1
|
Hui DJ, Yuan MX, Qin XY, Zhang AQ, Wang CW, Wang Y, Zhou JN, Chen P, Shan QH. A Rapid Heat-Enhanced Golgi-Cox Staining Method for Detailed Neuroanatomical Analysis Coupled With Immunostaining. J Comp Neurol 2025; 533:e70042. [PMID: 40126435 DOI: 10.1002/cne.70042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 02/13/2025] [Accepted: 03/05/2025] [Indexed: 03/25/2025]
Abstract
The Golgi-Cox staining technique is renowned for its ability to delineate neuronal architecture with remarkable precision. However, the traditional protocol's lengthy processing timeline and limited compatibility with immunostaining and transgenic labeling have hindered its widespread adoption in modern neuroscience research. In the current study, we found that adjusting the incubation temperature to 55°C significantly reduced the staining duration to a mere 24 h for 100 µm-thick sections of mouse brain tissue. Importantly, our optimized protocol is compatible with immunostaining techniques and transgenic mouse models. In addition, using a lipopolysaccharides-induced mouse model of depression, we found a reduction in dendritic spines labeled by Golgi-Cox staining and an increase in the number of microglial cells labeled by immunofluorescence in the same samples, in addition, cross-talk between Golgi-Cox-stained neurons and microglial fibers were observed. In conclusion, the modified Golgi-Cox staining technique allows for the acquisition of a more comprehensive set of data from the same biological tissue with increased efficiency. This advancement promises to improve methodologies in histopathology and neurobiology, making advanced applications of Golgi-Cox staining more accessible in contemporary neuroscience research.
Collapse
Affiliation(s)
- Da-Jiang Hui
- Department of Anatomy, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, PR China
- Institute of Brain Science, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, PR China
| | - Mei-Xue Yuan
- Department of Anatomy, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, PR China
- Institute of Brain Science, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, PR China
| | - Xin-Ya Qin
- Institute of Brain Science, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, PR China
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, Anhui, PR China
| | - An-Qi Zhang
- Department of Anatomy, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, PR China
- Institute of Brain Science, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, PR China
| | - Chen-Wei Wang
- Department of Anatomy, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, PR China
| | - Yu Wang
- Institute of Brain Science, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, PR China
| | - Jiang-Ning Zhou
- Institute of Brain Science, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, PR China
| | - Peng Chen
- Department of Anatomy, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, PR China
- Institute of Brain Science, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, PR China
| | - Qing-Hong Shan
- Department of Anatomy, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, PR China
- Institute of Brain Science, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, PR China
| |
Collapse
|
2
|
Dudink I, White TA, Ardalan M, Mallard C, Ballerin G, Creed SJ, Pham Y, Sutherland AE, Castillo-Melendez M, Allison BJ, Miller SL. An optimized and detailed step-by-step protocol for the analysis of neuronal morphology in golgi-stained fetal sheep brain. Dev Neurosci 2022; 44:344-362. [DOI: 10.1159/000524055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 03/07/2022] [Indexed: 11/19/2022] Open
Abstract
Antenatal brain development during the final trimester of human pregnancy is a time when mature neurons become increasingly complex in morphology, through axonal and dendritic outgrowth, dendritic branching, and synaptogenesis, together with myelin production. Characterizing neuronal morphological development over time is of interest to developmental neuroscience and provides the framework to measure grey matter pathology in pregnancy compromise. Neuronal microstructure can be assessed with Golgi staining, which selectively stains a small percentage (1-3%) of neurons and their entire dendritic arbor. Advanced imaging processing and analysis tools can then be employed to quantitate neuronal cytoarchitecture. Traditional Golgi staining protocols have been optimized and commercial kits are readily available offering improved speed and sensitivity of Golgi staining to produce consistent results. Golgi stained tissue is then visualized under light microscopy and image analysis may be completed with several software programs for morphological analysis of neurons, including freeware and commercial products. Each program requires optimization, whether semi-automated or automated, requiring different levels of investigator intervention and interpretation, which is a critical consideration for unbiased analysis. Detailed protocols for fetal