1
|
Arnaiz-Villena A, Suarez-Trujillo F, Juarez I, Rodríguez-Sainz C, Palacio-Gruber J, Vaquero-Yuste C, Molina-Alejandre M, Fernández-Cruz E, Martin-Villa JM. Evolution and molecular interactions of major histocompatibility complex (MHC)-G, -E and -F genes. Cell Mol Life Sci 2022; 79:464. [PMID: 35925520 PMCID: PMC9352621 DOI: 10.1007/s00018-022-04491-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 07/12/2022] [Accepted: 07/15/2022] [Indexed: 11/30/2022]
Abstract
Classical HLA (Human Leukocyte Antigen) is the Major Histocompatibility Complex (MHC) in man. HLA genes and disease association has been studied at least since 1967 and no firm pathogenic mechanisms have been established yet. HLA-G immune modulation gene (and also -E and -F) are starting the same arduous way: statistics and allele association are the trending subjects with the same few results obtained by HLA classical genes, i.e., no pathogenesis may be discovered after many years of a great amount of researchers' effort. Thus, we believe that it is necessary to follow different research methodologies: (1) to approach this problem, based on how evolution has worked maintaining together a cluster of immune-related genes (the MHC) in a relatively short chromosome area since amniotes to human at least, i.e., immune regulatory genes (MHC-G, -E and -F), adaptive immune classical class I and II genes, non-adaptive immune genes like (C2, C4 and Bf) (2); in addition to using new in vitro models which explain pathogenetics of HLA and disease associations. In fact, this evolution may be quite reliably studied during about 40 million years by analyzing the evolution of MHC-G, -E, -F, and their receptors (KIR-killer-cell immunoglobulin-like receptor, NKG2-natural killer group 2-, or TCR-T-cell receptor-among others) in the primate evolutionary lineage, where orthology of these molecules is apparently established, although cladistic studies show that MHC-G and MHC-B genes are the ancestral class I genes, and that New World apes MHC-G is paralogous and not orthologous to all other apes and man MHC-G genes. In the present review, we outline past and possible future research topics: co-evolution of adaptive MHC classical (class I and II), non-adaptive (i.e., complement) and modulation (i.e., non-classical class I) immune genes may imply that the study of full or part of MHC haplotypes involving several loci/alleles instead of single alleles is important for uncovering HLA and disease pathogenesis. It would mainly apply to starting research on HLA-G extended haplotypes and disease association and not only using single HLA-G genetic markers.
Collapse
Affiliation(s)
- Antonio Arnaiz-Villena
- Departamento de Inmunología, Facultad de Medicina, Universidad Complutense de Madrid, Pabellón 5, planta 4. Avda. Complutense s/n, 28040, Madrid, Spain.
| | - Fabio Suarez-Trujillo
- Departamento de Inmunología, Facultad de Medicina, Universidad Complutense de Madrid, Pabellón 5, planta 4. Avda. Complutense s/n, 28040, Madrid, Spain
| | - Ignacio Juarez
- Departamento de Inmunología, Facultad de Medicina, Universidad Complutense de Madrid, Pabellón 5, planta 4. Avda. Complutense s/n, 28040, Madrid, Spain
| | - Carmen Rodríguez-Sainz
- Instituto de Investigaciones Sanitarias Gregorio Marañón, Hospital Gregorio Marañón, Madrid, Spain
| | - José Palacio-Gruber
- Departamento de Inmunología, Facultad de Medicina, Universidad Complutense de Madrid, Pabellón 5, planta 4. Avda. Complutense s/n, 28040, Madrid, Spain
| | - Christian Vaquero-Yuste
- Departamento de Inmunología, Facultad de Medicina, Universidad Complutense de Madrid, Pabellón 5, planta 4. Avda. Complutense s/n, 28040, Madrid, Spain
| | - Marta Molina-Alejandre
- Departamento de Inmunología, Facultad de Medicina, Universidad Complutense de Madrid, Pabellón 5, planta 4. Avda. Complutense s/n, 28040, Madrid, Spain
| | - Eduardo Fernández-Cruz
- Instituto de Investigaciones Sanitarias Gregorio Marañón, Hospital Gregorio Marañón, Madrid, Spain
| | - José Manuel Martin-Villa
- Departamento de Inmunología, Facultad de Medicina, Universidad Complutense de Madrid, Pabellón 5, planta 4. Avda. Complutense s/n, 28040, Madrid, Spain
| |
Collapse
|
2
|
Arnaiz-Villena A, Suárez-Trujillo F, Palacio-Gruber J, Rodríguez-Sainz C, Fernández-Cruz E, Martín-Villa JM, Fragoso JM. HLA-G in Mayas from Yucatan: An evolutionary approach. Int J Immunogenet 2021; 48:403-408. [PMID: 33797843 DOI: 10.1111/iji.12537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/26/2021] [Accepted: 03/16/2021] [Indexed: 11/27/2022]
Abstract
HLA-G allele frequencies were studied in Yucatán (Mexico) Maya Amerindians by a direct exon DNA sequencing technique. It is described that Mayas are probably one of the first populations together with Olmecs that populated Meso America and that important HLA genetic differences between Mexican and Guatemalan Mayas support that Maya languages were imposed to several neighbouring Amerindian groups. HLA-G*01:01:02, HLA-G*01:01:01 and HLA-G*01:04:01 are the most frequent alleles in this population. It is remarkable that HLA-G*01:05N allele was not found in the population in accordance with similar results found in another Amerindians. Also, protein allele HLA-G*01:04 frequency is found not to differ to those found in another far or close living Amerindians in contrast to other World populations. It seems that while high HLA-G*01:05N frequency is found in Iran and Middle East populations, probably where this allele appeared within an ancestral HLA-A*19 group of alleles haplotype and it is maintained by unknown evolutionary forces, Amerindians do not have a high frequency because a founder effect or because required natural evolutionary forces do not exist in America. Finally, we believe useful to study HLA-G evolution for its physiopathology understanding in addition to the many papers on statistics on HLA-G and in vitro models that are yearly published.
