1
|
Wu Y, Chen Z, Chen F, Su J, Han J, Liu S. Using Regular Porous Membrane-Based Blood-Brain Barrier Model to Screen Brain-Targeted Drugs with Nanochannel Electrochemistry. Anal Chem 2025; 97:7968-7977. [PMID: 40183921 DOI: 10.1021/acs.analchem.5c00365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
Constructing in vitro blood-brain barrier (BBB) model provides an innovative approach for studying the pathophysiology of the brain and screening drugs. Although commercial Transwell was the simplest and most widely utilized in vitro model, reasonably mimicking essential characteristics of human BBB and dynamic monitoring BBB function remain a challenge. Herein, inspired by the highly permeable extracellular matrix membrane in human BBB, a novel in vitro BBB model was established by combining functionalized anodic alumina oxide (AAO) membrane with nanochannel electrochemistry (ANE-BBB). Benefiting from the topographical nanostructures and modified cell-adhesive peptide on the AAO surface, a tight endothelial barrier was formed, which can be directly visualized by phase-contrast microscope, and the barrier function can be real time monitored by nanochannel electrochemistry. More importantly, according to the current signal induced by the diffusion of redox species through the nanochannels toward the underlying electrode surface, dynamic evaluation of BBB-crossing behavior and precise screening of brain-targeted nanodrugs can be achieved. The constructed ANE-BBB overcomes the shortcomings of invisible cell culture, low permeability, and inaccurate real-time monitoring of screening drugs in traditional Transwell and provides a reliable tool for the design of nanodrugs to the central nervous system.
Collapse
Affiliation(s)
- Yafeng Wu
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Zixuan Chen
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Fengxiang Chen
- State Key Laboratory of New Textile Materials and Advanced Processing, Wuhan Textile University, Wuhan 430200, China
| | - Juan Su
- Targeted MRI Contrast Agents Laboratory of Jiangsu Province, Nanjing Polytechnic Institute, Nanjing 210048, China
| | - Jianyu Han
- School of Energy and Environment, Southeast University, Nanjing 210096, China
| | - Songqin Liu
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| |
Collapse
|
2
|
Werner T, Añazco T, Osses-Mendoza P, Castro-Álvarez A, Salas CO, Bridi R, Stark H, Espinosa-Bustos C. First Report on Cationic Triphenylphosphonium Compounds as Mitochondriotropic H 3R Ligands with Antioxidant Properties. Antioxidants (Basel) 2024; 13:1345. [PMID: 39594487 PMCID: PMC11591188 DOI: 10.3390/antiox13111345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/23/2024] [Accepted: 10/31/2024] [Indexed: 11/28/2024] Open
Abstract
Neurodegenerative diseases are a major public health problem due to the aging population and multifaceted pathology; therefore, the search for new therapeutic alternatives is of the utmost importance. In this sense, a series of six 1-(3-phenoxypropyl)piperidines alkyl-linked to a triphenylphosphonium cation derivative were synthesized as H3R ligands with antioxidant properties to regulate excessive mitochondrial oxidative stress and contribute to potential new therapeutic approaches for neurodegenerative diseases. Radioligand displacement studies revealed high affinity for H3R with Ki values in the low to moderate two-digit nanomolar range for all compounds. Compound 6e showed the highest affinity (Ki H3R = 14.1 nM), comparable to that of pitolisant. Antioxidative effects were evaluated as radical-scavenging properties using the ORAC assay, in which all derivatives showed low to moderate activity. On the other hand, cytotoxic effects in SH-SY5Y neuroblastoma cells were investigated using the colorimetric alamar blue assay, which revealed significant effects on cell viability with an unequivocally structure-toxicity relationship. Finally, docking and molecular simulation studies were used to determine the H3R binding form, which will allow us to further modify the compounds to establish a robust structure-activity relationship and find a lead compound with therapeutic utility in neurodegenerative diseases.
Collapse
Affiliation(s)
- Tobias Werner
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitaetsstr. 1, 40225 Duesseldorf, Germany;
| | - Tito Añazco
- Departamento de Farmacia, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile; (T.A.); (P.O.-M.)
| | - Paula Osses-Mendoza
- Departamento de Farmacia, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile; (T.A.); (P.O.-M.)
| | - Alejandro Castro-Álvarez
- Departamento de Ciencias Preclínicas, Facultad de Medicina, Universidad de La Frontera, Temuco 4780000, Chile;
| | - Cristian O. Salas
- Departamento de Química Orgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile;
| | - Raquel Bridi
- Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago 8380000, Chile;
| | - Holger Stark
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitaetsstr. 1, 40225 Duesseldorf, Germany;
| | - Christian Espinosa-Bustos
- Departamento de Farmacia, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile; (T.A.); (P.O.-M.)
| |
Collapse
|
3
|
Duque-Prata A, Serpa C, Caridade PJSB. Theoretical Evaluation of Fluorinated Resazurin Derivatives for In Vivo Applications. Molecules 2024; 29:1507. [PMID: 38611787 PMCID: PMC11013821 DOI: 10.3390/molecules29071507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/15/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
Primarily owing to the pronounced fluorescence exhibited by its reduced form, resazurin (also known as alamarBlue®) is widely employed as a redox sensor to assess cell viability in in vitrostudies. In an effort to broaden its applicability for in vivo studies, molecular adjustments are necessary to align optical properties with the near-infrared imaging window while preserving redox properties. This study delves into the theoretical characterisation of a set of fluorinated resazurin derivatives proposed by Kachur et al., 2015 examining the influence of fluorination on structural and electrochemical properties. Assuming that the conductor-like polarisable continuum model mimics the solvent effect, the density functional level of theory combining M06-2X/6-311G* was used to calculate the redox potentials. Furthermore, (TD-)DFT calculations were performed with PBE0/def2-TZVP to evaluate nucleophilic characteristics, transition states for fluorination, relative energies, and fluorescence spectra. With the aim of exploring the potential of resazurin fluorinated derivatives as redox sensors tailored for in vivo applications, acid-base properties and partition coefficients were calculated. The theoretical characterisation has demonstrated its potential for designing novel molecules based on fundamental principles.
Collapse
Affiliation(s)
| | | | - Pedro J. S. B. Caridade
- CQC-IMS, Department of Chemistry, University of Coimbra, 304-535 Coimbra, Portugal; (A.D.-P.); (C.S.)
| |
Collapse
|
4
|
DNA Dyes-Highly Sensitive Reporters of Cell Quantification: Comparison with Other Cell Quantification Methods. Molecules 2021; 26:molecules26185515. [PMID: 34576986 PMCID: PMC8465179 DOI: 10.3390/molecules26185515] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/07/2021] [Accepted: 09/08/2021] [Indexed: 12/25/2022] Open
Abstract
Cell quantification is widely used both in basic and applied research. A typical example of its use is drug discovery research. Presently, plenty of methods for cell quantification are available. In this review, the basic techniques used for cell quantification, with a special emphasis on techniques based on fluorescent DNA dyes, are described. The main aim of this review is to guide readers through the possibilities of cell quantification with various methods and to show the strengths and weaknesses of these methods, especially with respect to their sensitivity, accuracy, and length. As these methods are frequently accompanied by an analysis of cell proliferation and cell viability, some of these approaches are also described.
Collapse
|
5
|
Neuronal Transmembrane Chloride Transport Has a Time-Dependent Influence on Survival of Hippocampal Cultures to Oxygen-Glucose Deprivation. Brain Sci 2019; 9:brainsci9120360. [PMID: 31817665 PMCID: PMC6955658 DOI: 10.3390/brainsci9120360] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 12/02/2019] [Accepted: 12/05/2019] [Indexed: 12/16/2022] Open
Abstract
Neuronal ischemia results in chloride gradient alterations which impact the excitatory–inhibitory balance, volume regulation, and neuronal survival. Thus, the Na+/K+/Cl− co-transporter (NKCC1), the K+/ Cl− co-transporter (KCC2), and the gamma-aminobutyric acid A (GABAA) receptor may represent therapeutic targets in stroke, but a time-dependent effect on neuronal viability could influence the outcome. We, therefore, successively blocked NKCC1, KCC2, and GABAA (with bumetanide, DIOA, and gabazine, respectively) or activated GABAA (with isoguvacine) either during or after oxygen-glucose deprivation (OGD). Primary hippocampal cultures were exposed to a 2-h OGD or sham normoxia treatment, and viability was determined using the resazurin assay. Neuronal viability was significantly reduced after OGD, and was further decreased by DIOA treatment applied during OGD (p < 0.01) and by gabazine applied after OGD (p < 0.05). Bumetanide treatment during OGD increased viability (p < 0.05), while isoguvacine applied either during or after OGD did not influence viability. Our data suggests that NKCC1 and KCC2 function has an important impact on neuronal viability during the acute ischemic episode, while the GABAA receptor plays a role during the subsequent recovery period. These findings suggest that pharmacological modulation of transmembrane chloride transport could be a promising approach during stroke and highlight the importance of the timing of treatment application in relation to ischemia-reoxygenation.
Collapse
|
6
|
Primini EO, Liberato JL, Fontana ACK, dos Santos WF. Neuroprotective properties of RT10, a fraction isolated from Parawixia bistriata spider venom, against excitotoxicity injury in neuron-glia cultures. J Venom Anim Toxins Incl Trop Dis 2019; 25:e148818. [PMID: 31131008 PMCID: PMC6533932 DOI: 10.1590/1678-9199-jvatitd-1488-18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 01/15/2019] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND L-Glutamate (L-Glu), the major excitatory neurotransmitter in the mammalian Central Nervous System (CNS), is essential to cognitive functions. However, when L-Glu is accumulated in large concentrations at the synaptic cleft, it can induce excitotoxicity that results in secondary damage implicated in many neurological disorders. Current therapies for the treatment of neurological disorders are ineffective and have side effects associated with their use; therefore, there is a need to develop novel treatments. In this regard, previous studies have shown that neuroactive compounds obtained from the venom of the spider Parawixia bistriata have neuroprotective effects in vitro and in vivo. In this sense, this work aimed to evaluate potential neuroprotective effects of fraction RT10, obtained from this spider venom, on primary cultures of neuron and glial cells subjected to glutamate excitotoxicity insults. METHODS Primary cultures of neurons and glia were obtained from the cerebral tissue of 1-day-old postnatal Wistar rats. After 7 days in vitro (DIV), the cultures were incubated with fraction RT10 (0.002; 0.02; 0.2 and 2 µg/µL) or riluzole (100 µM) for 3-hours before application of 5 mM L-Glu. After 12 hours, the resazurin sodium salt (RSS) test was applied to measure metabolic activity and proliferation of living cells, whereas immunocytochemistry for MAP2 was performed to measure neuronal survival. In addition, the cells were immunolabeled with NeuN and GFAP in baseline conditions. RESULTS In the RSS tests, we observed that pre-incubation with RT10 before the excitotoxic insults from L-Glu resulted in neuroprotection, shown by a 10% reduction in the cell death level. RT10 was more effective than riluzole, which resulted in a cell-death reduction of 5%. Moreover, qualitative analysis of neuronal morphology (by MAP2 staining, expressed as fluorescence intensity (FI), an indirect measure of neuronal survival) indicate that RT10 reduced the toxic effects of L-Glu, as shown by a 38 % increase in MAP2 fluorescence when compared to L-Glu insult. On the other hand, the riluzole treatment resulted in 17% increase of MAP2 fluorescence; therefore, the neuroprotection from RT10 was more efficacious. CONCLUSION RT10 fraction exhibits neuroprotective effects against L-Glu excitotoxicity in neuron-glia cultured in vitro.
