1
|
WNT/β-catenin Pathway: a Possible Link Between Hypertension and Alzheimer's Disease. Curr Hypertens Rep 2022; 24:465-475. [PMID: 35788966 DOI: 10.1007/s11906-022-01209-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/14/2022] [Indexed: 11/03/2022]
Abstract
PURPOSE OF REVIEW Recent research has shown that older people with high blood pressure (BP), or hypertension, are more likely to have biomarkers of Alzheimer's disease (AD). Essential hypertension represents the most common cardiovascular disease worldwide and is thought to be responsible for about 13% of all deaths. People with essential hypertension who regularly take prescribed BP medications are half as likely to develop AD as those who do not take them. What then is the connection? RECENT FINDINGS We know that high BP can damage small blood vessels in the brain, affecting those parts that are responsible for memory and thinking. However, the link between AD and hypertension remains unclear. Recent advances in the field of molecular and cellular biology have revealed a downregulation of the canonical WNT/β-catenin pathway in both hypertension and AD. In AD, the glutamate transport function is decreased, a decrease that is associated with a loss of synapse and neuronal death. β-catenin signaling appears to act as a major regulator of glutamate transporters (EAAT and GS) expression and can be harnessed to remove excess glutamate in AD. This review focuses on the possible link between hypertension and AD through the decreased WNT/β-catenin which interacts with the glutamatergic pathway.
Collapse
|
2
|
Zhong B, Ma S, Wang DH. Ablation of TRPV1 Abolishes Salicylate-Induced Sympathetic Activity Suppression and Exacerbates Salicylate-Induced Renal Dysfunction in Diet-Induced Obesity. Cells 2021; 10:1234. [PMID: 34069822 PMCID: PMC8157242 DOI: 10.3390/cells10051234] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/01/2021] [Accepted: 05/14/2021] [Indexed: 11/24/2022] Open
Abstract
Sodium salicylate (SA), a cyclooxygenase inhibitor, has been shown to increase insulin sensitivity and to suppress inflammation in obese patients and animal models. Transient receptor potential vanilloid 1 (TRPV1) is a nonselective cation channel expressed in afferent nerve fibers. Cyclooxygenase-derived prostaglandins are involved in the activation and sensitization of TRPV1. This study tested whether the metabolic and renal effects of SA were mediated by the TRPV1 channel. Wild-type (WT) and TRPV1-/- mice were fed a Western diet (WD) for 4 months and received SA infusion (120mg/kg/day) or vehicle for the last 4 weeks of WD feeding. SA treatment significantly increased blood pressure in WD-fed TRPV1-/- mice (p < 0.05) but not in WD-fed WT mice. Similarly, SA impaired renal blood flow in TRPV1-/- mice (p < 0.05) but not in WT mice. SA improved insulin and glucose tolerance in both WT and TRPV1-/- mice on WD (all p < 0.05). In addition, SA reduced renal p65 and urinary prostaglandin E2, prostaglandin F1α, and interleukin-6 in both WT and TRPV1-/- mice (all p < 0.05). SA decreased urine noradrenaline levels, increased afferent renal nerve activity, and improved baroreflex sensitivity in WT mice (all p < 0.05) but not in TRPV1-/- mice. Importantly, SA increased serum creatinine and urine kidney injury molecule-1 levels and decreased the glomerular filtration rate in obese WT mice (all p < 0.05), and these detrimental effects were significantly exacerbated in obese TRPV1-/- mice (all p < 0.05). Lastly, SA treatment increased urine albumin levels in TRPV1-/- mice (p < 0.05) but not in WT mice. Taken together, SA-elicited metabolic benefits and anti-inflammatory effects are independent of TRPV1, while SA-induced sympathetic suppression is dependent on TRPV1 channels. SA-induced renal dysfunction is dependent on intact TRPV1 channels. These findings suggest that SA needs to be cautiously used in patients with obesity or diabetes, as SA-induced renal dysfunction may be exacerbated due to impaired TRPV1 in obese and diabetic patients.
Collapse
Affiliation(s)
- Beihua Zhong
- Division of Nanomedicine and Molecular Intervention, Department of Medicine, Michigan State University, East Lansing, MI 48824, USA; (B.Z.); (S.M.)
| | - Shuangtao Ma
- Division of Nanomedicine and Molecular Intervention, Department of Medicine, Michigan State University, East Lansing, MI 48824, USA; (B.Z.); (S.M.)
| | - Donna H. Wang
- Division of Nanomedicine and Molecular Intervention, Department of Medicine, Michigan State University, East Lansing, MI 48824, USA; (B.Z.); (S.M.)
