1
|
Treppiccione L, Maurano F, Luongo D, Rossi M. Intragastric administration of transamidated gliadin interferes with the systemic and intestinal immune responses to wheat gliadin in DQ8 transgenic mice. Cytokine 2024; 182:156722. [PMID: 39116536 DOI: 10.1016/j.cyto.2024.156722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/22/2024] [Accepted: 08/01/2024] [Indexed: 08/10/2024]
Abstract
We have previously shown the ability of transamidated gluten (spf) to modulate both innate and adaptive intestinal immunity elicited by wheat gliadin in HLA-DQ8 transgenic mice (DQ8 mice), a model of gluten sensitivity. Herein, we evaluated the influence of spf when administered intragastrically on the immune response to native gliadin in DQ8 mice. To address the issue, we analysed three regimens of antigen administration: before immunisation (pre-treatment), during immunisation (co-treatment) and through breast milk during the lactating phase (suckling treatment). Mice were immunised mucosally by intranasal delivery of digested wheat gliadin along with cholera toxin in multiple doses. After sacrifice, isolated spleen and mesenteric lymph node (MLN) cells were challenged in vitro and the cytokine profile of culture supernatants assessed by ELISA and multiparametric assay. We found that only pre-treatment with spf was effective in down-regulating the gliadin-specific IFN-γ response and only in spleen cells. Interestingly, spf pre-treatment also induced systemic IL-6, IL-17A and TNF-α. By contrast, we found that spf pre-treatment upregulated INF-γ in MLN but also significantly decreased IL-2. In conclusion, our data provide evidence that the preventive intragastric administration of transamidated gluten is able to interfere with the classical cytokine profile induced by gliadin via mucosal immunisation in a transgenic model expressing one of the HLA molecules associated with coeliac disease.
Collapse
Affiliation(s)
| | | | - Diomira Luongo
- Institute of Food Sciences, CNR, via Roma 64, 83100 Avellino, Italy
| | - Mauro Rossi
- Institute of Food Sciences, CNR, via Roma 64, 83100 Avellino, Italy
| |
Collapse
|
2
|
Rossi S, Giordano D, Mazzeo MF, Maurano F, Luongo D, Facchiano A, Siciliano RA, Rossi M. Transamidation Down-Regulates Intestinal Immunity of Recombinant α-Gliadin in HLA-DQ8 Transgenic Mice. Int J Mol Sci 2021; 22:ijms22137019. [PMID: 34209932 PMCID: PMC8268696 DOI: 10.3390/ijms22137019] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/27/2021] [Accepted: 06/28/2021] [Indexed: 11/21/2022] Open
Abstract
Enzymatic transamidation of gliadins by microbial transglutaminase (mTG) inhibits interferon-γ (IFN-γ) secretion by intestinal T cell lines in patients with celiac disease (CD). To gain insight into the cellular mechanisms underlying the down-regulatory effects of transamidation, we tested a single recombinant α-gliadin (r-gliadin) harbouring two immunodominant peptides, p13 (aa. 120–139) and p23 (aa. 220–239), in HLA-DQ8 transgenic mice, a model of gluten sensitivity. Mice were intranasally immunised with r-gliadin or r-gliadin transamidated by mTG (K-r-gliadin) along with cholera toxin, and the response of mesenteric lymph node cells was analysed by cytokine multiplex assay. An in vitro challenge with r-gliadin was characterised by secretion of specific cytokines featuring both innate immunity and the Th1/Th2/Th17 pattern of the adaptive response. Notably, transamidation specifically down-regulated the Th1 response. Structural studies performed on K-r-gliadin confirmed that specific glutamine residues in p13 and p23, previously found to be deamidated by tissue transglutaminase, were also transamidated by mTG. In silico analysis, simulating p13 and p23 peptide binding to HLA-DQ8 showed that these glutamines, in the form of glutamate, could interact by means of salt bridges with peculiar amino acids of the alpha chain of HLA-DQ8, suggesting that their transamidation may influence the HLA-restricted recognition of these peptides. Thus, the structural findings provided a rationale to explain the down-regulation of the r-gliadin-specific Th1 response following transamidation.
Collapse
Affiliation(s)
- Stefano Rossi
- Immunobiology Unit, CNR, Institute of Food Sciences, 83100 Avellino, Italy; (S.R.); (F.M.); (D.L.)
| | - Deborah Giordano
- Bioinformatics and Computational Biology Unit, CNR, Institute of Food Sciences, 83100 Avellino, Italy; (D.G.); (A.F.)
| | - Maria Fiorella Mazzeo
- Proteomics and Biomolecular Mass Spectrometry Center, CNR, Institute of Food Sciences, 83100 Avellino, Italy; (M.F.M.); (R.A.S.)
| | - Francesco Maurano
- Immunobiology Unit, CNR, Institute of Food Sciences, 83100 Avellino, Italy; (S.R.); (F.M.); (D.L.)
| | - Diomira Luongo
- Immunobiology Unit, CNR, Institute of Food Sciences, 83100 Avellino, Italy; (S.R.); (F.M.); (D.L.)
| | - Angelo Facchiano
- Bioinformatics and Computational Biology Unit, CNR, Institute of Food Sciences, 83100 Avellino, Italy; (D.G.); (A.F.)
| | - Rosa Anna Siciliano
- Proteomics and Biomolecular Mass Spectrometry Center, CNR, Institute of Food Sciences, 83100 Avellino, Italy; (M.F.M.); (R.A.S.)
| | - Mauro Rossi
- Immunobiology Unit, CNR, Institute of Food Sciences, 83100 Avellino, Italy; (S.R.); (F.M.); (D.L.)
- Correspondence: ; Tel.: +39-825-299371
| |
Collapse
|
3
|
Vaquero L, Bernardo D, León F, Rodríguez-Martín L, Alvarez-Cuenllas B, Vivas S. Challenges to drug discovery for celiac disease and approaches to overcome them. Expert Opin Drug Discov 2019; 14:957-968. [DOI: 10.1080/17460441.2019.1642321] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Luis Vaquero
- Gastroenterology Unit, University Hospital of León, León, Spain
| | - David Bernardo
- Mucosal Immunology lab, IBGM (University of Valladolid-CSIC), Valladolid, Spain
- Gut Immunology Research Lab, Instituto de Investigación Sanitaria Princesa (IIS-IP) & Centro de Investigación Biomédica en Red de Enfermdades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
| | | | - Laura Rodríguez-Martín
- Gastroenterology Unit, University Hospital of León, León, Spain
- Institute of Biomedicina (IBIOMED), University of León, León, Spain
| | | | - Santiago Vivas
- Gastroenterology Unit, University Hospital of León, León, Spain
- Institute of Biomedicina (IBIOMED), University of León, León, Spain
| |
Collapse
|
4
|
Chander AM, Yadav H, Jain S, Bhadada SK, Dhawan DK. Cross-Talk Between Gluten, Intestinal Microbiota and Intestinal Mucosa in Celiac Disease: Recent Advances and Basis of Autoimmunity. Front Microbiol 2018; 9:2597. [PMID: 30443241 PMCID: PMC6221985 DOI: 10.3389/fmicb.2018.02597] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 10/11/2018] [Indexed: 12/17/2022] Open
Abstract
Celiac disease (CD) is an autoimmune disorder of the small intestine, caused by gluten induced inflammation in some individuals susceptible to genetic and environmental influences. To date, pathophysiology of CD in relation to intestinal microbiota is not known well. This review relies on contribution of intestinal microbiome and oral microbiome in pathogenesis of CD based on their interactions with gluten, thereby highlighting the role of upper gastrointestinal microbiota. It has been hypothesized that CD might be triggered by additive effects of immunotoxic gluten peptides and intestinal dysbiosis (microbial imbalance) in the people with or without genetic susceptibilities, where antibiotics may be deriving dysbiotic agents. In contrast to the intestinal dysbiosis, genetic factors even seem secondary in disease outcome thus suggesting the importance of interaction between microbes and dietary factors in immune regulation at intestinal mucosa. Moreover, association of imbalanced counts of some commensal microbes in intestine of CD patients suggests the scope for probiotic therapies. Lactobacilli and specific intestinal and oral bacteria are potent source of gluten degrading enzymes (glutenases) that may contribute to commercialization of a novel glutenase therapy. In this review, we shall discuss advantages and disadvantages of food based therapies along with probiotic therapies where probiotic therapies are expected to emerge as the safest biotherapies among other in-process therapies. In addition, this review emphasizes on differential targets of probiotics that make them suitable to manage CD as along with glutenase activity, they also exhibit immunomodulatory and intestinal microbiome modulatory properties.
Collapse
Affiliation(s)
- Atul Munish Chander
- Department of Endocrinology, Postgraduate Institute of Medical Education and Research, Chandigarh, India.,Department of Biophysics, Panjab University, Chandigarh, India
| | - Hariom Yadav
- Center for Diabetes, Obesity and Metabolism, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Shalini Jain
- Center for Diabetes, Obesity and Metabolism, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Sanjay Kumar Bhadada
- Department of Endocrinology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | | |
Collapse
|
5
|
|
6
|
Vaquero L, Rodríguez-Martín L, León F, Jorquera F, Vivas S. New coeliac disease treatments and their complications. GASTROENTEROLOGIA Y HEPATOLOGIA 2018; 41:191-204. [PMID: 29422237 DOI: 10.1016/j.gastrohep.2017.12.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 10/28/2017] [Accepted: 12/14/2017] [Indexed: 02/06/2023]
Abstract
The only accepted treatment for coeliac disease is strict adherence to a gluten-free diet. This type of diet may give rise to reduced patient quality of life with economic and social repercussions. For this reason, dietary transgressions are common and may elicit intestinal damage. Several treatments aimed at different pathogenic targets of coeliac disease have been developed in recent years: modification of gluten to produce non-immunogenic gluten, endoluminal therapies to degrade gluten in the intestinal lumen, increased gluten tolerance, modulation of intestinal permeability and regulation of the adaptive immune response. This review evaluates these coeliac disease treatment lines that are being researched and the treatments that aim to control disease complications like refractory coeliac disease.