Collapse
Affiliation(s)
- Eduardo Octaviano Primini
- Neurobiology and Venoms Laboratory, Department of Biology, College
of Philosophy, Sciences and Literature of Ribeirão Preto, University of São Paulo,
Ribeirão Preto, SP, Brazil
| | - José Luiz Liberato
- Neurobiology and Venoms Laboratory, Department of Biology, College
of Philosophy, Sciences and Literature of Ribeirão Preto, University of São Paulo,
Ribeirão Preto, SP, Brazil
- Institute for Neurosciences and Behavior - INeC, Ribeirão Preto, SP,
Brazil
| | | | - Wagner Ferreira dos Santos
- Neurobiology and Venoms Laboratory, Department of Biology, College
of Philosophy, Sciences and Literature of Ribeirão Preto, University of São Paulo,
Ribeirão Preto, SP, Brazil
- Institute for Neurosciences and Behavior - INeC, Ribeirão Preto, SP,
Brazil
| |
Collapse
|
7
|
Spataru A, Le Duc D, Zagrean L, Zagrean AM. Ethanol exposed maturing rat cerebellar granule cells show impaired energy metabolism and increased cell death after oxygen-glucose deprivation. Neural Regen Res 2019; 14:485-490. [PMID: 30539817 PMCID: PMC6334607 DOI: 10.4103/1673-5374.245474] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Alcohol, a widely abused drug, has deleterious effects on the immature nervous system. This study investigates the effect of chronic in vitro ethanol exposure on the metabolism of immature rat cerebellar granular cells (CGCs) and on their response to oxygen-glucose deprivation (OGD). Primary CGC cultures were exposed to ethanol (100 mM in culture medium) or to control ethanol-free medium starting day one in vitro (DIV1). At DIV8, the expression of ATP synthase gene ATP5g3 was quantified using real-time PCR, then cultures were exposed to 3 hours of OGD or normoxic conditions. Subsequently, cellular metabolism was assessed by a resazurin assay and by ATP level measurement. ATP5g3 expression was reduced by 12-fold (P = 0.03) and resazurin metabolism and ATP level were decreased to 74.4 ± 4.6% and 55.5 ± 6.9%, respectively after chronic ethanol treatment compared to control values (P < 0.01). Additionally, after OGD exposure of ethanol-treated cultures, resazurin metabolism and ATP level were decreased to 12.7 ± 1.0% and 9.0 ± 2.0% from control values (P < 0.01). These results suggest that chronic ethanol exposure reduces the cellular ATP level, possibly through a gene expression down-regulation mechanism, and increases the vulnerability to oxygen-glucose deprivation. Thus, interventions which improve metabolic function and sustain ATP-levels could attenuate ethanol-induced neuronal dysfunction and should be addressed in future studies.
Collapse
Affiliation(s)
- Ana Spataru
- Division of Physiology and Neuroscience, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania; King's College Hospital, London, UK
| | - Diana Le Duc
- Institute of Human Genetics, University of Leipzig Hospitals and Clinics, Leipzig, Germany; Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Leon Zagrean
- Division of Physiology and Neuroscience, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Ana-Maria Zagrean
- Division of Physiology and Neuroscience, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| |
Collapse
|
8
|
Tetrazolium salts and formazan products in Cell Biology: Viability assessment, fluorescence imaging, and labeling perspectives. Acta Histochem 2018; 120:159-167. [PMID: 29496266 DOI: 10.1016/j.acthis.2018.02.005] [Citation(s) in RCA: 358] [Impact Index Per Article: 51.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 02/14/2018] [Accepted: 02/14/2018] [Indexed: 01/11/2023]
Abstract
For many years various tetrazolium salts and their formazan products have been employed in histochemistry and for assessing cell viability. For the latter application, the most widely used are 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT), and 5-cyano-2,3-di-(p-tolyl)-tetrazolium chloride (CTC) for viability assays of eukaryotic cells and bacteria, respectively. In these cases, the nicotinamide-adenine-dinucleotide (NAD(P)H) coenzyme and dehydrogenases from metabolically active cells reduce tetrazolium salts to strongly colored and lipophilic formazan products, which are then quantified by absorbance (MTT) or fluorescence (CTC). More recently, certain sulfonated tetrazolium, which give rise to water-soluble formazans, have also proved useful for cytotoxicity assays. We describe several aspects of the application of tetrazolium salts and formazans in biomedical cell biology research, mainly regarding formazan-based colorimetric assays, cellular reduction of MTT, and localization and fluorescence of the MTT formazan in lipidic cell structures. In addition, some pharmacological and labeling perspectives of these compounds are also described.
Collapse
|
9
|
Sharma A, Gorey B, Casey A. In vitro comparative cytotoxicity study of aminated polystyrene, zinc oxide and silver nanoparticles on a cervical cancer cell line. Drug Chem Toxicol 2018; 42:9-23. [PMID: 29359584 DOI: 10.1080/01480545.2018.1424181] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Nanoparticles use in nano-biotechnology applications have increased significantly with Aminated polystyrene amine (AmPs NP), Zinc oxide (ZnO NP), and Silver (Ag NP) nanoparticles utilized in wide variety of consumer products. This has presented a number of concerns due to their increased exposure risks and associated toxicity on living systems. Changes in the structural and physicochemical properties of nanoparticles can lead to changes in biological activities. This study investigates, compares, and contrasts the potential toxicity of AmPs, ZnO and Ag NPs on an in vitro model (HeLa cells) and assesses the associated mechanism for their corresponding cytotoxicity relative to the surface material. It was noted that NPs exposure attributed to the reduction in cell viability and high-level induction of oxidative stress. All three test particles were noted to induce ROS to varying degrees which is irrespective of the attached surface group. Cell cycle analysis indicated a G2/M phase cell arrest, with the corresponding reduction in G0/G1 and S phase cells resulting in caspase-mediated apoptotic cell death. These findings suggest that all three NPs resulted in the decrease in cell viability, increase intracellular ROS production, induce cell cycle arrest at the G2/M phase and finally result in cell death by caspase-mediated apoptosis, which is irrespective of their differences in physiochemical properties and attached surface groups.
Collapse
Affiliation(s)
- Akash Sharma
- a NANOLAB Research Centre , Focas Institute, Dublin Institute of Technology , Dublin 8 , Ireland.,b School of Physics, Clinical and Optometric Sciences , Dublin Institute of Technology , Dublin , Ireland
| | - Brian Gorey
- a NANOLAB Research Centre , Focas Institute, Dublin Institute of Technology , Dublin 8 , Ireland
| | - Alan Casey
- a NANOLAB Research Centre , Focas Institute, Dublin Institute of Technology , Dublin 8 , Ireland.,b School of Physics, Clinical and Optometric Sciences , Dublin Institute of Technology , Dublin , Ireland
| |
Collapse
|
10
|
Gargotti M, Lopez-Gonzalez U, Byrne HJ, Casey A. Comparative studies of cellular viability levels on 2D and 3D in vitro culture matrices. Cytotechnology 2017; 70:261-273. [PMID: 28924965 DOI: 10.1007/s10616-017-0139-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 09/02/2017] [Indexed: 11/26/2022] Open
Abstract
In this study, the cellular viability and function of immortalized human cervical and dermal cells are monitored and compared in conventional 2D and two commercial 3D membranes, Collagen and Geltrex, of varying working concentration and volume. Viability was monitored with the aid of the Alamar Blue assay, cellular morphology was monitored with confocal microscopy, and cell cycle studies and cell death mechanism studies were performed with flow cytometry. The viability studies showed apparent differences between the 2D and 3D culture systems, the differences attributed in part to the physical transition from 2D to 3D environment causing alterations to effective resazurin concentration, uptake and conversion rates, which was dependent on exposure time, but also due to the effect of the membrane itself on cellular function. These effects were verified by flow cytometry, in which no significant differences in viable cell numbers between 2D and 3D systems were observed after 24 h culture. The results showed the observed effect was different after shorter exposure periods, was also dependent on working concentration of the 3D system and could be mediated by altering the culture vessel size. Cell cycle analysis revealed cellular function could be altered by growth on the 3D substrates and the alterations were noted to be dependent on 3D membrane concentration. The use of 3D culture matrices has been widely interpreted to result in "improved viability levels" or "reduced" toxicity or cellular "resistance" compared to cells cultured on traditional 2D systems. The results of this study show that cellular health and viability levels are not altered by culture in 3D environments, but their normal cycle can be altered as indicated in the cell cycle studies performed and such variations must be accounted for in studies employing 3D membranes for in vitro cellular screening.
Collapse
Affiliation(s)
- M Gargotti
- School of Physics, Nanolab Research Centre, FOCAS Research Institute, Dublin Institute of Technology, Kevin Street, Dublin 8, Ireland.
- FOCAS Research Institute, Dublin Institute of Technology, Kevin Street, Dublin 8, Ireland.
| | - U Lopez-Gonzalez
- School of Physics, Nanolab Research Centre, FOCAS Research Institute, Dublin Institute of Technology, Kevin Street, Dublin 8, Ireland
- FOCAS Research Institute, Dublin Institute of Technology, Kevin Street, Dublin 8, Ireland
| | - H J Byrne
- FOCAS Research Institute, Dublin Institute of Technology, Kevin Street, Dublin 8, Ireland
| | - A Casey
- School of Physics, Nanolab Research Centre, FOCAS Research Institute, Dublin Institute of Technology, Kevin Street, Dublin 8, Ireland
- FOCAS Research Institute, Dublin Institute of Technology, Kevin Street, Dublin 8, Ireland
| |
Collapse
|
11
|
Miyamoto T, Stein L, Thomas R, Djukic B, Taneja P, Knox J, Vossel K, Mucke L. Phosphorylation of tau at Y18, but not tau-fyn binding, is required for tau to modulate NMDA receptor-dependent excitotoxicity in primary neuronal culture. Mol Neurodegener 2017; 12:41. [PMID: 28526038 PMCID: PMC5438564 DOI: 10.1186/s13024-017-0176-x] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Accepted: 04/26/2017] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Hyperexcitability of neuronal networks can lead to excessive release of the excitatory neurotransmitter glutamate, which in turn can cause neuronal damage by overactivating NMDA-type glutamate receptors and related signaling pathways. This process (excitotoxicity) has been implicated in the pathogenesis of many neurological conditions, ranging from childhood epilepsies to stroke and neurodegenerative disorders such as Alzheimer's disease (AD). Reducing neuronal levels of the microtubule-associated protein tau counteracts network hyperexcitability of diverse causes, but whether this strategy can also diminish downstream excitotoxicity is less clear. METHODS We established a cell-based assay to quantify excitotoxicity in primary cultures of mouse hippocampal neurons and investigated the role of tau in exicitotoxicity by modulating neuronal tau expression through genetic ablation or transduction with lentiviral vectors expressing anti-tau shRNA or constructs encoding wildtype versus mutant mouse tau. RESULTS We demonstrate that shRNA-mediated knockdown of tau reduces glutamate-induced, NMDA receptor-dependent Ca2+ influx and neurotoxicity in neurons from wildtype mice. Conversely, expression of wildtype mouse tau enhances Ca2+ influx and excitotoxicity in tau-deficient (Mapt -/-) neurons. Reconstituting tau expression in Mapt -/- neurons with mutant forms of tau reveals that the tau-related enhancement of Ca2+ influx and excitotoxicity depend on the phosphorylation of tau at tyrosine 18 (pY18), which is mediated by the tyrosine kinase Fyn. These effects are most evident at pathologically elevated concentrations of glutamate, do not involve GluN2B-containing NMDA receptors, and do not require binding of Fyn to tau's major interacting PxxP motif or of tau to microtubules. CONCLUSIONS Although tau has been implicated in diverse neurological diseases, its most pathogenic forms remain to be defined. Our study suggests that reducing the formation or level of pY18-tau can counteract excitotoxicity by diminishing NMDA receptor-dependent Ca2+ influx.