- Neuroscience Program, Michigan State University, East Lansing, MI 48824, USA
- Cell and Molecular Biology Program, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
3
|
Espinoza L, Fedorchak S, Boychuk CR. Interplay Between Systemic Metabolic Cues and Autonomic Output: Connecting Cardiometabolic Function and Parasympathetic Circuits. Front Physiol 2021; 12:624595. [PMID: 33776789 PMCID: PMC7991741 DOI: 10.3389/fphys.2021.624595] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 02/12/2021] [Indexed: 12/21/2022] Open
Abstract
There is consensus that the heart is innervated by both the parasympathetic and sympathetic nervous system. However, the role of the parasympathetic nervous system in controlling cardiac function has received significantly less attention than the sympathetic nervous system. New neuromodulatory strategies have renewed interest in the potential of parasympathetic (or vagal) motor output to treat cardiovascular disease and poor cardiac function. This renewed interest emphasizes a critical need to better understand how vagal motor output is generated and regulated. With clear clinical links between cardiovascular and metabolic diseases, addressing this gap in knowledge is undeniably critical to our understanding of the interaction between metabolic cues and vagal motor output, notwithstanding the classical role of the parasympathetic nervous system in regulating gastrointestinal function and energy homeostasis. For this reason, this review focuses on the central, vagal circuits involved in sensing metabolic state(s) and enacting vagal motor output to influence cardiac function. It will review our current understanding of brainstem vagal circuits and their unique position to integrate metabolic signaling into cardiac activity. This will include an overview of not only how metabolic cues alter vagal brainstem circuits, but also how vagal motor output might influence overall systemic concentrations of metabolic cues known to act on the cardiac tissue. Overall, this review proposes that the vagal brainstem circuits provide an integrative network capable of regulating and responding to metabolic cues to control cardiac function.
Collapse
Affiliation(s)
- Liliana Espinoza
- Department of Cellular and Integrative Physiology, Long School of Medicine, University of Texas Health San Antonio, San Antonio, TX, United States
| | - Stephanie Fedorchak
- Department of Cellular and Integrative Physiology, Long School of Medicine, University of Texas Health San Antonio, San Antonio, TX, United States
| | - Carie R Boychuk
- Department of Cellular and Integrative Physiology, Long School of Medicine, University of Texas Health San Antonio, San Antonio, TX, United States
| |
Collapse
|
4
|
Zhong B, Ma S, Wang DH. Ablation of TRPV1 Elevates Nocturnal Blood Pressure in Western Diet-fed Mice. Curr Hypertens Rev 2020; 15:144-153. [PMID: 30381083 PMCID: PMC6635649 DOI: 10.2174/1573402114666181031141840] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 09/24/2018] [Accepted: 10/24/2018] [Indexed: 12/28/2022]
Abstract
Background: This study tested the hypothesis that genetically ablation of transient receptor potential vanilloid type 1 (TRPV1) exacerbates impairment of baroreflex in mice fed a western diet (WD) and leads to distinct diurnal and nocturnal blood pressure patterns. Methods: TRPV1 gene knockout (TRPV1-/-) and wild-type (WT) mice were given a WD or normal diet (CON) for 4 months. Results: Capsaicin, a selective TRPV1 agonist, increased ipsilateral afferent renal nerve activity in WT but not TRPV1-/- mice. The sensitivity of renal sympathetic nerve activity and heart rate responses to baroreflex were reduced in TRPV1-/--CON and WT-WD and further decreased in TRPV1-/--WD compared to the WT-CON group. Urinary norepinephrine and serum insulin and leptin at day and night were increased in WT-WD and TRPV1-/--WD, with further elevation at night in TRPV1-/--WD. WD intake increased leptin, IL-6, and TNF-α in adipose tissue, and TNF-α antagonist III, R-7050, decreased leptin in TRPV1-/--WD. The urinary albumin level was higher in TRPV1-/--WD than WT-WD. Blood pressure was not dif-ferent during daytime among all groups, but increased at night in the TRPV1-/--WD group compared with other groups. Conclusions: TRPV1 ablation leads to elevated nocturnal but not diurnal blood pressure, which is probably attributed to fur-ther enhancement of sympathetic drives at night.
Collapse
Affiliation(s)
- Beihua Zhong
- Division of Nanomedicine and Molecular Intervention, Department of Medicine, Michigan State University, East Lansing, Michigan MI 48824, United States
| | - Shuangtao Ma
- Division of Nanomedicine and Molecular Intervention, Department of Medicine, Michigan State University, East Lansing, Michigan MI 48824, United States
| | - Donna H Wang
- Division of Nanomedicine and Molecular Intervention, Department of Medicine, Michigan State University, East Lansing, Michigan MI 48824, United States.,Neuroscience Program, Michigan State University, East Lansing, Michigan MI 48824, United States.,Cell & Molecular Biology Program, Michigan State University, East Lansing, Michigan MI 48824, United States
| |
Collapse
|
5
|
Madden KM, Feldman B, Meneilly GS. Baroreflex function and postprandial hypotension in older adults. Clin Auton Res 2020; 31:273-280. [PMID: 32062813 DOI: 10.1007/s10286-020-00671-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 02/07/2020] [Indexed: 10/25/2022]
Abstract
PURPOSE Postprandial hypotension (PPH) is a common but poorly understood etiology for fainting in older adults. One potential mechanism is age-related baroreflex dysfunction. We examined baroreflex function in older adults with PPH and without PPH (noPPH) during a standardized meal test. METHODS 57 adults (age ≥ 65; 24 PPH, 33 noPPH, mean age 77.9 ± 0.9 years, 54% female) were recruited and had meal tests performed. The baroreflex effectiveness index (BEI, %) and baroreflex sensitivity (BRS, ms/mm Hg) were calculated using the sequence method. RESULTS Baseline BEI (22 ± 2 versus 23 ± 2 percent, t = - 0.411, p = 0.682) and BRS (14.1 ± 2.4 versus 13.8 ± 2.5 ms/mm of Hg, t = - 0.084, p = 0.933) were similar in PPH and noPPH subjects. During the meal test PPH subjects showed significantly lower BEI as compared to noPPH subjects (time × PPH, F = 2.791, p = 0.042), while there was no difference in the postprandial change in BRS (time, F = 0.618, p = 0.605). CONCLUSION Patients with PPH demonstrated an acute postprandial decrease in baroreflex effectiveness during meal testing as compared with normal subjects, suggesting a potential contributing mechanism for this condition.