ovine brain tissue are lacking and therefore, we provide a step-by-step workflow of computer software analysis for morphometric quantification of Golgi-stained neurons. Here, we utilized the commonly applied FD Rapid GolgiStain kit (FD NeuroTechnologies) on ovine fetal brains collected at 127 days (0.85) gestational age for the analysis of CA1 pyramidal neurons in the hippocampus. We describe the step-by-step protocol to retrieve neuronal morphometrics using Imaris imaging software to provide quantification of apical and basal dendrites for measures of dendrite length (μm), branch number, branch order and Sholl analysis (intersections over radius). We also detail software add-ons for data retrieval of dendritic spines including the number of spines, spine density and spine classification, which are critical indicators of synaptic function. The assessment of neuronal morphology in the developing brain using Rapid-Golgi and Imaris software is labour-intensive, particularly during the optimization period. The methodology described in this step-by-step description is novel, detailed, and aims to provide a reproducible, working protocol to quantify neuronal cytoarchitecture with simple descriptions that will save time for the next users of these commonly used techniques.
Collapse
|
3
|
Narayanan SN, Bairy LK, Srinivasamurthy SK. Determining factors for optimal neuronal and glial Golgi-Cox staining. Histochem Cell Biol 2020; 154:431-448. [PMID: 32533234 DOI: 10.1007/s00418-020-01891-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2020] [Indexed: 11/29/2022]
Abstract
Golgi staining allows for the analysis of neuronal arborisations and connections and is considered a powerful tool in basic and clinical neuroscience. The fundamental rules for improving neuronal staining using the Golgi-Cox method are not fully understood; both intrinsic and extrinsic factors may control the staining process. Therefore, various conditions were tested to improve the Golgi-Cox protocol for vibratome-cut rat brain sections. Optimal staining of cortical neurons was achieved after 72 h of impregnation. Well-stained neurons in both cortical and subcortical structures were observed after 96 h of impregnation. The dendritic arborisation pattern of cortical neurons derived from the 72-h impregnation group was comparable to those of the 96 and 168-h impregnation groups. The entire brain was stained well when the pH of the Golgi-Cox solution was 6.5 and that of the sodium carbonate solution was 11.2. Lack of brain perfusion or perfusion with 0.9% NaCl did not influence optimal neuronal staining. Perfusion with 37% formaldehyde, followed by impregnation, only resulted in glial staining, but perfusion with 4% formaldehyde facilitated both glial and neuronal staining. Whole brains required longer impregnation times for better staining. Although every factor had a role in determining optimal neuronal staining, impregnation time and the pH of staining solutions were key factors among them. This modified Golgi-Cox protocol provides a simple and economical procedure to stain both neurons and glia separately.
Collapse
Affiliation(s)
- Sareesh Naduvil Narayanan
- Department of Physiology, RAK College of Medical Sciences, RAK Medical and Health Sciences University, PO Box 11172, Ras Al Khaimah, United Arab Emirates.
| | - Laxminarayana Kurady Bairy
- Department of Pharmacology, RAK College of Medical Sciences, RAK Medical and Health Sciences University, PO Box 11172, Ras Al Khaimah, United Arab Emirates
| | - Suresh Kumar Srinivasamurthy
- Department of Pharmacology, RAK College of Medical Sciences, RAK Medical and Health Sciences University, PO Box 11172, Ras Al Khaimah, United Arab Emirates
| |
Collapse
|
4
|
Modernization of Golgi staining techniques for high-resolution, 3-dimensional imaging of individual neurons. Sci Rep 2019; 9:130. [PMID: 30644431 PMCID: PMC6333844 DOI: 10.1038/s41598-018-37377-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 12/06/2018] [Indexed: 12/18/2022] Open
Abstract
Analysis of neuronal arborization and connections is a powerful tool in fundamental and clinical neuroscience. Changes in neuronal morphology are central to brain development and plasticity and are associated with numerous diseases. Golgi staining is a classical technique based on a deposition of metal precipitate in a random set of neurons. Despite their versatility, Golgi methods have limitations that largely precluded their use in advanced microscopy. We combined Golgi staining with fluorescent labeling and tissue clearing techniques in an Alzheimer’s disease model. We further applied 3D electron microscopy to visualize entire Golgi-stained neurons, while preserving ultrastructural details of stained cells, optimized Golgi staining for use with block-face scanning electron microscopy, and developed an algorithm for semi-automated neuronal tracing of cells displaying complex staining patterns. Our method will find use in fundamental neuroscience and the study of neuronal morphology in disease.