Collapse
Affiliation(s)
- Takashi Miyamoto
- Gladstone Institute of Neurological Disease, 1650 Owens Street, San Francisco, CA, 94158, USA.,Department of Neurology, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Liana Stein
- Gladstone Institute of Neurological Disease, 1650 Owens Street, San Francisco, CA, 94158, USA.,Department of Neurology, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Reuben Thomas
- Gladstone Institutes, Convergence Zone, 1650 Owens Street, San Francisco, CA, 94158, USA
| | - Biljana Djukic
- Gladstone Institute of Neurological Disease, 1650 Owens Street, San Francisco, CA, 94158, USA
| | - Praveen Taneja
- Gladstone Institute of Neurological Disease, 1650 Owens Street, San Francisco, CA, 94158, USA
| | - Joseph Knox
- Gladstone Institute of Neurological Disease, 1650 Owens Street, San Francisco, CA, 94158, USA
| | - Keith Vossel
- Gladstone Institute of Neurological Disease, 1650 Owens Street, San Francisco, CA, 94158, USA.,Department of Neurology, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Lennart Mucke
- Gladstone Institute of Neurological Disease, 1650 Owens Street, San Francisco, CA, 94158, USA. .,Department of Neurology, University of California, San Francisco, San Francisco, CA, 94158, USA.
| |
Collapse
|
12
|
Liljemalm R, Nyberg T. Damage criteria for cerebral cortex cells subjected to hyperthermia. Int J Hyperthermia 2016; 32:704-12. [PMID: 27269303 DOI: 10.1080/02656736.2016.1181275] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Temperatures above the normal physiological threshold may cause damage to cells and tissue. In this study, the response of a culture of dissociated cerebral cortex cells exposed to laser-induced temperature gradients was examined. The cellular response was evaluated using a fluorescent dye indicating metabolic activity. Furthermore, by using a finite element model of the heating during the pulsed laser application, threshold temperatures could be extracted for the cellular response at different laser pulse lengths. These threshold temperatures were used in an Arrhenius model to extract the kinetic parameters, i.e. the activation energy (Ea), and the frequency factor (Ac), for the system. A damage signal ratio was defined and calculated to 5% for the cells to increase their metabolism as a response to the heat. Furthermore, efficient stimulation with 20-ms long laser pulses did not evoke changes in metabolism. Thus, 20 ms could be a potential pulse length for functional stimulation of neural cells.
Collapse
Affiliation(s)
- Rickard Liljemalm
- a Royal Institute of Technology , School of Technology and Health , Huddinge , Sweden
| | - Tobias Nyberg
- a Royal Institute of Technology , School of Technology and Health , Huddinge , Sweden
| |
Collapse
|
13
|
Aouida M, Eid A, Mahfouz MM. CRISPR/Cas9-mediated target validation of the splicing inhibitor Pladienolide B. BIOCHIMIE OPEN 2016; 3:72-75. [PMID: 29450134 PMCID: PMC5801905 DOI: 10.1016/j.biopen.2016.02.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 02/11/2016] [Indexed: 12/31/2022]
Abstract
CRISPR/Cas9 system confers molecular immunity in archeal and bacterial species against invading foreign nucleic acids. CRISPR/Cas9 system is used for genome engineering applications across diverse eukaryotic species. In this study, we demonstrate the utility of the CRISPR/Cas9 genome engineering system for drug target validation in human cells. Pladienolide B is a natural macrolide with antitumor activities mediated through the inhibition of pre-mRNA splicing. To validate the spliceosomal target of Pladienolide B, we employed the CRSIPR/Cas9 system to introduce targeted mutations in the subunits of the SF3B complex in the HEK293T cells. Our data reveal that targeted mutagenesis of the SF3b1 subunit exhibited higher levels of resistance to Pladienolide B. Therefore, our data validate the spliceosomal target of Pladienolide B and provide a proof of concept on using the CRISPR/Cas9 system for drug target identification and validation. CRISPR/Cas9 system serves as an excellent tool for drug target validation. Pladienolide B an antitumor macrolide known to bind to the SF3b complex and inhibit pre-mRNA splicing. Use of CRISPR/Cas9 system to confirm and validate the Pladienolide B spliceosomal target. Our data confirm that the SF3b1 is a specific target for Pladienolide B.
Collapse
Key Words
- AB, Alamar Blue
- CRIPSR/Cas9
- CRISPR, Clustered Regulatory Interspaced Short Palindromic Repeats
- Cas9, CRISPR associated protein
- DSB, double strand break
- Drug discovery
- Drug target validation
- HR, Homologous Recombination
- NHJE, Non-Homologous End-Joining
- PB, Pladienolide B
- Pladienolide B
- Pre-mRNA splicing
- SSNs, Site Specific Nucleases
- Spliceosome
- T7EI, T7 Endonuclease I
- TALENs, Transcription Like Effector Nucleases
- ZFN, Zing Finger Nucleases
- sgRNA, Guide RNA
Collapse
Affiliation(s)
- Mustapha Aouida
- Laboratory for Genome Engineering, Division of Biological Sciences & Center for Desert Agriculture, 4700 King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Ayman Eid
- Laboratory for Genome Engineering, Division of Biological Sciences & Center for Desert Agriculture, 4700 King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Magdy M Mahfouz
- Laboratory for Genome Engineering, Division of Biological Sciences & Center for Desert Agriculture, 4700 King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| |
Collapse
|
14
|
Efeoglu E, Casey A, Byrne HJ. In vitro monitoring of time and dose dependent cytotoxicity of aminated nanoparticles using Raman spectroscopy. Analyst 2016; 141:5417-31. [DOI: 10.1039/c6an01199c] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Monitoring of time and dose dependent molecular changes by using Raman spectroscopy with the aid of multivariate analysis techniques and determination of Raman spectral markers of cellular toxicity.
Collapse
Affiliation(s)
- Esen Efeoglu
- School of Physics
- Dublin Institute of Technology
- Dublin 2
- Ireland
- FOCAS Research Institute
| | - Alan Casey
- FOCAS Research Institute
- Dublin Institute of Technology
- Dublin 2
- Ireland
| | - Hugh J. Byrne
- FOCAS Research Institute
- Dublin Institute of Technology
- Dublin 2
- Ireland
| |
Collapse
|
15
|
Wallace K, Strickland JD, Valdivia P, Mundy WR, Shafer TJ. A multiplexed assay for determination of neurotoxicant effects on spontaneous network activity and viability from microelectrode arrays. Neurotoxicology 2015; 49:79-85. [DOI: 10.1016/j.neuro.2015.05.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 05/21/2015] [Accepted: 05/21/2015] [Indexed: 12/18/2022]
|
16
|
Cell viability assessment using the Alamar blue assay: A comparison of 2D and 3D cell culture models. Toxicol In Vitro 2015; 29:124-31. [DOI: 10.1016/j.tiv.2014.09.014] [Citation(s) in RCA: 136] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 09/17/2014] [Accepted: 09/23/2014] [Indexed: 12/24/2022]
|
17
|
Kim MS, Lee MH, Kwon BJ, Seo HJ, Koo MA, You KE, Kim D, Park JC. Effects of direct current electric-field using ITO plate on breast cancer cell migration. Biomater Res 2014; 18:10. [PMID: 26331061 PMCID: PMC4549139 DOI: 10.1186/2055-7124-18-10] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 07/09/2014] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Cell migration is an essential activity of the cells in various biological phenomena. The evidence that electrotaxis plays important roles in many physiological phenomena is accumulating. In electrotaxis, cells move with a directional tendency toward the anode or cathode under direct-current electric fields. Indium tin oxide, commonly referred to as ITO has high luminous transmittance, high infrared reflectance, good electrical conductivity, excellent substrate adherence, hardness and chemical inertness and hence, have been widely and intensively studied for many years. Because of these properties of ITO films, the electrotaxis using ITO plate was evaluated. RESULTS Under the 0 V/cm condition, MDA-MB-231 migrated randomly in all directions. When 1 V/cm of dc EF was applied, cells moved toward anode. The y forward migration index was -0.046 ± 0.357 under the 0 V/cm and was 0.273 ± 0.231 under direct-current electric field of 1 V/cm. However, the migration speed of breast cancer cell was not affected by direct-current electric field using ITO plate. CONCLUSIONS In this study, we designed a new electrotaxis system using an ITO coated glass and observed the migration of MDA-MB-231 on direct current electric-field of the ITO glass.
Collapse
Affiliation(s)
- Min Sung Kim
- Cellbiocontrol Laboratory, Department of Medical Engineering, Yonsei University College of Medicine, 134 Shinchon-dong, Seodaemun-gu, Seoul 120-752 Korea ; Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, 134 Shinchon-dong, Seodaemun-gu, Seoul 120-752 Korea
| | - Mi Hee Lee
- Cellbiocontrol Laboratory, Department of Medical Engineering, Yonsei University College of Medicine, 134 Shinchon-dong, Seodaemun-gu, Seoul 120-752 Korea
| | - Byeong-Ju Kwon
- Cellbiocontrol Laboratory, Department of Medical Engineering, Yonsei University College of Medicine, 134 Shinchon-dong, Seodaemun-gu, Seoul 120-752 Korea ; Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, 134 Shinchon-dong, Seodaemun-gu, Seoul 120-752 Korea
| | - Hyok Jin Seo
- Cellbiocontrol Laboratory, Department of Medical Engineering, Yonsei University College of Medicine, 134 Shinchon-dong, Seodaemun-gu, Seoul 120-752 Korea ; Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, 134 Shinchon-dong, Seodaemun-gu, Seoul 120-752 Korea
| | - Min-Ah Koo
- Cellbiocontrol Laboratory, Department of Medical Engineering, Yonsei University College of Medicine, 134 Shinchon-dong, Seodaemun-gu, Seoul 120-752 Korea ; Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, 134 Shinchon-dong, Seodaemun-gu, Seoul 120-752 Korea
| | - Kyung Eun You
- Cellbiocontrol Laboratory, Department of Medical Engineering, Yonsei University College of Medicine, 134 Shinchon-dong, Seodaemun-gu, Seoul 120-752 Korea ; Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, 134 Shinchon-dong, Seodaemun-gu, Seoul 120-752 Korea
| | - Dohyun Kim
- Cellbiocontrol Laboratory, Department of Medical Engineering, Yonsei University College of Medicine, 134 Shinchon-dong, Seodaemun-gu, Seoul 120-752 Korea
| | - Jong-Chul Park
- Cellbiocontrol Laboratory, Department of Medical Engineering, Yonsei University College of Medicine, 134 Shinchon-dong, Seodaemun-gu, Seoul 120-752 Korea ; Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, 134 Shinchon-dong, Seodaemun-gu, Seoul 120-752 Korea
| |
Collapse
|
18
|
Loganathan SK, Casey JR. Corneal dystrophy-causing SLC4A11 mutants: suitability for folding-correction therapy. Hum Mutat 2014; 35:1082-91. [PMID: 24916015 DOI: 10.1002/humu.22601] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 05/28/2014] [Indexed: 12/25/2022]
Abstract
SLC4A11 mutations cause some cases of the corneal endothelial dystrophies, congenital hereditary endothelial corneal dystrophy type 2 (CHED2), Harboyan syndrome (HS), and Fuchs endothelial corneal dystrophy (FECD). SLC4A11 protein was recently identified as facilitating water flux across membranes. SLC4A11 point mutations usually cause SLC4A11 misfolding and retention in the endoplasmic reticulum (ER). We set about to test the feasibility of rescuing misfolded SLC4A11 protein to the plasma membrane as a therapeutic approach. Using a transfected HEK293 cell model, we measured functional activity present in cells expressing SLC4A11 variants in combinations representing the state found in CHED2 carriers, affected CHED2, FECD individuals, and unaffected individuals. These cells manifest respectively about 60%, 5%, and 25% of the water flux activity, relative to the unaffected (WT alone). ER-retained CHED2 mutant SLC4A11 protein could be rescued to the plasma membrane, where it conferred 25%-30% of WT water flux level. Further, some ER-retained CHED2 mutants expressed at 30°C supported increased water flux compared with 37°C cultures. Caspase activation and cell vitality assays revealed that expression of SLC4A11 mutants in HEK293 cells does not induce cell death. We conclude that therapeutics able to increase cell surface localization of ER-retained SLC4A11 mutants hold promise to treat CHED2 and FECD patients.