Collapse
Affiliation(s)
- Kenneth M Madden
- Gerontology and Diabetes Research Laboratory, Division of Geriatric Medicine, Department of Medicine, University of British Columbia, Vancouver, BC, Canada. .,Centre for Hip Health and Mobility, University of British Columbia, Vancouver, BC, Canada. .,Allan M. McGavin Chair in Geriatric Medicine, Room 7185, Gordon and Leslie Diamond Health Care Centre, 2775 Laurel St., Vancouver, BC, V5Z 1M9, Canada.
| | - Boris Feldman
- Gerontology and Diabetes Research Laboratory, Division of Geriatric Medicine, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Graydon S Meneilly
- Gerontology and Diabetes Research Laboratory, Division of Geriatric Medicine, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
6
|
Abou Ziki MD, Mani A. Wnt signaling, a novel pathway regulating blood pressure? State of the art review. Atherosclerosis 2017; 262:171-178. [PMID: 28522145 PMCID: PMC5508596 DOI: 10.1016/j.atherosclerosis.2017.05.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 04/06/2017] [Accepted: 05/03/2017] [Indexed: 12/18/2022]
Abstract
Recent antihypertensive trials show conflicting results on blood pressure (BP) targets in patient populations with different metabolic profiles, with lowest benefit from tight BP control observed in patients with type 2 diabetes mellitus. This paradox could arise from the heterogeneity of study populations and underscores the importance of precision medicine initiatives towards understanding and treating hypertension. Wnt signaling pathways and genetic variations in its signaling peptides have been recently associated with metabolic syndrome, hypertension and diabetes, generating a breakthrough for advancement of precision medicine in the field of hypertension. We performed a review of PubMed for publications addressing the contributions of Wnt to BP regulation and hypertension. In addition, we performed a manual search of the reference lists for relevant articles, and included unpublished observations from our laboratory. There is emerging evidence for Wnt's role in BP regulation and its involvement in the pathogenesis of hypertension. Wnt signaling has pleiotropic effects on distinct pathways that involve vascular smooth muscle plasticity, and cardiac, renal, and neural physiology. Hypertension is a heterogeneous disease with unique molecular pathways regulating its response to therapy. Recognition of these pathways is a prerequisite to identify novel targets for drug development and personalizing medicine. A review of Wnt signaling reveals its emerging role in BP regulation and as a target for novel drug development that has the potential to transform the therapy of hypertension in specific populations.
Collapse
Affiliation(s)
- Maen D Abou Ziki
- Departments of Internal Medicine and Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Arya Mani
- Departments of Internal Medicine and Genetics, Yale University School of Medicine, New Haven, CT 06510, USA.
| |
Collapse
|
7
|
Alterations in the Medullary Endocannabinoid System Contribute to Age-related Impairment of Baroreflex Sensitivity. J Cardiovasc Pharmacol 2016; 65:473-9. [PMID: 25636077 DOI: 10.1097/fjc.0000000000000216] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
As they age, Sprague-Dawley (SD) rats develop elevated systolic blood pressure associated with impaired baroreflex sensitivity (BRS) for control of heart rate. We previously demonstrated in young hypertensive (mRen2)27 rats that impaired BRS is restored by CB1 cannabinoid receptor blockade in the solitary tract nucleus (NTS), consistent with elevated content of the endocannabinoid 2-arachidonoylglycerol (2-AG) in dorsal medulla relative to normotensive SD rats. There is no effect of CB1 receptor blockade in young SD rats. We now report in older SD rats that dorsal medullary 2-AG levels are 2-fold higher at 70 versus 15 weeks of age (4.22 ± 0.61 vs. 1.93 ± 0.22 ng/mg tissue; P < 0.05). Furthermore, relative expression of CB1 receptor messenger RNA is significantly lower in aged rats, whereas CB2 receptor messenger RNA is significantly higher. In contrast to young adult SD rats, microinjection of the CB1 receptor antagonist SR141716A (36 pmole) into the NTS of older SD rats normalized BRS in animals exhibiting impaired baseline BRS (0.56 ± 0.06 baseline vs. 1.06 ± 0.05 ms/mm Hg after 60 minutes; P < 0.05). Therefore, this study provides evidence for alterations in the endocannabinoid system within the NTS of older SD rats that contribute to age-related impairment of BRS.