Collapse
|
5
|
An update on the Golgi staining technique improving cerebellar cell type specificity. Histochem Cell Biol 2019; 151:327-341. [PMID: 30607497 DOI: 10.1007/s00418-018-01766-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2018] [Indexed: 02/02/2023]
Abstract
The detailed morphological characterization of single cells was a major breakthrough in neuroscience during the turn of the twentieth century, enabling Ramon y Cajal to postulate the neuron doctrine. Even after 150 years, single cell analysis is an intriguing goal, newly motivated by the finding that autism might be caused by intricate and discreet changes in cerebellar morphology. Besides new single labelling technologies, the Golgi staining technique is still in use due to its whole cell labelling characteristics, its superior contrast performance over other methods and its apparent randomness of staining cells within a whole tissue block. However, the specificity and whole cell labelling of Golgi staining are also disputed controversially, and the method still has a poor reputation for being time consuming and needing high expenditures. We demonstrate here, how a classical Golgi technique can be adapted for staining different cerebellar cell types using a time-saving and efficient protocol, enabling the identification of the detailed morphological characteristics of single cells.
Collapse
|
6
|
Gull S, Ingrisch I, Tausch S, Witte OW, Schmidt S. Consistent and reproducible staining of glia by a modified Golgi-Cox method. J Neurosci Methods 2015; 256:141-50. [PMID: 26365333 DOI: 10.1016/j.jneumeth.2015.08.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 08/24/2015] [Accepted: 08/26/2015] [Indexed: 10/23/2022]
Abstract
BACKGROUND Golgi-Cox staining is a powerful histochemical approach which has been used extensively to visualize the morphology of neurons and glia. However, its usage as a first-choice method is hindered by its uncertain nature, diminished consistency and lengthy staining duration. The FD Rapid GolgiStain™ Kit (FD Neurotechnologies, Inc., USA) has been developed by employing the Golgi-Cox approach. It is a simple, reliable and reproducible way of performing Golgi impregnation for the analysis of neuronal morphology. NEW METHOD We report here simple modifications to the manufacturer's protocol which enable reproducible and reliable staining of glial cells. RESULTS Exposure of brain tissue to 4% paraformaldehyde (PFA) during perfusion followed by postfixation with 8% glutaraldehyde in 4% PFA led to only glial cells being stained, whereas in the absence of postfixation both neurons and glia were stained with unclear morphology. Additionally, we found that impregnation at 26°C±1 was critical to attain uniform staining. COMPARISON WITH EXISTING METHOD Our modified Golgi-Cox approach is consistent and reproducible and affords uniform glial staining throughout the brain. CONCLUSION As this protocol stains only a small percentage of cells, it is suitable for the analysis of individual cells.