Collapse
Affiliation(s)
- Sampath K Loganathan
- Department of Biochemistry, Membrane Protein Disease Research Group, University of Alberta, Edmonton, Alberta, Canada
| | | |
Collapse
|
19
|
Wucherpfennig T, Schulz A, Pimentel JA, Corkidi G, Sieblitz D, Pump M, Gorr G, Schütte K, Wittmann C, Krull R. Viability characterization of Taxus chinensis plant cell suspension cultures by rapid colorimetric- and image analysis-based techniques. Bioprocess Biosyst Eng 2014; 37:1799-1808. [DOI: 10.1007/s00449-014-1153-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 02/07/2014] [Indexed: 11/29/2022]
|
20
|
Li Z, Li J. Control of hyperbranched structure of polycaprolactone/poly(ethylene glycol) polyurethane block copolymers by glycerol and their hydrogels for potential cell delivery. J Phys Chem B 2013; 117:14763-74. [PMID: 24175974 DOI: 10.1021/jp4094063] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A series of biodegradable amphiphilic polyurethane block copolymers with hyperbranched structure were synthesized by copolymerizing poly(ε-caprolactone) (PCL) and poly(ethylene glycol) (PEG) together with glycerol. The copolymers were characterized, and their composition and branch length were varied with the feeding ratio between PCL, PEG, and glycerol used. Hydrogels were formed from these copolymers by swelling of water at low polymer concentrations. The hydrogels were thixotropic, and their dynamic viscoelastic properties were dependent on the copolymer composition, branch length, and polymer concentration. Hydrolytic degradation of the hydrogels was evaluated by mass loss and changes in molecular structures. The porous morphology of the hydrogels provided good permeability for gas and nutrition. Together with the tunable rheological properties, the hydrogels were found to be suitable for 3D living cell encapsulation and delivery. The morphology of the solid copolymers was semicrystalline, while the hydrogels were totally amorphous without crystallinity, providing a mild aqueous environment for living cells. When the encapsulated cells were recovered from the hydrogels followed by subculture, they showed good cell viability and proliferation ability. The results indicate that the hyperbranched copolymers hydrogels developed in this work may be promising candidates for potential injectable cell delivery application.
Collapse
Affiliation(s)
- Zibiao Li
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore , 7 Engineering Drive 1, Singapore 117574, Singapore
| | | |
Collapse
|
21
|
Liu D, Pitta M, Jiang H, Lee JH, Zhang G, Chen X, Kawamoto EM, Mattson MP. Nicotinamide forestalls pathology and cognitive decline in Alzheimer mice: evidence for improved neuronal bioenergetics and autophagy procession. Neurobiol Aging 2012; 34:1564-80. [PMID: 23273573 DOI: 10.1016/j.neurobiolaging.2012.11.020] [Citation(s) in RCA: 175] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2012] [Revised: 11/17/2012] [Accepted: 11/25/2012] [Indexed: 12/31/2022]
Abstract
Impaired brain energy metabolism and oxidative stress are implicated in cognitive decline and the pathologic accumulations of amyloid β-peptide (Aβ) and hyperphosphorylated tau in Alzheimer's disease (AD). To determine whether improving brain energy metabolism will forestall disease progress in AD, the impact of the β-nicotinamide adenine dinucleotide precursor nicotinamide on brain cell mitochondrial function and macroautophagy, bioenergetics-related signaling, and cognitive performance were studied in cultured neurons and in a mouse model of AD. Oxidative stress resulted in decreased mitochondrial mass, mitochondrial degeneration, and autophagosome accumulation in neurons. Nicotinamide preserved mitochondrial integrity and autophagy function, and reduced neuronal vulnerability to oxidative/metabolic insults and Aβ toxicity. β-Nicotinamide adenine dinucleotide biosynthesis, autophagy, and phosphatidylinositol-3-kinase signaling were required for the neuroprotective action of nicotinamide. Treatment of 3xTgAD mice with nicotinamide for 8 months resulted in improved cognitive performance, and reduced Aβ and hyperphosphorylated tau pathologies in hippocampus and cerebral cortex. Nicotinamide treatment preserved mitochondrial integrity, and improved autophagy-lysosome procession by enhancing lysosome/autolysosome acidification to reduce autophagosome accumulation. Treatment of 3xTgAD mice with nicotinamide resulted in elevated levels of activated neuroplasticity-related kinases (protein kinase B [Akt] and extracellular signal-regulated kinases) and the transcription factor cyclic adenosine monophosphate (AMP) response element-binding protein in the hippocampus and cerebral cortex. Thus, nicotinamide suppresses AD pathology and cognitive decline in a mouse model of AD by a mechanism involving improved brain bioenergetics with preserved functionality of mitochondria and the autophagy system.
Collapse
Affiliation(s)
- Dong Liu
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD, USA
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Santos CM, Mangadlao J, Ahmed F, Leon A, Advincula RC, Rodrigues DF. Graphene nanocomposite for biomedical applications: fabrication, antimicrobial and cytotoxic investigations. NANOTECHNOLOGY 2012; 23:395101. [PMID: 22962260 DOI: 10.1088/0957-4484/23/39/395101] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Materials possessing excellent bacterial toxicity, while presenting low cytotoxicity to human cells, are strong candidates for biomaterials applications. In this study, we present the fabrication of a nanocomposite containing poly(N-vinylcarbazole) (PVK) and graphene (G) in solutions and thin films. Highly dispersed PVK-G (97-3 w/w%) solutions in various organic and aqueous solvents were prepared by solution mixing and sonication methods. The thermal properties and morphology of the new composite were analyzed using thermal gravimetry analysis (TGA) and atomic force microscopy (AFM), respectively. PVK-G films were immobilized onto indium tin oxide (ITO) substrates via electrodeposition. AFM was used to characterize the resulting topography of the nanocomposite thin films, while cyclic voltammetry and UV-vis were used to monitor their successful electrodeposition. The antimicrobial properties of the electrodeposited PVK-G films and solution-based PVK-G were investigated against Escherichia coli (E. coli) and Bacillus subtilis (B. subtilis). Microbial growth after exposure to the nanocomposite, metabolic assay and live-dead assay of the bacterial solutions exposed to PVK-G presented fewer viable and active bacteria than those exposed to pure PVK or pure graphene solutions. The PVK-G film inhibited about 80% of biofilm surface coverage whereas the PVK- and G-modified surfaces allowed biofilm formation over almost the whole coated surface (i.e. > 80%). The biocompatibility of the prepared PVK-G solutions on NIH 3T3 cells was evaluated using the MTS cell proliferation assay. A 24 h exposure of the PVK-G nanocomposite to the NIH 3T3 cells presented ~80% cell survival.
Collapse
Affiliation(s)
- Catherine M Santos
- Department of Civil and Department of Environmental Engineering, University of Houston, Houston, TX 77204-5003, USA
| | | | | | | | | | | |
Collapse
|
23
|
Rampersad SN. Multiple applications of Alamar Blue as an indicator of metabolic function and cellular health in cell viability bioassays. SENSORS (BASEL, SWITZERLAND) 2012; 12:12347-60. [PMID: 23112716 PMCID: PMC3478843 DOI: 10.3390/s120912347] [Citation(s) in RCA: 658] [Impact Index Per Article: 50.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Revised: 08/21/2012] [Accepted: 08/31/2012] [Indexed: 02/07/2023]
Abstract
Accurate prediction of the adverse effects of test compounds on living systems, detection of toxic thresholds, and expansion of experimental data sets to include multiple toxicity end-point analysis are required for any robust screening regime. Alamar Blue is an important redox indicator that is used to evaluate metabolic function and cellular health. The Alamar Blue bioassay has been utilized over the past 50 years to assess cell viability and cytotoxicity in a range of biological and environmental systems and in a number of cell types including bacteria, yeast, fungi, protozoa and cultured mammalian and piscine cells. It offers several advantages over other metabolic indicators and other cytotoxicity assays. However, as with any bioassay, suitability must be determined for each application and cell model. This review seeks to highlight many of the important considerations involved in assay use and design in addition to the potential pitfalls.
Collapse
Affiliation(s)
- Sephra N Rampersad
- Department of Life Sciences, The University of the West Indies, West Indies, St Augustine, Trinidad and Tobago.
| |
Collapse
|
24
|
Mejías Carpio IE, Santos CM, Wei X, Rodrigues DF. Toxicity of a polymer-graphene oxide composite against bacterial planktonic cells, biofilms, and mammalian cells. NANOSCALE 2012; 4:4746-56. [PMID: 22751735 DOI: 10.1039/c2nr30774j] [Citation(s) in RCA: 207] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
It is critical to develop highly effective antimicrobial agents that are not harmful to humans and do not present adverse effects on the environment. Although antimicrobial studies of graphene-based nanomaterials are still quite limited, some researchers have paid particular attention to such nanocomposites as promising candidates for the next generation of antimicrobial agents. The polyvinyl-N-carbazole (PVK)-graphene oxide (GO) nanocomposite (PVK-GO), which contains only 3 wt% of GO well-dispersed in a 97 wt% PVK matrix, presents excellent antibacterial properties without significant cytotoxicity to mammalian cells. The high polymer content in this nanocomposite makes future large-scale material manufacturing possible in a high-yield process of adiabatic bulk polymerization. In this study, the toxicity of PVK-GO was assessed with planktonic microbial cells, biofilms, and NIH 3T3 fibroblast cells. The antibacterial effects were evaluated against two Gram-negative bacteria: Escherichia coli and Cupriavidus metallidurans; and two Gram-positive bacteria: Bacillus subtilis and Rhodococcus opacus. The results show that the PVK-GO nanocomposite presents higher antimicrobial effects than the pristine GO. The effectiveness of the PVK-GO in solution was demonstrated as the nanocomposite "encapsulated" the bacterial cells, which led to reduced microbial metabolic activity and cell death. The fact that the PVK-GO did not present significant cytotoxicity to fibroblast cells offers a great opportunity for potential applications in important biomedical and industrial fields.
Collapse
Affiliation(s)
- Isis E Mejías Carpio
- Department of Civil and Environmental Engineering, University of Houston, Houston, TX 77004, USA
| | | | | | | |
Collapse
|
25
|
Dextran and polymer polyethylene glycol (PEG) coating reduce both 5 and 30 nm iron oxide nanoparticle cytotoxicity in 2D and 3D cell culture. Int J Mol Sci 2012; 13:5554-5570. [PMID: 22754315 PMCID: PMC3382777 DOI: 10.3390/ijms13055554] [Citation(s) in RCA: 187] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Revised: 04/15/2012] [Accepted: 04/30/2012] [Indexed: 01/22/2023] Open
Abstract
Superparamagnetic iron oxide nanoparticles are widely used in biomedical applications, yet questions remain regarding the effect of nanoparticle size and coating on nanoparticle cytotoxicity. In this study, porcine aortic endothelial cells were exposed to 5 and 30 nm diameter iron oxide nanoparticles coated with either the polysaccharide, dextran, or the polymer polyethylene glycol (PEG). Nanoparticle uptake, cytotoxicity, reactive oxygen species (ROS) formation, and cell morphology changes were measured. Endothelial cells took up nanoparticles of all sizes and coatings in a dose dependent manner, and intracellular nanoparticles remained clustered in cytoplasmic vacuoles. Bare nanoparticles in both sizes induced a more than 6 fold increase in cell death at the highest concentration (0.5 mg/mL) and led to significant cell elongation, whereas cell viability and morphology remained constant with coated nanoparticles. While bare 30 nm nanoparticles induced significant ROS formation, neither 5 nm nanoparticles (bare or coated) nor 30 nm coated nanoparticles changed ROS levels. Furthermore, nanoparticles were more toxic at lower concentrations when cells were cultured within 3D gels. These results indicate that both dextran and PEG coatings reduce nanoparticle cytotoxicity, however different mechanisms may be important for different size nanoparticles.