Collapse
Affiliation(s)
- Luis Vaquero
- Servicio de Aparato Digestivo, Complejo Asistencial Universitario de León, León, España
| | | | | | - Francisco Jorquera
- Servicio de Aparato Digestivo, Complejo Asistencial Universitario de León, León, España; Instituto de Biomedicina (IBIOMED), Universidad de León, León, España
| | - Santiago Vivas
- Servicio de Aparato Digestivo, Complejo Asistencial Universitario de León, León, España; Instituto de Biomedicina (IBIOMED), Universidad de León, León, España.
| |
Collapse
|
7
|
Rossi S, Luongo D, Maurano F, Bergamo P, Rossi M. Immunomodulatory activity of recombinant α-gliadin conjugated to cholera toxin in DQ8 transgenic mice. Immunol Lett 2017; 187:47-52. [PMID: 28511837 DOI: 10.1016/j.imlet.2017.05.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 04/23/2017] [Accepted: 05/05/2017] [Indexed: 01/29/2023]
Abstract
Coeliac disease (CD) is characterized by an intestinal lesion sustained by an abnormal mucosal T-cell response to wheat gliadin. An immunological approach that is able to suppress this immune response is a perspective worth pursuing. Several strategies of antigen administration have been aimed at the downregulation of pathogenic T-cells. In particular, we previously reported a significant suppression of the systemic cell-mediated response toward wheat gliadin in DQ8 transgenic mice receiving nasally a recombinant α-gliadin. To gain further insight about the cellular mechanisms underlying the tolerogenic properties of this molecule, we analysed different preparations of the recombinant α-gliadin, alone or conjugated to the adjuvant cholera toxin (CT), by in vitro challenge with spleen CD4+ T cells from gliadin-sensitized DQ8 tg mice. We found that a partially purified preparation of recombinant α-gliadin (r-gliadin) induced a significantly higher production of IFN-γ than native gliadin as well as HPLC purified r-gliadin. Interestingly, r-gliadin, but not HPLC purified r-gliadin, stimulated the gliadin-specific expression of IL-10 in CD4+ T cells. No significant cytotoxic effect was induced by r-gliadin in MODE-K cells, a murine model of enterocytes. Notably, a conjugate CT-r-gliadin failed in stimulating IFN-γ, whereas IL-10 secretion was still induced in gliadin-specific CD4+ T cells. In conclusion, our results showed that DCs, pulsed with CT-r-gliadin in vitro, could modulate the ongoing Th1-like T cell response toward wheat gliadin. This finding provides new insight into the design of immunomodulatory protocols potentially useful for CD.
Collapse
Affiliation(s)
| | | | | | | | - Mauro Rossi
- Institute of Food Sciences, CNR, Avellino, Italy.
| |
Collapse
|
8
|
Escudero-Hernández C, Peña AS, Bernardo D. Immunogenetic Pathogenesis of Celiac Disease and Non-celiac Gluten Sensitivity. Curr Gastroenterol Rep 2017; 18:36. [PMID: 27216895 DOI: 10.1007/s11894-016-0512-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Celiac disease is the most common oral intolerance in Western countries. It results from an immune response towards gluten proteins from certain cereals in genetically predisposed individuals (HLA-DQ2 and/or HLA-DQ8). Its pathogenesis involves the adaptive (HLA molecules, transglutaminase 2, dendritic cells, and CD4(+) T-cells) and the innate immunity with an IL-15-mediated response elicited in the intraepithelial compartment. At present, the only treatment is a permanent strict gluten-free diet (GFD). Multidisciplinary studies have provided a deeper insight of the genetic and immunological factors and their interaction with the microbiota in the pathogenesis of the disease. Similarly, a better understanding of the composition of the toxic gluten peptides has improved the ways to detect them in food and drinks and how to monitor GFD compliance via non-invasive approaches. This review, therefore, addresses the major findings obtained in the last few years including the re-discovery of non-celiac gluten sensitivity.
Collapse
Affiliation(s)
- Celia Escudero-Hernández
- Mucosal Immunology Laboratory, IBGM, Facultad de Medicina, Dpto. Pediatría e Inmunología, University of Valladolid-Consejo Superior de Investigaciones Científicas, (4th floor) Av. Ramón y Cajal 7, 47005, Valladolid, Spain
| | - Amado Salvador Peña
- VU Medical Center Amsterdam, Laboratory of Immunogenetics, Department of Medical Microbiology and Infection Control, VU University Medical Center, De Boelelaan 1108 Room 10E65, 1081 HZ, Amsterdam, The Netherlands
| | - David Bernardo
- Gastroenterology Unit, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, 28006, Spain.
| |
Collapse
|
9
|
Stein R, Katz D. Celiac Disease. FOODBORNE DISEASES 2017:475-526. [DOI: 10.1016/b978-0-12-385007-2.00024-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
10
|
Bonavita R, Isticato R, Maurano F, Ricca E, Rossi M. Mucosal immunity induced by gliadin-presenting spores of Bacillus subtilis in HLA-DQ8-transgenic mice. Immunol Lett 2015; 165:84-9. [PMID: 25944582 DOI: 10.1016/j.imlet.2015.04.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 04/17/2015] [Accepted: 04/22/2015] [Indexed: 11/16/2022]
Abstract
The induction of mucosal immunity requires efficient antigen delivery and adjuvant systems. Probiotic bacterial strains are considered to be very promising tools to address both of these needs. In particular, Bacillus subtilis spores are currently under investigation as a long-lived, protease-resistant adjuvant system for different antigens. Furthermore, a non-recombinant approach has been developed based on the stable adsorption of antigen on the spore surface. In the present study, we explored this strategy as a means of modulating the immune response to wheat gliadin, the triggering agent of celiac disease (CD), an enteropathy driven by inflammatory CD4(+) T cells. Gliadin adsorption was tested on untreated or autoclaved wild-type (wt) and mutant (cotH or cotE) spores. We found that gliadin was stably and maximally adsorbed by autoclaved wt spores. We then tested the immune properties of the spore-adsorbed gliadin in HLA-DQ8-transgenic mice, which express one of the two HLA heterodimers associated with CD. In vitro, spore-adsorbed gliadin was efficiently taken up by mouse dendritic cells (DCs). Interestingly, gliadin-pulsed DCs efficiently stimulated splenic CD4(+) T cells from mice immunised with spore-adsorbed gliadin. Nasal pre-dosing with spore-adsorbed gliadin failed to down-regulate the ongoing cellular response in gliadin-sensitised DQ8 mice. Notably, naïve mice inoculated intranasally with multiple doses of spore-adsorbed gliadin developed an intestinal antigen-specific CD4(+) T cell-mediated response. In conclusion, our data highlight the ability of spore-adsorbed gliadin to elicit a T-cell response in the gut that could be exploitable for developing immune strategies in CD.
Collapse
Affiliation(s)
| | | | | | - Ezio Ricca
- Department of Biology, Federico II University, Naples, Italy
| | - Mauro Rossi
- Institute of Food Sciences, CNR, Avellino, Italy.
| |
Collapse
|
11
|
Abstract
BACKGROUND Celiac disease (CD) results from an alteration in the oral tolerance to dietary gluten. The response to gluten is normally tightly regulated and involves the secretion of TGF-β and IL-10 from different subtypes of regulatory T cells (Tregs). Interestingly, in addition to proinflammatory cytokines, the inflamed CD mucosa also contains high levels of T cell-derived IL-10 compared with treated CD patients or normal donors. Furthermore, most studies describe an increase in the number of Foxp3+ Tregs in the small intestinal mucosa in CD patients compared to controls. This paradoxical condition suggests that regulatory mechanisms might operate to counterbalance the abnormal gliadin-triggered immune activation in untreated mucosa. Indeed, addition of exogenous IL-10 to mucosal cultures from treated CD patients can suppress gliadin-induced T cell activation. Considering the central role of adaptive immunity in CD, the development of strategies to stimulate these mechanisms is a primary goal of efforts to restore gluten tolerance. Key Messages: Different immunomodulatory strategies have been explored. NexVax2, a desensitizing vaccine that uses three dominant gluten peptides administered subcutaneously to induce a tolerogenic response in CD patients, is under development. Alternatively, the potential of substituted, cyclic or dimeric peptide analogues as blockers to prevent HLA from binding to the immunodominant gliadin epitopes has been demonstrated in vitro. In line with these results, we recently found that modified (transamidated) gliadins influenced the immune response in intestinal biopsy samples from CD patients with overt disease by drastically reducing the production of IFN-γ. Notably, in a mouse model, transamidated gliadins reverted the phenotype of the gliadin-inducible immune response from an inflammatory phenotype to an anti-inflammatory phenotype. CONCLUSIONS Various approaches are currently under investigation to recover gluten tolerance based on the use of both modified and native antigen molecules. More specific studies are now required to test the efficacy of such strategies for preventing CD.