Collapse
Affiliation(s)
- Antonio Arnaiz-Villena
- Department of Immunology, School of Medicine and Instituto de Investigaciones Sanitarias Gregorio Marañón, Hospital Gregorio Marañón, University Complutense, Madrid, Spain
| | - Fabio Suárez-Trujillo
- Department of Immunology, School of Medicine and Instituto de Investigaciones Sanitarias Gregorio Marañón, Hospital Gregorio Marañón, University Complutense, Madrid, Spain
| | - José Palacio-Gruber
- Department of Immunology, School of Medicine and Instituto de Investigaciones Sanitarias Gregorio Marañón, Hospital Gregorio Marañón, University Complutense, Madrid, Spain
| | - Carmen Rodríguez-Sainz
- Department of Immunology, School of Medicine and Instituto de Investigaciones Sanitarias Gregorio Marañón, Hospital Gregorio Marañón, University Complutense, Madrid, Spain
| | - Eduardo Fernández-Cruz
- Department of Immunology, School of Medicine and Instituto de Investigaciones Sanitarias Gregorio Marañón, Hospital Gregorio Marañón, University Complutense, Madrid, Spain
| | - José Manuel Martín-Villa
- Department of Immunology, School of Medicine and Instituto de Investigaciones Sanitarias Gregorio Marañón, Hospital Gregorio Marañón, University Complutense, Madrid, Spain
| | - José Manuel Fragoso
- Department of Molecular Biology, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| |
Collapse
|
3
|
Arnaiz-Villena A, Juarez I, Suarez-Trujillo F, López-Nares A, Vaquero C, Palacio-Gruber J, Martin-Villa JM. HLA-G: Function, polymorphisms and pathology. Int J Immunogenet 2021; 48:172-192. [PMID: 33001562 DOI: 10.1111/iji.12513] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 08/04/2020] [Accepted: 08/27/2020] [Indexed: 12/12/2022]
Abstract
HLA-G immune modulatory genes and molecules are presently being studied by a widespread number of research groups. In the present study, we do not aim to be exhaustive since the number of manuscripts published every year is overwhelming. Instead, our aim is pointing out facts about HLA-G function, polymorphism and pathology that have been confirmed by several different researchers, together with exposing aspects that may have been overlooked or not sufficiently remarked in this productive field of study. On the other hand, we question whether performing mainly studies on HLA-G and disease associations is going to give a clear answer in the future, since 40 years of study of classical HLA molecules association with disease has still given no definite answer on this issue.
Collapse
Affiliation(s)
- Antonio Arnaiz-Villena
- Departamento de Inmunología, Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | - Ignacio Juarez
- Departamento de Inmunología, Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | - Fabio Suarez-Trujillo
- Departamento de Inmunología, Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | - Adrián López-Nares
- Departamento de Inmunología, Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | - Christian Vaquero
- Departamento de Inmunología, Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | - Jose Palacio-Gruber
- Departamento de Inmunología, Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | - Jose M Martin-Villa
- Departamento de Inmunología, Facultad de Medicina, Universidad Complutense, Madrid, Spain
| |
Collapse
|
4
|
Kato F, Ishida Y, Kawakami A, Takasaki T, Saijo M, Miura T, Hishiki T. Evaluation of Macaca radiata as a non-human primate model of Dengue virus infection. Sci Rep 2018; 8:3421. [PMID: 29467430 PMCID: PMC5821881 DOI: 10.1038/s41598-018-21582-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 02/07/2018] [Indexed: 01/07/2023] Open
Abstract
Dengue virus (DENV) causes a wide range of illnesses in humans, including dengue fever and dengue haemorrhagic fever. Current animal models of DENV infection are limited for understanding infectious diseases in humans. Bonnet monkeys (Macaca radiata), a type of Old World monkey, have been used to study experimental and natural infections by flaviviruses, but Old World monkeys have not yet been used as DENV infection models. In this study, the replication levels of several DENV strains were evaluated using peripheral blood mononuclear cells. Our findings indicated that DENV-4 09-48 strain, isolated from a traveller returning from India in 2009, was a highly replicative virus. Three bonnet monkeys were infected with 09-48 strain and antibody responses were assessed. DENV nonstructural protein 1 antigen was detected and high viraemia was observed. These results indicated that bonnet monkeys and 09-48 strain could be used as a reliable primate model for the study of DENV.
Collapse
Affiliation(s)
- Fumihiro Kato
- Laboratory of Primate Model, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan.,Department of Virology 1, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yuki Ishida
- Laboratory of Primate Model, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Akihiko Kawakami
- Laboratory of Primate Model, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Tomohiko Takasaki
- Department of Virology 1, National Institute of Infectious Diseases, Tokyo, Japan.,Kanagawa Prefectural Institute of Public Health, Kanagawa, Japan
| | - Masayuki Saijo
- Department of Virology 1, National Institute of Infectious Diseases, Tokyo, Japan
| | - Tomoyuki Miura
- Laboratory of Primate Model, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Takayuki Hishiki
- Laboratory of Primate Model, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan. .,Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.
| |
Collapse
|
5
|
Arnaiz-Villena A, Enriquez-de-Salamanca M, Palacio-Gruber J, Juarez I, Muñiz E, Nieto J, Campos C, Martin-Villa JM. HLA-G in Amerindians: Epidemiology and Worldwide Population Comparison. ACTA ACUST UNITED AC 2018. [DOI: 10.2174/1874220301805010001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:HLA-G molecules are immunosuppressive and avoid fetal rejection by giving negative signals to maternal immune system from fetal trophoblast cell surface. HLA-G genes have been associated to different pathologies: Spontaneous abortions, autoimmunity, tumor progression, transplant rejection and infection. In addition, different World populations show remarkable different HLA-G allele frequencies in the allele that does not produce a full HLA-G molecule (HLA-G*05N); this allele is almost absent in studied Amerindians.Objectives:The aim is to study HLA-A.-B,-DRB1 and –G alleles and extended haplotypes in Amerindians for the first time. This may be useful to asses HLA-G epidemiology, association to disease and Preventive Medicine in Amerindians.Methods:HLA-A,-B and -DRB1 have been typed by using standard automatic protocols. HLA-G alleles have been detected by direct HLA-G exon 2, exon 3 and exon 4 DNA sequencing. Computer calculations have been done by specific standard methods.Results:HLA-A,-B,-DRB1 and –G extended haplotypes have been calculated in Amerindians for the first time. Also, their HLA-G frequencies have been compared with worldwide populations.Conclusion:Low frequencies of null HLA-G*01:05N allele are found in Amerindians. The extended haplotypes with this allele bear other typical Amerindian HLA-DRB1 alleles and its origin is discussed. HLA-G allele frequency profile is closer to that of Europeans than to that of Far East Asians. Our findings are useful to Preventive Medicine and Epidemiology associated to Fertility and HLA-G associated pathology and transplantation.