Collapse
|
26
|
Martinez JS, Keller TCS, Schlenoff JB. Cytotoxicity of free versus multilayered polyelectrolytes. Biomacromolecules 2011; 12:4063-70. [PMID: 22026411 PMCID: PMC3216489 DOI: 10.1021/bm201142x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The cytotoxicity of polyelectrolytes commonly employed for layer-by-layer deposition of polyelectrolyte multilayers (PEMUs) was assessed using rat smooth muscle A7r5 and human osteosarcoma U-2 OS cells. Cell growth, viability, and metabolic assays were used to compare the responses of both cell lines to poly(acrylic acid), PAA, and poly(allylamine hydrochloride), PAH, in solution at concentrations up to 10 mM and to varying thicknesses of (PAA/PAH) PEMUs. Cytotoxicity correlated with increasing concentration of solution polyelectrolytes for both cell types and was greater for the positively charged PAH than for the negatively charged PAA. While metabolism and proliferation of both cell types was slower on PEMUs than on tissue culture plastic, little evidence for direct toxicity on cells was observed. In fact, evidence for more extensive adhesion and cytoskeletal organization was observed with PAH-terminated PEMUs. Differences in cell activity and viability on different thickness PEMU surfaces resulted primarily from differences in attachment for these adhesion-dependent cell lines.
Collapse
|
27
|
Fu H, Zhang J, Pan J, Zhang Q, Lu Y, Wen W, Lubet RA, Szabo E, Chen R, Wang Y, Chen DR, You M. Chemoprevention of lung carcinogenesis by the combination of aerosolized budesonide and oral pioglitazone in A/J mice. Mol Carcinog 2011; 50:913-21. [PMID: 21374736 DOI: 10.1002/mc.20751] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Revised: 01/07/2011] [Accepted: 01/19/2011] [Indexed: 12/13/2022]
Abstract
Budesonide, a synthetic glucocorticoid used for treating asthma, and pioglitazone, a synthetic peroxisome proliferator-activated receptors γ ligand used for the treatment of diabetes, were evaluated for their combinational chemopreventive efficacy on mouse lung cancer using female A/J mice with benzo(a)pyrene used as the carcinogen. All chemopreventive treatments began 2-wk post-carcinogen treatment and continued daily for 20 wk. Budesonide was administered by the aerosol route using an improved aerosol delivery system. Pioglitazone was introduced by oral gavage. The characterization of drug distribution showed that budesonide introduced by aerosol delivery accumulated only in the lung. Budesonide alone reduced tumor load by 78% and pioglitazone alone reduced tumor load by 63%. By combining aerosolized budesonide with pioglitazone, the inhibition on tumor load was 90%. In vitro experiments using human cancer cells showed that budesonide and pioglitazone exhibited independent, additive inhibitory effects on cell growth. Our results provide evidence that aerosolized budesonide and oral pioglitazone could be a promising drug combination for lung cancer chemoprevention.
Collapse
Affiliation(s)
- Huijing Fu
- Department of Energy, Environmental and Chemical Engineering, Washington University in St Louis, St Louis, Missouri 63110, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Ahn JH, Luo W, Kim J, Rodina A, Clement CC, Aguirre J, Sun W, Kang Y, Maharaj R, Moulick K, Zatorska D, Kokoszka M, Brodsky JL, Chiosis G. Design of a flexible cell-based assay for the evaluation of heat shock protein 70 expression modulators. Assay Drug Dev Technol 2010; 9:236-46. [PMID: 21133677 DOI: 10.1089/adt.2010.0327] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Heat shock protein 70 (Hsp70) is a chaperone protein that helps protect against cellular stress, a function that may be co-opted to fight human diseases. In particular, the upregulation of Hsp70 can suppress the neurotoxicity of misfolded proteins, suggesting possible therapeutic strategies in neurodegenerative diseases. Alternatively, in cancer cells where high levels of Hsp70 inhibit both intrinsic and extrinsic apoptotic pathways, a reduction in Hsp70 levels may induce apoptosis. To evaluate and identify, in a single assay format, small molecules that induce or inhibit endogenous Hsp70, we have designed and optimized a microtiter assay that relies on whole-cell immunodetection of Hsp70. The assay utilizes a minimal number of neuronal or cancer cells, yet is sufficiently sensitive and reproducible to permit quantitative determinations. We further validated the assay using a panel of Hsp70 modulators. In conclusion, we have developed an assay that is fast, robust, and cost efficient. As such, it can be implemented in most research laboratories. The assay should greatly improve the speed at which novel Hsp70 inducers and inhibitors of expression can be identified and evaluated.
Collapse
Affiliation(s)
- James H Ahn
- Department of Medicine and Program in Molecular Pharmacology and Chemistry, Memorial Sloan-Kettering Cancer Center, New York
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Rashid M, Arumugam TV, Karamyan VT. Association of the novel non-AT1, non-AT2 angiotensin binding site with neuronal cell death. J Pharmacol Exp Ther 2010; 335:754-61. [PMID: 20861168 DOI: 10.1124/jpet.110.171439] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We have discovered a non-AT(1), non-AT(2) angiotensin binding site in rodent and human brain membranes, which, based on its pharmacological/biochemical properties and tissue distribution, is different from angiotensin receptors and key proteases processing angiotensins. In this study, the novel angiotensin binding site was localized to a specific brain cell type by using radioligand receptor binding assays. Our results indicate that the novel binding site is expressed in mouse primary cortical neuronal membranes but not in primary cortical astroglial and bEnd.3 brain capillary endothelial cell membranes. Whole-cell binding assays in neurons showed that the binding site faces the outer side of the plasma membrane. Consistent with our previous observations, the novel binding site was unmasked by the sulfhydryl reagent p-chloromercuribenzoate. This effect had a bell-shaped curve and was reversed by reduced glutathione, indicating that the function of the binding site might be regulated by the redox state of the environment. Density of the novel binding site measured by saturation binding assays was significantly increased in neuronal membranes of cells challenged in four in vitro models of cell death (oxygen-glucose deprivation, sodium azide-induced hypoxia, N-methyl-D-aspartate neurotoxicity, and hydrogen peroxide neurotoxicity). In addition, our in vivo data from developing mouse brains showed that the density of the novel angiotensin binding site changes similarly to the pattern of neuronal death in maturating brain. This is the first time that evidence is provided on the association of the novel angiotensin binding site with neuronal death, and future studies directed toward understanding of the functions of this protein are warranted.
Collapse
Affiliation(s)
- Mamoon Rashid
- Department of Pharmaceutical Sciences and Vascular Drug Research Center, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas 79106, USA
| | | | | |
Collapse
|
30
|
Pan J, Zhang Q, Wang Y, You M. 26S proteasome activity is down-regulated in lung cancer stem-like cells propagated in vitro. PLoS One 2010; 5:e13298. [PMID: 20949018 PMCID: PMC2952619 DOI: 10.1371/journal.pone.0013298] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2010] [Accepted: 09/17/2010] [Indexed: 11/18/2022] Open
Abstract
Cancer stem cells (CSCs) are a small subset of cancer cells capable of self-renewal and tumor maintenance. Eradicating cancer stem cells, the root of tumor origin and recurrence, has emerged as one promising approach to improve lung cancer survival. Cancer stem cells are reported to reside in the side population (SP) of cultured lung cancer cells. We report here the coexistence of a distinct population of non-SP (NSP) cells that have equivalent self-renewal capacity compared to SP cells in a lung tumor sphere assay. Compared with the corresponding cells in monolayer cultures, lung tumor spheres, formed from human non-small cell lung carcinoma cell lines A549 or H1299, showed marked morphologic differences and increased expression of the stem cell markers CD133 and OCT3/4. Lung tumor spheres also exhibited increased tumorigenic potential as only 10,000 lung tumor sphere cells were required to produce xenografts tumors in nude mice, whereas the same number of monolayer cells failed to induce tumors. We also demonstrate that lung tumor spheres showed decreased 26S proteasome activity compared to monolayer. By using the ZsGreen-cODC (C-terminal sequence that directs degradation of Ornithine Decarboxylase) reporter assay in NSCLC cell lines, only less than 1% monolayer cultures were ZsGreen positive indicating low 26S proteasome, whereas lung tumor sphere showed increased numbers of ZsGreen-positive cells, suggesting the enrichment of CSCs in sphere cultures.
Collapse
Affiliation(s)
- Jing Pan
- Department of Surgery, Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | | | | | | |
Collapse
|
31
|
Uzunoglu S, Karaca B, Atmaca H, Kisim A, Sezgin C, Karabulut B, Uslu R. Comparison of XTT and Alamar blue assays in the assessment of the viability of various human cancer cell lines by AT-101 (−/− gossypol). Toxicol Mech Methods 2010; 20:482-6. [DOI: 10.3109/15376516.2010.508080] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
32
|
Alonso E, Vale C, Sasaki M, Fuwa H, Konno Y, Perez S, Vieytes MR, Botana LM. Calcium oscillations induced by gambierol in cerebellar granule cells. J Cell Biochem 2010; 110:497-508. [PMID: 20336695 DOI: 10.1002/jcb.22566] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Gambierol is a marine polyether ladder toxin derived from the dinoflagellate Gambierdiscus toxicus. To date, gambierol has been reported to act either as a partial agonist or as an antagonist of sodium channels or as a blocker of voltage-dependent potassium channels. In this work, we examined the cellular effect of gambierol on cytosolic calcium concentration, membrane potential and sodium and potassium membrane currents in primary cultures of cerebellar granule cells. We found that at concentrations ranging from 0.1 to 30 microM, gambierol-evoked [Ca(2+)]c oscillations that were dependent on the presence of extracellular calcium, irreversible and highly synchronous. Gambierol-evoked [Ca(2+)]c oscillations were completely eliminated by the NMDA receptor antagonist APV and by riluzole and delayed by CNQX. In addition, the K(+) channel blocker 4-aminopyridine (4-AP)-evoked cytosolic calcium oscillations in this neuronal system that were blocked by APV and delayed in the presence of CNQX. Electrophysiological recordings indicated that gambierol caused membrane potential oscillations, decreased inward sodium current amplitude and decreased also outward IA and IK current amplitude. The results presented here point to a common mechanism of action for gambierol and 4-AP and indicate that gambierol-induced oscillations in cerebellar neurons are most likely secondary to a blocking action of the toxin on voltage-dependent potassium channels and hyperpolarization of sodium current activation.