Collapse
|
8
|
Cheng PW, Chen YY, Cheng WH, Lu PJ, Chen HH, Chen BR, Yeh TC, Sun GC, Hsiao M, Tseng CJ. Wnt Signaling Regulates Blood Pressure by Downregulating a GSK-3β-Mediated Pathway to Enhance Insulin Signaling in the Central Nervous System. Diabetes 2015; 64:3413-24. [PMID: 25883115 DOI: 10.2337/db14-1439] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2014] [Accepted: 04/08/2015] [Indexed: 11/13/2022]
Abstract
Aberrant Wnt signaling appears to play an important role in the onset of diabetes. Moreover, the insulin signaling pathway is defective in the nucleus tractus solitarii (NTS) of spontaneously hypertensive rats (SHRs) and fructose-fed rats. Nevertheless, the relationships between Wnt signaling and the insulin pathway and the related modulation of blood pressure (BP) in the central nervous system have yet to be established. The aim of this study was to investigate the potential signaling pathways involved in Wnt-mediated BP regulation in the NTS. Pretreatment with the LDL receptor-related protein (LRP) antagonist Dickkopf-1 (DKK1) significantly attenuated the Wnt3a-induced depressor effect and nitric oxide production. Additionally, the inhibition of LRP6 activity using DKK1 significantly abolished Wnt3a-induced glycogen synthase kinase 3β (GSK-3β)(S9), extracellular signal-regulated kinases 1/2(T202/Y204), ribosomal protein S6 kinase(T359/S363), and Akt(S473) phosphorylation; and increased insulin receptor substrate 1 (IRS1)(S332) phosphorylation. GSK-3β was also found to bind directly to IRS1 and to induce the phosphorylation of IRS1 at serine 332 in the NTS. By contrast, administration of the GSK-3β inhibitor TWS119 into the brain decreased the BP of hypertensive rats by enhancing IRS1 activity. Taken together, these results suggest that the GSK-3β-IRS1 pathway may play a significant role in Wnt-mediated central BP regulation.
Collapse
Affiliation(s)
- Pei-Wen Cheng
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Republic of China
| | - Ying-Ying Chen
- Department of Ophthalmology, Kaohsiung Veterans General Hospital, Kaohsiung, Republic of China
| | - Wen-Han Cheng
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Republic of China
| | - Pei-Jung Lu
- Institute of Clinical Medicine, National Cheng Kung University, Tainan, Republic of China
| | - Hsin-Hung Chen
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Republic of China
| | - Bo-Rong Chen
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Republic of China
| | - Tung-Chen Yeh
- Department of Internal Medicine, Division of Cardiology, Kaohsiung Veterans General Hospital, Kaohsiung, Republic of China
| | - Gwo-Ching Sun
- Institute of Clinical Medicine, National Cheng Kung University, Tainan, Republic of China
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica, Taipei, Republic of China
| | - Ching-Jiunn Tseng
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Republic of China Institute of Clinical Medicine, National Yang-Ming University, Taipei, Republic of China Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Republic of China
| |
Collapse
|
9
|
Ribeiro IMR, Ferreira-Neto HC, Antunes VR. Subdiaphragmatic vagus nerve activity and hepatic venous glucose are differentially regulated by the central actions of insulin in Wistar and SHR. Physiol Rep 2015; 3:3/5/e12381. [PMID: 25948821 PMCID: PMC4463817 DOI: 10.14814/phy2.12381] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Glucose is the most important energy substrate for the maintenance of tissues function. The liver plays an essential role in the control of glucose production, since it is able to synthesize, store, and release glucose into the circulation under different situations. Hormones like insulin and catecholamines influence hepatic glucose production (HGP), but little is known about the role of the central actions of physiological doses of insulin in modulating HGP via the autonomic nervous system in nonanesthetized rats especially in SHR where we see a high degree of insulin resistance and metabolic dysfunction. Wistar and SHR received ICV injection of insulin (100 nU/μL) and hepatic venous glucose concentration (HVGC) was monitored for 30 min, as an indirect measure of HGP. At 10 min after insulin injection, HVGC decreased by 27% in Wistar rats, with a negligible change (3%) in SHR. Pretreatment with atropine totally blocked the reduction in HVGC, while pretreatment with propranolol and phentolamine induced a decrease of 8% in HVGC after ICV insulin injection in Wistar. Intracarotid infusion of insulin caused a significant increase in subdiaphragmatic vagus nerve (SVN) activity in Wistar (12 ± 2%), with negligible effects on the lumbar splanchnic sympathetic nerve (LSSN) activity (−6 ± 3%). No change was observed in SVN (−2 ± 2%) and LSSN activities (2 ± 3%) in SHR after ICA insulin infusion. Taken together, these results show, in nonanesthetized animals, the importance of the parasympathetic nervous system in controlling HVGC, and subdiaphragmatic nerve activity following central administration of insulin; a mechanism that is impaired in the SHR.
