1
|
Su CW, Yang F, Lai R, Li Y, Naeem H, Yao N, Zhang SP, Zhang H, Li Y, Huang ZG. Unraveling the functional complexity of the locus coeruleus-norepinephrine system: insights from molecular anatomy to neurodynamic modeling. Cogn Neurodyn 2025; 19:29. [PMID: 39866663 PMCID: PMC11757662 DOI: 10.1007/s11571-024-10208-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 09/08/2024] [Accepted: 09/29/2024] [Indexed: 01/28/2025] Open
Abstract
The locus coeruleus (LC), as the primary source of norepinephrine (NE) in the brain, is central to modulating cognitive and behavioral processes. This review synthesizes recent findings to provide a comprehensive understanding of the LC-NE system, highlighting its molecular diversity, neurophysiological properties, and role in various brain functions. We discuss the heterogeneity of LC neurons, their differential responses to sensory stimuli, and the impact of NE on cognitive processes such as attention and memory. Furthermore, we explore the system's involvement in stress responses and pain modulation, as well as its developmental changes and susceptibility to stressors. By integrating molecular, electrophysiological, and theoretical modeling approaches, we shed light on the LC-NE system's complex role in the brain's adaptability and its potential relevance to neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Chun-Wang Su
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Institute of Health and Rehabilitation Science, Xi’an Jiaotong University, Xi’an, 710049 Shaanxi China
- Research Center for Brain-Inspired Intelligence, Xi’an Jiaotong University, Xi’an, 710049 Shaanxi China
| | - Fan Yang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Institute of Health and Rehabilitation Science, Xi’an Jiaotong University, Xi’an, 710049 Shaanxi China
- Research Center for Brain-Inspired Intelligence, Xi’an Jiaotong University, Xi’an, 710049 Shaanxi China
| | - Runchen Lai
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Institute of Health and Rehabilitation Science, Xi’an Jiaotong University, Xi’an, 710049 Shaanxi China
- Research Center for Brain-Inspired Intelligence, Xi’an Jiaotong University, Xi’an, 710049 Shaanxi China
| | - Yanhai Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Institute of Health and Rehabilitation Science, Xi’an Jiaotong University, Xi’an, 710049 Shaanxi China
| | - Hadia Naeem
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Institute of Health and Rehabilitation Science, Xi’an Jiaotong University, Xi’an, 710049 Shaanxi China
- Research Center for Brain-Inspired Intelligence, Xi’an Jiaotong University, Xi’an, 710049 Shaanxi China
| | - Nan Yao
- Department of Applied Physics, Xi’an University of Technology, 710054 Shaanxi, China
| | - Si-Ping Zhang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Institute of Health and Rehabilitation Science, Xi’an Jiaotong University, Xi’an, 710049 Shaanxi China
- Research Center for Brain-Inspired Intelligence, Xi’an Jiaotong University, Xi’an, 710049 Shaanxi China
| | - Haiqing Zhang
- Xi’an Children’s Hospital, Xi’an, 710003 Shaanxi China
| | - Youjun Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Institute of Health and Rehabilitation Science, Xi’an Jiaotong University, Xi’an, 710049 Shaanxi China
- Research Center for Brain-Inspired Intelligence, Xi’an Jiaotong University, Xi’an, 710049 Shaanxi China
| | - Zi-Gang Huang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Institute of Health and Rehabilitation Science, Xi’an Jiaotong University, Xi’an, 710049 Shaanxi China
- Research Center for Brain-Inspired Intelligence, Xi’an Jiaotong University, Xi’an, 710049 Shaanxi China
| |
Collapse
|
2
|
Wang JY, Weng WC, Wang TQ, Liu Y, Qiu DL, Wu MC, Chu CP. Noradrenaline depresses facial stimulation-evoked cerebellar MLI-PC synaptic transmission via α2-AR/PKA signaling cascade in vivo in mice. Sci Rep 2023; 13:15908. [PMID: 37741947 PMCID: PMC10517918 DOI: 10.1038/s41598-023-42975-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 09/17/2023] [Indexed: 09/25/2023] Open
Abstract
The noradrenergic fibers of the locus coeruleus, together with mossy fibers and climbing fibers, comprise the three types of cerebellar afferents that modulate the cerebellar neuronal circuit. We previously demonstrated that noradrenaline (NA) modulated synaptic transmission in the mouse cerebellar cortex via adrenergic receptors (ARs). In the present study, we investigated the effect of NA on facial stimulation-evoked cerebellar molecular layer interneuron (MLI)-Purkinje cell (PC) synaptic transmission in urethane-anesthetized mice using an in vivo cell-attached recording technique and a pharmacological method. MLI-PC synaptic transmission was induced by air-puff stimulation (duration: 60 ms) of the ipsilateral whisker pad, which exhibited positive components (P1 and P2) accompanied by a pause in simple spike activity. Cerebellar molecular layer application of NA (15 µM) decreased the amplitude and area under the curve of P1, and the pause in simple spike activity, but increased the P2/P1 ratio. The NA-induced decrease in P1 amplitude was concentration-dependent, and the half-inhibitory concentration was 10.94 µM. The NA-induced depression of facial stimulation-evoked MLI-PC GABAergic synaptic transmission was completely abolished by blockade of α-ARs or α2-ARs, but not by antagonism of α1-ARs or β-ARs. Bath application of an α2-AR agonist inhibited MLI-PC synaptic transmission and attenuated the effect of NA on the synaptic response. NA-induced depression of MLI-PC synaptic transmission was completely blocked by a mixture of α2A- and 2B-AR antagonists, and was abolished by inhibition of protein kinase A. In addition, electrical stimulation of the molecular layer evoked MLI-PC GABAergic synaptic transmission in the presence of an AMPA receptor antagonist, which was inhibited by NA through α2-ARs. Our results indicate that NA inhibits MLI-PC GABAergic synaptic transmission by reducing GABA release via an α2-AR/PKA signaling pathway.
Collapse
Affiliation(s)
- Jun-Ya Wang
- Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji, China
- Department of Physiology, College of Basic Medicine, Jilin Medical University, Jilin, 132013, Jilin, China
| | - Wen-Cai Weng
- Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji, China
- Department Radiology, Dalian Xinhua Hospital, Dalian University, Dalian, China
| | - Ting-Qi Wang
- Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji, China
| | - Yue Liu
- Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji, China
- Department of Physiology, College of Basic Medicine, Jilin Medical University, Jilin, 132013, Jilin, China
| | - De-Lai Qiu
- Department of Physiology, College of Basic Medicine, Jilin Medical University, Jilin, 132013, Jilin, China
| | - Mao-Cheng Wu
- Department of Osteology, Affiliated Hospital of Yanbian University, Yanji, 133002, Jilin, China.
| | - Chun-Ping Chu
- Department of Physiology, College of Basic Medicine, Jilin Medical University, Jilin, 132013, Jilin, China.
| |
Collapse
|
3
|
Norepinephrine, neurodevelopment and behavior. Neurochem Int 2020; 135:104706. [PMID: 32092327 DOI: 10.1016/j.neuint.2020.104706] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 02/14/2020] [Accepted: 02/16/2020] [Indexed: 02/06/2023]
Abstract
Neurotransmitters play critical roles in the developing nervous system. Among the neurotransmitters, norepinephrine (NE) is in particular postulated to be an important regulator of brain development. NE is expressed during early stages of development and is known to regulate both the development of noradrenergic neurons and the development of target areas. NE participates in the shaping and the wiring of the nervous system during the critical periods of development, and perturbations in this process can alter the brain's developmental trajectory, which in turn can cause long-lasting and even permanent changes in the brain function and behavior later in life. Here we will briefly review evidence for the role of noradrenergic system in neurodevelopmental processes and will discuss about the potential disruptors of noradrenergic system during development and their behavioral consequences.
Collapse
|
4
|
Smith JB, Alloway KD, Hof PR, Orman R, Reser DH, Watakabe A, Watson GDR. The relationship between the claustrum and endopiriform nucleus: A perspective towards consensus on cross-species homology. J Comp Neurol 2019; 527:476-499. [PMID: 30225888 PMCID: PMC6421118 DOI: 10.1002/cne.24537] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 08/28/2018] [Accepted: 08/30/2018] [Indexed: 01/08/2023]
Abstract
With the emergence of interest in studying the claustrum, a recent special issue of the Journal of Comparative Neurology dedicated to the claustrum (Volume 525, Issue 6, pp. 1313-1513) brought to light questions concerning the relationship between the claustrum (CLA) and a region immediately ventral known as the endopiriform nucleus (En). These structures have been identified as separate entities in rodents but appear as a single continuous structure in primates. During the recent Society for Claustrum Research meeting, a panel of experts presented data pertaining to the relationship of these regions and held a discussion on whether the CLA and En should be considered (a) separate unrelated structures, (b) separate nuclei within the same formation, or (c) subregions of a continuous structure. This review article summarizes that discussion, presenting comparisons of the cytoarchitecture, neurochemical profiles, genetic markers, and anatomical connectivity of the CLA and En across several mammalian species. In rodents, we conclude that the CLA and the dorsal endopiriform nucleus (DEn) are subregions of a larger complex, which likely performs analogous computations and exert similar effects on their respective cortical targets (e.g., sensorimotor versus limbic). Moving forward, we recommend that the field retain the nomenclature currently employed for this region but should continue to examine the delineation of these structures across different species. Using thorough descriptions of a variety of anatomical features, this review offers a clear definition of the CLA and En in rodents, which provides a framework for identifying homologous structures in primates.