Collapse
Affiliation(s)
- Mauro Rossi
- Institute of Food Sciences, CNR, Avellino, Italy
| |
Collapse
|
12
|
Mooney PD, Hadjivassiliou M, Sanders DS. Emerging drugs for coeliac disease. Expert Opin Emerg Drugs 2014; 19:533-44. [DOI: 10.1517/14728214.2014.959490] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
13
|
Kurppa K, Hietikko M, Sulic AM, Kaukinen K, Lindfors K. Current status of drugs in development for celiac disease. Expert Opin Investig Drugs 2014; 23:1079-91. [PMID: 24806736 DOI: 10.1517/13543784.2014.916274] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
INTRODUCTION Gluten is the main trigger for celiac disease, and the current treatment is based on its elimination from the diet. Although the symptoms usually disappear during the diet, it is restrictive and difficult to maintain. Further, despite a strict treatment the small-bowel mucosal damage does now always heal. Consequently, adherence is often poor and new treatment approaches are needed. With an increased understanding of the disease pathogenesis, several novel treatments have been suggested, and some of them have already entered Phase II clinical trials. AREAS COVERED This article reviews the latest status of the drugs in development for celiac disease. The article focuses mainly on synthetic drugs currently entering in clinical trials. EXPERT OPINION It is anticipated that some of the treatments under investigation will soon enter Phase III clinical trials, although challenges remain. For instance, histological studies are problematic in wide-scale clinical studies. On the other hand, the existing non-invasive serological methods and clinical outcome measures might be too insensitive for monitoring responses to the possible drug candidates. There is also no animal model which would accurately reflect celiac disease. Well-conducted basic and clinical research is required to develop better non-invasive surrogate markers and patient-related outcomes for future pharmacological studies.
Collapse
Affiliation(s)
- Kalle Kurppa
- Tampere Center for Child Health Research, University of Tampere and Tampere University Hospital , Finn Medi 3, Biokatu 10, 33520 Tampere , Finland +358 3 3551 8403 ; +358 3 3551 8402 ;
| | | | | | | | | |
Collapse
|
14
|
Diosdado B, Wijmenga C. Molecular mechanisms of the adaptive, innate and regulatory immune responses in the intestinal mucosa of celiac disease patients. Expert Rev Mol Diagn 2014; 5:681-700. [PMID: 16149872 DOI: 10.1586/14737159.5.5.681] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Celiac disease is a complex genetic disorder that affects the small intestine of genetically predisposed individuals when they ingest gluten, a dietary protein. Although several genome screens have been successful in identifying susceptibility loci in celiac disease, the only genetic contributors identified so far are the human leukocyte antigen (HLA)-DQ2/DQ8 molecules. One of the most important aspects in the pathogenesis of celiac disease is the activation of a T-helper 1 immune response, when the antigen-presenting cells that express HLA-DQ2/DQ8 molecules present the toxic gluten peptides to reactive CD4(+) T-cells. Recently, new insights into the activation of an innate immune response have also been described. It is generally accepted that the immune response triggers destruction of the mucosa in the small intestine of celiac disease patients. Hence, the activation of a detrimental immune response in the intestine of celiac disease patients appears to be key in the initiation and progression of the disease. This review summarizes the immunologic pathways that have been studied in celiac disease thus far, and will point to new potential candidate genes and pathways involved in the etiopathogenesis of celiac disease, which should lead to novel alternatives for diagnosis and treatment.
Collapse
Affiliation(s)
- Begoña Diosdado
- University Medical Centre, Complex Genetics Section, Stratenum 2.117, Department of Biomedical Genetics, PO Box 85060, 3508 AB Utrecht, The Netherlands.
| | | |
Collapse
|
15
|
Marietta EV, Rubio-Tapia A, Murray JA. Using Animal Models of Celiac Disease to Understand the Role of MHC II. CLINICAL GASTROENTEROLOGY 2014. [DOI: 10.1007/978-1-4614-8560-5_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
16
|
Stoven S, Murray JA, Marietta EV. Latest in vitro and in vivo models of celiac disease. Expert Opin Drug Discov 2013; 8:445-57. [PMID: 23293929 DOI: 10.1517/17460441.2013.761203] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Currently, the only treatment for celiac disease is a gluten-free diet, and there is an increased desire for alternative therapies. In vitro and in vivo models of celiac disease have been generated in order to better understand the pathogenesis of celiac disease, and this review will discuss these models as well as the testing of alternative therapies using these models. AREAS COVERED The research discussed describes the different in vitro and in vivo models of celiac disease that currently exist and how they have contributed to our understanding of how gluten can stimulate both innate and adaptive immune responses in celiac patients. We also provide a summary on the alternative therapies that have been tested with these models and discuss whether subsequent clinical trials were done based on these tests done with these models of celiac disease. EXPERT OPINION Only a few of the alternative therapies that have been tested with animal models have gone on to clinical trials; however, those that did go on to clinical trial have provided promising results from a safety standpoint. Further trials are required to determine if some of these therapies may serve as an effective adjunct to a gluten-free diet to alleviate the adverse affects associated with accidental gluten exposure. A "magic-bullet" approach may not be the answer to celiac disease, but possibly a future cocktail of these different therapeutics may allow celiac patients to consume an unrestricted diet.
Collapse
Affiliation(s)
- Samantha Stoven
- Mayo Clinic, Division of Gastroenterology and Hepatology, Mayo Clinic Rochester, Rochester, MN 55905, USA
| | | | | |
Collapse
|
17
|
Gujral N, Freeman HJ, Thomson ABR. Celiac disease: prevalence, diagnosis, pathogenesis and treatment. World J Gastroenterol 2012; 18:6036-59. [PMID: 23155333 PMCID: PMC3496881 DOI: 10.3748/wjg.v18.i42.6036] [Citation(s) in RCA: 411] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Revised: 07/27/2012] [Accepted: 08/03/2012] [Indexed: 02/06/2023] Open
Abstract
Celiac disease (CD) is one of the most common diseases, resulting from both environmental (gluten) and genetic factors [human leukocyte antigen (HLA) and non-HLA genes]. The prevalence of CD has been estimated to approximate 0.5%-1% in different parts of the world. However, the population with diabetes, autoimmune disorder or relatives of CD individuals have even higher risk for the development of CD, at least in part, because of shared HLA typing. Gliadin gains access to the basal surface of the epithelium, and interact directly with the immune system, via both trans- and para-cellular routes. From a diagnostic perspective, symptoms may be viewed as either "typical" or "atypical". In both positive serological screening results suggestive of CD, should lead to small bowel biopsy followed by a favourable clinical and serological response to the gluten-free diet (GFD) to confirm the diagnosis. Positive anti-tissue transglutaminase antibody or anti-endomysial antibody during the clinical course helps to confirm the diagnosis of CD because of their over 99% specificities when small bowel villous atrophy is present on biopsy. Currently, the only treatment available for CD individuals is a strict life-long GFD. A greater understanding of the pathogenesis of CD allows alternative future CD treatments to hydrolyse toxic gliadin peptide, prevent toxic gliadin peptide absorption, blockage of selective deamidation of specific glutamine residues by tissue, restore immune tolerance towards gluten, modulation of immune response to dietary gliadin, and restoration of intestinal architecture.
Collapse
|
18
|
Mukherjee R, Kelly CP, Schuppan D. Nondietary therapies for celiac disease. Gastrointest Endosc Clin N Am 2012; 22:811-31. [PMID: 23083995 DOI: 10.1016/j.giec.2012.09.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Currently, the only available therapy for celiac disease is strict lifelong adherence to a gluten-free diet (GFD). Although safe and effective, the GFD is not ideal. It is frequently expensive, of limited nutritional value, and not readily available in many countries. Consequently, a need exists for novel, nondietary therapies for celiac disease. Based on the current understanding of celiac disease pathogenesis, several potential targets of therapeutic intervention exist. These novel strategies provide promise of alternative, adjunctive treatment options but also raise important questions regarding safety, efficacy, and monitoring of long-term treatment effect.
Collapse
Affiliation(s)
- Rupa Mukherjee
- Department of Medicine, Division of Gastroenterology, The Celiac Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| | | | | |
Collapse
|
19
|
Immune development and intestinal microbiota in celiac disease. Clin Dev Immunol 2012; 2012:654143. [PMID: 23008734 PMCID: PMC3447214 DOI: 10.1155/2012/654143] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Revised: 08/06/2012] [Accepted: 08/13/2012] [Indexed: 01/06/2023]
Abstract
Celiac disease (CD) is an immune-mediated enteropathy, triggered by dietary wheat gluten and similar proteins of barley and rye in genetically susceptible individuals. The etiology of this disorder is complex, involving both environmental and genetic factors. The major genetic risk factor for CD is represented by HLA-DQ genes, which account for approximately 40% of the genetic risk; however, only a small percentage of carriers develop the disease. Gluten is the main environmental factor responsible for the signs and symptoms of the disease, but exposure to gluten does not fully explain the manifestation of CD. Epidemiological and clinical data suggest that environmental factors other than gluten might play a role in disease development, including early feeding practices (e.g., breast milk versus formula and duration of breastfeeding), infections, and alterations in the intestinal microbiota composition. Herein, we review what is known about the influence of dietary factors, exposure to infectious agents, and intestinal microbiota composition, particularly in early life, on the risk of developing CD, as well as the possible dietary strategies to induce or increase gluten tolerance.