Collapse
|
6
|
Arnaiz-Villena A, Ruiz-del-Valle V, Muñiz E, Palacio-Gruber J, Campos C, Gómez-Casado E, Villa JMM, Serrano-Vela I. Major Histocompatibility Complex Allele Persistence in Eurasia and America in the Genus Carduelis (Spinus) During Million Years. THE OPEN ORNITHOLOGY JOURNAL 2017; 10:92-104. [DOI: 10.2174/1874453201710010092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 09/15/2017] [Accepted: 09/20/2017] [Indexed: 10/10/2023]
Abstract
Introduction:GenusCarduelis(Fringillidaefamily) includes goldfinches, siskins, redpolls, greenfinches and crossbills. Many of the species classified within this genus and other related genera have been grouped by using molecular systematics and the mitochondrial cytochrome b (mt cyt b) gene. According to this, the Eurasian siskin (C. spinus)is the only one extant direct ancestor of several North American finches; North American / South American radiations may have been originated by Eurasian siskin (or extinct relative). In the present work, we aim to perform a study of transpecies and transcontinental analyses of MHC (Major Histocompatibility Complex) Class I alleles in several genusCarduelis/Spinusspecies in order to draw evolutionary conclusions in several wild bird species belonging to the genusCarduelis / Spinus.Materials and Methods:Blood was taken from worldwide wild bird species. Passerine phylogeny was done after analysing mtDNA with Maximun Likelihood and Bayesian dendrograms. Major histocompatibility complex alleles were obtained by standard DNA cloning and sequencing.Results:We found two matches between MHC-I DNA alleles from different South American siskins at DNA level. Also, it was observed that the Eurasian siskin shares a protein with pine siskin and another with three South American siskins. Eight South American siskins species also share the same MHC protein. In addition, studied songbirds MHC class I intron 2 is longer than that ofGallus gallus.Conclusion:We have drawn the following conclusions: 1) We present the first direct evidence that “Minimal Essential MHC” does not exist for birds; one of its main definition characters,i.e.: small intron size does not hold for songbirds. 2) We also report that MHC genes transpecies evolution exist in birds by showing also for the first time that worldwide bird species keep the same MHC protein and DNA alleles. 3) New evidences on MHC alleles conservation from EurasianCarduelis spinus(most ancient) to South American siskins (most recent) during million years support that Eurasian siskin is the parental species for American GenusCarduelis (Spinus)species. It is uncertain whether Eurasian siskin (or extant relative) had initially an Holoartic distribution, including America.
Collapse
|
7
|
A distant trophoblast-specific enhancer controls HLA-G expression at the maternal-fetal interface. Proc Natl Acad Sci U S A 2016; 113:5364-9. [PMID: 27078102 DOI: 10.1073/pnas.1602886113] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
HLA-G, a nonclassical HLA molecule uniquely expressed in the placenta, is a central component of fetus-induced immune tolerance during pregnancy. The tissue-specific expression of HLA-G, however, remains poorly understood. Here, systematic interrogation of the HLA-G locus using massively parallel reporter assay (MPRA) uncovered a previously unidentified cis-regulatory element 12 kb upstream of HLA-G with enhancer activity, Enhancer L Strikingly, clustered regularly-interspaced short palindromic repeats (CRISPR)/Cas9-mediated deletion of this enhancer resulted in ablation of HLA-G expression in JEG3 cells and in primary human trophoblasts isolated from placenta. RNA-seq analysis demonstrated that Enhancer L specifically controls HLA-G expression. Moreover, DNase-seq and chromatin conformation capture (3C) defined Enhancer L as a cell type-specific enhancer that loops into the HLA-G promoter. Interestingly, MPRA-based saturation mutagenesis of Enhancer L identified motifs for transcription factors of the CEBP and GATA families essential for placentation. These factors associate with Enhancer L and regulate HLA-G expression. Our findings identify long-range chromatin looping mediated by core trophoblast transcription factors as the mechanism controlling tissue-specific HLA-G expression at the maternal-fetal interface. More broadly, these results establish the combination of MPRA and CRISPR/Cas9 deletion as a powerful strategy to investigate human immune gene regulation.
Collapse
|
8
|
Djurisic S, Hviid TVF. HLA Class Ib Molecules and Immune Cells in Pregnancy and Preeclampsia. Front Immunol 2014; 5:652. [PMID: 25566263 PMCID: PMC4274990 DOI: 10.3389/fimmu.2014.00652] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Accepted: 12/05/2014] [Indexed: 01/14/2023] Open
Abstract
Despite decades of research, the highly prevalent pregnancy complication preeclampsia, “the disease of theories,” has remained an enigma. Indeed, the etiology of preeclampsia is largely unknown. A compiling amount of studies indicates that the pathological basis involves a complex array of genetic predisposition and immunological maladaptation, and that a contribution from the mother, the father, and the fetus is likely to be important. The Human Leukocyte Antigen (HLA)-G is an increasing focus of research in relation to preeclampsia. The HLA-G molecule is primarily expressed by the extravillous trophoblast cells lining the placenta together with the two other HLA class Ib molecules, HLA-E and HLA-F. Soluble isoforms of HLA-G have been detected in the early endometrium, the matured cumulus–oocyte complex, maternal blood of pregnant women, in umbilical cord blood, and lately, in seminal plasma. HLA-G is believed to be involved in modulating immune responses in the context of vascular remodeling during pregnancy as well as in dampening potential harmful immune attacks raised against the semi-allogeneic fetus. In addition, HLA-G genetic variants are associated with both membrane-bound and soluble forms of HLA-G, and, in some studies, with preeclampsia. In this review, a genetic contribution from the mother, the father, and the fetus, together with the presence and function of various immune cells of relevance in pregnancy are reviewed in relation to HLA-G and preeclampsia.
Collapse
Affiliation(s)
- Snezana Djurisic
- Department of Clinical Biochemistry, Centre for Immune Regulation and Reproductive Immunology (CIRRI), Copenhagen University Hospital (Roskilde), University of Copenhagen , Roskilde , Denmark
| | - Thomas Vauvert F Hviid
- Department of Clinical Biochemistry, Centre for Immune Regulation and Reproductive Immunology (CIRRI), Copenhagen University Hospital (Roskilde), University of Copenhagen , Roskilde , Denmark
| |
Collapse
|
9
|
Pratheek BM, Nayak TK, Sahoo SS, Mohanty PK, Chattopadhyay S, Chakraborty NG, Chattopadhyay S. Mammalian non-classical major histocompatibility complex I and its receptors: Important contexts of gene, evolution, and immunity. INDIAN JOURNAL OF HUMAN GENETICS 2014; 20:129-41. [PMID: 25400340 PMCID: PMC4228563 DOI: 10.4103/0971-6866.142855] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
The evolutionary conserved, less-polymorphic, nonclassical major histocompatibility complex (MHC) class I molecules: Qa-1 and its human homologue human leukocyte antigen-E (HLA-E) along with HLA-F, G and H cross-talk with the T-cell receptors and also interact with natural killer T-cells and other lymphocytes. Moreover, these nonclassical MHC molecules are known to interact with CD94/NKG2 heterodimeric receptors to induce immune responses and immune regulations. This dual role of Qa-1/HLA-E in terms of innate and adaptive immunity makes them more interesting. This review highlights the new updates of the mammalian nonclassical MHC-I molecules in terms of their gene organization, evolutionary perspective and their role in immunity.