Collapse
Affiliation(s)
- Jared B. Smith
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Kevin D. Alloway
- Neural and Behavioral Sciences, Center for Neural Engineering, Pennsylvania State University, University Park, PA 16802, USA
| | - Patrick R. Hof
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Rena Orman
- Department of Physiology and Pharmacology, State University of New York Downstate Medical Center, Brooklyn, NY, 11203 USA
| | - David H. Reser
- Graduate Entry Medicine Program, Monash Rural Health Churchill, Monash University, Churchill, Victoria 3842, Australia
- Department of Physiology, Monash University, Clayton 3800, Victoria, Australia
| | | | - Glenn D. R. Watson
- Department of Psychology and Neuroscience, Duke University, Durham, NC 27708, USA
| |
Collapse
|
5
|
Watson GDR, Smith JB, Alloway KD. Interhemispheric connections between the infralimbic and entorhinal cortices: The endopiriform nucleus has limbic connections that parallel the sensory and motor connections of the claustrum. J Comp Neurol 2016; 525:1363-1380. [PMID: 26860547 DOI: 10.1002/cne.23981] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 02/03/2016] [Accepted: 02/04/2016] [Indexed: 12/17/2022]
Abstract
We have previously shown that the claustrum is part of an interhemispheric circuit that interconnects somesthetic-motor and visual-motor cortical regions. The role of the claustrum in processing limbic information, however, is poorly understood. Some evidence suggests that the dorsal endopiriform nucleus (DEn), which lies immediately ventral to the claustrum, has connections with limbic cortical areas and should be considered part of a claustrum-DEn complex. To determine whether DEn has similar patterns of cortical connections as the claustrum, we used anterograde and retrograde tracing techniques to elucidate the connectivity of DEn. Following injections of retrograde tracers into DEn, labeled neurons appeared bilaterally in the infralimbic (IL) cortex and ipsilaterally in the entorhinal and piriform cortices. Anterograde tracer injections in DEn revealed labeled terminals in the same cortical regions, but only in the ipsilateral hemisphere. These tracer injections also revealed extensive longitudinal projections throughout the rostrocaudal extent of the nucleus. Dual retrograde tracer injections into IL and lateral entorhinal cortex (LEnt) revealed intermingling of labeled neurons in ipsilateral DEn, including many double-labeled neurons. In other experiments, anterograde and retrograde tracers were separately injected into IL of each hemisphere of the same animal. This revealed an interhemispheric circuit in which IL projects bilaterally to DEn, with the densest terminal labeling appearing in the contralateral hemisphere around retrogradely labeled neurons that project to IL in that hemisphere. By showing that DEn and claustrum have parallel sets of connections, these results suggest that DEn and claustrum perform similar functions in processing limbic and sensorimotor information, respectively. J. Comp. Neurol. 525:1363-1380, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Glenn D R Watson
- Department of Neural and Behavioral Sciences, Pennsylvania State University College of Medicine, Hershey, PA 17033.,Center for Neural Engineering, Pennsylvania State University, University Park, PA 16802
| | - Jared B Smith
- Center for Neural Engineering, Pennsylvania State University, University Park, PA 16802.,Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA 16802
| | - Kevin D Alloway
- Department of Neural and Behavioral Sciences, Pennsylvania State University College of Medicine, Hershey, PA 17033.,Center for Neural Engineering, Pennsylvania State University, University Park, PA 16802
| |
Collapse
|
6
|
Hirao K, Eto K, Nakahata Y, Ishibashi H, Nagai T, Nabekura J. Noradrenergic refinement of glutamatergic neuronal circuits in the lateral superior olivary nucleus before hearing onset. J Neurophysiol 2015. [PMID: 26203112 DOI: 10.1152/jn.00813.2014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Neuronal circuit plasticity during development is fundamental for precise network formation. Pioneering studies of the developmental visual cortex indicated that noradrenaline (NA) is crucial for ocular dominance plasticity during the critical period in the visual cortex. Recent research demonstrated tonotopic map formation by NA during the critical period in the auditory system, indicating that NA also contributes to synaptic plasticity in this system. The lateral superior olive (LSO) in the auditory system receives glutamatergic input from the ventral cochlear nucleus (VCN) and undergoes circuit remodeling during postnatal development. LSO is innervated by noradrenergic afferents and is therefore a suitable model to study the function of NA in refinement of neuronal circuits. Chemical lesions of the noradrenergic system and chronic inhibition of α2-adrenoceptors in vivo during postnatal development in mice disrupted functional elimination and strengthening of VCN-LSO afferents. This was potentially mediated by activation of presynaptic α2-adrenoceptors and inhibition of glutamate release because NA presynaptically suppressed excitatory postsynaptic current (EPSC) through α2-adrenoceptors during the first two postnatal weeks in an in vitro study. Furthermore, NA and α2-adrenoceptor agonist induced long-term suppression of EPSCs and decreased glutamate release. These results suggest that NA has a critical role in synaptic refinement of the VCN-LSO glutamatergic pathway through failure of synaptic transmission. Because of the ubiquitous distribution of NA afferents and the extensive expression of α2-adrenoceptors throughout the immature brain, this phenomenon might be widespread in the developing central nervous system.
Collapse
Affiliation(s)
- Kenzo Hirao
- Division of Homeostatic Development, National Institute for Physiological Sciences, Okazaki, Japan; Department of Physiological Sciences, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Japan
| | - Kei Eto
- Division of Homeostatic Development, National Institute for Physiological Sciences, Okazaki, Japan
| | - Yoshihisa Nakahata
- Division of Homeostatic Development, National Institute for Physiological Sciences, Okazaki, Japan
| | - Hitoshi Ishibashi
- Department of Physiology, School of Allied Health Sciences, Kitasato University, Sagamihara, Japan; and
| | - Taku Nagai
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Japan
| | - Junichi Nabekura
- Division of Homeostatic Development, National Institute for Physiological Sciences, Okazaki, Japan; Department of Physiological Sciences, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Japan;
| |
Collapse
|
7
|
Riccio O, Hurni N, Murthy S, Vutskits L, Hein L, Dayer A. Alpha2-adrenergic receptor activation regulates cortical interneuron migration. Eur J Neurosci 2012; 36:2879-87. [DOI: 10.1111/j.1460-9568.2012.08231.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
8
|
Sanders JD, Happe HK, Bylund DB, Murrin LC. Changes in postnatal norepinephrine alter alpha-2 adrenergic receptor development. Neuroscience 2011; 192:761-72. [PMID: 21742019 PMCID: PMC3166411 DOI: 10.1016/j.neuroscience.2011.06.045] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Revised: 05/25/2011] [Accepted: 06/15/2011] [Indexed: 10/18/2022]
Abstract
Alpha-2 adrenergic receptors (A2AR) regulate multiple brain functions and are enriched in developing brain. Studies demonstrate norepinephrine (NE) plays a role in regulating brain maturation, suggesting it is important in A2AR development. To investigate this we employed models of NE absence and excess during brain development. For decreases in NE we used N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine hydrochloride (DSP4), a specific noradrenergic neurotoxin. Increased noradrenergic terminal density was produced by methylazoxymethanol acetate (MAM) treatment. A2AR density was assayed with [(3)H]RX821002 autoradiography. DSP4 lesions on postnatal day (PND) 3 produce A2AR decreases in many regions by PND 5. A2AR recover to control levels by PND 15 and 25 and there is no further change in total receptor density. We also assayed A2AR in brains lesioned with DSP4 on PND 13, 23, 33 and 43 and harvested 22 days post-lesion. A2AR levels remain similar to control at each of these time points. We examined A2AR functionality and high affinity state with epinephrine-stimulated [(35)S]GTPγS and [(125)I]p-iodoclonidine autoradiography, respectively. On PND 25, control animals and animals lesioned with DSP4 on PND 3 have similar levels of [(35)S]GTPγS incorporation and no change in high affinity state. This is in contrast to increases in A2AR high affinity state produced by DSP4 lesions of mature brain. We next investigated A2AR response to increases in norepinephrine levels produced by MAM. In contrast to DSP4 lesions, increasing NE results in a large increase in A2AR. Animals treated with MAM on gestational day 14 had cortical [(3)H]RX821002 binding 100-200% greater than controls on PND 25, 35, 45, 55 and 65. These data indicate that NE regulation of A2AR differs in developing and mature brain and support the idea that NE regulates A2AR development and this has long term effects on A2AR function.
Collapse
Affiliation(s)
- Jeff D. Sanders
- Department of Pharmacology and Experimental Neuroscience, 985800 Nebraska Medical Center, Omaha, NE 68198-5800
| | - H. Kevin Happe
- Department of Psychiatry, Creighton University School of Medicine, Omaha, NE 68131
| | - David B. Bylund
- Department of Pharmacology and Experimental Neuroscience, 985800 Nebraska Medical Center, Omaha, NE 68198-5800
| | - L. Charles Murrin
- Department of Pharmacology and Experimental Neuroscience, 985800 Nebraska Medical Center, Omaha, NE 68198-5800
- Department of Neurological Sciences, 982045 Nebraska Medical Center, Omaha, NE 68198-2045
| |
Collapse
|
9
|
Clinckers R, Zgavc T, Vermoesen K, Meurs A, Michotte Y, Smolders I. Pharmacological and neurochemical characterization of the involvement of hippocampal adrenoreceptor subtypes in the modulation of acute limbic seizures. J Neurochem 2010; 115:1595-607. [DOI: 10.1111/j.1471-4159.2010.07065.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
10
|
Arnsten AFT. The use of α-2A adrenergic agonists for the treatment of attention-deficit/hyperactivity disorder. Expert Rev Neurother 2010; 10:1595-605. [PMID: 20925474 PMCID: PMC3143019 DOI: 10.1586/ern.10.133] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Neuropsychiatric disorders involve dysfunction of the prefrontal cortex (PFC), a highly evolved brain region that mediates executive functioning. The dorsolateral PFC is specialized for regulating attention and behavior, while the ventromedial PFC is specialized for regulating emotion. These abilities arise from PFC pyramidal cell networks that excite each other to maintain goals and rules 'in mind'. Imaging studies have shown reduced PFC gray matter, weaker PFC connections and altered PFC function in patients with attention-deficit/hyperactivity disorder. Thus, medications that strengthen PFC network connections may be particularly useful for the treatment of attention-deficit/hyperactivity disorder and related disorders. Recent data show that compounds such as guanfacine can enhance PFC function by stimulating postsynaptic α-2A receptors on the dendritic spines of PFC pyramidal cells where networks interconnect. Stimulation of these receptors inhibits cAMP signaling, thus closing potassium channels and strengthening physiological connections. These actions may benefit patients with weak PFC function.