Collapse
Affiliation(s)
- Izabela Martina R Ribeiro
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo (USP), Sao Paulo, Brazil
| | - Hildebrando C Ferreira-Neto
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo (USP), Sao Paulo, Brazil
| | - Vagner R Antunes
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo (USP), Sao Paulo, Brazil
| |
Collapse
|
10
|
Abraham MA, Filippi BM, Kang GM, Kim MS, Lam TKT. Insulin action in the hypothalamus and dorsal vagal complex. Exp Physiol 2014; 99:1104-9. [DOI: 10.1113/expphysiol.2014.079962] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Mona A. Abraham
- Toronto General Research Institute and Department of Medicine; University Health Network; Toronto Ontario Canada
- Department of Physiology; University of Toronto; Toronto Ontario Canada
| | - Beatrice M. Filippi
- Toronto General Research Institute and Department of Medicine; University Health Network; Toronto Ontario Canada
| | - Gil Myoung Kang
- Asan Medical Center; University of Ulsan College of Medicine; Seoul Republic of Korea
| | - Min-Seon Kim
- Asan Medical Center; University of Ulsan College of Medicine; Seoul Republic of Korea
| | - Tony K. T. Lam
- Toronto General Research Institute and Department of Medicine; University Health Network; Toronto Ontario Canada
- Department of Physiology; University of Toronto; Toronto Ontario Canada
- Asan Medical Center; University of Ulsan College of Medicine; Seoul Republic of Korea
- Department of Medicine; University of Toronto; Toronto Ontario Canada
- Banting and Best Diabetes Centre; University of Toronto; Toronto Ontario Canada
| |
Collapse
|
11
|
Schaich CL, Shaltout HA, Brosnihan KB, Howlett AC, Diz DI. Acute and chronic systemic CB1 cannabinoid receptor blockade improves blood pressure regulation and metabolic profile in hypertensive (mRen2)27 rats. Physiol Rep 2014; 2:2/8/e12108. [PMID: 25168868 PMCID: PMC4246581 DOI: 10.14814/phy2.12108] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
We investigated acute and chronic effects of CB1 cannabinoid receptor blockade in renin‐angiotensin system‐dependent hypertension using rimonabant (SR141716A), an orally active antagonist with central and peripheral actions. In transgenic (mRen2)27 rats, a model of angiotensin II‐dependent hypertension with increased body mass and insulin resistance, acute systemic blockade of CB1 receptors significantly reduced blood pressure within 90 min but had no effect in Sprague‐Dawley rats. No changes in metabolic hormones occurred with the acute treatment. During chronic CB1 receptor blockade, (mRen2)27 rats received daily oral administration of SR141716A (10 mg/kg/day) for 28 days. Systolic blood pressure was significantly reduced within 24 h, and at Day 21 of treatment values were 173 mmHg in vehicle versus 149 mmHg in drug‐treated rats (P < 0.01). This accompanied lower cumulative weight gain (22 vs. 42 g vehicle; P < 0.001), fat mass (2.0 vs. 2.9% of body weight; P < 0.05), and serum leptin (2.8 vs. 6.0 ng/mL; P < 0.05) and insulin (1.0 vs. 1.9 ng/mL; P < 0.01), following an initial transient decrease in food consumption. Conscious hemodynamic recordings indicate twofold increases occurred in spontaneous baroreflex sensitivity (P < 0.05) and heart rate variability (P < 0.01), measures of cardiac vagal tone. The beneficial actions of CB1 receptor blockade in (mRen2)27 rats support the interpretation that an upregulated endocannabinoid system contributes to hypertension and impaired autonomic function in this angiotensin II‐dependent model. We conclude that systemic CB1 receptor blockade may be an effective therapy for angiotensin II‐dependent hypertension and associated metabolic syndrome. Acute and chronic systemic CB1 cannabinoid receptor blockade significantly lowers blood pressure in Angiotensin II‐dependent hypertensive (mRen2)27 rats, with a concomitant positive influence over conscious autonomic blood pressure regulation and metabolic profile. Results from our study indicate novel mechanisms for maintenance of hypertension, metabolic syndrome, and impaired autonomic control of blood pressure associated with upregulation of Angiotensin II signaling.
Collapse
Affiliation(s)
- Chris L Schaich
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, North Carolina Hypertension & Vascular Research Center, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Hossam A Shaltout
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, North Carolina Hypertension & Vascular Research Center, Wake Forest School of Medicine, Winston-Salem, North Carolina Department of Obstetrics & Gynecology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - K Bridget Brosnihan
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, North Carolina Hypertension & Vascular Research Center, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Allyn C Howlett
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, North Carolina Hypertension & Vascular Research Center, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Debra I Diz
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, North Carolina Hypertension & Vascular Research Center, Wake Forest School of Medicine, Winston-Salem, North Carolina
| |
Collapse
|
12
|
Fear conditioning can contribute to behavioral changes observed in a repeated stress model. Behav Brain Res 2012; 233:536-44. [DOI: 10.1016/j.bbr.2012.05.040] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 04/30/2012] [Accepted: 05/22/2012] [Indexed: 02/06/2023]
|
13
|
Diz DI, Arnold AC, Nautiyal M, Isa K, Shaltout HA, Tallant EA. Angiotensin peptides and central autonomic regulation. Curr Opin Pharmacol 2011; 11:131-7. [PMID: 21367658 DOI: 10.1016/j.coph.2011.02.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Accepted: 02/08/2011] [Indexed: 10/18/2022]
Abstract
Aging, hypertension, and fetal-programmed cardiovascular disease are associated with a functional deficiency of angiotensin (Ang)-(1-7) in the brain dorsomedial medulla. The resulting unrestrained activity of Ang II in brainstem regions negatively impacts resting mean arterial pressure, sympathovagal balance, and baroreflex sensitivity for control of heart rate. The differential effects of Ang II and Ang-(1-7) may be related to the cellular sources of these peptides as well as different precursor pathways. Long-term alterations of the brain renin-angiotensin system may influence signaling pathways including phosphoinositol-3-kinase and mitogen-activated protein kinase and their downstream mediators, and as a consequence may influence metabolic function. Differential regulation of signaling pathways in aging and hypertension by Ang II versus Ang-(1-7) may contribute to the autonomic dysfunction accompanying these states.