Collapse
Affiliation(s)
- B M Pratheek
- School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar, Odisha, India
| | - Tapas K Nayak
- School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar, Odisha, India
| | - Subhransu S Sahoo
- School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar, Odisha, India
| | | | - Soma Chattopadhyay
- Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, Odisha, India
| | - Ntiya G Chakraborty
- Department of Medicine, University of Connecticut Health Center, Farmington, USA
| | - Subhasis Chattopadhyay
- School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar, Odisha, India
| |
Collapse
|
10
|
Castelli EC, Ramalho J, Porto IOP, Lima THA, Felício LP, Sabbagh A, Donadi EA, Mendes-Junior CT. Insights into HLA-G Genetics Provided by Worldwide Haplotype Diversity. Front Immunol 2014; 5:476. [PMID: 25339953 PMCID: PMC4186343 DOI: 10.3389/fimmu.2014.00476] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 09/18/2014] [Indexed: 12/12/2022] Open
Abstract
Human leukocyte antigen G (HLA-G) belongs to the family of non-classical HLA class I genes, located within the major histocompatibility complex (MHC). HLA-G has been the target of most recent research regarding the function of class I non-classical genes. The main features that distinguish HLA-G from classical class I genes are (a) limited protein variability, (b) alternative splicing generating several membrane bound and soluble isoforms, (c) short cytoplasmic tail, (d) modulation of immune response (immune tolerance), and (e) restricted expression to certain tissues. In the present work, we describe the HLA-G gene structure and address the HLA-G variability and haplotype diversity among several populations around the world, considering each of its major segments [promoter, coding, and 3′ untranslated region (UTR)]. For this purpose, we developed a pipeline to reevaluate the 1000Genomes data and recover miscalled or missing genotypes and haplotypes. It became clear that the overall structure of the HLA-G molecule has been maintained during the evolutionary process and that most of the variation sites found in the HLA-G coding region are either coding synonymous or intronic mutations. In addition, only a few frequent and divergent extended haplotypes are found when the promoter, coding, and 3′UTRs are evaluated together. The divergence is particularly evident for the regulatory regions. The population comparisons confirmed that most of the HLA-G variability has originated before human dispersion from Africa and that the allele and haplotype frequencies have probably been shaped by strong selective pressures.
Collapse
Affiliation(s)
- Erick C Castelli
- Department of Pathology, School of Medicine of Botucatu, Universidade Estadual Paulista , Botucatu , Brazil
| | - Jaqueline Ramalho
- Department of Pathology, School of Medicine of Botucatu, Universidade Estadual Paulista , Botucatu , Brazil
| | - Iane O P Porto
- Department of Pathology, School of Medicine of Botucatu, Universidade Estadual Paulista , Botucatu , Brazil
| | - Thálitta H A Lima
- Department of Pathology, School of Medicine of Botucatu, Universidade Estadual Paulista , Botucatu , Brazil
| | - Leandro P Felício
- Biological Sciences Institute, Federal University of Goias , Goiânia , Brazil
| | - Audrey Sabbagh
- UMR 216, Institut de Recherche pour le Développement, MERIT , Paris , France ; Faculté de Pharmacie, Université Paris Descartes, Sorbonne Paris Cité , Paris , France
| | - Eduardo A Donadi
- Division of Clinical Immunology, Department of Medicine, School of Medicine of Ribeirão Preto, University of São Paulo , Ribeirão Preto , Brazil
| | - Celso T Mendes-Junior
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, University of São Paulo , Ribeirão Preto , Brazil
| |
Collapse
|
11
|
The repertoire of MHC class I genes in the common marmoset: evidence for functional plasticity. Immunogenetics 2013; 65:841-9. [PMID: 24018468 DOI: 10.1007/s00251-013-0732-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 08/24/2013] [Indexed: 12/23/2022]
Abstract
In humans, the classical antigen presentation function of major histocompatibility complex (MHC) class I molecules is controlled by the human leukocyte antigen HLA -A, HLA-B and HLA-C loci. A similar observation has been made for great apes and Old World monkey species. In contrast, a New World monkey species such as the cotton-top tamarin (Saguinus oedipus) appears to employ the G locus for its classical antigen presentation function. At present, little is known about the classical MHC class I repertoire of the common marmoset (Callithrix jacchus), another New World monkey that is widely used in biomedical research. In the present population study, no evidence has been found for abundant transcription of classical I class genes. However, in each common marmoset, four to seven different G-like alleles were detected, suggesting that the ancestral locus has been subject to expansion. Segregation studies provided evidence for at least two G-like genes present per haplotype, which are transcribed by a variety of cell types. The alleles of these Caja-G genes cluster in separate lineages, suggesting that the loci diversified considerably after duplication. Phylogenetic analyses of the introns confirm that the Caja-G loci cluster in the vicinity of HLA-G, indicating that both genes shared an ancestor. In contrast to HLA-G, Caja-G shows considerable polymorphism at the peptide-binding sites. This observation, together with the lack of detectable transcripts of A and B-like genes, indicates that Caja-G genes have taken over the function of classical class I genes. These data highlight the extreme plasticity of the MHC class I gene system.
Collapse
|
12
|
Arnaiz-Villena A, Enriquez-de-Salamanca M, Areces C, Alonso-Rubio J, Abd-El-Fatah-Khalil S, Fernandez-Honrado M, Rey D. HLA-G(∗)01:05N null allele in Mayans (Guatemala) and Uros (Titikaka Lake, Peru): evolution and population genetics. Hum Immunol 2012; 74:478-82. [PMID: 23261410 DOI: 10.1016/j.humimm.2012.12.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 12/04/2012] [Accepted: 12/07/2012] [Indexed: 10/27/2022]
Abstract
HLA-G molecules seem to have a protective effect for the semi-allogeneic fetus by mother immunosuppression. Also, pregnancy pathologies have been associated to HLA-G(∗)01:05N "null allele". In addition, other general regulatory immune functions have been associated to HLA-G in infections, tumors and autoimmunity. Thus, it is striking that HLA(∗)01:05N allele is maintained in a substantial frequency in certain human populations. In the present work, we have analysed HLA-G allele frequencies in Amerindian Mayans from Guatemala and in Uros from Titikaka Lake "totora" (reed) floating islands (Peru). No HLA-G(∗)01:05N has been found in both of these Amerindian populations. Further studies in Worldwide populations show that the highest HLA-G(∗)01:05 allele frequencies are found in Middle East; these findings have a bearing in future clinical/epidemiological studies in Amerindians. This would suggest that either this area was close to the "null" allele origin (as predicted by us) and/or some evolutive pressures are maintaining these high frequencies in Middle East. However, the fact that Cercopithecinae primate family (primates postulated as distant human ancestors) has also a MHC-G "null" allele in all individuals suggests that this allele may confer some advantage either at maternal/fetal interface or at other immune HLA-G function level (tumors, infections, autoimmunity). Human HLA-G(∗)01:05N may produce HLA-G isoforms, like Cercopithecinae monkeys may, which may suffice for function.