Collapse
Affiliation(s)
- Amy F T Arnsten
- Department of Neurobiology, Yale Medical School, 333 Cedar St, New Haven, CT 06510, USA.
| |
Collapse
|
11
|
Hirono M, Matsunaga W, Chimura T, Obata K. Developmental enhancement of alpha2-adrenoceptor-mediated suppression of inhibitory synaptic transmission onto mouse cerebellar Purkinje cells. Neuroscience 2008; 156:143-54. [PMID: 18691636 DOI: 10.1016/j.neuroscience.2008.07.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2008] [Revised: 07/09/2008] [Accepted: 07/10/2008] [Indexed: 01/04/2023]
Abstract
Noradrenaline (NA) modulates glutamatergic and GABAergic transmission in various areas of the brain. It is reported that some alpha2-adrenoceptor subtypes are expressed in the cerebellar cortex and alpha2-adrenoceptors may play a role in motor coordination. Our previous study demonstrated that the selective alpha2-adrenoceptor agonist clonidine partially depresses spontaneous inhibitory postsynaptic currents (sIPSCs) in mouse cerebellar Purkinje cells (PCs). Here we found that the inhibitory effect of clonidine on sIPSCs was enhanced during postnatal development. The activation of alpha2-adrenoceptors by clonidine did not affect sIPSCs in PCs at postnatal days (P) 8-10, when PCs showed a few sIPSCs and interneurons in the molecular layer (MLIs) did not cause action potential (AP). In the second postnatal week, the frequency of sIPSCs increased temporarily and reached a plateau at P14. By contrast, MLIs began to fire at P11 with the firing rate gradually increasing thereafter and reaching a plateau at P21. In parallel with this rise in the rate of firing, the magnitude of the clonidine-mediated inhibition of sIPSCs increased during postnatal development. Furthermore, the magnitude of the clonidine-mediated firing suppression in MLIs, which seemed to be mediated by a reduction in amplitude of the hyperpolarization-activated nonselective cation current, I(h), was constant across development. Both alpha2A- and alpha2B-, but not alpha2C-, adrenoceptors were strongly expressed in MLIs at P13, and P31. Therefore, the developmental enhancement of the clonidine-mediated inhibition of sIPSCs is attributed to an age-dependent increase in AP-derived sIPSCs, which can be blocked by clonidine. Thus, presynaptic activation of alpha2-adrenoceptors inhibits cerebellar inhibitory synaptic transmission after the second postnatal week, leading to a restriction of NA signaling, which is mainly mediated by alpha1- and beta2-adrenoceptors in the adult cerebellar neuronal circuit.
Collapse
Affiliation(s)
- M Hirono
- Neuronal Circuit Mechanisms Research Group, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
| | | | | | | |
Collapse
|
12
|
Tie L, Zhang JZ, Lin YH, Su TH, Li YH, Wu HL, Zhang YY, Yu HM, Li XJ. Epinephrine Increases Phosphorylation of MAP-2c in Rat Pheochromocytoma Cells (PC12 Cells) via a Protein Kinase C- and Mitogen Activated Protein Kinase-Dependent Mechanism. J Proteome Res 2008; 7:1704-11. [DOI: 10.1021/pr700711s] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Lu Tie
- Department of Pharmacology, School of Basic Medical Sciences and State Key Laboratory of Natural & Biomimetic Drugs, Peking University, Beijing 100083, China, Institute of Vascular Medicine, Peking University Third Hospital, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing 100083, P.R. China, and National Research Institute for Family Planning, Beijing 100081, P.R. China
| | - Jian-Zhao Zhang
- Department of Pharmacology, School of Basic Medical Sciences and State Key Laboratory of Natural & Biomimetic Drugs, Peking University, Beijing 100083, China, Institute of Vascular Medicine, Peking University Third Hospital, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing 100083, P.R. China, and National Research Institute for Family Planning, Beijing 100081, P.R. China
| | - Yan-Hua Lin
- Department of Pharmacology, School of Basic Medical Sciences and State Key Laboratory of Natural & Biomimetic Drugs, Peking University, Beijing 100083, China, Institute of Vascular Medicine, Peking University Third Hospital, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing 100083, P.R. China, and National Research Institute for Family Planning, Beijing 100081, P.R. China
| | - Tian-Hao Su
- Department of Pharmacology, School of Basic Medical Sciences and State Key Laboratory of Natural & Biomimetic Drugs, Peking University, Beijing 100083, China, Institute of Vascular Medicine, Peking University Third Hospital, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing 100083, P.R. China, and National Research Institute for Family Planning, Beijing 100081, P.R. China
| | - Yu-Hua Li
- Department of Pharmacology, School of Basic Medical Sciences and State Key Laboratory of Natural & Biomimetic Drugs, Peking University, Beijing 100083, China, Institute of Vascular Medicine, Peking University Third Hospital, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing 100083, P.R. China, and National Research Institute for Family Planning, Beijing 100081, P.R. China
| | - Hong-Li Wu
- Department of Pharmacology, School of Basic Medical Sciences and State Key Laboratory of Natural & Biomimetic Drugs, Peking University, Beijing 100083, China, Institute of Vascular Medicine, Peking University Third Hospital, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing 100083, P.R. China, and National Research Institute for Family Planning, Beijing 100081, P.R. China
| | - You-Yi Zhang
- Department of Pharmacology, School of Basic Medical Sciences and State Key Laboratory of Natural & Biomimetic Drugs, Peking University, Beijing 100083, China, Institute of Vascular Medicine, Peking University Third Hospital, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing 100083, P.R. China, and National Research Institute for Family Planning, Beijing 100081, P.R. China
| | - He-Ming Yu
- Department of Pharmacology, School of Basic Medical Sciences and State Key Laboratory of Natural & Biomimetic Drugs, Peking University, Beijing 100083, China, Institute of Vascular Medicine, Peking University Third Hospital, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing 100083, P.R. China, and National Research Institute for Family Planning, Beijing 100081, P.R. China
| | - Xue-Jun Li
- Department of Pharmacology, School of Basic Medical Sciences and State Key Laboratory of Natural & Biomimetic Drugs, Peking University, Beijing 100083, China, Institute of Vascular Medicine, Peking University Third Hospital, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing 100083, P.R. China, and National Research Institute for Family Planning, Beijing 100081, P.R. China
| |
Collapse
|
13
|
Fagerholm V, Rokka J, Nyman L, Sallinen J, Tiihonen J, Tupala E, Haaparanta M, Hietala J. Autoradiographic characterization of α2C-adrenoceptors in the human striatum. Synapse 2008; 62:508-15. [DOI: 10.1002/syn.20520] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
14
|
Buhler AV, Proudfit HK, Gebhart GF. Neurotensin-produced antinociception in the rostral ventromedial medulla is partially mediated by spinal cord norepinephrine. Pain 2007; 135:280-290. [PMID: 17664042 PMCID: PMC2423280 DOI: 10.1016/j.pain.2007.06.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2006] [Revised: 06/08/2007] [Accepted: 06/11/2007] [Indexed: 02/07/2023]
Abstract
Microinjection of neurotensin (NT) into the rostral ventromedial medulla (RVM) produces dose-dependent antinociception. Here we show that antinociception produced by intra-RVM microinjection of neurotensin (NT) or the selective NT receptor subtype 1 (NTR1) agonist PD149163 can be partially blocked by intrathecal (i.t.) yohimbine, an alpha2-adrenoceptor antagonist and by methysergide, a serotonin receptor antagonist. Antinociception produced by the NTR2 agonist beta-lactotensin (beta-LT) is blocked by intrathecal (i.t.) yohimbine, but not by methysergide i.t. It is not known which noradrenergic cell group is involved in this newly identified noradrenergic component of NTR-mediated antinociception. These experiments provide the first evidence that selective activation of NTR2 in the RVM produces antinociception. These results also provide evidence that activation of NTR1 in the RVM produces antinociception through spinal release of norepinephrine (NE) and serotonin, and that activation of NTR2 in the RVM produces antinociception mediated by spinal release of NE.
Collapse
Affiliation(s)
- A V Buhler
- School of Pharmacy, Pacific University, 222 SE 8th Avenue, Ste 451, Hillsboro, OR 97123, United States Department of Pharmacology, Carver College of Medicine, The University of Iowa, Iowa City, IA 52242, United States Center for Pain Research, University of Pittsburgh School of Medicine, PA, United States
| | | | | |
Collapse
|
15
|
Jurgens CWD, Hammad HM, Lichter JA, Boese SJ, Nelson BW, Goldenstein BL, Davis KL, Xu K, Hillman KL, Porter JE, Doze VA. Alpha2A adrenergic receptor activation inhibits epileptiform activity in the rat hippocampal CA3 region. Mol Pharmacol 2007; 71:1572-81. [PMID: 17341653 DOI: 10.1124/mol.106.031773] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Norepinephrine has potent antiepileptic properties, the pharmacology of which is unclear. Under conditions in which GABAergic inhibition is blocked, norepinephrine reduces hippocampal cornu ammonis 3 (CA3) epileptiform activity through alpha(2) adrenergic receptor (AR) activation on pyramidal cells. In this study, we investigated which alpha(2)AR subtype(s) mediates this effect. First, alpha(2)AR genomic expression patterns of 25 rat CA3 pyramidal cells were determined using real-time single-cell reverse transcription-polymerase chain reaction, demonstrating that 12 cells expressed alpha(2A)AR transcript; 3 of the 12 cells additionally expressed mRNA for alpha(2C)AR subtype and no cells possessing alpha(2B)AR mRNA. Hippocampal CA3 epileptiform activity was then examined using field potential recordings in brain slices. The selective alphaAR agonist 6-fluoronorepinephrine caused a reduction of CA3 epileptiform activity, as measured by decreased frequency of spontaneous epileptiform bursts. In the presence of betaAR blockade, concentration-response curves for AR agonists suggest that an alpha(2)AR mediates this response, as the rank order of potency was 5-bromo-N-(4,5-dihydro-1H-imidazol-2-yl)-6-quinoxalinamine (UK-14304) >or= epinephrine >6-fluoronorepinephrine > norepinephrine >>> phenylephrine. Finally, equilibrium dissociation constants (K(b)) of selective alphaAR antagonists were functionally determined to confirm the specific alpha(2)AR subtype inhibiting CA3 epileptiform activity. Apparent K(b) values calculated for atipamezole (1.7 nM), MK-912 (4.8 nM), BRL-44408 (15 nM), yohimbine (63 nM), ARC-239 (540 nM), prazosin (4900 nM), and terazosin (5000 nM) correlated best with affinities previously determined for the alpha(2A)AR subtype (r = 0.99, slope = 1.0). These results suggest that, under conditions of impaired GABAergic inhibition, activation of alpha(2A)ARs is primarily responsible for the antiepileptic actions of norepinephrine in the rat hippocampal CA3 region.