Collapse
|
20
|
Osorio C, Wen N, Gemini R, Zemetra R, von Wettstein D, Rustgi S. Targeted modification of wheat grain protein to reduce the content of celiac causing epitopes. Funct Integr Genomics 2012; 12:417-438. [PMID: 22732824 DOI: 10.1007/s10142-012-0287-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Revised: 05/15/2012] [Accepted: 05/28/2012] [Indexed: 12/15/2022]
Abstract
The prolamin peptides in wheat gluten and in the homologous storage proteins of barley and rye cause painful chronic erasure of microvilli of the small intestine epithelium in celiac patients. If untreated, it can lead to chronic diarrhea, abdominal distension, osteoporosis, weight-loss due to malabsorption of nutrients, and anemia. In addition to congenital cases, life-long exposure to gluten proteins in bread and pasta can also induce development of celiac sprue in adults. To date, the only effective treatment is life-long strict abstinence from the staple food grains. Complete exclusion of dietary gluten is, however, difficult due to use of wheat in many foods, incomplete labeling and social constraints. Thus, finding alternative therapies for this most common foodborne disease remained an active area of research, which has led to many suggestions in last few years. The pros and cons associated with these therapies were reviewed in the present communication. As different celiac patients are immunogenic to different members of the undigestible proline/glutamine rich peptides of ~149 gliadins and low molecular weight glutenin subunits as well as the six high molecular weight glutenin subunits, an exhaustive digestion of the immunogenic peptides in the stomach, duodenum, jejunum, and ileum of celiacs is required. In view of the above, we evaluated the capacity of cereal grains to synthesize and store the enzymes prolyl endopeptidase from Flavobacterium meningosepticum and the barley cysteine endoprotease B2, which in combination are capable of detoxifying immunogenic gluten peptides in a novel treatment of celiac disease.
Collapse
Affiliation(s)
- C Osorio
- Department of Crop & Soil Sciences, Washington State University, Pullman, WA 99164, USA
| | | | | | | | | | | |
Collapse
|
21
|
Marietta EV, Murray JA. Animal models to study gluten sensitivity. Semin Immunopathol 2012; 34:497-511. [PMID: 22572887 PMCID: PMC3410984 DOI: 10.1007/s00281-012-0315-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Accepted: 04/19/2012] [Indexed: 12/13/2022]
Abstract
The initial development and maintenance of tolerance to dietary antigens is a complex process that, when prevented or interrupted, can lead to human disease. Understanding the mechanisms by which tolerance to specific dietary antigens is attained and maintained is crucial to our understanding of the pathogenesis of diseases related to intolerance of specific dietary antigens. Two diseases that are the result of intolerance to a dietary antigen are celiac disease (CD) and dermatitis herpetiformis (DH). Both of these diseases are dependent upon the ingestion of gluten (the protein fraction of wheat, rye, and barley) and manifest in the gastrointestinal tract and skin, respectively. These gluten-sensitive diseases are two examples of how devastating abnormal immune responses to a ubiquitous food can be. The well-recognized risk genotype for both is conferred by either of the HLA class II molecules DQ2 or DQ8. However, only a minority of individuals who carry these molecules will develop either disease. Also of interest is that the age at diagnosis can range from infancy to 70-80 years of age. This would indicate that intolerance to gluten may potentially be the result of two different phenomena. The first would be that, for various reasons, tolerance to gluten never developed in certain individuals, but that for other individuals, prior tolerance to gluten was lost at some point after childhood. Of recent interest is the concept of non-celiac gluten sensitivity, which manifests as chronic digestive or neurologic symptoms due to gluten, but through mechanisms that remain to be elucidated. This review will address how animal models of gluten-sensitive disorders have substantially contributed to a better understanding of how gluten intolerance can arise and cause disease.
Collapse
|
22
|
Rashtak S, Murray JA. Review article: coeliac disease, new approaches to therapy. Aliment Pharmacol Ther 2012; 35:768-81. [PMID: 22324389 PMCID: PMC3912561 DOI: 10.1111/j.1365-2036.2012.05013.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Revised: 04/03/2011] [Accepted: 01/18/2012] [Indexed: 02/07/2023]
Abstract
BACKGROUND Coeliac disease is managed by life-long gluten withdrawal from the diet. However, strict adherence to a gluten-free diet is difficult and is not always effective. Novel therapeutic approaches are needed to supplement or even replace the dietary treatment. AIM To review recent advances in new therapeutic options for coeliac disease. METHODS A literature search was performed on MEDLINE, EMBASE, Web of Science, Scopus, DDW.org and ClinicalTrials.gov for English articles and abstracts. The search terms used included, but not limited to, 'Celiac disease', 'new', 'novel', 'Advances', 'alternatives' and 'Drug therapy'. The cited articles were selected based on the relevancy to the review objective. RESULTS Several new therapeutic approaches for coeliac disease are currently under development by targeting its underlying pathogenesis. Alternative therapies range from reproduction of harmless wheat strains to immunomodulatory approaches. Some of these therapies such as enzymatic cleavage of gluten and permeability inhibitors have shown promise in clinical studies. CONCLUSIONS Gluten-free diet is still the only practical treatment for patients with coeliac disease. Novel strategies provide promise of alternative adjunctive approaches to diet restriction alone for patients with this disorder.
Collapse
Affiliation(s)
- S Rashtak
- Celiac Disease Research Program, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | | |
Collapse
|
23
|
Panetta F, Nobili V, Sartorelli MR, Papa RE, Ferretti F, Alterio A, Diamanti A. Celiac disease in pediatric patients with autoimmune hepatitis: etiology, diagnosis, and management. Paediatr Drugs 2012; 14:35-41. [PMID: 22149550 DOI: 10.2165/11593150-000000000-00000] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Celiac disease (CD) is defined as a permanent intolerance to ingested wheat gliadins and other cereal prolamins, occurring in genetically susceptible people. Persistent elevation of serum aminotransferase activity is expression of liver damage related to CD, which occurs in two distinctive forms. The most frequent is a mild asymptomatic liver injury, with a moderate increase of serum aminotransferase activities and a mild inflammatory portal and lobular infiltrate on liver biopsy (celiac hepatitis), reversible on a gluten-free diet (GFD). More rarely, severe and progressive inflammatory liver damage, induced by an autoimmune process and identified as autoimmune hepatitis (AIH), can develop and it is generally unaffected by gluten withdrawal. Surveys that included only pediatric patients report a wide range of prevalence of CD in AIH of 11.5-46% (mean 21.5%). CD and AIH share selected combinations of genes coding for class II human leukocyte antigens, which could explain their coexistence. Increased intestinal permeability and circulation of anti-tissue transglutaminase (tTG) have also been considered as further potential causes of liver damage in CD patients. tTG in the liver and in other extraintestinal tissues could modify other external- or self-antigens and generate different neo-antigens, which are responsible for liver injury in patients with CD. Patients with AIH represent a population at high risk for developing CD; screening for CD should be integrated into the diagnostic routine of all patients with AIH, with or without gastrointestinal manifestations, before starting immunosuppressive treatments. The only currently available treatment for CD is the GFD and the supportive nutritional care for iron, calcium, and vitamin deficiencies. Due to the difficulties of a GFD, in the past decade researchers have become increasingly interested in therapeutic alternatives to continuous or intermittent use of a GFD in patients with CD. Interventions addressed to correct the defect in the intestinal barrier are currently at the most advanced stage of clinical trials. The impact of a GFD on the outcome of AIH is not clear but it seems to be ineffective in the treatment of AIH. The early detection and treatment of CD, however, may prevent progression to end-stage liver failure.
Collapse
Affiliation(s)
- Fabio Panetta
- Gastroenterology, Hepatology and Nutrition Unit, Bambino Ges Childrens Hospital, Rome, Italy
| | | | | | | | | | | | | |
Collapse
|
24
|
Marietta EV, David CS, Murray JA. Important lessons derived from animal models of celiac disease. Int Rev Immunol 2011; 30:197-206. [PMID: 21787225 DOI: 10.3109/08830185.2011.598978] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Several animal models have been recently developed to recapitulate various components of the complex process that is celiac disease. In addition to the increasing diversity of murine models there are now monkey models of celiac disease. Mouse strains and protocols have been developed that are now just beginning to address the complex interactions among the innate and adaptive immune responses to gluten, as well as gluten-dependent autoimmunity in celiac disease. The most important conclusion that these models have provided us with so far is that while all three components (innate gluten sensitivity, adaptive gluten sensitivity, and autoimmunity) are independent phenomena, all are necessary for celiac disease to develop.
Collapse
Affiliation(s)
- E V Marietta
- Department of Immunology, Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine, Rochester, Minnesota 55905, USA
| | | | | |
Collapse
|
25
|
Marietta EV, Rashtak S, Pittelkow MR. Experiences with animal models of dermatitis herpetiformis: a review. Autoimmunity 2011; 45:81-90. [PMID: 21929335 DOI: 10.3109/08916934.2011.606449] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Dermatitis herpetiformis (DH) is caused by the consumption of gluten, which is also the trigger for celiac disease. DH is currently considered to be the skin manifestation of celiac disease, as both diseases have some degree of gluten-sensitive enteropathy. The human leukocyte antigens class II genes, DQ2 and DQ8, are tightly associated with both diseases, and there is an increased level of anti-gliadin antibodies in both diseases. Animal models of gluten sensitivity have been used to better understand the pathogenesis of both diseases. This paper describes these different models and discusses how certain elements of these models contribute to the development of DH.