Collapse
Affiliation(s)
- Antonio Arnaiz-Villena
- Department of Immunology, University Complutense, The Madrid Regional Blood Center, Madrid, Spain.
| | | | | | | | | | | | | |
Collapse
|
13
|
Donadi EA, Castelli EC, Arnaiz-Villena A, Roger M, Rey D, Moreau P. Implications of the polymorphism of HLA-G on its function, regulation, evolution and disease association. Cell Mol Life Sci 2010; 68:369-95. [PMID: 21107637 PMCID: PMC3021195 DOI: 10.1007/s00018-010-0580-7] [Citation(s) in RCA: 245] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Accepted: 10/22/2010] [Indexed: 12/27/2022]
Abstract
The HLA-G gene displays several peculiarities that are distinct from those of classical HLA class I genes. The unique structure of the HLA-G molecule permits a restricted peptide presentation and allows the modulation of the cells of the immune system. Although polymorphic sites may potentially influence all biological functions of HLA-G, those present at the promoter and 3′ untranslated regions have been particularly studied in experimental and pathological conditions. The relatively low polymorphism observed in the MHC-G coding region both in humans and apes may represent a strong selective pressure for invariance, whereas, in regulatory regions several lines of evidence support the role of balancing selection. Since HLA-G has immunomodulatory properties, the understanding of gene regulation and the role of polymorphic sites on gene function may permit an individualized approach for the future use of HLA-G for therapeutic purposes.
Collapse
Affiliation(s)
- Eduardo A Donadi
- Division of Clinical Immunology, Department of Medicine, School of Medicine of Ribeirão Preto, University of São Paulo, Av. Bandeirantes, 3900, 14049-900 Ribeirão Preto, SP, Brazil.
| | | | | | | | | | | |
Collapse
|
14
|
Golos TG, Bondarenko GI, Dambaeva SV, Breburda EE, Durning M. On the role of placental Major Histocompatibility Complex and decidual leukocytes in implantation and pregnancy success using non-human primate models. THE INTERNATIONAL JOURNAL OF DEVELOPMENTAL BIOLOGY 2010; 54:431-43. [PMID: 19876826 PMCID: PMC3069127 DOI: 10.1387/ijdb.082797tg] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
While there is broad agreement that interactions of the human maternal immune system with the tissues and cells of the implanting embryo are likely to be critical contributors to pregnancy success, there remains a dearth of information which directly confirms this expectation. Although animal models of reproductive function often provide opportunities for confirming such hypotheses, progress in this area has been sporadic due to limitations of traditional laboratory or agricultural animal models, such as rodents, sheep, pigs and cattle. Many of these limitations derive from divergent modes of implantation and placentation across mammalian species. Over the past decade there has been progress in the development of the nonhuman primate as a model in which to address questions of pregnancy success in the area of immunology. The purpose of this review is to compare available model species, summarize current knowledge and recent progress with an emphasis on experimental in vivo manipulations, and suggest areas available for additional study and growth.
Collapse
Affiliation(s)
- Thaddeus G Golos
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA.
| | | | | | | | | |
Collapse
|
15
|
Holtan SG, Creedon DJ, Haluska P, Markovic SN. Cancer and Pregnancy: Parallels in Growth, Invasion, and Immune Modulation and Implications for Cancer Therapeutic Agents. Mayo Clin Proc 2009. [DOI: 10.4065/84.11.985] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
16
|
Holtan SG, Creedon DJ, Haluska P, Markovic SN. Cancer and pregnancy: parallels in growth, invasion, and immune modulation and implications for cancer therapeutic agents. Mayo Clin Proc 2009; 84:985-1000. [PMID: 19880689 PMCID: PMC2770910 DOI: 10.1016/s0025-6196(11)60669-1] [Citation(s) in RCA: 221] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Many proliferative, invasive, and immune tolerance mechanisms that support normal human pregnancy are also exploited by malignancies to establish a nutrient supply and evade or edit the host immune response. In addition to the shared capacity for invading through normal tissues, both cancer cells and cells of the developing placenta create a microenvironment supportive of both immunologic privilege and angiogenesis. Systemic alterations in immunity are also detectable, particularly with respect to a helper T cell type 2 polarization evident in advanced cancers and midtrimester pregnancy. This review summarizes the similarities between growth and immune privilege in cancer and pregnancy and identifies areas for further investigation. Our PubMed search strategy included combinations of terms such as immune tolerance, pregnancy, cancer, cytokines, angiogenesis, and invasion. We did not place any restrictions on publication dates. The knowledge gained from analyzing similarities and differences between the physiologic state of pregnancy and the pathologic state of cancer could lead to identification of new potential targets for cancer therapeutic agents.
Collapse
Affiliation(s)
| | | | | | - Svetomir N. Markovic
- From the Division of Hematology (S.G.H., S.N.M.), Department of Oncology (S.G.H., P.H., S.N.M.), and Department of Obstetrics and Gynecology (D.J.C.), Mayo Clinic, Rochester, MN
| |
Collapse
|
17
|
Parga-Lozano C, Reguera R, Gomez-Prieto P, Arnaiz-Villena A. Evolution of major histocompatibility complex G and C and natural killer receptors in primates. Hum Immunol 2009; 70:1035-40. [PMID: 19651181 DOI: 10.1016/j.humimm.2009.07.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2009] [Revised: 07/25/2009] [Accepted: 07/28/2009] [Indexed: 10/20/2022]
Abstract
Major histocompatibility complex (MHC)-G and -C molecules bear ligands to natural killer immunoglobulin receptors (KIR). MHC-G evolution in primates shows some anomalies. In New World monkeys MHC-G molecules show a high polymorphism and most likely are classical antigen presenters; they also cluster closer to MHC-E in a relatedness dendrogram. Their genes lack intron 2 deletion, which is typical of all other primates in regard to MHC-G. Medium-sized Eurasian-African monkeys (Cercopithecinae) show stop codons in exon 3: only MHC-G isoforms without exon 3 are possible. Big apes such as the orangutan, gorilla, and chimpanzee as well as human beings show limited HLA-G polymorphism. HLA-C has not been found in medium-size Eurasian-African monkeys, but we have found MHC-C DNA sequences in more evolutionary ancient New World monkeys. Taking into account that the KIR inhibitory receptors signal is dominated by MHC-C in human beings, this suggests that both MHC-C molecules and their ligands within natural killer lymphocyte KIR also exist in the most evolutionary ancient apes (New World monkeys were present on Earth before 40 million years ago), as KIR receptors also appeared before 130 million years ago in evolution. Indeed, KIR receptor genes have recently been found in a New World monkey.