Collapse
Affiliation(s)
- S Gull
- Hans Berger Department of Neurology, Jena University Hospital, 07747 Jena, Germany
| | - I Ingrisch
- Hans Berger Department of Neurology, Jena University Hospital, 07747 Jena, Germany
| | - S Tausch
- Hans Berger Department of Neurology, Jena University Hospital, 07747 Jena, Germany
| | - O W Witte
- Hans Berger Department of Neurology, Jena University Hospital, 07747 Jena, Germany
| | - S Schmidt
- Hans Berger Department of Neurology, Jena University Hospital, 07747 Jena, Germany.
| |
Collapse
|
7
|
Maiti P, Manna J, McDonald MP. Merging advanced technologies with classical methods to uncover dendritic spine dynamics: A hot spot of synaptic plasticity. Neurosci Res 2015; 96:1-13. [PMID: 25728560 DOI: 10.1016/j.neures.2015.02.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 02/17/2015] [Accepted: 02/19/2015] [Indexed: 01/08/2023]
Abstract
The structure of dendritic spines determines synaptic efficacy, a plastic process that mediates information processing in the vertebrate nervous system. Aberrant spine morphology, including alterations in shape, size, and number, are common in different brain diseases. Because of this, accurate and unbiased characterization of dendritic spine structure is vital to our ability to explore and understand their involvement in neuronal development, synaptic plasticity, and synaptic failure in neurological diseases. Investigators have attempted to elucidate the precise structure and function of dendritic spines for more than a hundred years, but their fundamental role in synaptic plasticity and neurological diseases remains elusive. Limitations and ambiguities in imaging techniques have exacerbated the challenges of acquiring accurate information about spines and spine features. However, recent advancements in molecular biology, protein engineering, immuno-labeling techniques, and the use of super-resolution nano-microscopy along with powerful image analysis software have provided a better understanding of dendritic spine architecture. Here we describe the pros and cons of the classical staining techniques used to study spine morphology, and the alteration of dendritic spines in various neuropathological conditions. Finally, we highlight recent advances in super-resolved nanoscale microscopy, and their potentials and pitfalls when used to explore dendritic spine dynamics.
Collapse
Affiliation(s)
- Panchanan Maiti
- Department of Neurology, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| | - Jayeeta Manna
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| | - Michael P McDonald
- Department of Neurology, University of Tennessee Health Science Center, Memphis, TN 38163, USA; Department of Anatomy & Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| |
Collapse
|
8
|
Baloyannis SJ. Staining neurons with Golgi techniques in degenerative diseases of the brain. Neural Regen Res 2015; 10:693-5. [PMID: 26109934 PMCID: PMC4468751 DOI: 10.4103/1673-5374.156950] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2015] [Indexed: 11/04/2022] Open
Affiliation(s)
- Stavros J Baloyannis
- Department of Neurology, Aristotelian University, Angelaki 5, Thessaloniki 546 21, Greece
| |
Collapse
|
9
|
Ai M, Xiong H, Yang T, Shang Z, Chen M, Liu X, Zeng S. Fluorescence imaging of dendritic spines of Golgi-Cox-stained neurons using brightening background. JOURNAL OF BIOMEDICAL OPTICS 2015; 20:010501. [PMID: 25585023 DOI: 10.1117/1.jbo.20.1.010501] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 12/23/2014] [Indexed: 06/04/2023]
Abstract
We report a novel fluorescence imaging approach to imaging nonfluorescence-labeled biological tissue samples. The method was demonstrated by imaging neurons in Golgi-Cox-stained and epoxy-resin-embedded samples through the excitation of the background fluorescence of the specimens. The dark neurons stood out clearly against background fluorescence in the images, enabling the tracing of a single dendritic spine using both confocal and wide-field fluorescence microscopy. The results suggest that the reported fluorescence imaging method would provide an effective alternative solution to image nonfluorescence-labeled samples, and it allows tracing the dendritic spine structure of neurons.