Collapse
Affiliation(s)
- Eric V Marietta
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA.
| | | | | |
Collapse
|
26
|
Donnelly SC, Ellis HJ, Ciclitira PJ. Pharmacotherapy and management strategies for coeliac disease. Expert Opin Pharmacother 2011; 12:1731-44. [PMID: 21718231 DOI: 10.1517/14656566.2011.592140] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Coeliac disease is a common disease that affects approximately 1% of Northern European and American populations. Evidence suggests it is caused by an inappropriate immune response in genetically susceptible patients to dietary gluten found in wheat, rye, barley and, in a small minority of patients, oats. Treatment involves a lifelong gluten-free diet. This diet limits nutritional variety and is costly and difficult to maintain. AREAS COVERED This review covers the current treatment options available and discusses novel emerging therapies for coeliac disease. EXPERT OPINION Novel therapies are still in early stages of development and therefore, at present, a gluten-free diet remains the treatment of choice in coeliac disease due to its low side-effect profile. A replacement for a gluten-free diet would be superior to an adjunct; in this case dietary modification of gluten may well have the least side effects, be tolerated by a wider group of coeliac patients and therefore be accepted. Search terms used: Pubmed, Medline and clinicaltrials.gov were searched with 'celiac disease' and 'therapy' as MESH terms. Patent database was searched using the term 'celiac disease'. Conference attendance at DDW Chicago 2011 and Columbia 2010 was also used to gain further information from conference abstracts.
Collapse
Affiliation(s)
- Suzanne C Donnelly
- King's College London, Division of Nutrition and Diabetes, The Rayne Institute, St Thomas' Hospital, Gastroenterology Laboratory, 4th Floor Lambeth Wing, London, SE1 7EH, UK
| | | | | |
Collapse
|
27
|
Prevention measures and exploratory pharmacological treatments of celiac disease. Am J Gastroenterol 2010; 105:2551-61; quiz 2562. [PMID: 20877349 DOI: 10.1038/ajg.2010.372] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Increasing prevalence, protean clinical manifestations, and lack of pharmacological therapy make celiac disease (CD) a complex and highly relevant illness in gastroenterology. This chronic inflammatory disorder of the small intestine is caused by the ingestion of gluten containing cereals in genetically susceptible individuals, leading to a variety of gastrointestinal (GI) and non-GI manifestations. Awareness among physicians is growing due to accessible and highly accurate diagnostic and screening methods. Recent evidence suggests a possible rising incidence of CD. Environmental factors such as early life gluten exposure, intestinal infections, short duration of breast-feeding, and changes in intestinal microbiota have been proposed to have a role in CD pathogenesis. Thus, prevention approaches to diminish the rising prevalence of CD are currently being evaluated. Still, the cornerstone treatment of CD remains a strict gluten-free diet. This nutritional regime is demanding, and non-adherence is common because of social isolation, financial issues, or restriction of food diversity. Allowing patients to occasionally consume small amounts of gluten would greatly improve their quality of life. Owing to recent advances in the understanding of the pathogenesis of CD, different targets have been identified and have motivated the development of several experimental therapeutic strategies. The main goal of this review is to discuss the mechanisms that can be exploited therapeutically to prevent or delay CD, disease associations and its complications. Current treatments for complications of CD, including refractory CD and malignancy, are beyond the scope of this review.
Collapse
|
28
|
Anton G, Peltecu G, Socolov D, Cornitescu F, Bleotu C, Sgarbura Z, Teleman S, Iliescu D, Botezatu A, Goia CD, Huica I, Anton AC. Type-specific human papillomavirus detection in cervical smears in Romania. APMIS 2010:1-19. [PMID: 21143521 PMCID: PMC3132448 DOI: 10.1111/j.1600-0463.2011.02765.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
To study type 1 diabetes (T1D), excellent animal models exist, both spontaneously diabetic and virus-induced. Based on knowledge from these, this review focuses on the environmental factors leading to T1D, concentrated into four areas which are: (1) The thymus-dependent immune system: T1D is a T cell driven disease and the beta cells are destroyed in an inflammatory insulitis process. Autoimmunity is breakdown of self-tolerance and the balance between regulator T cells and aggressive effector T cells is disturbed. Inhibition of the T cells (by e.g. anti-CD3 antibody or cyclosporine) will stop the T1D process, even if initiated by virus. Theoretically, the risk from immunotherapy elicits a higher frequency of malignancy. (2) The activity of the beta cells: Resting beta cells display less antigenicity and are less sensitive to immune destruction. Beta-cell rest can be induced by giving insulin externally in metabolic doses or by administering potassium-channel openers. Both procedures prevent T1D in animal models, whereas no good human data exist due to the risk of hypoglycemia. (3) NKT cells: According to the hygiene hypothesis, stimulation of NKT cells by non-pathogen microbes gives rise to less T cell reaction and less autoimmunity. Glycolipids presented by CD1 molecules are central in this stimulation. (4) Importance of the intestine and gliadin intake: Gluten-free diet dramatically inhibits T1D in animal models, and epidemiological data are supportive of such an effect in humans. The mechanisms include less subclinical intestinal inflammation and permeability, and changed composition of bacterial flora, which can also be obtained by intake of probiotics. Gluten-free diet is difficult to implement, and short-term intake has no effect. Regarding the onset of the T1D disease process, slow-acting enterovirus and gliadin deposits are speculated to be etiological in genetically susceptible individuals, followed by the mentioned four pathogenetic factors acting in concert. Neutralization of any one of these factors is capable of stopping T1D development, as lessons are learned from the animal models.
Collapse
Affiliation(s)
- Gabriela Anton
- "Stefan S. Nicolau" Institute of Virology, Bucharest, Romania.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
Celiac disease is an inflammatory disorder of the small intestine, triggered by the ingestion of gluten proteins contained in wheat, barley or rye, in genetically susceptible individuals. This disorder is considered to be mainly mediated by cellular immunity and restricted to the human leucocyte antigen-DQ presentation of gluten-derived toxic peptides to T-cells. Moreover, the involvement of innate immunity has been recently demonstrated to be necessary also for the development of intestinal tissue damage. Genetic susceptibility accounts for an uncertain proportion of the disease risk and gluten introduction works as the precipitating factor. However, currently, the research interest is also focused on environmental factors and gene–environment interactions, especially during the first months of life, which might help explain the onset of the disease. Infectious and dietary factors that could modulate the immune response orientating it either towards tolerance or intolerance/autoimmunity are the focus of primary attention. A significant number of studies have looked into the protective effect of breast-feeding against the disease. It is generally accepted that breast-feeding during the introduction of dietary gluten and increasing the duration of breast-feeding are associated with reduced risk of developing celiac disease. However, it is still not fully established whether breast-feeding truly protects with permanent tolerance acquisition or only reduces the symptoms and delays the diagnosis. Moreover, the timing and dose of gluten introduction also seem to be relevant and long-term prospective cohort studies are being carried out in order to elucidate its role in celiac disease development.
Collapse
|
30
|
Pereira SV, Raba J, Messina GA. IgG anti-gliadin determination with an immunological microfluidic system applied to the automated diagnostic of the celiac disease. Anal Bioanal Chem 2010; 396:2921-7. [DOI: 10.1007/s00216-010-3589-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2009] [Revised: 02/14/2010] [Accepted: 02/15/2010] [Indexed: 02/06/2023]
|
31
|
Schuppan D, Junker Y, Barisani D. Celiac disease: from pathogenesis to novel therapies. Gastroenterology 2009; 137:1912-1933. [PMID: 19766641 DOI: 10.1053/j.gastro.2009.09.008] [Citation(s) in RCA: 421] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Revised: 09/02/2009] [Accepted: 09/11/2009] [Indexed: 02/08/2023]
Abstract
Celiac disease has become one of the best-understood HLA-linked disorders. Although it shares many immunologic features with inflammatory bowel disease, celiac disease is uniquely characterized by (1) a defined trigger (gluten proteins from wheat and related cereals), (2) the necessary presence of HLA-DQ2 or HLA-DQ8, and (3) the generation of circulating autoantibodies to the enzyme tissue transglutaminase (TG2). TG2 deamidates certain gluten peptides, increasing their affinity to HLA-DQ2 or HLA-DQ8. This generates a more vigorous CD4(+) T-helper 1 T-cell activation, which can result in intestinal mucosal inflammation, malabsorption, and numerous secondary symptoms and autoimmune diseases. Moreover, gluten elicits innate immune responses that act in concert with the adaptive immunity. Exclusion of gluten from the diet reverses many disease manifestations but is usually not or less efficient in patients with refractory celiac disease or associated autoimmune diseases. Based on the advanced understanding of the pathogenesis of celiac disease, targeted nondietary therapies have been devised, and some of these are already in phase 1 or 2 clinical trials. Examples are modified flours that have been depleted of immunogenic gluten epitopes, degradation of immunodominant gliadin peptides that resist intestinal proteases by exogenous endopeptidases, decrease of intestinal permeability by blockage of the epithelial ZOT receptor, inhibition of intestinal TG2 activity by transglutaminase inhibitors, inhibition of gluten peptide presentation by HLA-DQ2 antagonists, modulation or inhibition of proinflammatory cytokines, and induction of oral tolerance to gluten. These and other experimental therapies will be discussed critically.
