environment.
Collapse
Affiliation(s)
- Jennifer E Bestman
- Cold Spring Harbor Laboratory, Watson School of Biological Sciences, 1 Bungtown Road, Cold Spring Harbor, New York 11724, USA
| | | | | | | |
Collapse
|
47
|
Abstract
The gene transfer process using biolistic gene guns is a highly dynamic process. To achieve good performance, the process needs to be well understood and controlled. Unfortunately, no dynamic model is available in the open literature for analysing and controlling the process. This paper proposes such a model. Relationships of the penetration depth with the helium pressure, the penetration depth with the acceleration distance, and the penetration depth with the micro-carrier radius are presented. Simulations have also been conducted. The results agree well with experimental results in the open literature. The contribution of this paper includes a dynamic model for improving and manipulating performance of the biolistic gene gun.
Collapse
Affiliation(s)
- Mingjun Zhang
- Life Science and Chemical Analysis Division, Agilent Technologies, Santa Clara, CA 95051, USA.
| | | | | |
Collapse
|
48
|
O'Brien J, Unwin N. Organization of spines on the dendrites of Purkinje cells. Proc Natl Acad Sci U S A 2006; 103:1575-80. [PMID: 16423897 PMCID: PMC1360541 DOI: 10.1073/pnas.0507884103] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2005] [Indexed: 11/18/2022] Open
Abstract
Dendritic spines have been investigated intensively over recent years; however, little is yet known about how they organize on the cell surface to make synaptic contacts with appropriate axons. Here we investigate spine distributions along the distal dendrites of cerebellar Purkinje cells, after biolistic labeling of intact tissue with a lipid-soluble dye. We show that the spines have a preference to form regular linear arrays and to trace short-pitch helical paths. The helical ordering is not determined by external factors that may influence how individual spines develop, because the same periodicities were present in fish and mammalian Purkinje cells, including those of weaver mice, which are depleted of the normal presynaptic partners for the spines. The ordering, therefore, is most likely an inherent property of the dendrite. Image reconstruction of dendrites from the different tissues showed that the helical spine distributions invariably lead to approximately equal sampling of surrounding space by the spineheads. The purpose of this organization may therefore be to maximize the opportunity of different spines to interact with different axons.
Collapse
Affiliation(s)
- John O'Brien
- Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, United Kingdom
| | | |
Collapse
|
49
|
Abstract
Diolistic labeling is a highly efficient method for introducing dyes into cells using biolistic techniques. The use of lipophilic carbocyanine dyes, combined with particle-mediated biolistic delivery using a hand-held gene gun, allows non-toxic labeling of multiple cells in both living and fixed tissue. The technique is rapid (labeled cells can be visualized in minutes) and technically undemanding. Here, we provide a detailed protocol for diolistic labeling of cultured human embryonic kidney 293 cells and whole brain using a hand-held gene gun. There are four major steps: (i) coating gold microcarriers with one or more dyes; (ii) transferring the microcarriers into a cartridge to make a bullet; (iii) preparation of cells or intact tissue; and (iv) firing the microcarriers into cells or tissue. The method can be readily adapted to other cell types and tissues. This protocol can be completed in less than 1 h.
Collapse
Affiliation(s)
- John A O'Brien
- Neurobiology Division, MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK
| | | |
Collapse
|
50
|
Abstract
Biolistic transfection is a technique in which subcellular-sized particles coated with DNA are accelerated to high velocity to propel them into cells. This method is applicable to tissues, cells and organelles, and can be used for both in vitro and in vivo transformations; with the right equipment, it is simple, rapid and efficient. Here we provide a detailed protocol for biolistic transfection of plasmids into cultured human embryonic kidney (HEK) 293 cells and organotypic brain slices using a hand-held gene gun. There are three major steps: (i) coating microcarriers with DNA, (ii) transferring the microcarriers into a cartridge to make a 'bullet', and (iii) firing the DNA-coated microcarriers into cells using a pulse of helium gas. The method can be readily adapted to other cell types and tissues. The protocol can be completed in 1-2 h.
Collapse
Affiliation(s)
- John A O'Brien
- Neurobiology Division, Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK
| | | |
Collapse
|