Collapse
Affiliation(s)
- Min Ai
- Huazhong University of Science and Technology, Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Wuhan 430074, ChinabHuazhong University of Science and Technology, Department of Biomedical Engineering, Key Labo
| | - Hanqing Xiong
- Huazhong University of Science and Technology, Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Wuhan 430074, ChinabHuazhong University of Science and Technology, Department of Biomedical Engineering, Key Labo
| | - Tao Yang
- Huazhong University of Science and Technology, Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Wuhan 430074, ChinabHuazhong University of Science and Technology, Department of Biomedical Engineering, Key Labo
| | - Zhenhua Shang
- Huazhong University of Science and Technology, Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Wuhan 430074, ChinabHuazhong University of Science and Technology, Department of Biomedical Engineering, Key Labo
| | - Muqing Chen
- Hubei University of Education, School of Physics and Electronic Information, Wuhan 430205, China
| | - Xiuli Liu
- Huazhong University of Science and Technology, Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Wuhan 430074, ChinabHuazhong University of Science and Technology, Department of Biomedical Engineering, Key Labo
| | - Shaoqun Zeng
- Huazhong University of Science and Technology, Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Wuhan 430074, ChinabHuazhong University of Science and Technology, Department of Biomedical Engineering, Key Labo
| |
Collapse
|
10
|
Abstract
Golgi silver impregnation techniques remain ideal methods for the visualization of the neurons as a whole in formalin fixed brains and paraffin sections, enabling to obtain insight into the morphological and morphometric characters of the dendritic arbor, and the estimation of the morphology of the spines and the spinal density, since they delineate the profile of nerve cells with unique clarity and precision. In addition, the Golgi technique enables the study of the topographic relationships between neurons and neuronal circuits in normal conditions, and the following of the spatiotemporal morphological alterations occurring during degenerative processes. The Golgi technique has undergone many modifications in order to be enhanced and to obtain the optimal and maximal visualization of neurons and neuronal processes, the minimal precipitations, the abbreviation of the time required for the procedure, enabling the accurate study and description of specific structures of the brain. In the visualization of the sequential stages of the neuronal degeneration and death, the Golgi method plays a prominent role in the visualization of degenerating axons and dendrites, synaptic “boutons,” and axonal terminals and organelles of the cell body. In addition, new versions of the techniques increases the capacity of precise observation of the neurofibrillary degeneration, the proliferation of astrocytes, the activation of the microglia, and the morphology of capillaries in autopsy material of debilitating diseases of the central nervous system.
Collapse
|
11
|
Appraisal of the effect of brain impregnation duration on neuronal staining and morphology in a modified Golgi-Cox method. J Neurosci Methods 2014; 235:193-207. [PMID: 25063423 DOI: 10.1016/j.jneumeth.2014.07.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 07/12/2014] [Accepted: 07/15/2014] [Indexed: 11/20/2022]
Abstract
BACKGROUND Golgi-Cox staining method is considered as one of the best neurohistological and fascinating staining techniques to reveal the cytoarchitecture of the brain. Requirement of longer time (more than a month), laborious section processing steps, requirement of sophisticated equipment's and costly ready to use kits limits extensive use of this technique. NEW METHOD The need for a modified staining technique is to overcome some of these hurdles. Here we describe a modification of Golgi-Cox staining involving reduced impregnation time (7 days), omitting tissue dehydration steps, and alterations in section processing steps. Different impregnation duration (7 days, 14 days, 1 month, 6 months and 10 months) effects on optimized staining of dorsal hippocampus and basolateral amygdala were investigated. RESULTS Modified Golgi-Cox staining method was found to be effective in staining rat hippocampus and amygdala. Impregnation for 7 days, 14 days and 1 month resulted in giving good results and they were comparable. However, artifacts were slightly elevated with 6 months group but not extensively. Impregnation for 10 months negatively affected the staining process. COMPARISON WITH EXISTING METHOD(S) Compared to existing methods the current method was found to be cost effective, fast, reliable and can be executed in labs where infrastructure is limited. CONCLUSIONS Current modification considerably benefitted in obtaining better results (good clarity and lesser artifact) in a short time. Longer impregnated brain sections were found to be unsuitable for morphometric evaluation due to more stain precipitation and artifact. The modified technique can be used to study cellular architecture in other brain regions.