Collapse
Affiliation(s)
- Detlef Schuppan
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA.
| | | | | |
Collapse
|
32
|
Marietta EV, Schuppan D, Murray JA. In vitroand in vivomodels of celiac disease. Expert Opin Drug Discov 2009; 4:1113-1123. [DOI: 10.1517/17460440903307417] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
33
|
Verdu EF, Armstrong D, Murray JA. Between celiac disease and irritable bowel syndrome: the "no man's land" of gluten sensitivity. Am J Gastroenterol 2009; 104:1587-94. [PMID: 19455131 PMCID: PMC3480312 DOI: 10.1038/ajg.2009.188] [Citation(s) in RCA: 216] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The repertoire of gastrointestinal (GI) symptoms is finite; however, the etiologies and mechanisms underlying symptom generation and perception are diverse and, in many cases, unknown. This review examines the clinical and experimental evidence exploring the putative relationship between gluten sensitivity (GS) and the generation of GI symptoms. It explores the hypothesis that, in a proportion of patients, GS causes functional bowel disorder (FBD)-like symptoms. We propose a model for investigating and understanding the induction of GI symptoms and dysfunction by gluten in FBD and organic disease. We hypothesize that, even in the absence of fully developed celiac disease, gluten can induce symptoms similar to FBD. We discuss the hypothesis that GS and post-infectious irritable bowel syndrome (IBS) provide two triggers that can explain at least part of the spectrum that constitutes IBS, further advancing an understanding of the role of mucosal responses to luminal factors in FBDs. We propose that the animal model of GS in human leukocyte antigen (HLA)- DQ8 mice allows investigation of mucosal pathophysiological changes that occur before the onset of full-blown inflammation in a GS host. A better understanding of how gluten can cause symptoms in sensitive individuals will illuminate the interaction between host genotype, diet, and intestinal microbiota in generating one of the most common GI conditions.
Collapse
Affiliation(s)
- Elena F. Verdu
- Farncombe Family Digestive Health Research Institute, Department of Medicine, McMaster University , Hamilton , Canada
| | - David Armstrong
- Farncombe Family Digestive Health Research Institute, Department of Medicine, McMaster University , Hamilton , Canada
| | - Joseph A. Murray
- Division of Gastroenterology , Mayo Clinic , Rochester , Minnesota , USA
| |
Collapse
|
34
|
Lerner A. New therapeutic strategies for celiac disease. Autoimmun Rev 2009; 9:144-7. [PMID: 19427921 DOI: 10.1016/j.autrev.2009.05.002] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2009] [Accepted: 05/03/2009] [Indexed: 01/28/2023]
Abstract
Celiac disease is an autoimmune condition affecting genetically susceptible individuals, characterized by inflammatory damage to the small intestine following ingestion of wheat gluten or barley and rye products. The only life-long treatment is strict gluten-free diet which is difficult personally and socially, affects quality of life, not widely available, more expensive, with lower palatability, resulting in low compliance. No doubt, there is therefore an urgent need for alternative therapeutic modalities. Based on the increasing knowledge on the sequential pathophysiological events driving the intestinal inflammatory cascade, new attractive and potential therapies were starting to immerge: selecting, changing, degrading, manipulating or binding the dietary toxic environmental factors, decreasing intestinal permeability toward gluten or blocking the deamination of gluten by inhibiting tissue transglutaminase or the HLA-DQ presenting groove by carefully designed false peptide, shifting the typical Th1 to Th2 inflammatory reaction or antagonizing major proinflammatory cytokines, enhancing regulatory immune function or developing preventive vaccines, blocking adhesion molecule, inducing gluten oral or intranasal tolerance or applying epithelial repairing mitogens to oppose the mucosal destruction. Safety, effectiveness, cost and affordability are prime issues to consider. Some modalities have shown promising results in vitro. Future will show who will win the race.
Collapse
Affiliation(s)
- Aaron Lerner
- Pediatric Gastroenterology and Nutrition Unit, Carmel Medical Center, B. Rappaport School of Medicine, 7, Michal St., Technion-Israel Institute of Technology, Haifa, 34362, Israel.
| |
Collapse
|
35
|
Ciccocioppo R, Rossi M, Pesce I, Ricci G, Millimaggi D, Maurano F, Corazza GR. Effects of gliadin stimulation on bone marrow-derived dendritic cells from HLA-DQ8 transgenic MICE. Dig Liver Dis 2008; 40:927-35. [PMID: 18567549 DOI: 10.1016/j.dld.2008.05.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2007] [Revised: 04/26/2008] [Accepted: 05/05/2008] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND AIM Gliadin presentation by HLA-DQ2/8 molecules to T cells plays a crucial role in triggering the inflammatory cascade in coeliac disease. We aimed to study the immunological effects of gliadin stimulation on dendritic cells (DCs) from HLA-DQ8 transgenic and BALB/c mice. METHODS Bone marrow-derived DCs were stimulated with alpha-chymotrypsin-digested gliadin or ovoalbumin (100 microg/ml). Modification of DC maturation, through HLA-DQ8 and MHC class II expression, and activation, by CD80 and CD86, was assessed by flow cytometry. The ability of pulsed and unpulsed DCs to prime T cells was evaluated by mixed leucocyte reaction. The expression of interleukin-4, -10, -12p70 and interferon-alpha, as well as of Toll-like receptor-4, -7, -8, -9 was determined by ELISA and real-time RT-PCR, respectively. RESULTS Gliadin stimulation induced DC maturation (p<0.001 in BALB/c, p<0.01 in DQ8) but not activation, whereas ovoalbumin upregulated all markers (p<0.01 for maturation and p<0.001 for activation in both DC populations). No increase of T proliferation was elicited by pulsed DCs with respect to unpulsed DCs. Only in DQ8 DCs, gliadin induced Toll-like receptor-4 (p<0.001), -7 (p<0.001), -8 (p<0.005) expression and interferon-alpha (p<0.001) secretion. CONCLUSION Gliadin resulted unable to activate DC, but stimulated Toll-like receptor expression and interferon-alpha secretion.
Collapse
Affiliation(s)
- R Ciccocioppo
- Center for the Study and Cure of Coeliac Disease, IRCCS San Matteo Hospital Foundation, University of Pavia, Italy.
| | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
Pathogens are exogenous agents capable of causing disease in susceptible organisms. In celiac sprue, a disease triggered by partially hydrolyzed gluten peptides in the small intestine, the offending immunotoxins cannot replicate, but otherwise have many hallmarks of classical pathogens. First, dietary gluten and its peptide metabolites are ubiquitous components of the modern diet, yet only a small, genetically susceptible fraction of the human population contracts celiac sprue. Second, immunotoxic gluten peptides have certain unusual structural features that allow them to survive the harsh proteolytic conditions of the gastrointestinal tract and thereby interact extensively with the mucosal lining of the small intestine. Third, they invade across epithelial barriers intact to access the underlying gut-associated lymphoid tissue. Fourth, they possess recognition sequences for selective modification by an endogenous enzyme, transglutaminase 2, allowing for in situ activation to a more immunotoxic form via host subversion. Fifth, they precipitate a T cell–mediated immune reaction comprising both innate and adaptive responses that causes chronic inflammation of the small intestine. Sixth, complete elimination of immunotoxic gluten peptides from the celiac diet results in remission, whereas reintroduction of gluten in the diet causes relapse. Therefore, in analogy with antibiotics, orally administered proteases that reduce the host's exposure to the immunotoxin by accelerating gluten peptide destruction have considerable therapeutic potential. Last but not least, notwithstanding the power of in vitro methods to reconstitute the essence of the immune response to gluten in a celiac patient, animal models for the disease, while elusive, are likely to yield fundamentally new systems-level insights.
Collapse
|
37
|
Bergamo P, Maurano F, D’Arienzo R, David C, Rossi M. Association between activation of phase 2 enzymes and down-regulation of dendritic cell maturation by c9,t11-conjugated linoleic acid. Immunol Lett 2008; 117:181-90. [DOI: 10.1016/j.imlet.2008.02.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2007] [Revised: 01/21/2008] [Accepted: 02/01/2008] [Indexed: 11/27/2022]
|
38
|
Abstract
Population studies have shown that among all the genetic factors linked with autoimmune disease development, MHC class II genes on chromosome 6 accounts for majority of familial clustering in the common autoimmune diseases. Despite the highly polymorphic nature of HLA class II genes, majority of autoimmune diseases are linked to a limited set of class II-DR or -DQ alleles. Thus a more detailed study of these HLA-DR and -DQ alleles were needed to understand their role in genetic predisposition and pathogenesis of autoimmune diseases. Although in vitro studies using class-II restricted CD4 T cells and purified class II molecules have helped us in understanding some aspects of HLA class-II association with disease, it is difficult to study the role of class II genes in vivo because of heterogeneity of human population, complexity of MHC, and strong linkage disequilibrium among different class II genes. To overcome this problem, we pioneered the generation of HLA-class II transgenic mice to study role of these molecule in inflammatory disease. These HLA class II transgenic mice were used to develop novel in vivo disease model for common autoimmune diseases such as rheumatoid arthritis, multiple sclerosis, insulin-dependent diabetes mellitus, myasthenia gravis, celiac disease, autoimmune relapsing polychondritis, autoimmune myocarditis, thyroiditis, uveitis, as well as other inflammatory disease such as allergy, tuberculosis and toxic shock syndrome. As the T-cell repertoire in these humanized HLA transgenic mice are shaped by human class II molecules, they show the same HLA restriction as humans, implicate potential triggering mechanism and autoantigens, and identify similar antigenic epitopes seen in human. This review describes the value of these humanized transgenic mice in deciphering role of HLA class II molecules in immunopathogenesis of inflammatory diseases.