Collapse
Affiliation(s)
- Carlos Parga-Lozano
- Department of Immunology, University Complutense, The Madrid Regional Blood Center, Madrid, Spain
| | | | | | | |
Collapse
|
18
|
Veit TD, Chies JAB. Tolerance versus immune response -- microRNAs as important elements in the regulation of the HLA-G gene expression. Transpl Immunol 2008; 20:229-31. [PMID: 19038339 DOI: 10.1016/j.trim.2008.11.001] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2008] [Revised: 11/03/2008] [Accepted: 11/03/2008] [Indexed: 10/21/2022]
Abstract
HLA-G is a class Ib HLA which has gained much attention due to its multiple functions on the immune system. HLA-G exerts several immunomodulatory effects, being beneficially implicated in embryo implantation and fetal survival but, conversely, being potentially detrimental in tumors and viral infections. Such a two-edged sword behavior suggest that HLA-G expression is under tight regulation. However, to date, little is known about the regulation of this gene and previous works have been unable to well correlate HLA-G regulation at the mRNA level with the polymorphic variants at the genomic level. Here we present the hypothesis that an element, which was until now neglected, might play a role in HLA-G expression regulation: MicroRNAs might participate in the regulation of the HLA-G gene expression through a putative microRNA binding site at its 3' UTR region. Inside the 20 nt region of this microRNA binding site lies a C/G polymorphism, which was shown to be responsible for differential microRNA binding affinity and translation suppression. The role of microRNA binding on the regulation of HLA-G gene expression (and therefore on tolerance versus immune response) can be easily tested through relatively simple steps: Confirming the expression of those three complementary microRNAs in human cells which express HLA-G, followed by examination of the correlation between HLA-G mRNA and protein production controlling for HLA-G genotypes and microRNA levels; finally, selective inhibition of microRNA activity with anti-sense oligos restoring HLA-G production would access microRNA influence on HLA-G expression which, if confirmed, might help in the development of strategies to the management of several conditions in which HLA-G is involved, including pregnancy complications, transplantation, and cancer.
Collapse
Affiliation(s)
- T D Veit
- Genetics Department, Post-Graduation Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | | |
Collapse
|
19
|
A critical look at HLA-G. Trends Immunol 2008; 29:313-21. [DOI: 10.1016/j.it.2008.02.012] [Citation(s) in RCA: 170] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2008] [Revised: 02/04/2008] [Accepted: 02/19/2008] [Indexed: 01/10/2023]
|
20
|
Bondarenko GI, Burleigh DW, Durning M, Breburda EE, Grendell RL, Golos TG. Passive immunization against the MHC class I molecule Mamu-AG disrupts rhesus placental development and endometrial responses. THE JOURNAL OF IMMUNOLOGY 2008; 179:8042-50. [PMID: 18056344 DOI: 10.4049/jimmunol.179.12.8042] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The unique MHC phenotype of the human and nonhuman primate placenta has suggested a potential role in maternal-fetal immune tolerance, pregnancy success, and maternal as well as fetal well-being. In the rhesus monkey (Macaca mulatta) a nonclassical MHC class I molecule, Mamu-AG, is a putative homologue of HLA-G and is hypothesized to play a role in maternal-fetal immune interactions during pregnancy. Rhesus monkeys were passively immunized during the second week after implantation with a mAb against Mamu-AG. Passive immunization altered the growth and vascularization of the fetal placenta, the placental modification of maternal endometrial vessels, the maternal leukocyte response to implantation, and the differentiation of epithelial and stromal cells in the endometrium. These data are the first to demonstrate in vivo the importance of MHC class I molecules expressed on primate trophoblasts in establishing an important environment for pregnancy success through coordinated interactions between endometrial and fetal tissues.
Collapse
Affiliation(s)
- Gennadiy I Bondarenko
- Wisconsin National Primate Research Center and Department of Obstetrics and Gynecology, University of Wisconsin School of Medicine and Public Health, Madison 53715, USA
| | | | | | | | | | | |
Collapse
|
21
|
Arnaiz-Villena A, Serrano-Vela JI, Reguera R, Perez-Saborido B, Moreno E, Moscoso J. A novel allele, HLA-G*010114, with a non-coding DNA base change in exon 2. ACTA ACUST UNITED AC 2008; 71:258-9. [PMID: 18194366 DOI: 10.1111/j.1399-0039.2007.01000.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The non-classical human leucocyte antigen (HLA) class I locus, HLA-G, shows a low protein polymorphism and a more varied DNA (eight proteins and 28 alleles). HLA-G DNA polymorphism accounts mainly for changes at third codon bases of the protein coding exons; this does not imply amino acid change in most cases. This relatively high HLA-G DNA polymorphism in comparison with their protein polymorphism suggests that evolutionary forces are acting upon HLA-G for invariance. This may be related to the immunotolerogenic function postulated for HLA-G.
Collapse
Affiliation(s)
- A Arnaiz-Villena
- Department of Immunology, Universidad Complutense, The Madrid Regional Blood Center, Madrid, Spain.
| | | | | | | | | | | |
Collapse
|
22
|
Apps R, Gardner L, Sharkey AM, Holmes N, Moffett A. A homodimeric complex of HLA-G on normal trophoblast cells modulates antigen-presenting cells via LILRB1. Eur J Immunol 2007; 37:1924-37. [PMID: 17549736 PMCID: PMC2699429 DOI: 10.1002/eji.200737089] [Citation(s) in RCA: 158] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In healthy individuals, the non-classical MHC molecule HLA-G is only expressed on fetal trophoblast cells that invade the decidua during placentation. We show that a significant proportion of HLA-G at the surface of normal human trophoblast cells is present as a disulphide-linked homodimer of the conventional beta(2)m-associated HLA-I complex. HLA-G is a ligand for leukocyte immunoglobulin-like receptors (LILR), which bind much more efficiently to dimeric HLA-G than to conventional HLA-I molecules. We find that a LILRB1-Fc fusion protein preferentially binds the dimeric form of HLA-G on trophoblast cells. We detect LILRB1 expression on decidual myelomonocytic cells; therefore, trophoblast HLA-G may modulate the function of these cells. Co-culture with HLA-G(+) cells does not inhibit monocyte-derived dendritic cell up-regulation of HLA-DR and costimulatory molecules on maturation, but did increase production of IL-6 and IL-10. Furthermore, proliferation of allogeneic lymphocytes was inhibited by HLA-G binding to LILRB1/2 on responding antigen-presenting cells (APC). As HLA-G is the only HLA-I molecule that forms beta(2)m-associated dimers with increased avidity for LILRB1, this interaction could represent a placental-specific signal to decidual APC. We suggest that the placenta is modulating maternal immune responses locally in the uterus through HLA-G, a trophoblast-specific, monomorphic signal present in almost every pregnancy. See accompanying commentary: (http://dx.doi.org/10.1002/eji.200737515).