Collapse
|
12
|
Seo J, Hong J, Lee SJ, Choi SY. c-Jun N-terminal phosphorylation is essential for hippocampal synaptic plasticity. Neurosci Lett 2012; 531:14-9. [PMID: 23041047 DOI: 10.1016/j.neulet.2012.09.048] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2012] [Revised: 09/19/2012] [Accepted: 09/24/2012] [Indexed: 11/30/2022]
Abstract
c-Jun N-terminal kinase (JNK), a member of the MAPK family, is an important regulatory factor of synaptic plasticity as well as neuronal differentiation and cell death. Recently, JNK has been reported to modulate synaptic plasticity by the direct phosphorylation of synaptic proteins. The specific role of c-Jun phosphorylation in JNK mediated synaptic plasticity, however, remains unclear. In this study, we investigated the effects of c-Jun phosphorylation on synaptic structure and function by using c-Jun mutant mice, c-JunAA, in which the active phosphorylation sites at serines 63 and 73 were replaced by alanines. The gross hippocampal anatomy and number of spines on hippocampal pyramidal neurons were normal in c-JunAA mice. Basal synaptic transmission, input-output ratios, and paired-pulse facilitation (PPF) were also no different in c-JunAA compared with wild-type mice. Notably, however, the induction of long-term potentiation (LTP) at hippocampal CA3-CA1 synapses in c-JunAA mice was impaired, whereas induction of long-term depression (LTD) was normal. These data suggest that phosphorylation of the c-Jun N-terminus is required for LTP formation in the hippocampus, and may help to better characterize JNK-mediated modulation of synaptic plasticity.
Collapse
Affiliation(s)
- Jinsoo Seo
- Department of Physiology and Dental Research Institute, Seoul National University School of Dentistry, Seoul 110-749, South Korea
| | | | | | | |
Collapse
|
13
|
Ranjan A, Mallick BN. Differential staining of glia and neurons by modified Golgi-Cox method. J Neurosci Methods 2012; 209:269-79. [DOI: 10.1016/j.jneumeth.2012.06.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 06/13/2012] [Accepted: 06/21/2012] [Indexed: 11/28/2022]
|
14
|
Zhang B, Li A, Yang Z, Wu J, Luo Q, Gong H. Modified Golgi-Cox method for micrometer scale sectioning of the whole mouse brain. J Neurosci Methods 2011; 197:1-5. [DOI: 10.1016/j.jneumeth.2010.10.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2010] [Revised: 10/06/2010] [Accepted: 10/07/2010] [Indexed: 11/26/2022]
|
15
|
Ranjan A, Mallick BN. A modified method for consistent and reliable Golgi-cox staining in significantly reduced time. Front Neurol 2010; 1:157. [PMID: 21228908 PMCID: PMC3017360 DOI: 10.3389/fneur.2010.00157] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Accepted: 12/14/2010] [Indexed: 11/23/2022] Open
Abstract
The two major limitations of Golgi–Cox method are that staining takes very long time and it is inconsistent. In this paper we describe a modification of the Golgi–Cox method, in which the tissue blocks were maintained at 37 ± 1°C during chromation for only 24 h and consistent staining of neurons in rat brain sections were observed. The method is simple, reproducible, rapid, inexpensive, and provides uniform staining with very good resolution of neuronal soma, dendrites as well as spines.