Collapse
|
39
|
Gianfrani C, Siciliano RA, Facchiano AM, Camarca A, Mazzeo MF, Costantini S, Salvati VM, Maurano F, Mazzarella G, Iaquinto G, Bergamo P, Rossi M. Transamidation of wheat flour inhibits the response to gliadin of intestinal T cells in celiac disease. Gastroenterology 2007; 133:780-789. [PMID: 17678925 DOI: 10.1053/j.gastro.2007.06.023] [Citation(s) in RCA: 138] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2007] [Accepted: 05/31/2007] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS Celiac disease is characterized by activation of HLA-DQ2/DQ8-restricted intestinal gluten-specific CD4(+) T cells. In particular, gluten becomes a better T-cell antigen following deamidation catalyzed by tissue transglutaminase. To date, the only available therapy is represented by adherence to a gluten-free diet. Here, we examined a new enzyme strategy to preventively abolish gluten activity. METHODS Enzyme modifications of the immunodominant alpha-gliadin peptide p56-68 were analyzed by mass spectrometry, and peptide binding to HLA-DQ2 was simulated by modeling studies. Wheat flour was treated with microbial transglutaminase and lysine methyl ester; gliadin was subsequently extracted, digested, and deamidated. Gliadin-specific intestinal T-cell lines (iTCLs) were generated from biopsy specimens from 12 adult patients with celiac disease and challenged in vitro with different antigen preparations. RESULTS Tissue transglutaminase-mediated transamidation with lysine or lysine methyl ester of p56-68 or gliadin in alkaline conditions inhibited the interferon gamma expression in iTCLs; also, binding to DQ2 was reduced but not abolished, as suggested by in silico analysis. Lysine methyl ester was particularly effective in abrogating the activity of gliadin. Notably, a block in the response was observed when iTCLs were challenged with gliadin extracted from flour pretreated with microbial transglutaminase and lysine methyl ester. CONCLUSIONS Transamidation of wheat flour with a food-grade enzyme and an appropriate amine donor can be used to block the T cell-mediated gliadin activity. Considering the crucial role of adaptive immunity in celiac disease, our findings highlight the potential of the proposed treatment to prevent cereal toxicity.
Collapse
|
40
|
Abstract
Celiac disease (CD) is an intestinal disorder caused by an altered immune response against wheat gluten, a common dietary antigen, and related cereal proteins. Both CD4+ and CD8+ T cells have a role in inducing the intestinal damage, although recent studies have also pinpointed the involvement of the innate immune response in CD pathogenesis. So far, the only available treatment for CD is the strict avoidance of gluten in the diet, but the poor compliance and the associated complications demand alternative therapies. During the last decade, the knowledge of genetic, molecular and cellular mechanisms leading to CD pathogenesis made great progress. The improved understanding of gluten peptides activating either adaptive or innate immune response, of HLA restriction molecules, as well as of cytokines that mediate most of the inflammatory reactions, opens several new promising perspectives for therapeutic intervention. This review discusses both molecular and cellular strategies to treat CD, including the use of proteolytic enzymes active on gluten peptides, antibodies neutralising IL-15 and IFN-gamma, drugs targeting HLA, regulatory cytokines and T cells.
Collapse
|
41
|
D'Arienzo R, Maurano F, Mazzarella G, Luongo D, Stefanile R, Ricca E, Rossi M. Bacillus subtilis spores reduce susceptibility to Citrobacter rodentium-mediated enteropathy in a mouse model. Res Microbiol 2006; 157:891-897. [PMID: 17005378 DOI: 10.1016/j.resmic.2006.06.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2006] [Revised: 05/29/2006] [Accepted: 06/05/2006] [Indexed: 11/25/2022]
Abstract
The present work was aimed at investigating whether Bacillus subtilis spores, widely used in probiotic as well as pharmaceutical preparations for mild gastrointestinal disorders, can suppress enteric infections. To address this issue, we developed a mouse model of infection using the mouse enteropathogen Citrobacter rodentium, a member of a family of human and animal pathogens which includes the clinically significant enteropathogenic (EPEC) and enterohemorrhagic (EHEC) Escherichia coli strains. This group of pathogens causes transmissible colonic hyperplasia by using attaching and effacing (A/E) lesions to colonize the host colon. Because of its similarities to human enteropathogens, C. rodentium is now widely used as an in vivo model for gastrointestinal infections. Swiss NIH mice were orally administered B. subtilis spores one day before infection with C. rodentium. Mice were sacrificed on day 15 after infection, and distal colon, liver and mesenteric lymph nodes were removed for bacteria counts, morphology, immunohistology and IFNgamma mRNA analysis. We observed that spore predosing was effective in significantly decreasing infection and enteropathy in suckling mice infected with a dose of C. rodentium sufficient to cause colon colonization, crypt hyperplasia and high mortality rates. Moreover, in mice predosed with spores, the number of CD4(+) cells and IFNgamma transcript levels remained high. These results thus indicate that our newly established model of C. rodentium infection is a suitable system for analyzing the effects of probiotic bacteria on enteroinfections and that B. subtilis spores are efficient at reducing C. rodentium infection in mice, leaving unaltered the immune response against the pathogen.
Collapse
Affiliation(s)
- Rossana D'Arienzo
- Istituto di Scienze dell'Alimentazione, CNR, via Roma 52, 83100 Avellino, Italy
| | | | | | | | | | | | | |
Collapse
|
42
|
Bergamo P, Luongo D, Maurano F, Mazzarella G, Stefanile R, Rossi M. Conjugated linoleic acid enhances glutathione synthesis and attenuates pathological signs in MRL/MpJ-Fas(lpr) mice. J Lipid Res 2006; 47:2382-2391. [PMID: 16877747 DOI: 10.1194/jlr.m600187-jlr200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Conjugated linoleic acid (CLA), a naturally occurring peroxisome proliferator-activated receptor gamma (PPAR gamma) ligand, exhibits proapoptotic, immunomodulatory, and anticancer properties. In this study, we examined the biological effects of CLA administration in the MRL/MpJ-Fas(lpr) mouse, an animal model of systemic lupus erythematosus (SLE). We found that CLA exerted apparently opposed activities in in vitro experiments, depending on its concentration: 100 microM CLA downregulated IFN gamma synthesis and cell proliferation of splenocytes, in association with apoptosis induction and a decrease of intracellular thiols (GSH + GSSG), whereas 25 microM CLA did not significantly influence cell proliferation but enhanced the expression of gamma-glutamylcysteine ligase catalytic subunit (GCLC) and intracellular GSH concentration. Interestingly, the antiproliferative effect at 100 microM was not inhibited by the PPAR gamma antagonist GW9662. In vivo, CLA administration drastically reduced SLE signs (splenomegaly, autoantibodies, and cytokine synthesis), a condition paralleled by the enhancement of GCLC expression and intracellular GSH content. Moreover, CLA administration significantly downregulated nuclear factor kappaB activity independent of PPAR gamma activation and apoptosis induction. In conclusion, enhanced GSH content and GCLC expression in CLA-treated mice suggest a novel biochemical mechanism underlying its immunomodulatory activity and the beneficial effects on murine SLE signs.
Collapse
Affiliation(s)
- Paolo Bergamo
- Istituto di Scienze dell'Alimentazione, Consiglio Nazionale delle Ricerche, Avellino, Italy.
| | | | | | | | | | | |
Collapse
|
43
|
Tamás L, Shewry PR. Heterologous expression and protein engineering of wheat gluten proteins. J Cereal Sci 2006. [DOI: 10.1016/j.jcs.2006.02.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
44
|
Abstract
Celiac disease (CD) is the most common food-sensitive enteropathy in humans and is caused by the lack of immune tolerance (oral tolerance) to gluten. The identification of gluten-specific T cells in the lamina propria of celiacs and the strong association with HLA-DQ2 and -DQ8 genes support a central role of CD4(+) T cells in CD pathogenesis. Studies focused on the modulation of autoimmunity in different experimental models highlighted possible immune therapeutic protocols useful also for the management of CD. On the basis of these observations, a series of strategies have been designed: some of them are based on the identification of immunogenic epitopes and their suppression via enzymatic treatment or by using peptide analogues; others rely on the delivery of unmodified antigen through the nasal route or coadministered with downregulatory cytokines. studies are generally early stage but encouraging in paving a way for an alternative treatment for celiac disease.