Collapse
Affiliation(s)
- Richard Apps
- Department of Pathology, Cambridge University, Cambridge, UK
| | | | | | | | | |
Collapse
|
23
|
Moscoso J, Serrano-Vela JI, Perez-Saborido B, Moreno E, Arnaiz-Villena A. A novel HLA-G allele (HLA-G*0108) with an alpha-3 domain amino acid change. ACTA ACUST UNITED AC 2007; 70:171-3. [PMID: 17610427 DOI: 10.1111/j.1399-0039.2007.00862.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
HLA-G non classical class I locus shows a comparatively low polymorphism. It encodes for tolerogenic HLA molecules that may be important in autoimmunity and transplant (and foetal) rejection control. HLA-G molecules give negative signals to Natural Killer and T lymphocytes. In the present paper, a new allele, HLA-G*08, is described, which may be useful for monitoring transplants and for HLA and disease studies.
Collapse
Affiliation(s)
- J Moscoso
- Department of Immunology, Universidad Complutense, Madrid Regional Blood Center, Madrid, Spain
| | | | | | | | | |
Collapse
|
24
|
Guethlein LA, Older Aguilar AM, Abi-Rached L, Parham P. Evolution of killer cell Ig-like receptor (KIR) genes: definition of an orangutan KIR haplotype reveals expansion of lineage III KIR associated with the emergence of MHC-C. THE JOURNAL OF IMMUNOLOGY 2007; 179:491-504. [PMID: 17579070 DOI: 10.4049/jimmunol.179.1.491] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Orangutan (Pongo pygmaeus) MHC-C appears less evolved than human HLA-C: Popy-C is not fixed and its alleles encode only one (C1) of the two motifs for killer cell Ig-like receptor (KIR) ligands. To assess the structure and complexity of the orangutan KIR locus, the complete nucleotide sequence of an orangutan KIR haplotype was determined. The PopyKIR locus is flanked by LILR and FCAR and consists of seven genes and pseudogenes, two novel and five corresponding to known cDNA. Distinguishing all KIRs in this rapidly evolving KIR locus from the KIR3DX1 gene is an LTR33A/MLT1D element in intron 3. These two forms of KIR represent lineages that originated by duplication of a common ancestor. The conserved, framework regions of primate KIR loci comprise the 5' part of a lineage V KIR, the 3' part of a pseudogene, the complete 2DL4 gene, and the 3' part of a lineage II KIR. Although previously defined PopyKIR2DL4 alleles contain premature termination codons, the sequenced haplotype's PopyKIR2DL4 allele encodes a full-length protein. A model for KIR evolution is proposed. Distinguishing the orangutan KIR haplotype from the proposed common ancestor of primate KIR haplotypes is an increased number to give three lineage III KIR genes in the centromeric part of the locus, the site for most human lineage III genes encoding HLA-C specific KIR. Thus, expansion of lineage III KIR is associated with emergence of MHC-C.
Collapse
Affiliation(s)
- Lisbeth A Guethlein
- Department of Structural Biology, and Department of Microbiology and Immunology, School of Medicine, Stanford University, 299 Campus Drive West, Stanford, CA 94305
| | | | | | | |
Collapse
|
25
|
Hviid TVF. HLA-G in human reproduction: aspects of genetics, function and pregnancy complications. Hum Reprod Update 2005; 12:209-32. [PMID: 16280356 DOI: 10.1093/humupd/dmi048] [Citation(s) in RCA: 220] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The non-classical human leukocyte antigen (HLA) class Ib genes, HLA-E, -G and -F, are located on chromosome 6 in the human major histocompatibility complex (MHC). HLA class Ib antigens resemble the HLA class Ia antigens in many ways, but several major differences have been described. This review will, in particular, discuss HLA-G and its role in human reproduction and in the human MHC. HLA-G seems to be important in the modulation of the maternal immune system during pregnancy and thereby the maternal acceptance of the semiallogenic fetus. Recent findings regarding aspects of HLA-G polymorphism, the possible significance of this polymorphism in respect to HLA-G function and certain complications of pregnancy (such as pre-eclampsia and recurrent spontaneous abortions (RSA)) are discussed together with possible importance to IVF. Finally, aspects of a possible role of HLA-G in organ transplantation and in inflammatory or autoimmune disease, and of HLA-G in an evolutionary context, are also briefly examined.
Collapse
|
26
|
Rojo R, Castro MJ, Martinez-Laso J, Serrano-Vela JI, Morales P, Moscoso J, Zamora J, Arnaiz-Villena A. MHC-F DNA sequences in bonobo, gorilla and orangutan. ACTA ACUST UNITED AC 2005; 66:277-83. [PMID: 16185322 DOI: 10.1111/j.1399-0039.2005.00477.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The major histocompatibility complex (MHC)-F class Ib locus shows a limited polymorphism, and the function of its mainly intracellular protein is not clear. We have identified human leucocyte antigen (HLA)-F orthologous DNA sequences in Pongidae in order to study the MHC-F gene evolution and its products' function. HLA-F orthologous cDNA transcripts are found in chimpanzee and in the new primate species studied (bonobo, gorilla and orangutan). Analyses of the predicted amino acid sequences and their comparison with other primate MHC-F proteins show that MHC-F may be a protein with a typical class I structure and that the key residues of the peptide-binding region (PBR) are highly conserved in MHC-F in all studied primates species. Thus, MHC-F conservation along the primate evolution suggests an important role in cellular physiology. It is possible that the MHC-F protein could be involved, together with MHC-G and MHC-E, in the natural killer (NK) cell activity regulation, although rhesus macaque does not express MHC-G and MHC-E orthologues. The evolutionary pathway of the six-base-pair deletion at exon 2 existing in some primates is put forward.
Collapse
Affiliation(s)
- R Rojo
- Department of Inmunologia, H. 12 Octubre, H. Clinico San Carlos, Universidad Complutense, Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Carosella ED, Moreau P, Le Maoult J, Le Discorde M, Dausset J, Rouas-Freiss N. HLA-G Molecules: from Maternal–Fetal Tolerance to Tissue Acceptance. Adv Immunol 2003; 81:199-252. [PMID: 14711057 DOI: 10.1016/s0065-2776(03)81006-4] [Citation(s) in RCA: 253] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Over the past few years, HLA-G, the non-classical HLA class I molecule, has been the center of investigations that have led to the description of its specific structural and functional properties. Although located in the HLA class I region of chromosome six, the HLA-G gene may be distinguished from other HLA class I genes by its low polymorphism and alternative splicing that generates seven HLA-G proteins, whose tissue-distribution is restricted to normal fetal and adult tissues that display a tolerogeneic function toward both innate and acquired immune cells. We review these points, with special emphasis on the role of HLA-G in human pathologies, such as cancer, viral infection, and inflammatory diseases, as well as in organ transplantation.