Collapse
Affiliation(s)
- Amit Ranjan
- School of Life Sciences, Jawaharlal Nehru University New Delhi, India
| | | |
Collapse
|
16
|
A new use for long-term frozen brain tissue: golgi impregnation. J Neurosci Methods 2008; 176:72-7. [PMID: 18789970 DOI: 10.1016/j.jneumeth.2008.08.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2008] [Revised: 08/17/2008] [Accepted: 08/18/2008] [Indexed: 11/21/2022]
Abstract
The study of dendritic spine shape and number has become a standard in the analysis of synaptic transmission anomalies since a considerable number of neuropsychiatric and neurological diseases have their foundation in alterations in these structures. One of the best ways to study possible alterations of dendritic spines is the use of Golgi impregnation. Although usually the Golgi method implies the use of fresh or fixed tissue, here we report the use of Golgi-Cox for the staining of human and animal brain tissue kept frozen for long periods of time. We successfully applied the Golgi-Cox method to human brain tissue stored for up to 15 years in a freezer. The technique produced reliable and reproducible impregnation of dendrites and dendritic spines in different cortical areas. We also applied the same technique to rat brain frozen for up to 1 year, obtaining the same satisfactory results. The fact that Golgi-Cox can be successfully applied to this type of tissue adds a new value for hundreds of frozen human or animal brains kept in the freezers of the laboratories, that otherwise would not be useful for anything else. Researchers other than neuroanatomists, i.e. in fields such as biochemistry and molecular biology can also benefit from a simple and reliable technique that can be applied to tissue left from their primary experiments.
Collapse
|
17
|
Pilati N, Barker M, Panteleimonitis S, Donga R, Hamann M. A rapid method combining Golgi and Nissl staining to study neuronal morphology and cytoarchitecture. J Histochem Cytochem 2008; 56:539-50. [PMID: 18285350 DOI: 10.1369/jhc.2008.950246] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The Golgi silver impregnation technique gives detailed information on neuronal morphology of the few neurons it labels, whereas the majority remain unstained. In contrast, the Nissl staining technique allows for consistent labeling of the whole neuronal population but gives very limited information on neuronal morphology. Most studies characterizing neuronal cell types in the context of their distribution within the tissue slice tend to use the Golgi silver impregnation technique for neuronal morphology followed by deimpregnation as a prerequisite for showing that neuron's histological location by subsequent Nissl staining. Here, we describe a rapid method combining Golgi silver impregnation with cresyl violet staining that provides a useful and simple approach to combining cellular morphology with cytoarchitecture without the need for deimpregnating the tissue. Our method allowed us to identify neurons of the facial nucleus and the supratrigeminal nucleus, as well as assessing cellular distribution within layers of the dorsal cochlear nucleus. With this method, we also have been able to directly compare morphological characteristics of neuronal somata at the dorsal cochlear nucleus when labeled with cresyl violet with those obtained with the Golgi method, and we found that cresyl violet-labeled cell bodies appear smaller at high cellular densities. Our observation suggests that cresyl violet staining is inadequate to quantify differences in soma sizes.
Collapse
Affiliation(s)
- Nadia Pilati
- Department of Cell Physiology and Pharmacology, Medical Sciences Building, PO Box 138, University Road, Leicester LE1 9HN, UK.
| | | | | | | | | |
Collapse
|
18
|
García-López P, García-Marín V, Freire M. The discovery of dendritic spines by Cajal in 1888 and its relevance in the present neuroscience. Prog Neurobiol 2007; 83:110-30. [PMID: 17681416 DOI: 10.1016/j.pneurobio.2007.06.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2006] [Revised: 02/17/2007] [Accepted: 04/03/2007] [Indexed: 01/03/2023]
Abstract
The year 2006 marks the centenary of the Nobel Prize for Physiology or Medicine awarded to Santiago Ramón y Cajal and Camilo Golgi, "in recognition of their work on the structure of the nervous system". Their discoveries are keys to understanding the present neuroscience, for instance, the discovery of dendritic spines. Cajal discovered dendritic spines in 1888 with the Golgi method, although other contemporary scientists thought that they were silver precipitates. Dendritic spines were demonstrated definitively as real structures by Cajal with the Methylene Blue in 1896. Many of the observations of Cajal and other contemporary scientists about dendritic spines are active fields of research of present neuroscience, for instance, their morphology, distribution, density, development and function. This article will deal with the main contributions of Cajal and other contemporary scientists about dendritic spines. We will analyse their contributions from the historical and present point of view. In addition, we will show high quality images of Cajal's original preparations and drawings related with this discovery.