Collapse
Affiliation(s)
- E Alonso
- Facultad de Veterinaria, Departamento de Farmacología, Universidad de Santiago de Compostela, Lugo, Spain
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Shabala L, Howells C, West AK, Chung RS. Prolonged Abeta treatment leads to impairment in the ability of primary cortical neurons to maintain K+ and Ca2+ homeostasis. Mol Neurodegener 2010; 5:30. [PMID: 20704753 PMCID: PMC2927593 DOI: 10.1186/1750-1326-5-30] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Accepted: 08/13/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is a progressive neurodegenerative disease, characterised by the formation of insoluble amyloidogenic plaques and neurofibrillary tangles. Beta amyloid (Abeta) peptide is one of the main constituents in Abeta plaques, and is thought to be a primary causative agent in AD. Neurons are likely to be exposed to chronic, sublethal doses of Abeta over an extended time during the pathogenesis of AD, however most studies published to date using in vitro models have focussed on acute studies. To experimentally model the progressive pathogenesis of AD, we exposed primary cortical neurons daily to 1 muM of Abeta1-40 over 7 days and compared their survival with age-similar untreated cells. We also investigated whether chronic Abeta exposure affects neuronal susceptibility to the subsequent acute excitotoxicity induced by 10 muM glutamate and assessed how Ca2+ and K+ homeostasis were affected by either treatment. RESULTS We show that continuous exposure to 1 muM Abeta1-40 for seven days decreased survival of cultured cortical neurons by 20%. This decrease in survival correlated with increased K+ efflux from the cells. One day treatment with 1 muM Abeta followed by glutamate led to a substantially higher K+ efflux than in the age-similar untreated control. This difference further increased with the duration of the treatment. K+ efflux also remained higher in Abeta treated cells 20 min after glutamate application leading to 2.8-fold higher total K+ effluxed from the cells compared to controls. Ca2+ uptake was significantly higher only after prolonged Abeta treatment with 2.5-fold increase in total Ca2+ uptake over 20 min post glutamate application after six days of Abeta treatment or longer (P < 0.05). CONCLUSIONS Our data suggest that long term exposure to Abeta is detrimental because it reduces the ability of cortical neurons to maintain K+ and Ca2+ homeostasis in response to glutamate challenge, a response that might underlie the early symptoms of AD. The observed inability to maintain K+ homeostasis might furthermore be useful in future studies as an early indicator of pathological changes in response to Abeta.
Collapse
Affiliation(s)
- Lana Shabala
- NeuroRepair Group, Menzies Research Institute, University of Tasmania, Private Bag 23, Hobart, Tasmania, 7001, Australia.
| | | | | | | |
Collapse
|
34
|
McKim JM. Building a tiered approach to in vitro predictive toxicity screening: a focus on assays with in vivo relevance. Comb Chem High Throughput Screen 2010; 13:188-206. [PMID: 20053163 PMCID: PMC2908937 DOI: 10.2174/138620710790596736] [Citation(s) in RCA: 142] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2009] [Accepted: 05/05/2009] [Indexed: 12/23/2022]
Abstract
One of the greatest challenges facing the pharmaceutical industry today is the failure of promising new drug candidates due to unanticipated adverse effects discovered during preclinical animal safety studies and clinical trials. Late stage attrition increases the time required to bring a new drug to market, inflates development costs, and represents a major source of inefficiency in the drug discovery/development process. It is generally recognized that early evaluation of new drug candidates is necessary to improve the process. Building in vitro data sets that can accurately predict adverse effects in vivo would allow compounds with high risk profiles to be deprioritized, while those that possess the requisite drug attributes and a lower risk profile are brought forward. In vitro cytotoxicity assays have been used for decades as a tool to understand hypotheses driven questions regarding mechanisms of toxicity. However, when used in a prospective manner, they have not been highly predictive of in vivo toxicity. Therefore, the issue may not be how to collect in vitro toxicity data, but rather how to translate in vitro toxicity data into meaningful in vivo effects. This review will focus on the development of an in vitro toxicity screening strategy that is based on a tiered approach to data collection combined with data interpretation.
Collapse
Affiliation(s)
- James M McKim
- CeeTox Inc., 4717 Campus Dr., Kalamazoo, MI 49008, USA.
| |
Collapse
|
35
|
Oxytocin is neuroprotective against oxygen–glucose deprivation and reoxygenation in immature hippocampal cultures. Neurosci Lett 2010; 477:15-8. [DOI: 10.1016/j.neulet.2010.04.024] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Revised: 04/08/2010] [Accepted: 04/10/2010] [Indexed: 12/12/2022]
|
36
|
Miao Y, Qiu Y, Lin Y, Miao Z, Zhang J, Lu X. Protection by pyruvate against glutamate neurotoxicity is mediated by astrocytes through a glutathione-dependent mechanism. Mol Biol Rep 2010; 38:3235-42. [DOI: 10.1007/s11033-010-9998-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2009] [Accepted: 02/08/2010] [Indexed: 12/28/2022]
|
37
|
Al-Gonaiah M, Smith RA, Stone TW. Xanthine oxidase-induced neuronal death via the oxidation of NADH: prevention by micromolar EDTA. Brain Res 2009; 1280:33-42. [PMID: 19450565 DOI: 10.1016/j.brainres.2009.05.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2009] [Revised: 05/07/2009] [Accepted: 05/08/2009] [Indexed: 11/29/2022]
Abstract
The oxidation of xanthine by xanthine oxidase (XO) or xanthine dehydrogenase represents an important source of reactive oxygen species (ROS), which contribute to the damaging consequences of cerebral ischemia, inflammation, and neurodegenerative disorders. However, both enzymes are also able to act on reduced nicotinamide adenine dinucleotide (NADH). The FAD binding site to which NADH binds is distinct from that of the xanthine binding site. We report that the combination of xanthine oxidase and NADH is toxic to cultures of cerebellar granule neurons. Protection by superoxide dismutase (Cu,Zn-SOD or Mn-SOD) or catalase indicates mediation of the toxicity by superoxide and hydrogen peroxide. In addition, pre-incubating XO with EDTA at concentrations as low as 2 microM, prevented the toxicity, indicating that a metal contaminating XO is involved in producing the toxic effects of XO/NADH. It is possible that such a metal might play a role in the toxicity of XO in vivo.
Collapse
Affiliation(s)
- Majed Al-Gonaiah
- Neuroscience and Molecular Pharmacology, Faculty of Biomedical and Life Sciences, University of Glasgow, Glasgow, UK
| | | | | |
Collapse
|
38
|
Kisby GE, Olivas A, Park T, Churchwell M, Doerge D, Samson LD, Gerson SL, Turker MS. DNA repair modulates the vulnerability of the developing brain to alkylating agents. DNA Repair (Amst) 2009; 8:400-12. [PMID: 19162564 DOI: 10.1016/j.dnarep.2008.12.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2008] [Revised: 12/01/2008] [Accepted: 12/02/2008] [Indexed: 11/28/2022]
Abstract
Neurons of the developing brain are especially vulnerable to environmental agents that damage DNA (i.e., genotoxicants), but the mechanism is poorly understood. The focus of the present study is to demonstrate that DNA damage plays a key role in disrupting neurodevelopment. To examine this hypothesis, we compared the cytotoxic and DNA damaging properties of the methylating agents methylazoxymethanol (MAM) and dimethyl sulfate (DMS) and the mono- and bifunctional alkylating agents chloroethylamine (CEA) and nitrogen mustard (HN2), in granule cell neurons derived from the cerebellum of neonatal wild type mice and three transgenic DNA repair strains. Wild type cerebellar neurons were significantly more sensitive to the alkylating agents DMS and HN2 than neuronal cultures treated with MAM or the half-mustard CEA. Parallel studies with neuronal cultures from mice deficient in alkylguanine DNA glycosylase (Aag(-/-)) or O(6)-methylguanine methyltransferase (Mgmt(-/-)), revealed significant differences in the sensitivity of neurons to all four genotoxicants. Mgmt(-/-) neurons were more sensitive to MAM and HN2 than the other genotoxicants and wild type neurons treated with either alkylating agent. In contrast, Aag(-/-) neurons were for the most part significantly less sensitive than wild type or Mgmt(-/-) neurons to MAM and HN2. Aag(-/-) neurons were also significantly less sensitive than wild type neurons treated with either DMS or CEA. Granule cell development and motor function were also more severely disturbed by MAM and HN2 in Mgmt(-/-) mice than in comparably treated wild type mice. In contrast, cerebellar development and motor function were well preserved in MAM-treated Aag(-/-) or MGMT-overexpressing (Mgmt(Tg+)) mice, even as compared with wild type mice suggesting that AAG protein increases MAM toxicity, whereas MGMT protein decreases toxicity. Surprisingly, neuronal development and motor function were severely disturbed in Mgmt(Tg+) mice treated with HN2. Collectively, these in vitro and in vivo studies demonstrate that the type of DNA lesion and the efficiency of DNA repair are two important factors that determine the vulnerability of the developing brain to long-term injury by a genotoxicant.
Collapse
Affiliation(s)
- G E Kisby
- Center for Research on Occupational and Environmental Toxicology, Oregon Health & Science University, Portland, OR 97239, United States.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Gould MK, Vu XL, Seebeck T, de Koning HP. Propidium iodide-based methods for monitoring drug action in the kinetoplastidae: comparison with the Alamar Blue assay. Anal Biochem 2008; 382:87-93. [PMID: 18722997 DOI: 10.1016/j.ab.2008.07.036] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2008] [Revised: 07/23/2008] [Accepted: 07/25/2008] [Indexed: 11/19/2022]
Abstract
The urgent need for new drug development for African trypanosomiasis is widely recognized. This requires reliable and informative high-throughput assays. Currently, drug action is determined with a fluorimetric/colorimetric assay based on the metabolism of the dye Alamar Blue (resazurin) by live cells. However, this assay does not easily distinguish between cell death and growth arrest, or supply information about the rate at which test compounds affect these parameters. We report here an alternative fluorimetric assay, based on the interaction of propidium iodide with DNA, that allows either real-time monitoring of cell viability or the generation of EC(50) values at a predetermined time-point. The assay is highly sensitive and fluorescence readings easily correlate to numbers of parasites or DNA content. The EC(50) values were highly similar to those obtained with the standard Alamar Blue assay. The procedure lends itself readily to applications in drug development or resistance monitoring.
Collapse
Affiliation(s)
- Matthew K Gould
- Institute of Biomedical and Life Sciences, Division of Infection and Immunity, University of Glasgow, 120 University Place, Glasgow G128TA, UK
| | | | | | | |
Collapse
|
40
|
Johansson I, Destefanis S, Aberg ND, Aberg MAI, Blomgren K, Zhu C, Ghè C, Granata R, Ghigo E, Muccioli G, Eriksson PS, Isgaard J. Proliferative and protective effects of growth hormone secretagogues on adult rat hippocampal progenitor cells. Endocrinology 2008; 149:2191-9. [PMID: 18218693 DOI: 10.1210/en.2007-0733] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Progenitor cells in the subgranular zone of the hippocampus may be of significance for functional recovery after various injuries because they have a regenerative potential to form new neuronal cells. The hippocampus has been shown to express the GH secretagogue (GHS) receptor 1a, and recent studies suggest GHS to both promote neurogenesis and have neuroprotective effects. The aim of the present study was to investigate whether GHS could stimulate cellular proliferation and exert cell protective effects in adult rat hippocampal progenitor (AHP) cells. Both hexarelin and ghrelin stimulated increased incorporation of (3)H-thymidine, indicating an increased cell proliferation. Furthermore, hexarelin, but not ghrelin, showed protection against growth factor deprivation-induced apoptosis, as measured by annexin V binding and caspase-3 activity and also against necrosis, as measured by lactate dehydrogenase release. Hexarelin activated the MAPK and the phosphatidylinositol 3-kinase/Akt pathways, whereas ghrelin activated only the MAPK pathway. AHP cells did not express the GHS receptor 1a, but binding studies could show specific binding of both hexarelin and ghrelin, suggesting effects to be mediated by an alternative GHS receptor subtype. In conclusion, our results suggest a differential effect of hexarelin and ghrelin in AHP cells. We have demonstrated stimulation of (3)H-thymidine incorporation with both hexarelin and ghrelin. Hexarelin, but not ghrelin, also showed a significant inhibition of apoptosis and necrosis. These results suggest a novel cell protective and proliferative role for GHS in the central nervous system.