Collapse
Affiliation(s)
- Debra I Diz
- The Hypertension and Vascular Research Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA.
| | | | | | | | | | | |
Collapse
|
14
|
Cassaglia PA, Hermes SM, Aicher SA, Brooks VL. Insulin acts in the arcuate nucleus to increase lumbar sympathetic nerve activity and baroreflex function in rats. J Physiol 2011; 589:1643-62. [PMID: 21300750 DOI: 10.1113/jphysiol.2011.205575] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Although the central effects of insulin to activate the sympathetic nervous system and enhance baroreflex gain are well known, the specific brain site(s) at which insulin acts has not been identified. We tested the hypotheses that (1) the paraventricular nucleus of the hypothalamus (PVN) and the arcuate nucleus (ArcN) are necessary brain sites and (2) insulin initiates its effects directly in the PVN and/or the ArcN. In α-chloralose anaesthetised female Sprague–Dawley rats, mean arterial pressure (MAP), heart rate (HR) and lumbar sympathetic nerve activity (LSNA) were recorded continuously, and baroreflex gain of HR and LSNA were measured before and during a hyperinsulinaemic–euglycaemic clamp. After 60 min, intravenous infusion of insulin (15 mU kg−1 min−1), but not saline, significantly increased (P < 0.05) basal LSNA (to 228 ± 28% control) and gain of baroreflex control of LSNA (from 3.8 ± 1.1 to 7.4 ± 2.4% control mmHg−1). These effects were reversed (P < 0.05) by local inhibition (bilateral microinjection of musimol) of the PVN (LSNA to 124 ± 8.8% control; LSNA gain to 3.9 ± 1.7% control mmHg−1) or of the ArcN (LSNA in % control: from 100 ± 0 to 198 ± 24 (insulin), then 133 ± 23 (muscimol) LSNA gain in % control mmHg−1: from 3.9 ± 0.3 to 8.9 ± 0.9 (insulin), then 5.1 ± 0.5 (muscimol)). While insulin receptor immunoreactivity was identified in neurons in pre-autonomic PVN subnuclei, microinjection of insulin (0.6, 6 and 60 nU) into the PVN failed to alter LSNA or LSNA gain. However, ArcN insulin increased (P < 0.05) basal LSNA (in % control to 162 ± 19, 0.6 nU; 193 ± 19, 6 nU; and 205 ± 28, 60 nU) and LSNA baroreflex gain (in % control mmHg−1 from 4.3 ± 1.2 to 6.9 ± 1.0, 0.6 nU; 7.7 ± 1.2, 6 nU; and 7.8 ± 1.3, 60 nU). None of the treatments altered MAP, HR, or baroreflex control of HR. Our findings identify the ArcN as the site at which insulin acts to activate the sympathetic nervous system and increase baroreflex gain, via a neural pathway that includes the PVN.
Collapse
Affiliation(s)
- Priscila A Cassaglia
- Oregon Health and Science University, 1381 SW Sam Jackson Park Road - L334, Portland, OR 97239, USA
| | | | | | | |
Collapse
|
15
|
Madden KM, Tedder G, Lockhart C, Meneilly GS. Oral glucose tolerance test reduces arterial baroreflex sensitivity in older adults. Can J Physiol Pharmacol 2008; 86:71-7. [DOI: 10.1139/y07-126] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Although postprandial decreases in blood pressure are a common cause of syncope in the older adult population, the postprandial effects of the oral glucose tolerance test on blood pressure and the arterial baroreflex remain poorly characterized in older adults. Therefore, arterial blood pressure and the arterial baroreflex were studied in 19 healthy older adults (mean age 71.7 ± 1.1 years) who were given a standardized oral glucose load (75 g) or an isovolumetric sham drink during 2 separate sessions. All measures were taken for 120 min after treatment. Baroreflex function was assessed by using the spontaneous baroreflex method (baroreflex sensitivity, BRS). Subjects demonstrated a decrease in BRS after oral glucose that was not seen in the placebo session (two-way analysis of variance, p = 0.04). There was no significant change in systolic, mean, or diastolic blood pressure; together with a drop in BRS, this resulted in a significant tachycardia post glucose (two-way analysis of variance, p < 0.001). We conclude that healthy older adults can successfully maintain blood pressure during an oral glucose tolerance test despite a decrease in arterial BRS. Decreased BRS resulted in a tachycardic response to glucose.
Collapse
Affiliation(s)
- Kenneth M. Madden
- Division of Geriatric Medicine, Department of Medicine, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
- Gordon and Leslie Diamond Health Care Centre, 2775 Laurel Street, Room 7185, Vancouver, BC V5Z 1M9, Canada
| | - Gale Tedder
- Division of Geriatric Medicine, Department of Medicine, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
- Gordon and Leslie Diamond Health Care Centre, 2775 Laurel Street, Room 7185, Vancouver, BC V5Z 1M9, Canada
| | - Chris Lockhart
- Division of Geriatric Medicine, Department of Medicine, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
- Gordon and Leslie Diamond Health Care Centre, 2775 Laurel Street, Room 7185, Vancouver, BC V5Z 1M9, Canada
| | - Graydon S. Meneilly
- Division of Geriatric Medicine, Department of Medicine, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
- Gordon and Leslie Diamond Health Care Centre, 2775 Laurel Street, Room 7185, Vancouver, BC V5Z 1M9, Canada
| |
Collapse
|
16
|
Pricher MP, Freeman KL, Brooks VL. Insulin in the brain increases gain of baroreflex control of heart rate and lumbar sympathetic nerve activity. Hypertension 2007; 51:514-20. [PMID: 18158342 DOI: 10.1161/hypertensionaha.107.102608] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Chronic central administration of insulin increases the gain of baroreflex control of heart rate, but whether baroreflex control of the sympathetic nervous system is similarly affected is unknown. The sites and mechanisms by which brain insulin influences the baroreflex are also unclear. Therefore, the present study tested the hypothesis that acute infusion of insulin into the brain ventricles of urethane-anesthetized rats increases gain of baroreflex control of heart rate and lumbar sympathetic nerve activity and that this action is gender specific. Furthermore, to identify the location within the brain that mediates these effects, insulin was infused into either the lateral ventricle or the fourth ventricle. Lateral ventricular insulin infusion increased the gain of baroreflex control of heart rate (2.1+/-0.3 to 4.0+/-0.6 bpm/mm Hg; P<0.05) and sympathetic activity (2.3+/-0.3% to 4.8+/-1.1% control/mm Hg; P<0.05) within 60 to 90 minutes; however, the increase in heart rate gain was similar in males and females. Increases in the maximum of baroreflex control of heart rate (395+/-10 to 452+/-13 bpm; P<0.05) and of sympathetic activity (156+/-13% to 253+/-22% control; P<0.05) were also observed. In contrast, fourth ventricular insulin infusion failed to alter baroreflex function. In conclusion, increases in brain insulin act acutely in the forebrain to enhance gain of baroreflex control of heart rate and lumbar sympathetic nerve activity.