Collapse
Affiliation(s)
- Pablo García-López
- Museo Cajal, Instituto Cajal, CSIC, Avda. Doctor Arce 37, 28002 Madrid, Spain
| | | | | |
Collapse
|
19
|
La técnica de impregnación argéntica de Golgi. Conmemoración del centenario del premio nobel de Medicina (1906) compartido por Camillo Golgi y Santiago Ramón y Cajal. BIOMEDICA 2006. [DOI: 10.7705/biomedica.v26i4.315] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
20
|
Friedland DR, Los JG, Ryugo DK. A modified Golgi staining protocol for use in the human brain stem and cerebellum. J Neurosci Methods 2006; 150:90-5. [PMID: 16081162 DOI: 10.1016/j.jneumeth.2005.06.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2004] [Revised: 05/23/2005] [Accepted: 06/02/2005] [Indexed: 10/25/2022]
Abstract
The Golgi silver-impregnation method established itself as an important technique for distinguishing morphology at the individual neuron level. This technique has been especially useful for studying human neuroanatomy because it works on postmortem tissue but it is also unreliable and capricious. In this report, we describe a simple technique that was applied to human autopsy and tissue-bank material yielding useful results for the study of neuronal morphology in the brain stem and cerebellum. Human adult brain stems had been immersion-fixed in formalin for a period of time ranging from weeks to months. Brain stem tissue was cross-sectioned into 3-5mm thick slabs, centered about the cochlear nucleus. Slabs were processed under continuous vacuum (22-26 in. of Hg), a procedure that promoted penetration of reagents into the tissue. Tissue was sectioned using a Vibratome and mounted for light microscopy. The results demonstrated improved staining of neurons in the brain stem. Staining of the large synaptic endings of auditory nerve fibers called end bulbs of Held in the cochlear nucleus was especially evident. These results suggest that an age-graded series could be conducted to describe the development of these large auditory endings in humans.
Collapse
Affiliation(s)
- David R Friedland
- Department of Otolaryngology, Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | | | | |
Collapse
|
21
|
Lawrence AJ, Parish CL, Chen F, Lodge DJ, Krstew EV, Card K, Finkelstein DI, Horne MK. Chronic corticotropin-releasing factor type 1 receptor antagonism with antalarmin regulates the dopaminergic system of Fawn-Hooded rats. J Neurochem 2005; 94:1523-34. [PMID: 16000149 DOI: 10.1111/j.1471-4159.2005.03300.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Corticotropin-releasing factor is a neuropeptide associated with the integration of physiological and behavioural responses to stress and also in the modulation of affective state and drug reward. The selective, centrally acting corticotropin-releasing factor type 1 receptor antagonist, antalarmin, is a potent anxiolytic and reduces volitional ethanol consumption in Fawn-Hooded rats. The efficacy of antalarmin to reduce ethanol consumption increased with time, suggestive of adaptation to reinforcement processes and goal-directed behaviour. The aim of the present study was to examine the effects of chronic antalarmin treatment on reward-related regions of Fawn-Hooded rat brain. Bi-daily antalarmin treatment (20 mg/kg, i.p.) for 10 days increased tyrosine hydroxylase messenger RNA expression throughout the ventral mesencephalon. Following chronic antalarmin the density of dopaminergic terminals within the basal ganglia and amygdaloid complex were reduced, as was dopamine transporter binding within the striatum. Receptor autoradiography indicated an up-regulation of dopamine D2, but no change in D1, binding in striatum, and Golgi-Cox analysis of striatal medium spiny neurones indicated that chronic antalarmin treatment increased spine density. Thus, chronic antalarmin treatment modulates dopaminergic pathways and implies that chronic treatment with drugs of this class may ultimately alter postsynaptic signaling mechanisms within the basal ganglia.
Collapse
Affiliation(s)
- A J Lawrence
- Department of Pharmacology, Monash University, Clayton, Victoria, Australia.
| | | | | | | | | | | | | | | |
Collapse
|