Collapse
Affiliation(s)
- Inger Johansson
- Laboratory of Experimental Endocrinology, Sahlgrenska Academy, University of Göteborg, SE-413 45 Göteborg, Sweden.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Talbot JD, Barrett JN, Barrett EF, David G. Rapid, stimulation-induced reduction of C12-resorufin in motor nerve terminals: linkage to mitochondrial metabolism. J Neurochem 2008; 105:807-19. [PMID: 18205748 DOI: 10.1111/j.1471-4159.2007.05176.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The Alamar blue (resazurin) assay of cell viability monitors the irreversible reduction of non-fluorescent resazurin to fluorescent resorufin. This study focused on the reversible reduction of C12-resorufin to non-fluorescent C12-dihydroresorufin in motor nerve terminals innervating lizard intercostal muscles. Resting C12-resorufin fluorescence decreased when the activity of the mitochondrial electron transport chain (ETC) was accelerated with carbonyl cyanide m-chloro phenyl hydrazone, and increased when ETC activity was inhibited with cyanide. Trains of action potentials (50 Hz for 20-50 s), which reversibly decreased NADH fluorescence and partially depolarized the mitochondrial membrane potential, produced a reversible decrease in C12-resorufin fluorescence which had a similar time course. The stimulation-induced decrease in C12-resorufin fluorescence was blocked by inhibitors of ETC complexes I, III, and IV and by carbonyl cyanide m-chloro phenyl hydrazone, but not by inhibiting mitochondrial ATP synthesis with oligomycin. Mitochondrial depolarization and the decreases in C12-resorufin and NADH fluorescence depended on Ca2+ influx into the terminal, but not on vesicular transmitter release. These results suggest that the reversible reduction of C12-resorufin in stimulated motor nerve terminals is linked, directly or indirectly, to the reversible oxidation of NADH and to Ca(2+) influx into mitochondria, and provides an assay for rapid changes in motor terminal metabolism.
Collapse
Affiliation(s)
- Janet D Talbot
- Department of Physiology and Biophysics, Miller School of Medicine, University of Miami, Miami, Florida 33101, USA
| | | | | | | |
Collapse
|
42
|
Cao G, Xing J, Xiao X, Liou AKF, Gao Y, Yin XM, Clark RSB, Graham SH, Chen J. Critical role of calpain I in mitochondrial release of apoptosis-inducing factor in ischemic neuronal injury. J Neurosci 2007; 27:9278-93. [PMID: 17728442 PMCID: PMC6673113 DOI: 10.1523/jneurosci.2826-07.2007] [Citation(s) in RCA: 243] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Loss of mitochondrial membrane integrity and release of apoptogenic factors are a key step in the signaling cascade leading to neuronal cell death in various neurological disorders, including ischemic injury. Emerging evidence has suggested that the intramitochondrial protein apoptosis-inducing factor (AIF) translocates to the nucleus and promotes caspase-independent cell death induced by glutamate toxicity, oxidative stress, hypoxia, or ischemia. However, the mechanism by which AIF is released from mitochondria after neuronal injury is not fully understood. In this study, we identified calpain I as a direct activator of AIF release in neuronal cultures challenged with oxygen-glucose deprivation and in the rat model of transient global ischemia. Normally residing in both neuronal cytosol and mitochondrial intermembrane space, calpain I was found to be activated in neurons after ischemia and to cleave intramitochondrial AIF near its N terminus. The truncation of AIF by calpain activity appeared to be essential for its translocation from mitochondria to the nucleus, because neuronal transfection of the mutant AIF resistant to calpain cleavage was not released after oxygen-glucose deprivation. Adeno-associated virus-mediated overexpression of calpastatin, a specific calpain-inhibitory protein, or small interfering RNA-mediated knockdown of calpain I expression in neurons prevented ischemia-induced AIF translocation. Moreover, overexpression of calpastatin or knockdown of AIF expression conferred neuroprotection against cell death in neuronal cultures and in hippocampal CA1 neurons after transient global ischemia. Together, these results define calpain I-dependent AIF release as a novel signaling pathway that mediates neuronal cell death after cerebral ischemia.
Collapse
Affiliation(s)
| | | | | | | | - Yanqin Gao
- Departments of Neurology
- National Laboratory of Medical Neurobiology, Fudan University School of Medicine, Shanghai, China 200032, and
| | | | - Robert S. B. Clark
- Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| | - Steven H. Graham
- Departments of Neurology
- Geriatric Research, Educational and Clinical Center, Veterans Affairs, Pittsburgh Health Care System, Pittsburgh, Pennsylvania 15261
| | - Jun Chen
- Departments of Neurology
- Geriatric Research, Educational and Clinical Center, Veterans Affairs, Pittsburgh Health Care System, Pittsburgh, Pennsylvania 15261
| |
Collapse
|
43
|
Arumugam TV, Tang SC, Lathia JD, Cheng A, Mughal MR, Chigurupati S, Magnus T, Chan SL, Jo DG, Ouyang X, Fairlie DP, Granger DN, Vortmeyer A, Basta M, Mattson MP. Intravenous immunoglobulin (IVIG) protects the brain against experimental stroke by preventing complement-mediated neuronal cell death. Proc Natl Acad Sci U S A 2007; 104:14104-9. [PMID: 17715065 PMCID: PMC1955802 DOI: 10.1073/pnas.0700506104] [Citation(s) in RCA: 160] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2007] [Indexed: 11/18/2022] Open
Abstract
Stroke is among the three leading causes of death worldwide and the most frequent cause of permanent disability. Brain ischemia induces an inflammatory response involving activated complement fragments. Here we show that i.v. Ig (IVIG) treatment, which scavenges complement fragments, protects brain cells against the deleterious effects of experimental ischemia and reperfusion (I/R) and prevents I/R-induced mortality in mice. Animals administered IVIG either 30 min before ischemia or after 3 h of reperfusion exhibited a 50-60% reduction of brain infarct size and a 2- to 3-fold improvement of the functional outcome. Even a single low dose of IVIG given after stroke was effective. IVIG was protective in the nonreperfusion model of murine stroke as well and did not exert any peripheral effects. Human IgG as well as intrinsic murine C3 levels were significantly higher in the infarcted brain region compared with the noninjured side, and their physical association was demonstrated by immuno-coprecipitation. C5-deficient mice were significantly protected from I/R injury compared with their wild-type littermates. Exposure of cultured neurons to oxygen/glucose deprivation resulted in increased levels of C3 associated with activation of caspase 3, a marker of apoptosis; both signals were attenuated with IVIG treatment. Our data suggest a major role for complement-mediated cell death in ischemic brain injury and the prospect of using IVIG in relatively low doses as an interventional therapy for stroke.
Collapse
Affiliation(s)
- Thiruma V. Arumugam
- *Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, 5600 Nathan Shock Drive, Baltimore, MD 21224
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center 1400 Wallace Boulevard, Amarillo, TX 79106
| | - Sung-Chun Tang
- *Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, 5600 Nathan Shock Drive, Baltimore, MD 21224
- Department of Neurology, National Taiwan University Hospital, Yun-Lin Branch, Yun-Lin 640, Taiwan
| | - Justin D. Lathia
- *Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, 5600 Nathan Shock Drive, Baltimore, MD 21224
| | - Aiwu Cheng
- *Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, 5600 Nathan Shock Drive, Baltimore, MD 21224
| | - Mohamed R. Mughal
- *Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, 5600 Nathan Shock Drive, Baltimore, MD 21224
| | - Srinivasulu Chigurupati
- *Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, 5600 Nathan Shock Drive, Baltimore, MD 21224
| | - Tim Magnus
- *Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, 5600 Nathan Shock Drive, Baltimore, MD 21224
| | - Sic L. Chan
- *Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, 5600 Nathan Shock Drive, Baltimore, MD 21224
- Biomolecular Science Center, University of Central Florida, Orlando, FL 32816
| | - Dong-Gyu Jo
- *Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, 5600 Nathan Shock Drive, Baltimore, MD 21224
| | - Xin Ouyang
- *Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, 5600 Nathan Shock Drive, Baltimore, MD 21224
| | - David P. Fairlie
- Centre for Drug Design and Development, Institute for Molecular Bioscience, University of Queensland, Brisbane, Qld 4072, Australia
| | - Daniel N. Granger
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA 71130
| | - Alexander Vortmeyer
- **Neurosurgical Division, National Institute for Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892; and
| | | | - Mark P. Mattson
- *Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, 5600 Nathan Shock Drive, Baltimore, MD 21224
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| |
Collapse
|
44
|
Kim MJ, Pal S, Tak YK, Lee KH, Yang TK, Lee SJ, Song JM. Determination of the dose-depth distribution of proton beam using resazurin assay in vitro and diode laser-induced fluorescence detection. Anal Chim Acta 2007; 593:214-23. [PMID: 17543610 DOI: 10.1016/j.aca.2007.05.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2007] [Revised: 04/30/2007] [Accepted: 05/02/2007] [Indexed: 11/25/2022]
Abstract
In this study the dose-depth distribution pattern of proton beams was investigated by inactivation of human cells exposed to high-LET (linear energy transfer) protons. The proton beams accelerated up to 45 MeV were horizontally extracted from the cyclotron, and were delivered to the cells acutely through a home made prototype over a range of physical depths (in the form of a variable water column). The biological systems used here were two in vitro cell lines, including human embryonic kidney cells (HEK 293), and human breast adenocarcinoma cell line (MCF-7). Cells were exposed to unmodulated proton beam radiation at a dose of 50 Gy similar to that used in therapy. Resazurin metabolism assay was investigated for measurement of cell response to irradiation as a simple and non-destructive assay. In the resazurin reduction test the non-fluorescent probe dye is reduced to pink and highly fluorescent resorufin. The dose-depth distribution of proton beam obtained based on the highly sensitive laser-induced fluorometric determination of resorufin was found to coincide well with the data collected using conventional film based dosimetry. The resazurin method yielded data comparable with the optical micrographs of the irradiated cells, showing the least cell survival at the measured Bragg-peak position of 10 mm. In addition, fused silica capillary was used as a sample container to increase the probability for irradiated laser beam to probe and excite resorufin in small sample volume of the capillary. The developed method has the potential to serve as a non-destructive, sample-thrifty, and time saving tool to realize more realistic, practical dose-depth distribution of proton beam compared to conventional in vitro cell viability assessment techniques.
Collapse
Affiliation(s)
- Min Jung Kim
- Research Institute of Pharmaceutical Sciences and College of Pharmacy, Seoul National University, Seoul 151-742, South Korea
| | | | | | | | | | | | | |
Collapse
|
45
|
Liu D, Chan SL, de Souza-Pinto NC, Slevin JR, Wersto RP, Zhan M, Mustafa K, de Cabo R, Mattson MP. Mitochondrial UCP4 mediates an adaptive shift in energy metabolism and increases the resistance of neurons to metabolic and oxidative stress. Neuromolecular Med 2007; 8:389-414. [PMID: 16775390 DOI: 10.1385/nmm:8:3:389] [Citation(s) in RCA: 138] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2005] [Revised: 02/21/2006] [Accepted: 02/23/2006] [Indexed: 11/11/2022]
Abstract
The high-metabolic demand of neurons and their reliance on glucose as an energy source places them at risk for dysfunction and death under conditions of metabolic and oxidative stress. Uncoupling proteins (UCPs) are mitochondrial inner membrane proteins implicated in the regulation of mitochondrial membrane potential (Deltapsim) and cellular energy metabolism. The authors cloned UCP4 cDNA from mouse and rat brain, and demonstrate that UCP4 mRNA is expressed abundantly in brain and at particularly high levels in populations of neurons believed to have high-energy requirements. Neural cells with increased levels of UCP4 exhibit decreased Deltapsim, reduced reactive oxygen species (ROS) production and decreased mitochondrial calcium accumulation. UCP4 expressing cells also exhibited changes of oxygen-consumption rate, GDP sensitivity, and response of Deltapsim to oligomycin that were consistent with mitochondrial uncoupling. UCP4 modulates neuronal energy metabolism by increasing glucose uptake and shifting the mode of ATP production from mitochondrial respiration to glycolysis, thereby maintaining cellular ATP levels. The UCP4-mediated shift in energy metabolism reduces ROS production and increases the resistance of neurons to oxidative and mitochondrial stress. Knockdown of UCP4 expression by RNA interference in primary hippocampal neurons results in mitochondrial calcium overload and cell death. UCP4-mRNA expression is increased in neurons exposed to cold temperatures and in brain cells of rats maintained on caloric restriction, suggesting a role for UCP4 in the previously reported antiageing and neuroprotective effects of caloric restriction. By shifting energy metabolism to reduce ROS production and cellular reliance on mitochondrial respiration, UCP4 can protect neurons against oxidative stress and calcium overload.