Collapse
Affiliation(s)
- Chris W D Jurgens
- Department of Pharmacology, Physiology and Therapeutics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202-9037, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Murrin LC, Sanders JD, Bylund DB. Comparison of the maturation of the adrenergic and serotonergic neurotransmitter systems in the brain: implications for differential drug effects on juveniles and adults. Biochem Pharmacol 2007; 73:1225-36. [PMID: 17316571 PMCID: PMC1894950 DOI: 10.1016/j.bcp.2007.01.028] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2006] [Revised: 01/13/2007] [Accepted: 01/19/2007] [Indexed: 11/19/2022]
Abstract
Our understanding of the development of neurotransmitter systems in the central nervous system has increased greatly over the past three decades and it has become apparent that drug effects on the developing nervous system may differ considerably from effects on the mature nervous system. Recently it has become clear there are significant differences in the effectiveness of antidepressant drug classes in children and adolescents compared to adults. Whereas the selective serotonin reuptake inhibitors are effective in treating all ages from children to adults, the tricyclic antidepressants, many of which inhibit norepinephrine reuptake, have been shown to be ineffective in treating children and adolescents even though they are effective in adults. We review here the development of the noradrenergic and serotonergic nervous systems, both in terms of neurotransmitter system markers and function. Both of these neurotransmitter systems are primary targets of antidepressant medications as well as of central nervous system stimulants. It is clear from a comparison of their development that the serotonin system reaches maturity much earlier than the norepinephrine system. We suggest this may help explain the differences in response to antidepressants in children and adolescents compared to adults. In addition, these differences suggest that drugs acting preferentially on either neurotransmitter system may impact the normal course of CNS development at different time points. Consideration of such differences in the development of neurotransmitter systems may be of significance in optimizing treatments for a variety of centrally mediated disorders.
Collapse
Affiliation(s)
- L Charles Murrin
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, 985800 Nebraska Medical Center, Omaha, NE 68198-5800, USA.
| | | | | |
Collapse
|
17
|
Paladini CA, Beckstead MJ, Weinshenker D. Electrophysiological properties of catecholaminergic neurons in the norepinephrine-deficient mouse. Neuroscience 2006; 144:1067-74. [PMID: 17156935 PMCID: PMC1847415 DOI: 10.1016/j.neuroscience.2006.10.032] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2006] [Revised: 10/03/2006] [Accepted: 10/14/2006] [Indexed: 11/22/2022]
Abstract
To determine how norepinephrine affects the basic physiological properties of catecholaminergic neurons, brain slices containing the substantia nigra pars compacta and locus coeruleus were studied with cell-attached and whole-cell recordings in control and dopamine beta-hydroxylase knockout (Dbh -/-) mice that lack norepinephrine. In the cell-attached configuration, the spontaneous firing rate and pattern of locus coeruleus neurons recorded from Dbh -/- mice were the same as the firing rate and pattern recorded from heterozygous littermates (Dbh +/-). During whole-cell recordings, synaptic stimulation produced an alpha-2 receptor-mediated outward current in the locus coeruleus of control mice that was absent in Dbh -/- mice. Normal alpha-2 mediated outward currents were restored in Dbh -/- slices after pre-incubation with norepinephrine. Locus coeruleus neurons also displayed similar changes in holding current in response to bath application of norepinephrine, UK 14304, and methionine-enkephalin. Dopamine neurons recorded in the substantia nigra pars compacta similarly showed no differences between slices harvested from Dbh -/- and control mice. These results indicate that endogenous norepinephrine is not necessary for the expression of catecholaminergic neuron firing properties or responses to direct agonists, but is necessary for auto-inhibition mediated by indirect alpha-2 receptor stimulation.
Collapse
Affiliation(s)
- C A Paladini
- Biology Department, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, USA.
| | | | | |
Collapse
|
18
|
Sanders JD, Szot P, Weinshenker D, Happe HK, Bylund DB, Murrin LC. Analysis of brain adrenergic receptors in dopamine-beta-hydroxylase knockout mice. Brain Res 2006; 1109:45-53. [PMID: 16854392 DOI: 10.1016/j.brainres.2006.06.033] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2006] [Revised: 06/07/2006] [Accepted: 06/13/2006] [Indexed: 11/29/2022]
Abstract
The biosynthesis of norepinephrine occurs through a multi-enzymatic pathway that includes the enzyme dopamine-beta-hydroxylase (DBH). Mice with a homozygous deletion of DBH (Dbh-/-) have a selective and complete absence of norepinephrine. The purpose of this study was to assess the expression of alpha-1, alpha-2 and beta adrenergic receptors (alpha1-AR, alpha2-AR and beta-AR) in the postnatal absence of norepinephrine by comparing noradrenergic receptors in Dbh-/- mice with those in Dbh heterozygotes (Dbh+/-), which have normal levels of norepinephrine throughout life. The densities of alpha1-AR, alpha2-AR and beta-AR were assayed with [3H]prazosin, [3H]RX21002 and [125I]-iodo-pindolol autoradiography, respectively. The alpha2-AR agonist high affinity state was examined with [125I]-para-iodoclonidine autoradiography and alpha2-AR functionality by alpha2-AR agonist-stimulated [35S]GTPgammaS autoradiography. The density of alpha1-AR in Dbh-/- mice was similar to Dbh+/- mice in most brain regions, with an up-regulation in the hippocampus. Modest decreases in alpha2-AR were found in septum, hippocampus and amygdala, but these were not reflected in alpha2-AR functionality. The density of beta-AR was up-regulated to varying degrees in many brain regions of Dbh-/- mice compared to the heterozygotes. These findings indicate that regulation of noradrenergic receptors by endogenous norepinephrine depends on receptor type and neuroanatomical region.
Collapse
MESH Headings
- Analysis of Variance
- Animals
- Animals, Newborn
- Autoradiography/methods
- Brain/drug effects
- Brain/growth & development
- Brain/metabolism
- Dopamine beta-Hydroxylase/deficiency
- Gene Expression Regulation, Developmental/drug effects
- Gene Expression Regulation, Developmental/genetics
- Guanosine 5'-O-(3-Thiotriphosphate)/metabolism
- Idazoxan/analogs & derivatives
- Idazoxan/metabolism
- Isotopes/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Pindolol/metabolism
- Prazosin/metabolism
- Receptors, Adrenergic, alpha-1/genetics
- Receptors, Adrenergic, alpha-1/metabolism
- Receptors, Adrenergic, alpha-2/genetics
- Receptors, Adrenergic, alpha-2/metabolism
Collapse
Affiliation(s)
- Jeff D Sanders
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5800, and Veterans Administration Puget Sound Health Care System, Seattle, WA 98108, USA
| | | | | | | | | | | |
Collapse
|
19
|
Hirono M, Obata K. α-Adrenoceptive Dual Modulation of Inhibitory GABAergic Inputs to Purkinje Cells in the Mouse Cerebellum. J Neurophysiol 2006; 95:700-8. [PMID: 16251261 DOI: 10.1152/jn.00711.2005] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Noradrenaline (NA) modulates synaptic transmission in various sites of the CNS. In the cerebellar cortex, several studies have revealed that NA enhances inhibitory synaptic transmission by β-adrenoceptor–and cyclic AMP–dependent pathways. However, the effects of α-adrenoceptor activation on cerebellar inhibitory neurotransmission have not yet been fully elucidated. Therefore we investigated the effects of the α1- or α2-adrenoceptor agonist on inhibitory postsynaptic currents (IPSCs) recorded from mouse Purkinje cells (PCs). We found that the nonselective α-adrenoceptor agonist 6-fluoro-norepinephrine increased both the frequency and amplitude of spontaneous IPSCs (sIPSCs). This enhancement was mostly mimicked by the selective α1-adrenoceptor agonist phenylephrine (PE). PE also enhanced the amplitude of evoked IPSCs (eIPSCs) and increased the frequency but not the amplitude of miniature IPSCs (mIPSCs). Moreover, PE decreased the paired-pulse ratio of eIPSCs and did not change γ-aminobutyric acid (GABA) receptor sensitivity in PCs. Conversely, the selective α2-adrenoceptor agonist clonidine significantly reduced both the frequency and the amplitude of sIPSCs. Neither eIPSCs nor mIPSCs were affected by clonidine. Furthermore, presynaptic cell-attached recordings showed that spontaneous activity of GABAergic interneurons was enhanced by PE but reduced by clonidine. These results suggest that NA enhances inhibitory neurotransmitter release by α1-adrenoceptors, which are expressed in presynaptic terminals and somatodendritic domains, whereas NA suppresses the excitability of interneurons by α2-adrenoceptors, which are expressed in presynaptic somatodendritic domains. Thus cerebellar α-adrenoceptors play roles in a presynaptic dual modulation of GABAergic inputs from interneurons to PCs, thereby providing a likely mechanism for the fine-tuning of information flow in the cerebellar cortex.