Collapse
Affiliation(s)
- Mollie P Pricher
- Department of Physiology and Pharmacology, L-334, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, USA
| | | | | |
Collapse
|
17
|
Daubert DL, Chung MY, Brooks VL. Insulin resistance and impaired baroreflex gain during pregnancy. Am J Physiol Regul Integr Comp Physiol 2007; 292:R2188-95. [PMID: 17303682 DOI: 10.1152/ajpregu.00614.2006] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Pregnancy decreases baroreflex gain, but the underlying mechanism is unclear. Insulin resistance, which has been associated with reduced transport of insulin into the brain, is a consistent feature of many conditions exhibiting impaired baroreflex gain, including pregnancy. Therefore, using conscious pregnant and nonpregnant rabbits, we tested the novel hypothesis that the pregnancy-induced impairment in baroreflex gain is due to insulin resistance and reduced brain insulin. Baroreflex gain was determined by quantifying changes in heart rate in response to stepwise steady-state changes in arterial pressure, secondary to infusion of nitroprusside and phenylephrine. We found that insulin sensitivity and baroreflex gain were strongly correlated in nonpregnant and term pregnant rabbits (r2 = 0.59). The decrease in insulin sensitivity and in baroreflex gain exhibited similar time courses throughout pregnancy, reaching significantly lower levels at 3 wk of gestation and remaining reduced at 4 wk (term is 31 days). Treatment of rabbits with the insulin-sensitizing drug rosiglitazone during pregnancy almost completely normalized baroreflex gain. Finally, pregnancy significantly lowered cerebrospinal fluid insulin concentrations. These data identify insulin resistance as a mechanism underlying pregnancy-induced baroreflex impairment and suggest, for the first time in any condition, that decreased brain insulin concentrations may be the link between reductions in peripheral insulin sensitivity and baroreflex gain.
Collapse
Affiliation(s)
- Daisy L Daubert
- Oregon Health & Science University, Department of Physiology and Pharmacology, Portland, Oregon 97239, USA
| | | | | |
Collapse
|
18
|
Huang HN, Lu PJ, Lo WC, Lin CH, Hsiao M, Tseng CJ. In Situ Akt Phosphorylation in the Nucleus Tractus Solitarii Is Involved in Central Control of Blood Pressure and Heart Rate. Circulation 2004; 110:2476-83. [PMID: 15466647 DOI: 10.1161/01.cir.0000145116.75657.2d] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Background—
Previously, we have shown that nitric oxide (NO) plays a significant role in central cardiovascular regulation and modulates the baroreflex in the nucleus tractus solitarii (NTS) of rats. NO production is mediated by activation of NO synthase (NOS). Insulin signaling was involved in controlling peripheral blood pressure via the activation of endothelial NOS. Here, we investigated whether the insulin signal transduction pathway is involved in controlling central cardiovascular effects.
Methods and Results—
Insulin was injected into NTS of urethane-anesthetized male Wistar-Kyoto (WKY) rats. Unilateral microinjection (60 nL) of insulin (100 IU/mL) into the NTS produced prominent depressor and bradycardic effects in 8- and 16-week-old WKY rats. In addition, pretreatment with the phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002 and the NOS inhibitor L-NAME into the NTS caused attenuation of the cardiovascular response evoked by insulin in either 8- or 16-week-old WKY rats. Western blot analysis showed a significant increase (2.6±0.4-fold;
P
<0.05) in Akt phosphorylation after insulin injection, whereas LY294002 abolished the insulin-induced effects. In situ Akt phosphorylation was found in NTS by immunohistochemistry analysis after injection of insulin. This in situ Akt phosphorylation was abolished significantly after injection of LY294002.
Conclusions—
Take together, these results suggest that the insulin-PI3K-Akt-NOS signaling pathway may play a significant role in central cardiovascular regulation.
Collapse
Affiliation(s)
- Hsiao-Ning Huang
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | | | | | | | | | | |
Collapse
|
19
|
Ruggeri P, Molinari C, Brunori A, Cogo CE, Mary DA, Picchio V, Vacca G. The direct effect of insulin on barosensitive neurones in the nucleus tractus solitarii of rats. Neuroreport 2001; 12:3719-22. [PMID: 11726781 DOI: 10.1097/00001756-200112040-00023] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The present investigation was designed to determine the direct effect of insulin on the spontaneous discharge of barosensitive neurones in the nucleus tractus solitarii (NTS) of rats anaesthetized with urethane. Microinjection of 20 nl insulin (10 IU/ml) into NTS decreased the spontaneous discharge of 38 of the 52 units studied (73.1%), and this decrease was augmented by increasing the concentration to 40 IU/ml. Microinjections of insulin vehicle, glucose, hydralazine or phenylephrine did not elicit significant changes in the spontaneous discharge of NTS barosensitive neurones. These results demonstrate that insulin inhibits the spontaneous discharge of barosensitive NTS neurones. They suggest that insulin increases sympathetic nervous activity via a central neural mechanism and may play a role in the modulation of cardiovascular information within the NTS.