Collapse
Affiliation(s)
- Mauro Rossi
- Istituto di Scienze dell'Alimentazione, CNR, Avellino, Italy.
| | | | | |
Collapse
|
45
|
Senger S, Maurano F, Mazzeo MF, Gaita M, Fierro O, David CS, Troncone R, Auricchio S, Siciliano RA, Rossi M. Identification of Immunodominant Epitopes of α-Gliadin in HLA-DQ8 Transgenic Mice following Oral Immunization. THE JOURNAL OF IMMUNOLOGY 2005; 175:8087-95. [PMID: 16339546 DOI: 10.4049/jimmunol.175.12.8087] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Celiac disease, triggered by wheat gliadin and related prolamins from barley and rye, is characterized by a strong association with HLA-DQ2 and HLA-DQ8 genes. Gliadin is a mixture of many proteins that makes difficult the identification of major immunodominant epitopes. To address this issue, we expressed in Escherichia coli a recombinant alpha-gliadin (r-alpha-gliadin) showing the most conserved sequence among the fraction of alpha-gliadins. HLA-DQ8 mice, on a gluten-free diet, were intragastrically immunized with a chymotryptic digest of r-alpha-gliadin along with cholera toxin as adjuvant. Spleen and mesenteric lymph node T cell responses were analyzed for in vitro proliferative assay using a panel of synthetic peptides encompassing the entire sequence of r-alpha-gliadin. Two immunodominant epitopes corresponding to peptide p13 (aa 120-139) and p23 (aa 220-239) were identified. The response was restricted to DQ and mediated by CD4+ T cells. In vitro tissue transglutaminase deamidation of both peptides did not increase the response; furthermore, tissue transglutaminase catalyzed extensive deamidation in vitro along the entire r-alpha-gliadin molecule, but failed to elicit new immunogenic determinants. Surprisingly, the analysis of the cytokine profile showed that both deamidated and native peptides induced preferentially IFN-gamma secretion, despite the use of cholera toxin, a mucosal adjuvant that normally induces a Th2 response to bystander Ags. Taken together, these data suggest that, in this model of gluten hypersensitivity, deamidation is not a prerequisite for the initiation of gluten responses.
Collapse
Affiliation(s)
- Stefania Senger
- Istituto di Scienze dell'Alimentazione, Consiglio Nazionale delle Ricerche, Avellino, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Diosdado B, Stepniak DT, Monsuur AJ, Franke L, Wapenaar MC, Mearin ML, Koning F, Wijmenga C. No genetic association of the human prolyl endopeptidase gene in the Dutch celiac disease population. Am J Physiol Gastrointest Liver Physiol 2005; 289:G495-500. [PMID: 15890709 DOI: 10.1152/ajpgi.00056.2005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Celiac disease (CD) is a complex genetic disorder of the small intestine. The DQ2/DQ8 human leucocyte antigen (HLA) genes explain approximately 40% of the genetic component of the disease, but the remaining non-HLA genes have not yet been identified. The key environmental factor known to be involved in the disease is gluten, a major protein present in wheat, barley, and rye. Integrating microarray data and linkage data from chromosome 6q21-22 revealed the prolyl endopeptidase (PREP) gene as a potential CD candidate in the Dutch population. Interestingly, this gene encodes for the only enzyme that is able to cleave the proline-rich gluten peptides. To investigate the role of the human PREP gene as a primary genetic factor in CD, we conducted gene expression, sequence analysis, and genetic association studies of the PREP gene and determined PREP enzyme activity in biopsies from CD patients and controls. Sequence analysis of the coding region of the PREP gene revealed two novel polymorphisms. Genetic association studies using two novel polymorphisms and three known PREP variants excluded a genetic association between PREP and CD. Determination of PREP activity revealed weak but significant differences between treated and untreated CD biopsies (P < 0.05). Our results from the association study indicate that PREP is not a causative gene for CD in the Dutch population. These are further supported by the activity determinations in which we observed no differences in PREP activity between CD patients and controls.
Collapse
Affiliation(s)
- Begoña Diosdado
- Complex Genetics Section, Dept. of Biomedical Genetics, Univ. Medical Centre Utrecht, Utrecht, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Ciccocioppo R, Di Sabatino A, Corazza GR. The immune recognition of gluten in coeliac disease. Clin Exp Immunol 2005; 140:408-16. [PMID: 15932501 PMCID: PMC1809391 DOI: 10.1111/j.1365-2249.2005.02783.x] [Citation(s) in RCA: 136] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/2005] [Indexed: 12/11/2022] Open
Abstract
Coeliac disease, the most common intestinal disorder of western populations, is an autoimmune enteropathy caused by an abnormal immune response to dietary gluten peptides that occurs in genetically susceptible individuals carrying the HLA-DQ2 or -DQ8 haplotype. Despite the recent progresses in understanding the molecular mechanisms of mucosal lesions, it remains unknown how increased amounts of gluten peptides can enter the intestinal mucosa to initiate the inflammatory cascade. Current knowledge indicates that different gluten peptides are involved in the disease process in a different manner, some fragments being 'toxic' and others 'immunogenic'. Those defined as 'toxic' are able to induce mucosal damage either when added in culture to duodenal endoscopic biopsy or when administered in vivo, while those defined as 'immunogenic' are able to specifically stimulate HLA-DQ2- or DQ8-restricted T cell clones isolated from jejunal mucosa or peripheral blood of coeliac patients. These peptides are able to trigger two immunological pathways: one is thought to be a rapid effect on the epithelium that involves the innate immune response and the other represents the adaptive immune response involving CD4+ T cells in the lamina propria that recognize gluten epitopes processed and presented by antigen presenting cells. These findings are the subject of the present review.
Collapse
Affiliation(s)
- R Ciccocioppo
- First Department of Internal Medicine, IRCCS Policlinico San Matteo, University of Pavia, Italy
| | | | | |
Collapse
|
48
|
Maurano F, Mazzarella G, Luongo D, Stefanile R, D'Arienzo R, Rossi M, Auricchio S, Troncone R. Small intestinal enteropathy in non-obese diabetic mice fed a diet containing wheat. Diabetologia 2005; 48:931-937. [PMID: 15830185 DOI: 10.1007/s00125-005-1718-2] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2004] [Accepted: 11/25/2004] [Indexed: 12/28/2022]
Abstract
AIMS/HYPOTHESIS A deranged mucosal immune response and dietary factors may play an important role in the pathogenesis of type 1 diabetes. The aims of our work were to look for the presence of small intestinal enteropathy in non-obese diabetic (NOD) mice in relation to the presence of wheat proteins in the diet, and to assess their role in the risk of developing diabetes. METHODS Female NOD mice were fed a standard or gluten-free diet or a gluten-free diet with the addition of wheat proteins (MGFD). Small intestine architecture, intraepithelial CD3(+) infiltration, epithelial expression of H2-IA, mRNA for IFN-gamma and IL-4 were assessed. RESULTS NOD mice fed a standard diet showed reduced villous height, increased intraepithelial infiltration by CD3(+) cells and enhanced expression of H2-IA and IFN-gamma mRNA when compared with mice on the gluten-free diet. The cumulative diabetes incidence at 43 weeks of age was 65% in the latter and 97% in the former (p<0.01). Mice on MGFD also showed increased epithelial infiltration and a higher incidence of diabetes. CONCLUSIONS/INTERPRETATION Mice fed a wheat-containing diet showed a higher incidence of diabetes, signs of small intestinal enteropathy and higher mucosal levels of proinflammatory cytokines.
Collapse
Affiliation(s)
- F Maurano
- Institute of Food Science, CNR, via Roma 52 A/C, 83100 Avellino, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
PURPOSE OF REVIEW There has been an explosion in knowledge about celiac disease (CD) in the last decade based on the availability of serologic screening tests and the elucidation of some of the important disease susceptibility genes. What has been discovered is that CD is among the most common inherited diseases with a worldwide prevalence of almost 1% of the population. Also, there has been a tremendous expansion of the possible clinical presentations in patients with CD, many of them predominantly or even exclusively extraintestinal. Over the last year, both the North American Society of Pediatric Gastroenterology and Nutrition, and the NIH, through the mechanism of a consensus development conference held in May 2004, have published guidelines outlining the current state of knowledge and the areas where more research is needed. RECENT FINDINGS This review will stress the most recent findings in CD in the areas of genetics, pathogenesis, epidemiology, screening and diagnosis, and natural history. It will stress the importance of HLA DQ2 and DQ8 as disease susceptibility genes, and the interaction of the environmental triggers (gliadins and glutenins) with these gene products to trigger the immunologic response in the gut that is responsible for the pattern of injury. Recent reports that stress the importance of screening high-risk groups (i.e. siblings of index cases and first degree relatives, patients with Type I diabetes, patients with Downs syndrome, patients with IgA deficiency) will be highlighted. The identification of the most sensitive and specific screening tests will be summarized with an explanation of special situations that affect the interpretation of these tests. Finally, the long-term morbidities associated with CD will be characterized supporting the case for early diagnosis and treatment. SUMMARY The implications of these recent findings are of tremendous importance for both pediatricians and internists. Screening of high-risk groups, and of patients with the common symptoms of irritable bowel syndrome, iron deficiency anemia, unexplained arthritis, and even chronic elevations of aminotransferases is becoming the accepted standard of practice. Much research remains to be done to further refine our understanding of CD, and to devise more effective strategies for treatment, compliance, and prevention of long-term complications.
Collapse
Affiliation(s)
- William R Treem
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Children's Hospital of New York-Presbyterian, Columbia University Medical Center, New York, NY 10032, USA.
| |
Collapse
|
50
|
Abstract
PURPOSE OF REVIEW The number of diagnoses of celiac disease, especially "silent" forms continues to rise world-wide. This review aims to summarize critically recent research in celiac disease. RECENT FINDINGS New proteomic approaches with the development of a possible powerful animal model have potentially furthered the isolation of the epitopes within gliadin, and other related proteins, that are critical for the development of celiac disease. SUMMARY The number of potential disease-triggering gliadin components remains large. Small bowel biopsies remain the gold-standard for both diagnosis and monitoring of treatment.
Collapse
Affiliation(s)
- Gerry Robins
- Department of Academic Medicine, St. James's University Hospital, Leeds, UK.
| | | |
Collapse
|