Collapse
Affiliation(s)
- Moritoshi Hirono
- Neuronal Circuit Mechanisms Research Group, Brain Science Institute, RIKEN, Wako, Saitama 351-0198, Japan.
| | | |
Collapse
|
20
|
SCHAMBRA UB, MACKENSEN GB, STAFFORD-SMITH M, HAINES DE, SCHWINN DA. Neuron specific alpha-adrenergic receptor expression in human cerebellum: implications for emerging cerebellar roles in neurologic disease. Neuroscience 2006; 135:507-23. [PMID: 16112482 PMCID: PMC2277099 DOI: 10.1016/j.neuroscience.2005.06.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2004] [Revised: 06/06/2005] [Accepted: 06/15/2005] [Indexed: 12/13/2022]
Abstract
Recent data suggest novel functional roles for cerebellar involvement in a number of neurologic diseases. Function of cerebellar neurons is known to be modulated by norepinephrine and adrenergic receptors. The distribution of adrenergic receptor subtypes has been described in experimental animals, but corroboration of such studies in the human cerebellum, necessary for drug treatment, is still lacking. In the present work we studied cell-specific localizations of alpha1 adrenergic receptor subtype mRNA (alpha 1a, alpha 1b, alpha 1d), and alpha2 adrenergic receptor subtype mRNA (alpha 2a, alpha 2b, alpha 2c) by in situ hybridization on cryostat sections of human cerebellum (cortical layers and dentate nucleus). We observed unique neuron-specific alpha1 adrenergic receptor and alpha2 adrenergic receptor subtype distribution in human cerebellum. The cerebellar cortex expresses mRNA encoding all six alpha adrenergic receptor subtypes, whereas dentate nucleus neurons express all subtype mRNAs, except alpha 2a adrenergic receptor mRNA. All Purkinje cells label strongly for alpha 2a and alpha 2b adrenergic receptor mRNA. Additionally, Purkinje cells of the anterior lobe vermis (lobules I to V) and uvula/tonsil (lobules IX/HIX) express alpha 1a and alpha 2c subtypes, and Purkinje cells in the ansiform lobule (lobule HVII) and uvula/tonsil express alpha 1b and alpha 2c adrenergic receptor subtypes. Basket cells show a strong signal for alpha 1a, moderate signal for alpha 2a and light label for alpha 2b adrenergic receptor mRNA. In stellate cells, besides a strong label of alpha 2a adrenergic receptor mRNA in all and moderate label of alpha 2b message in select stellate cells, the inner stellate cells are also moderately positive for alpha 1b adrenergic receptor mRNA. Granule and Golgi cells express high levels of alpha 2a and alpha 2b adrenergic receptor mRNAs. These data contribute new information regarding specific location of adrenergic receptor subtypes in human cerebellar neurons. We discuss our observations in terms of possible modulatory roles of adrenergic receptor subtypes in cerebellar neurons responding to sensory and autonomic input signals, and review species differences in cerebellar adrenergic receptor expression.
Collapse
Affiliation(s)
- U. B. SCHAMBRA
- Department of Anatomy and Cell Biology, Quillen College of Medicine, East Tennessee State University, Box 70582, Johnson City, TN 37614-0582, USA
- *Corresponding author. Tel: +1-423-439-2014; fax: +1-423-439-2017. E-mail address: (U. B. Schambra)
| | - G. B. MACKENSEN
- Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA
| | - M. STAFFORD-SMITH
- Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA
| | - D. E. HAINES
- Department of Anatomy, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - D. A. SCHWINN
- Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA
- Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
- Department of Pharmacology/Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
- *Corresponding author. Tel: +1-423-439-2014; fax: +1-423-439-2017. E-mail address: (U. B. Schambra)
| |
Collapse
|
21
|
Pandey J, Wendell DL. Angiogenesis and capillary maturation phenotypes associated with the Edpm3 locus on rat chromosome 3. Mamm Genome 2006; 17:49-57. [PMID: 16416090 DOI: 10.1007/s00335-005-2450-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2004] [Accepted: 08/31/2005] [Indexed: 10/25/2022]
Abstract
The quantitative trait locus (QTL) Edpm3 is one of a group of additively acting QTL \responsible for the difference in estrogen-induced pituitary tumor growth between the tumor-susceptible F344 and tumor-resistant BN rat strains. The F344.BN-Edpm3(BN) rat strain was produced by moving the segment of rat Chr 3 between D3Mgh7 and D3Mgh13, which contains the Edpm3 QTL, from the BN strain into the F344 genetic background. In a previous study, we used this congenic line to find that the BN allele of the Edpm3 QTL reduces tissue mass and S-phase fraction in the estrogen-induced rat pituitary tumor. We now report on the use of this congenic line to investigate the linkage of Edpm3 to tumor angiogenesis. Contrary to expectation, the F344.BN-Edpm3(BN) strain has significantly greater angiogenic activity than does F344 in both treated and untreated rats. Microvessel count (MVC), perivascular space, and number of nonattached pericytes/pericapillary fibroblasts are all elevated in the pituitary by chronic estrogen treatment and their values are significantly greater in F344.BN-Edpm3(BN) than F344. Thus, although there is greater angiogenic activity in the pituitary of estrogen-treated F344.BN-Edpm3(BN) rats, there is a deficiency in capillary maturation compared with F344.
Collapse
Affiliation(s)
- Jyotsna Pandey
- Department of Biological Sciences, Oakland University, 2200 N Squirrel Rd., Rochester, Michigan 48309, USA
| | | |
Collapse
|
22
|
Sanders JD, Happe HK, Murrin LC. A transient expression of functional alpha2-adrenergic receptors in white matter of the developing brain. Synapse 2005; 57:213-22. [PMID: 15986363 DOI: 10.1002/syn.20174] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Norepinephrine is a neurotransmitter with peripheral and central actions mediated by alpha-1, alpha-2, and beta-adrenergic receptors. In this paper, we report an expression of alpha-2 adrenergic receptors in developing white matter tracts as revealed by [(3)H]RX821002 autoradiography. In rats, these receptors are present in the corpus callosum and anterior commissure at gestational day 20. Quantification of their postnatal expression reveals peak expression in the corpus callosum at postnatal day 1, which decreases with maturation and disappears by postnatal day 21. Expression in the anterior commissure is persistently elevated throughout the first ten days of postnatal development and then decreases to near background levels by postnatal day 21. Further characterization of the receptors by agonist-stimulated [(35)S]GTPgammaS binding verifies alpha-2 adrenergic receptors are functionally coupled to G proteins early in development and therefore are mature receptors. In situ hybridization did not detect mRNA for any of the alpha-2 adrenergic receptor subtypes (A, B, and C) in white matter tracts of postnatal day 5 brain. [(3)H]RX821002 emulsion autoradiography demonstrated autoradiographic grains that were of comparable density between cells and over cell bodies. Collectively, these data suggest that alpha-2 adrenergic receptors in neonatal commissures are synthesized at sites distant from their white matter expression and may be guiding the maturation of these brain commissures.
Collapse
Affiliation(s)
- Jeff D Sanders
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska 68198-5800, USA
| | | | | |
Collapse
|
23
|
Schaak S, Cussac D, Labialle S, Mignotte V, Paris H. Cloning and functional characterization of the rat alpha2B-adrenergic receptor gene promoter region: Evidence for binding sites for erythropoiesis-related transcription factors GATA1 and NF-E2. Biochem Pharmacol 2005; 70:606-17. [PMID: 15993847 DOI: 10.1016/j.bcp.2005.05.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2005] [Revised: 05/23/2005] [Accepted: 05/24/2005] [Indexed: 10/25/2022]
Abstract
In the rat, the alpha2B-adrenergic receptor (alpha2B-AR) is encoded by the rat non-glycosylated (RNG) gene and is primarily expressed in the kidney, brain and liver of adult animals. High levels of alpha2B-AR are also found during fetal life in the placenta, liver and blood, where it is borne by cells of the erythropoietic lineage. As a first step to define the mechanisms responsible for the spatio-temporal pattern of alpha2B-AR expression, a genomic fragment containing 2.8 kb of the 5'-flanking region, the ORF and approximately 20 kb of the 3'-flanking region of the RNG gene was isolated. RNase protection assays performed on RNA from placenta or kidney using a series of riboprobes permitted to locate the transcription start site 372 bases upstream from the start codon. Transient transfection of various cells, including rat proximal tubule in primary culture, with constructs containing luciferase as a reporter gene demonstrated that: (i) the 5'-flanking region exhibited a strong and sense-dependent transcriptional activity and (ii) the 332 bp fragment (-732/-401 relative to the start codon), which lacks a TATA box but contains Sp1 sites, is sufficient to drive expression. Analysis of chromatin susceptibility to DNaseI digestion identified two hypersensitive sites (HS1 and HS2) located 1.7 and 1.0 kb, respectively, upstream from ATG and containing recognition sequences for erythroid transcription factors. EMSA showed specific binding of GATA1 and NF-E2 to these elements. Taken together, the results suggest that the chromatin environment in the vicinity of these boxes plays a critical role for alpha2B-AR expression during fetal life.
Collapse
Affiliation(s)
- Stéphane Schaak
- INSERM Unit 388, Institut Louis Bugnard, CHU Rangueil, Bâtiment L3, BP 84225, 31432 Toulouse Cedex 4, France
| | | | | | | | | |
Collapse
|
24
|
Marrs W, Kuperman J, Avedian T, Roth RH, Jentsch JD. Alpha-2 adrenoceptor activation inhibits phencyclidine-induced deficits of spatial working memory in rats. Neuropsychopharmacology 2005; 30:1500-10. [PMID: 15714223 DOI: 10.1038/sj.npp.1300700] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
N-methyl-D-aspartate (NMDA)/glutamate receptor antagonists, such as phencyclidine (PCP), induce behavioral abnormalities (locomotor hyperactivity, sensorimotor gating deficits, impairments of cognition) in animals that are thought to model aspects of schizophrenia. The administration of PCP increases noradrenaline transmission in the rat prefrontal cortex, a brain structure required for normal cognitive processes. Noradrenaline, in turn, works through a set of receptors that have themselves been implicated directly in NMDA antagonist-induced deficits; we recently reported that the alpha-2 agonist, clonidine, is effective at preventing PCP-induced deficits of working memory and visual attention in rats. Here, we further investigated the role for alpha-2 adrenoreceptors in the effects of PCP on spatial working memory performance. The alpha-2 agonist clonidine (0.001-0.01 mg/kg, subcutaneously (s.c.)) produced a significant amelioration of PCP-induced working memory deficits; the effects of PCP (1.0 mg/kg, s.c.), but not clonidine, were reduced in noradrenaline-depleted rats. In addition, the alpha-2A-preferring agonist guanfacine (0.05-1.0 mg/kg, s.c.) dose-dependently prevented the deficits of spatial working memory performance produced by PCP. Although the highly selective alpha-2 receptor antagonist, atipamezole (ATI), failed to affect spatial working memory on its own, at the doses studied (0.1-0.5 mg/kg, s.c.), it dramatically enhanced the working memory deficit produced by PCP. These data indicate that alpha-2 adrenoreceptors tonically inhibit PCP-induced deficits of spatial working memory, suggesting an important role for these receptors in cognitive deficits associated with NMDA receptor hypofunction.