Collapse
Affiliation(s)
- Dong Liu
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Tang SC, Arumugam TV, Cutler RG, Jo DG, Magnus T, Chan SL, Mughal MR, Telljohann RS, Nassar M, Ouyang X, Calderan A, Ruzza P, Guiotto A, Mattson MP. Neuroprotective actions of a histidine analogue in models of ischemic stroke. J Neurochem 2007; 101:729-36. [PMID: 17254011 DOI: 10.1111/j.1471-4159.2006.04412.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Histidine is a naturally occurring amino acid with antioxidant properties, which is present in low amounts in tissues throughout the body. We recently synthesized and characterized histidine analogues related to the natural dipeptide carnosine, which selectively scavenge the toxic lipid peroxidation product 4-hydroxynonenal (HNE). We now report that the histidine analogue histidyl hydrazide is effective in reducing brain damage and improving functional outcome in a mouse model of focal ischemic stroke when administered intravenously at a dose of 20 mg/kg, either 30 min before or 60 min and 3 h after the onset of middle cerebral artery occlusion. The histidine analogue also protected cultured rat primary neurons against death induced by HNE, chemical hypoxia, glucose deprivation, and combined oxygen and glucose deprivation. The histidine analogue prevented neuronal apoptosis as indicated by decreased production of cleaved caspase-3 protein. These findings suggest a therapeutic potential for HNE-scavenging histidine analogues in the treatment of stroke and related neurodegenerative conditions.
Collapse
Affiliation(s)
- Sung-Chun Tang
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, Maryland 21224, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
García-Morales P, Hernando E, Carrasco-García E, Menéndez-Gutierrez MP, Saceda M, Martínez-Lacaci I. Cyclin D3 is down-regulated by rapamycin in HER-2-overexpressing breast cancer cells. Mol Cancer Ther 2006; 5:2172-81. [PMID: 16985050 DOI: 10.1158/1535-7163.mct-05-0363] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Rapamycin and its analogues are being tested as new antitumor agents. Rapamycin binds to FKBP-12 and this complex inhibits the activity of FRAP/mammalian target of rapamycin, which leads to dephosphorylation of 4EBP1 and p70 S6 kinase, resulting in blockade of translation initiation. We have found that RAP inhibits the growth of HER-2-overexpressing breast cancer cells. The phosphorylation of mammalian target of rapamycin, p70 S6 kinase, and 4EBP1 is inhibited by rapamycin and cells are arrested in the G1 phase, as determined by growth assays, fluorescence-activated cell sorting analysis, and bromodeoxyuridine incorporation studies. Rapamycin causes down-regulation of cyclin D3 protein, retinoblastoma hypophosphorylation, loss of cyclin-dependent kinase (cdk) 4, cdk6, and cdk2 activity. The half-life of cyclin D3 protein decreases after rapamycin treatment, but not its synthesis, whereas the synthesis or half-life of cyclin D1 protein is not affected by the drug. Additionally, rapamycin caused accumulation of ubiquitinated forms of cyclin D3 protein, proteasome inhibitors blocked the effect of rapamycin on cyclin D3, and rapamycin stimulated the activity of the proteasome, showing that the effect of rapamycin on cyclin D3 is proteasome proteolysis dependent. This effect depends on the activity of HER-2 because Herceptin, a neutralizing antibody against HER-2, is able to block both the induction of proteasome activity and the cyclin D3 down-regulation due to rapamycin. Furthermore, inhibition of HER-2 gene expression by using small interfering RNA blocked the rapamycin effects on cyclin D3. These data indicate that rapamycin causes a G1 arrest in HER-2-overexpressing breast cancer cells that is associated with a differential destabilization and subsequent down-regulation of cyclin D3 protein.
Collapse
Affiliation(s)
- Pilar García-Morales
- Instituto de Biología Molecular y Celular, Edificio Torregaitán, Universidad Miguel Hernández, 03202 Elche, Spain
| | | | | | | | | | | |
Collapse
|
48
|
Nakajima Y, Shimazawa M, Mishima S, Hara H. Water extract of propolis and its main constituents, caffeoylquinic acid derivatives, exert neuroprotective effects via antioxidant actions. Life Sci 2006; 80:370-7. [PMID: 17046025 DOI: 10.1016/j.lfs.2006.09.017] [Citation(s) in RCA: 159] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2006] [Revised: 09/15/2006] [Accepted: 09/20/2006] [Indexed: 11/19/2022]
Abstract
We investigated whether water extract of Brazilian green propolis (WEP) and its main constituents [caffeoylquinic acid derivatives (3,4-di-O-caffeoylquinic acid, 3,5-di-O-caffeoylquinic acid, chlorogenic acid) and cinnamic acid derivatives (p-coumaric acid, artepillin C, drupanin, baccharin)] exert neuroprotective effects against the retinal damage induced by oxidative stress. Additionally, their neuroprotective effects were compared with their antioxidant effects. WEP, 3,4-di-O-caffeoylquinic acid, 3,5-di-O-caffeoylquinic acid, chlorogenic acid, and p-coumaric acid (but not artepillin C, baccharin, or drupanin) concentration-dependently inhibited oxidative stress-induced neurotoxicity [achieved using L-buthionine-(S,R)-sulfoximine (BSO) to deplete glutathione in combination with glutamate to inhibit cystine uptake] in cultured retinal ganglion cells (RGC-5, a rat ganglion cell line transformed using E1A virus). At their effective concentrations against oxidative stress-induced retinal damage, WEP, 3,4-di-caffeoylquinic acid, 3,5-di-caffeoylquinic acid, and chlorogenic acid (but not cinnamic acid derivatives) inhibited lipid peroxidation (LPO) in mouse forebrain homogenates. Thus, the neuroprotective effects of WEP and caffeoylquinic acid derivatives paralleled those against LPO. These findings indicate that WEP and caffeoylquinic acid derivatives have neuroprotective effects against retinal damage in vitro, and that these effects may be partly mediated via antioxidant effects.
Collapse
Affiliation(s)
- Yoshimi Nakajima
- Department of Biofunctional Molecules, Gifu Pharmaceutical University, 5-6-1 Mitahora-higashi, Gifu 502-8585, Japan
| | | | | | | |
Collapse
|
49
|
Mielke JG, Taghibiglou C, Wang YT. Endogenous insulin signaling protects cultured neurons from oxygen-glucose deprivation-induced cell death. Neuroscience 2006; 143:165-73. [PMID: 16978790 DOI: 10.1016/j.neuroscience.2006.07.055] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2006] [Revised: 07/05/2006] [Accepted: 07/26/2006] [Indexed: 11/27/2022]
Abstract
Curiosity surrounding the physiological relevance of neural insulin signaling has gradually developed since the discovery that nervous tissue contains both the hormone and its receptor. Similar to other receptor tyrosine kinases, ligand interaction with the insulin receptor (IR) activates a variety of intracellular signaling pathways, particularly those relevant to cellular survival. Consequently, one explanation for the presence of the insulin pathway in the brain may involve participation in the response to neuronal injury. To investigate this possibility, the present study began by examining the effect of oxygen-glucose deprivation (OGD), a well-characterized in vitro model of ischemia, on ligand-binding, surface expression, and function of the IR in cultured rat neurons that were prepared under serum-free conditions. Reduced insulin-binding was observed following OGD, although surface expression of the receptor was not altered. However, OGD did significantly decrease the ability of insulin to stimulate phosphorylation of the transmembrane IR beta-subunit, without affecting protein expression of this subunit. Subsequent experiments focused on the manner in which pharmacologically manipulating IR function affected neuronal viability after OGD. Application of the IR sensitizer metformin moderately improved neuronal viability, while the specific IR tyrosine kinase inhibitor tyrphostin A47 was able to dramatically decrease viability; both compounds acted without affecting IR surface expression. Our study suggests that not only does the IR appear to play an important role in neuronal survival, but also that neurons may actively maintain IRs on the cell surface to compensate for the OGD-induced decrease in the ability of insulin to phosphorylate its receptor.
Collapse
Affiliation(s)
- J G Mielke
- Neurobiology Program, Institute for Biological Sciences, National Research Council of Canada, Building M-54, Ottawa, Ontario, Canada K1A 0R6.
| | | | | |
Collapse
|
50
|
Akahoshi E, Yoshimura S, Ishihara-Sugano M. Over-expression of AhR (aryl hydrocarbon receptor) induces neural differentiation of Neuro2a cells: neurotoxicology study. Environ Health 2006; 5:24. [PMID: 16956419 PMCID: PMC1570454 DOI: 10.1186/1476-069x-5-24] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2006] [Accepted: 09/07/2006] [Indexed: 05/11/2023]
Abstract
BACKGROUND Dioxins and related compounds are suspected of causing neurological disruption in human and experimental animal offspring following perinatal exposure during development and growth. The molecular mechanism(s) of the actions in the brain, however, have not been fully investigated. A major participant in the process of the dioxin-toxicity is the dioxin receptor, namely the aryl hydrocarbon receptor (AhR). AhR regulates the transcription of diverse genes through binding to the xenobiotic-responsive element (XRE). Since the AhR has also been detected in various regions of the brain, the AhR may play a key role in the developmental neurotoxicity of dioxins. This study focused on the effect of AhR activation in the developing neuron. METHODS The influence of the AhR on the developing neuron was assessed using the Neuro2a-AhR transfectant. The undifferentiated murine neuroblastoma Neuro2a cell line (ATCC) was stably transfected with AhR cDNA and the established cell line was named N2a-Ralpha. The activation of exogenous AhR in N2a-Ralpha cells was confirmed using RNAi, with si-AhR suppressing the expression of exogenous AhR. The neurological properties of N2a-Ralpha based on AhR activation were evaluated by immunohistochemical analysis of cytoskeletal molecules and by RT-PCR analysis of mRNA expression of neurotransmitter-production related molecules, such as tyrosine hydroxylase (TH). RESULTS N2a-Ralpha cells exhibited constant activation of the exogenous AhR. CYP1A1, a typical XRE-regulated gene, mRNA was induced without the application of ligand to the culture medium. N2a-Ralpha cells exhibited two significant functional features. Morphologically, N2a-Ralpha cells bore spontaneous neurites exhibiting axon-like properties with the localization of NF-H. In addition, cdc42 expression was increased in comparison to the control cell line. The other is the catecholaminergic neuron-like property. N2a-Ralpha cells expressed tyrosine hydroxylase (TH) mRNA as a functional marker of catecholaminergic neurotransmitter production. Thus, exogenous AhR induced catecholaminergic differentiation in N2a-Ralpha cells. CONCLUSION The excessive activation of AhR resulted in neural differentiation of Neuro2a cells. This result revealed that dioxins may affect the nervous system through the AhR-signaling pathway. Activated AhR may disrupt the strictly regulated brain formation with irregular differentiation occurring rather than cell death.
Collapse
Affiliation(s)
- Eiichi Akahoshi
- Environmental Technology Laboratory, Corporate Research & Development Center, Toshiba Corporation, 1 Komukai-Toshiba cho, Saiwai-ku, Kawasaki 212–8582, Japan
| | - Seiko Yoshimura
- Environmental Technology Laboratory, Corporate Research & Development Center, Toshiba Corporation, 1 Komukai-Toshiba cho, Saiwai-ku, Kawasaki 212–8582, Japan
| | - Mitsuko Ishihara-Sugano
- Environmental Technology Laboratory, Corporate Research & Development Center, Toshiba Corporation, 1 Komukai-Toshiba cho, Saiwai-ku, Kawasaki 212–8582, Japan
| |
Collapse
|