Collapse
Affiliation(s)
- Edgardo D Carosella
- Service de Recherches en Hémato-Immunologie, Direction des Sciences du Vivant, Département de Recherche Médicale, CEA Commissariat à l'Energie Atomique, Institut Universitaire d'Hématologie, Hôpital Saint-Louis, 75010 Paris, France.
| | | | | | | | | | | |
Collapse
|
28
|
Langat DK, Hunt JS. Do nonhuman primates comprise appropriate experimental models for studying the function of human leukocyte antigen-G? Biol Reprod 2002; 67:1367-74. [PMID: 12390864 DOI: 10.1095/biolreprod.102.005587] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The expression and function of the human major histocompatibility complex (MHC) class Ia genes, human leukocyte antigen (HLA)-A, -B, and -C, is well-established; they are expressed in most nucleated cells and present endogenous peptides to CD8+ T cells. However, MHC class Ib genes are poorly characterized and have unknown functions. In humans, the best-characterized class Ib gene is HLA-G. This gene has a restricted tissue expression of the mRNA and a unique pattern of protein expression; it is expressed mainly in the extravillous cytotrophoblast cells in the placenta. The function of HLA-G is not clear, but its presence at the maternal-fetal interface suggests a role in protection of the semiallogeneic fetus. Whereas functional studies using in vitro models and transgenic mice provide useful insights regarding the potential function of this molecule, in vivo studies cannot be performed in humans. Nonhuman primates that are closely related to humans phylogenetically contain homologues of HLA-G. The MHC-G loci in nonhuman primates appear to have diverged from the human HLA-G. However, in the rhesus monkey (Macaca mulatta) and olive baboon (Papio anubis), a novel class Ia-related locus has been described. This gene encodes glycoproteins with characteristics that resemble those of HLA-G, including restricted tissue distribution, alternative splicing of mRNA, truncated cytoplasmic domain, and limited polymorphism. Thus, this molecule may be the functional homologue of HLA-G, and these two species may comprise appropriate models for elucidating the function of HLA-G.
Collapse
|
29
|
Adams EJ, Cooper S, Parham P. A novel, nonclassical MHC class I molecule specific to the common chimpanzee. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 167:3858-69. [PMID: 11564803 DOI: 10.4049/jimmunol.167.7.3858] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
All expressed human MHC class I genes (HLA-A, -B, -C, -E, -F, and -G) have functional orthologues in the MHC of the common chimpanzee (Pan troglodytes). In contrast, a nonclassical MHC class I gene discovered in the chimpanzee is not present in humans or the other African ape species. In exons and more so in introns, this Patr-AL gene is similar to the expressed A locus in the orangutan, Popy-A, suggesting they are orthologous. Patr-AL/Popy-A last shared a common ancestor with the classical MHC-A locus >20 million years ago. Population analysis revealed little Patr-AL polymorphism: just three allotypes differing only at residues 52 and 91. Patr-AL is expressed in PBMC and B cell lines, but at low level compared with classical MHC class I. The Patr-AL polypeptide is unusually basic, but its glycosylation, association with beta(2)-microglobulin, and antigenicity at the cell surface are like other MHC class I. No Patr-AL-mediated inhibition of polyclonal chimpanzee NK cells was detected. The Patr-AL gene is present in 50% of chimpanzee MHC haplotypes, correlating with presence of a 9.8-kb band in Southern blots. The flanking regions of Patr-AL contain repetitive/retroviral elements not flanking other class I genes. In sequenced HLA class I haplotypes, a similar element is present in the A*2901 haplotype but not the A*0201 or A*0301 haplotypes. This element, 6 kb downstream of A*2901, appears to be the relic of a human gene related to Patr-AL. Patr-AL has characteristics of a class I molecule of innate immunity with potential to provide common chimpanzees with responses unavailable to humans.
Collapse
Affiliation(s)
- E J Adams
- Department of Integrative Biology, University of California, Berkeley, CA 94720, USA.
| | | | | |
Collapse
|
30
|
Castro MJ, Morales P, Martínez-Laso J, Allende L, Rojo-Amigo R, González-Hevilla M, Varela P, Moreno A, García-Berciano M, Arnaiz-Villena A. Evolution of MHC-G in humans and primates based on three new 3'UT polymorphisms. Hum Immunol 2000; 61:1157-63. [PMID: 11137221 DOI: 10.1016/s0198-8859(00)00188-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
MHC-G is a class Ib (non-classical) major histocompatibility complex (MHC) whose functional and evolutionary characteristics are still under scrutiny. The study of noncoding sequences in the MHC genes may provide important phylogenetic information. In this work we have sequenced the MHC-G exon 8, which encodes for the 3'UT region, in different species of primates. It has been shown that: (1) a previously described 14 base pair (bp) deletion polymorphism is human-specific and the HLA-G alleles may be classified according to its absence or presence; (2) another newly described 3 bp deletion/insertion polymorphism is also human-specific; and (3) another newly described 51 bp deletion polymorphism is common to Pongidae and humans, but is not found in other primates belonging to the Cercopithecinae family. A hypothesis on the evolutionary pathway of this gene is put forward in the light of these findings.
Collapse
Affiliation(s)
- M J Castro
- Department of Immunology and Molecular Biology, Hospital "12 de Octubre," Universidad Complutense, Madrid, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Castro MJ, Morales P, Martinez-Laso J, Allende L, Rojo-Amigo R, Gonzalez-Hevilla M, Varela P, Moscoso J, Garcia-Berciano M, Arnaiz-Villena A. Lack of MHC-G4 and soluble (G5, G6) isoforms in the higher primates, Pongidae. Hum Immunol 2000; 61:1164-8. [PMID: 11137222 DOI: 10.1016/s0198-8859(00)00189-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
HLA-G is a class Ib (nonclassical) major histocompatibility complex (MHC) protein expressed at the materno-fetal interface that may inhibit natural killer (NK) cell-mediated lysis in an allotype-independent manner. The human MHC-G transcript is differentially spliced, giving rise to at least six different forms. In order to study the evolutionary importance of this phenomenon, the presence of alternative splicing in MHC-G mRNA molecules from Pongidae (Chimpanzee, Gorilla, and Orangutan) has been investigated in the present work, and three alternative spliced isoforms (i.e.: G1, G2, and G3) have been found, but not the G4 and the soluble G5 and G6 ones. In addition, a novel MHC-G isoform is described in Gorilla, "G2 short." This molecule is similar to the G2 isoform, but it lacks 29 amino acids normally encoded by exon 4. Our findings suggest that soluble isoforms are not necessary for MHC-G function(s) in Pongidae or that MHC-G is not a functional protein, because G1 is not necessary for survival in humans and Cercopithecinae bear stop codons in MHC-G exon 3.
Collapse
Affiliation(s)
- M J Castro
- Department of Immunology and Molecular Biology, Hospital 12 de Octubre, Universidad Complutense, Madrid, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|