Collapse
Affiliation(s)
- William Marrs
- Department of Psychology, University of California at Los Angeles, Los Angeles, CA 90095-1563, USA
| | | | | | | | | |
Collapse
|
25
|
Kreider ML, Seidler FJ, Cousins MM, Tate CA, Slotkin TA. Transiently overexpressed alpha2-adrenoceptors and their control of DNA synthesis in the developing brain. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2004; 152:233-9. [PMID: 15351511 DOI: 10.1016/j.devbrainres.2004.07.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/08/2004] [Indexed: 10/26/2022]
Abstract
During brain development, neurotransmitters act as trophic factors controlling the patterns of cell replication and differentiation. Alpha2-adrenoceptors (alpha2ARs) are transiently overexpressed in zones with high mitotic activity and we evaluated whether these receptors are linked to DNA synthesis in the perinatal rat brain. Acute administration of clonidine (2 mg/kg), an alpha2AR agonist, elicited dramatic decreases in DNA synthesis in the forebrain, brainstem, and cerebellum whether given on gestational day (GD) 21, or on postnatal days (PN) 1 or 8. However, alpha2AR blockade elicited by yohimbine (2.5 mg/kg) also resulted in decreased DNA synthesis on GD21 and PN8, albeit to a smaller extent than with clonidine. Yohimbine was able to blunt the effects of clonidine, verifying that both drugs are acting through the same receptor population. Because betaARs are also known to regulate DNA synthesis, we used propranolol (10 mg/kg) blockade of betaARs to evaluate whether the alpha2AR effects were mediated by presynaptic autoreceptors that regulate the release of norepinephrine and consequent betaAR responses; the effects of yohimbine were still discernible in the presence of propranolol. Accordingly, transiently overexpressed alpha2ARs in the developing brain participate in the control of DNA synthesis in a biphasic manner, with promotional actions at low, endogenous levels of stimulation, but inhibitory effects when stimulation is high. Effects on alpha2ARs are likely to contribute to long-term consequences of adrenergic agents used in obstetrics or neurotoxicants that affect adrenergic activity.
Collapse
Affiliation(s)
- Marisa L Kreider
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Box 3813, Durham, NC 27710, United States
| | | | | | | | | |
Collapse
|
26
|
Ozawa Y, Takashima S, Tada H. α2-Adrenergic receptor subtype alterations in the brainstem in the sudden infant death syndrome. PATHOPHYSIOLOGY 2004. [DOI: 10.1016/j.pathophys.2004.01.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
27
|
Happe HK, Coulter CL, Gerety ME, Sanders JD, O'Rourke M, Bylund DB, Murrin LC. Alpha-2 adrenergic receptor development in rat CNS: an autoradiographic study. Neuroscience 2004; 123:167-78. [PMID: 14667451 DOI: 10.1016/j.neuroscience.2003.09.004] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
During development norepinephrine plays a role in determining the morphologic organization of the CNS and the density and future responsiveness of adrenergic receptors. alpha-2 Adrenergic receptors, one of three adrenergic receptor types, regulate important adult CNS functions and may have a distinct role during development. We examined alpha-2 receptor distribution and density in the rat brain at postnatal days 1, 5, 10, 15, 21, 28 and in adults using the antagonist [(3)H]RX821002 for autoradiography. Binding kinetics and pharmacology for alpha-2 adrenergic receptors were the same in adults and neonates. There was an overall increase in alpha-2 receptor levels during postnatal development with great variability in pattern and timing of receptor density changes among brain regions. Three major patterns were apparent. First, in many regions receptor density increased during postnatal development, generally reaching adult levels around postnatal day 15. Within this group there was variability in timing between regions and there were several regions with receptor densities higher than adult levels during the postnatal period. Second, there were regions with very high levels of receptors at birth and little or no change in density during the postnatal period. Third, some regions demonstrated decreasing or transient expression of alpha-2 adrenergic receptors in the course of postnatal development, including white matter regions, cerebellum and many brainstem nuclei, suggesting specific roles for alpha-2 receptors during development. This study investigates the development of alpha-2 adrenergic receptors in the rat CNS. It demonstrates there is region-specific regulation of alpha-2 receptor development and identifies brain regions where these receptors may play a specific and critical role in the regulation normal development.
Collapse
Affiliation(s)
- H K Happe
- Department of Pharmacology, 986260 Nebraska Medical Center, Omaha, NE 68198-6260, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Costa LG, Steardo L, Cuomo V. Structural effects and neurofunctional sequelae of developmental exposure to psychotherapeutic drugs: experimental and clinical aspects. Pharmacol Rev 2004; 56:103-47. [PMID: 15001664 DOI: 10.1124/pr.56.1.5] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The advent of psychotherapeutic drugs has enabled management of mental illness and other neurological problems such as epilepsy in the general population, without requiring hospitalization. The success of these drugs in controlling symptoms has led to their widespread use in the vulnerable population of pregnant women as well, where the potential embryotoxicity of the drugs has to be weighed against the potential problems of the maternal neurological state. This review focuses on the developmental toxicity and neurotoxicity of five broad categories of widely available psychotherapeutic drugs: the neuroleptics, the antiepileptics, the antidepressants, the anxiolytics and mood stabilizers, and a newly emerging class of nonprescription drugs, the herbal remedies. A brief review of nervous system development during gestation and following parturition in mammals is provided, with a description of the development of neurochemical pathways that may be involved in the action of the psychotherapeutic agents. A thorough discussion of animal research and human clinical studies is used to determine the risk associated with the use of each drug category. The potential risks to the fetus, as demonstrated in well described neurotoxicity studies in animals, are contrasted with the often negative findings in the still limited human studies. The potential risk fo the human fetus in the continued use of these chemicals without more adequate research is also addressed. The direction of future research using psychotherapeutic drugs should more closely parallel the methodology developed in the animal laboratories, especially since these models have already been used extremely successfully in specific instances in the investigation of neurotoxic agents.
Collapse
Affiliation(s)
- Lucio G Costa
- Department of Pharmacology and Human Physiology, University of Bari Medical School, Italy
| | | | | |
Collapse
|
29
|
Song ZM, Abou-Zeid O, Fang YY. α2a adrenoceptors regulate phosphorylation of microtubule-associated protein-2 in cultured cortical neurons. Neuroscience 2004; 123:405-18. [PMID: 14698748 DOI: 10.1016/j.neuroscience.2003.09.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Adrenoceptors have been suggested to mediate neuronal development. This study revealed the expression of alpha2A adrenoceptors in the cortical plate of fetal mouse cerebral wall. The effects of alpha2A adrenoceptor on dendrite growth were investigated in primary neuronal cultures. Application of alpha2 adrenoceptor agonists, BHT 933 or UK 14304 for 24 or 72 h resulted in a 1.5-2-fold increase in dendrite lengths. This effect was blocked by alpha2 adrenergic antagonists, RX 821002 or yohimbine, as well as a alpha2A selective antagonist, BRL 44408, but not by alpha2B/alpha2C selective antagonists ARC 239, imiloxan and rauwolscine. Guanfacine, a alpha2A selective agonists, also significantly increased the dendrite lengths in culture. These results suggest that the morphological effect is wholly attributable to alpha2A adrenoceptor activation. We further tested the hypothesis that alpha2A adrenoceptors act through altering the phosphorylation state of microtubule-associated protein 2. The results showed that the phosphorylation of microtubule-associated protein 2 was significantly reduced on both serine and threonine residues by over 40% after 2 h of application of guanfacine and was maintained at this low level for a prolonged time up to 96 h. These findings suggest that alpha2A adrenoceptors regulate the phosphorylation of microtubule-associated protein 2, which in turn mediates dendrite growth of cortical neurons.
Collapse
Affiliation(s)
- Z-M Song
- Division of Neuroscience, John Curtin School of Medical Research, Australian National University, Building 54, Mills Road, Canberra, ACT 0200, Australia.
| | | | | |
Collapse
|
30
|
Ozawa Y, Takashima S, Tada H. Alpha2-adrenergic receptor subtype alterations in the brainstem in the sudden infant death syndrome. Early Hum Dev 2003; 75 Suppl:S129-38. [PMID: 14693399 DOI: 10.1016/j.earlhumdev.2003.08.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
BACKGROUND The sudden infant death syndrome (SIDS) is still the main cause of postneonatal infant death. However, the causes and mechanisms of SIDS have never been completely elucidated. Catecholamines, via alpha2-adrenergic receptor (alpha2-AR) interactions, are known to influence brainstem autonomic and respiratory activity. AIMS To examine the catecholaminergic system abnormalities in SIDS victims, we investigated the alterations of alpha2-AR subtypes. SUBJECTS AND METHODS We examined the developmental changes of alpha2-AR subtypes in the brainstem, especially in cardiorespiratory nuclei, in 21 SIDS victims and 17 age-matched controls by means of immunohistochemical methods. For statistical analysis, the chi2-test or Fisher's exact probability test was performed. RESULTS There was a significant decrease in alpha2A-AR immunoreactivity in the solitary nucleus and ventrolateral medulla (VLM) in the medulla oblongata in SIDS victims compared with in control cases, but there were no significant differences of the alpha2B and alpha2C-AR immunoreactivity in the brainstem between SIDS victims and controls. CONCLUSION Alpha2A-AR immunoreactivity was selectively decreased in the solitary nucleus and VLM in the medulla oblongata in SIDS victims, so there was no possibility that it was secondary to chronic hypoxia or repeated ischemia. It may be related to some impairment of the cardiorespiratory neuronal system. Therefore, SIDS victims may be vulnerable to asphyxia, hypoxia, and/or hypercapnia, and fail to exhibit brainstem responses.