Collapse
Affiliation(s)
- P Ruggeri
- Department of Experimental Medicine, Section of Human Physiology, University of Genova, Viale Benedetto XV n.3, 16132 Genova, Italy
| | | | | | | | | | | | | |
Collapse
|
20
|
Grassi G, Seravalle G, Dell'Oro R, Turri C, Bolla GB, Mancia G. Adrenergic and reflex abnormalities in obesity-related hypertension. Hypertension 2000; 36:538-42. [PMID: 11040232 DOI: 10.1161/01.hyp.36.4.538] [Citation(s) in RCA: 187] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Previous studies have shown that essential hypertension and obesity are both characterized by sympathetic activation coupled with a baroreflex impairment. The present study was aimed at determining the effects of the concomitant presence of the 2 above-mentioned conditions on sympathetic activity as well as on baroreflex cardiovascular control. In 14 normotensive lean subjects (aged 33. 5+/-2.2 years, body mass index 22.8+/-0.7 kg/m(2) [mean+/-SEM]), 16 normotensive obese subjects (body mass index 37.2+/-1.3 kg/m(2)), 13 lean hypertensive subjects (body mass index 24.0+/-0.8 kg/m(2)), and 16 obese hypertensive subjects (body mass index 37.5+/-1.3 kg/m(2)), all age-matched, we measured beat-to-beat arterial blood pressure (by Finapres device), heart rate (HR, by ECG), and postganglionic muscle sympathetic nerve activity (MSNA, by microneurography) at rest and during baroreceptor stimulation and deactivation induced by stepwise intravenous infusions of phenylephrine and nitroprusside, respectively. Blood pressure values were higher in lean hypertensive and obese hypertensive subjects than in normotensive lean and obese subjects. MSNA was significantly (P:<0.01) greater in obese normotensive subjects (49.1+/-3.0 bursts per 100 heart beats) and in lean hypertensive subjects (44.5+/-3.3 bursts per 100 heart beats) than in lean normotensive control subjects (32.2+/-2.5 bursts per 100 heart beats); a further increase was detectable in individuals with the concomitant presence of obesity and hypertension (62.1+/-3. 4 bursts per 100 heart beats). Furthermore, whereas in lean hypertensive subjects, only baroreflex control of HR was impaired, in obese normotensive subjects, both HR and MSNA baroreflex changes were attenuated, with a further attenuation being observed in obese hypertensive patients. Thus, the association between obesity and hypertension triggers a sympathetic activation and an impairment in baroreflex cardiovascular control that are greater in magnitude than those found in either of the above-mentioned abnormal conditions alone.
Collapse
Affiliation(s)
- G Grassi
- Clinica Medica, University of Milano-Bicocca, Ospedale San Gerardo, Monza, Milan, Italy
| | | | | | | | | | | |
Collapse
|
21
|
Krowicki ZK, Nathan NA, Hornby PJ. Gastric motor and cardiovascular effects of insulin in dorsal vagal complex of the rat. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 275:G964-72. [PMID: 9815025 DOI: 10.1152/ajpgi.1998.275.5.g964] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Insulin-binding sites exist in the lower brain stem of the rat, raising the possibility that the circulating hormone may have cardiovascular and gastric effects at this site. Therefore, we investigated the autonomic effects of applying rat insulin to the surface of the dorsal medulla (0.3 and 3 microU/rat) or microinjecting it into the dorsal vagal complex (DVC) (0.1-10 nU/site) in anesthetized rats. Application of rat insulin to the surface (3 microU/rat) and its microinjection into the DVC (1 and 10 nU/site) both evoked marked, albeit transient, increases in intragastric pressure, pyloric and greater curvature contractile activity, and blood pressure. Much higher doses of human (100 mU) and porcine insulin (3 mU) were needed to evoke modest changes in gastric motor and cardiovascular function when applied to the surface of the dorsal medulla. In addition, a 1,000-fold higher dose of porcine insulin (10 microU) in the DVC was not enough to mimic the autonomic effects of rat insulin microinjected into the same site. The excitatory gastric motor effects of rat insulin in the lower brain stem were abolished by vagotomy, whereas spinal cord transection blocked insulin-evoked increases in blood pressure. To test whether the gastric motor effects of rat insulin in the lower brain stem were caused by potential contamination with pancreatic polypeptide, we microinjected rat pancreatic polypeptide into the DVC at a single dose of 2 pmol. Only a modest increase in intragastric pressure in response to the hormone was observed. Thus it is likely that insulin, through its action in the lower brain stem, may be implicated in the pathogenesis of gastrointestinal and cardiovascular complications in hyperinsulinemia. In addition, species variations in the amino acid sequence of insulin may affect its biological activity in the brain of different species.
Collapse
Affiliation(s)
- Z K Krowicki
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Medical Center, New Orleans, Louisiana 70112, USA
| | | | | |
Collapse
|