Collapse
Affiliation(s)
- Yuri Ozawa
- Department of Neonatology, Toho University School of Medicine, 6-11-1 Ohmorinishi, Ohta, Tokyo 143-8541, Japan.
| | | | | |
Collapse
|
31
|
Holmberg M, Fagerholm V, Scheinin M. Regional distribution of alpha(2C)-adrenoceptors in brain and spinal cord of control mice and transgenic mice overexpressing the alpha(2C)-subtype: an autoradiographic study with [(3)H]RX821002 and [(3)H]rauwolscine. Neuroscience 2003; 117:875-98. [PMID: 12654340 DOI: 10.1016/s0306-4522(02)00966-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Behavioral studies on gene-manipulated mice have started to elucidate the neurobiological functions of the alpha(2C)-adrenoceptor (AR) subtype. In this study, we applied quantitative receptor autoradiography to investigate the potential anatomical correlates of the observed functional effects of altered alpha(2C)-AR expression. Labeling of brain and spinal cord sections with the subtype non-selective alpha(2)-AR radioligand [(3)H]RX821002 and the alpha(2C)-AR-preferring ligand [(3)H]rauwolscine revealed distinct binding-site distribution patterns. In control mice, [(3)H]rauwolscine binding was most abundant in the olfactory tubercle, accumbens and caudate putamen nuclei, and in the CA1 field of the hippocampus. A mouse strain with overexpression of alpha(2C)-AR regulated by a gene-specific promoter showed approximately two- to four-fold increased levels of [(3)H]rauwolscine binding in these regions. In addition, dramatic increases in [(3)H]rauwolscine binding were seen in the nerve layer of the olfactory bulb, the molecular layer of the cerebellum, and the ventricular system of alpha(2C)-AR-overexpressing mice, representing "ectopic" alpha(2C)-AR expression. Competition-binding experiments with several alpha(2)-AR ligands confirmed the alpha(2C)-AR identity of these sites. Our results provide quantitative evidence of the predominance of the alpha(2A)-AR subtype in most regions of the mouse CNS, but also disclose the wide distribution of alpha(2C)-AR in the normal mouse brain, although at relatively low density, except in the ventral and dorsal striatum and the hippocampal CA1 area. alpha(2C)-AR are thus present in brain regions involved in the processing of sensory information and in the control of motor and emotion-related activities such as the accumbens and caudate putamen nuclei, the olfactory tubercle, the lateral septum, the hippocampus, the amygdala, and the frontal and somatosensory cortices. The current results may help in specifying an anatomical framework for the functional roles of the alpha(2A)- and alpha(2C)-AR subtypes in the mouse CNS.
Collapse
Affiliation(s)
- M Holmberg
- Department of Pharmacology and Clinical Pharmacology, University of Turku, FIN-20520, Turku, Finland
| | | | | |
Collapse
|
32
|
Wang GS, Chang NC, Wu SC, Chang AC. Regulated expression of ?2B adrenoceptor during development. Dev Dyn 2002; 225:142-52. [PMID: 12242714 DOI: 10.1002/dvdy.10141] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
There are three subtypes of alpha2 adrenoceptor, i.e., alpha2A, alpha2B, and alpha2C, mediating the specific effect of epinephrine and norepinephrine in various tissues by means of G protein-coupled signal transduction pathways. In an attempt to delineate the regulatory mechanism of the alpha2B receptor subtype (encoded by subtype gene Adra2b) expression in the central nervous system (CNS), we have established transgenic (Tg) mice lines in which the transgene (NN-lacZ) was composed of the promoter region of Adra2b (NcoI fragment, 4.7 kb immediately upstream from receptor coding region) and a reporter gene lacZ (encoding beta-galactosidase). The selective expression of alpha2B in brain as indexed by beta-galactosidase, under the direction of this promoter region, may be traced in situ by using X-gal staining. The expression pattern of Adra2b-NN-lacZ in CNS of Tg mice during development was examined. The temporal course of examination was from gestation day 9.5 (E9.5) to postnatal day 28 (P28). Significant X-gal staining was detected in the dorsal root ganglion and cranial nerves V and VII at E12.5. By E18.5, expression was noted in the cerebral cortex, anterior olfactory nucleus, hypothalamus, brainstem, and cerebellar Purkinje cells, among others, and persisted through postnatal development. Adra2b-NN-directed reporter expression was detected in the hippocampal dentate gyrus first at P4. The temporal course of expression up to P28 in this area is in accordance with the developmental profiles of granule neurons of dentate gyrus. From P7 on, transgene expression was detected in additional brain areas, including the septum and thalamus. The expression correlates well with the noradrenergic innervations as evidenced by colocalization by using tyrosine hydroxylase or dopamine-beta-hydroxylase immunocytochemistry.
Collapse
Affiliation(s)
- Guey-Shin Wang
- Institute of Neuroscience, National Yang-Ming University, Taipei, Taiwan, Republic of China
| | | | | | | |
Collapse
|
33
|
Taraviras S, Olli-Lähdesmäki T, Lymperopoulos A, Charitonidou D, Mavroidis M, Kallio J, Scheinin M, Flordellis C. Subtype-specific neuronal differentiation of PC12 cells transfected with alpha2-adrenergic receptors. Eur J Cell Biol 2002; 81:363-374. [PMID: 12113477 DOI: 10.1078/0171-9335-00250] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cells of the PC12 rat pheochromocytoma cell line acquire characteristics of sympathetic neurons under appropriate treatment. Stably transfected PC12 cells expressing individual alpha2-adrenergic receptor (alpha2-AR) subtypes were used to assess the role of alpha2-ARs in neuronal differentiation and to characterise the signalling pathways activated by the alpha2-AR agonist epinephrine in these cells. The effects of alpha2-AR activation were compared with the differentiating action and the signalling mechanisms of nerve growth factor (NGF). Epinephrine induced neuronal differentiation of PC12alpha2 cells through alpha2-AR activation in a subtype-dependent manner, internalization of all human alpha2-AR subtypes, and activation of mitogen-activated protein kinase (MAPK) and the serine-threonine protein kinase Akt. Epinephrine and NGF showed synergism in their differentiating effects. The MAPK kinase (MEK-1) inhibitor PD 98059 abolished the differentiating effect of epinephrine indicating that the differentiation is dependent on MAPK activation. Activating protein-1 (AP-1) DNA-binding activity was increased after epinephrine treatment in all three PC12alpha2 subtype clones. Evaluation of the potential physiological consequences of these findings requires further studies on endogenously expressed alpha2-ARs in neuronal cells.
Collapse
Affiliation(s)
- Stavros Taraviras
- Department of Pharmacology, School of Medicine, University of Patras, Rio Patras, Greece
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Ihalainen JA, Tanila H. In vivo regulation of dopamine and noradrenaline release by alpha2A-adrenoceptors in the mouse prefrontal cortex. Eur J Neurosci 2002; 15:1789-94. [PMID: 12081658 DOI: 10.1046/j.1460-9568.2002.02014.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The present study investigated the role of alpha2A-adrenoceptor subtype in the regulation of noradrenaline and dopamine release in the medial prefrontal cortex. The effect of local introduction of the alpha2-adrenoceptor agonist dexmedetomidine (10-9-10-8 m) on noradrenaline and dopamine release was investigated in alpha2A-adrenoceptor knockout and control mice by using in vivo microdialysis. Furthermore, to reveal a possible distinction between regulation of baseline and peak release, we sampled the dialysate during both rest and handling-induced mild stress. Baseline noradrenaline and dopamine concentrations did not differ between alpha2A-adrenoceptor knockout and control mice. Dexmedetomidine decreased, in a concentration-dependent manner, noradrenaline and dopamine levels in both genotypes. However, the effect of dexmedetomidine on noradrenaline release was attenuated in the alpha2A-adrenoceptor knockout mice, whereas the effect on dopamine release did not differ between the genotypes. The first handling episode increased noradrenaline and dopamine levels to the same extent in both genotypes. However, in alpha2A-adrenoceptor knockout mice the noradrenaline and dopamine levels remained elevated in the samples following the first handling whilst, in the control mice, transmitter levels returned to baseline levels. In control mice the handling-induced peak noradrenaline and dopamine levels were lower after the administration of dexmedetomidine than during the first handling episode, but in alpha2A-adrenoceptor knockout mice no drug effect on handling-induced peak noradrenaline and dopamine levels was found. Our results suggest that the release of noradrenaline in the medial prefrontal cortex is mainly regulated via alpha2A-adrenoceptors, whilst other alpha-adrenoceptor subtypes play a significant role in the regulation of dopamine release.
Collapse
MESH Headings
- Adrenergic alpha-Agonists/pharmacology
- Animals
- Dexmedetomidine/pharmacology
- Dose-Response Relationship, Drug
- Extracellular Space/metabolism
- Female
- Genotype
- Handling, Psychological
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Microdialysis
- Prefrontal Cortex/drug effects
- Prefrontal Cortex/metabolism
- Presynaptic Terminals/drug effects
- Presynaptic Terminals/metabolism
- Receptors, Adrenergic, alpha-2/deficiency
- Receptors, Adrenergic, alpha-2/drug effects
- Receptors, Adrenergic, alpha-2/genetics
- Up-Regulation/drug effects
- Up-Regulation/genetics
Collapse
Affiliation(s)
- Jouni A Ihalainen
- Department of Neuroscience and Neurology, University of Kuopio, P.O. Box 1627, Finland.
| | | |
Collapse
|
35
|
Huang Y, Stamer WD, Anthony TL, Kumar DV, St John PA, Regan JW. Expression of alpha(2)-adrenergic receptor subtypes in prenatal rat spinal cord. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2002; 133:93-104. [PMID: 11882340 DOI: 10.1016/s0165-3806(02)00275-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The results of molecular cloning have revealed three subtypes of the alpha(2)-adrenergic receptors (alpha(2) AR) that have been defined alpha(2)C10 (alpha(2A)), alpha(2)C2 (alpha(2B)) and alpha(2)C4 (alpha(2C)). The differential expression of alpha(2) AR subtypes is affected by developmental factors in rat submandibular gland, lung and brain. In the spinal cord of postnatal and adult rats, alpha(2A) and alpha(2C) AR subtypes are expressed and appear to mediate pain perception. However, the relative expression of alpha(2) AR subtypes in the prenatal spinal cord is unknown. In the present study subtype-specific antibodies and reverse transcription-polymerase chain reaction (RT-PCR) were used to determine the expression and localization of the alpha(2) AR subtypes in sections of embryonic day 14 rat spinal cords and primary cultures of cells isolated from these cords. Spinal cords were removed from day 14 embryos, and were sectioned or used for the preparation of cell cultures. After 9 days in culture, neurons were examined by immunofluorescence microscopy or used for preparation of total RNA. In both intact spinal cords and isolated cells, positive immunoreactivity was detected with antibodies against alpha(2A) and alpha(2B) subtypes, but not with antibodies against the alpha(2C) subtype. Using a dual-labeling approach, anti-alpha(2A) and anti-alpha(2B) immunoreactivity was present on the same population of neurons. RT-PCR results were consistent with immunofluorescence studies, and showed that mRNA encoding the alpha(2A) and alpha(2B) subtypes was present in total RNA prepared from primary cultures of rat spinal cord neurons. In contrast to spinal cords of postnatal or adult rats that express alpha(2A) and alpha(2C) AR subtypes on different neurons, prenatal spinal cords contain alpha(2A) and alpha(2B) AR subtypes, and these two subtypes appear to be co-expressed in the same cells.
Collapse
Affiliation(s)
- Yi Huang
- Department of Physiology, College of Medicine, University of Arizona, Tucson, AZ 85721, USA
| | | | | | | | | | | |
Collapse
|
36
|
Osborne PB, Vidovic M, Chieng B, Hill CE, Christie MJ. Expression of mRNA and functional alpha(1)-adrenoceptors that suppress the GIRK conductance in adult rat locus coeruleus neurons. Br J Pharmacol 2002; 135:226-32. [PMID: 11786498 PMCID: PMC1573116 DOI: 10.1038/sj.bjp.0704453] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1. Locus coeruleus neurons in adult rats express binding sites and mRNA for alpha(1)-adrenoceptors even though the depolarizing effect of alpha(1)-adrenoceptor agonists on neonatal neurons disappears during development. 2. In this study intracellular microelectrodes were used to record from locus coeruleus neurons in brain slices of adult rats and reverse transcription-polymerase chain reaction (RT - PCR) was used to investigate the mRNA expression of alpha(1)- and alpha(2)-adrenoceptors in juvenile and adult rats. 3. The alpha(1)-adrenoceptor agonist phenylephrine had no effect on the membrane conductance of locus coeruleus neurons (V(hold) -60 mV) but decreased the G protein coupled, inward rectifier potassium (GIRK) conductance induced by alpha(2)-adrenoceptor or mu-opioid agonists. The GIRK conductance induced by noradrenaline was increased in amplitude when alpha(1)-adrenoceptors were blocked with prazosin. 4. RT - PCR of total cellular RNA isolated from microdissected locus coeruleus tissue demonstrated strong mRNA expression of alpha(1a)-, alpha(1b)- and alpha(1d)-adrenoceptors in both juvenile and adult rats. However, only mRNA transcripts for the alpha(1b)-adrenoceptors were consistently detected in cytoplasmic samples taken from single locus coeruleus neurons of juvenile rats, suggesting that this subtype may be responsible for the physiological effects seen in juvenile rats. 5. Juvenile and adult locus coeruleus tissue expressed mRNA for the alpha(2a)- and alpha(2c)-adrenoceptors while the alpha(2b)-adrenoceptor was only weakly expressed in juveniles and was not detected in adults. 6. The results of this study show that alpha(1)-adrenoceptors expressed in adult locus coeruleus neurons function to suppress the GIRK conductance that is activated by mu-opioid and alpha(2)-adrenoceptors.
Collapse
MESH Headings
- Action Potentials/drug effects
- Adrenergic alpha-Agonists/pharmacology
- Age Factors
- Animals
- Electric Conductivity
- Gene Expression
- Locus Coeruleus/drug effects
- Locus Coeruleus/physiology
- Male
- Membrane Potentials/drug effects
- Models, Biological
- Neurons/drug effects
- Neurons/physiology
- Phenylephrine/pharmacology
- Potassium Channels/drug effects
- Potassium Channels/physiology
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rats
- Rats, Sprague-Dawley
- Receptors, Adrenergic, alpha-1/genetics
- Receptors, Adrenergic, alpha-1/physiology
- Receptors, Adrenergic, alpha-2/genetics
- Receptors, Adrenergic, alpha-2/physiology
- Receptors, Opioid, mu/physiology
- Reverse Transcriptase Polymerase Chain Reaction
- Signal Transduction
Collapse
Affiliation(s)
- Peregrine B Osborne
- Department of Pharmacology and The Medical Foundation, The University of Sydney D06, Sydney NSW 2006, Australia.
| | | | | | | | | |
Collapse
|
37
|
Volgin DV, Mackiewicz M, Kubin L. Alpha(1B) receptors are the main postsynaptic mediators of adrenergic excitation in brainstem motoneurons, a single-cell RT-PCR study. J Chem Neuroanat 2001; 22:157-66. [PMID: 11522438 DOI: 10.1016/s0891-0618(01)00124-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Norepinephrine (NE) is an important modulator of brainstem motoneurons. It is released at high levels during wakefulness, whereas its reduced release during sleep may contribute to motor suppression, including upper airway hypotonia. To identify the receptors that mediate postsynaptic effects of NE in brainstem motoneurons of juvenile and adult rats, we determined the pattern of adrenoceptor mRNA expression and co-expression in retrogradely labeled and acutely dissociated hypoglossal (XII) motoneurons (n=121) using single-cell, real-time reverse transcription-polymerase chain reaction (RT-PCR). The alpha(1B) receptor mRNA was present in most motoneurons (33/39 or 85%). The remaining six adrenoceptor mRNA species investigated were consistently present in micropunches of tissue extracted from the XII nucleus, but were either rarely expressed in individual motoneurons (alpha(1A) mRNA in 15%, alpha(1D) in 14%, alpha(2B/C) in 2% of cells) or absent (alpha(2A), beta(1) and beta(2)). When present, the alpha(1A) and alpha(1D) mRNAs were co-expressed with alpha(1B) mRNA. The adrenoceptor mRNA expression profiles in dissociated locus coeruleus and inferior olive neurons were significantly different. We conclude that postsynaptic effects of NE in XII motoneurons are primarily mediated by alpha(1B) receptors; the effects ascribed to alpha(2) and/or beta adrenoceptors may be exerted presynaptically.
Collapse
Affiliation(s)
- D V Volgin
- Department of Animal Biology 205ED/VET, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce Street, Philadelphia, PA 19104-6046, USA
| | | | | |
Collapse
|
38
|
Phillips JK, Lipski J. Single-cell RT-PCR as a tool to study gene expression in central and peripheral autonomic neurones. Auton Neurosci 2000; 86:1-12. [PMID: 11269914 DOI: 10.1016/s1566-0702(00)00245-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In studies of the central and peripheral autonomic nervous system, it has become increasingly important to be able to investigate mRNA expression patterns within specific neuronal populations. Traditionally, the identification of mRNA species in discrete populations of cells has relied upon in situ hybridization. An alternative, relatively simple procedure is 'multiplex' reverse transcription-polymerase chain reaction (RT-PCR), conducted on single neurons after their in vitro isolation. Multiplex single-cell RT-PCR can be used to examine the expression of multiple genes within individual cells, and can be combined with electrophysiological, pharmacological and anatomical (retrograde labelling) studies. This review focuses on a number of key aspects of this approach, methodology, and both the advantages and the limitations of the technique. We also provide specific examples of work performed in our laboratory, examining the expression of alpha 2-adrenergic receptors in catecholaminergic cells of the rat brainstem and adrenal medulla. The application of single-cell RT-PCR to future studies of the autonomic nervous system will hopefully provide information on how physiological and pathological conditions affect gene expression in autonomic neurones.
Collapse
Affiliation(s)
- J K Phillips
- Department of Physiology, Faculty of Health and Medical Sciences, Private Bag 92019, University of Auckland, Auckland, New Zealand
| | | |
Collapse
|
39
|
Happe HK, Bylund DB, Murrin LC. Alpha(2)-adrenoceptor-stimulated GTP gamma S binding in rat brain: an autoradiographic study. Eur J Pharmacol 2000; 399:17-27. [PMID: 10876018 DOI: 10.1016/s0014-2999(00)00380-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Agonist-stimulated [35S]GTP gamma S binding by alpha(2)-adrenoceptors was examined in rat brain by autoradiography. Epinephrine, norepinephrine, dexmedetomidine and brimonidine stimulated [35S]GTP gamma S binding in a dose-dependent manner. Agonist-stimulated binding was blocked by the specific alpha(2)-adrenoceptor antagonist (1, 4-benzodioxan-2-methoxy-2-yl)-2-imidazoline hydrochloride (RX821002). Each alpha(2)-adrenoceptor agonist stimulated [35S]GTP gamma S binding in the same brain regions, corresponding to alpha(2)-adrenoceptor distribution determined by [125I]para-iodoclonidine autoradiography. The order of antagonist potency (RX821002>idazoxan>rauwolscine>phentolamine>prazosin), and weak inhibition by propranolol and selective serotonin antagonists, indicate that epinephrine-stimulated [35S]GTP gamma S binding is mediated primarily by alpha(2)-adrenoceptors. Several antagonists increased [35S]GTP gamma S binding at very high concentrations, and this effect had anatomic and pharmacologic characteristics of binding mediated by 5-HT(1A) receptors. These studies demonstrate functional linkage of alpha(2)-adrenoceptors to G proteins in tissue sections, thus providing data on neuroanatomic localization and a means to examine drug specificity at alpha(2)-adrenoceptors in different brain regions.
Collapse
Affiliation(s)
- H K Happe
- Department of Pharmacology, University of Nebraska Medical Center, 986260 Nebraska Medical Center, Omaha, NE 68198-6260, USA
| | | | | |
Collapse
|
40
|
Dossin O, Moulédous L, Baudry X, Tafani JA, Mazarguil H, Zajac JM. Characterization of a new radioiodinated probe for the alpha2C adrenoceptor in the mouse brain. Neurochem Int 2000; 36:7-18. [PMID: 10566954 DOI: 10.1016/s0197-0186(99)00102-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
[125I]17alpha-hydroxy-20alpha-yohimban-16beta-(N-4-p6 hydroxyphenethyl)carboxamide or [125I]rauwolscine-OHPC, a new radioiodinated probe derived from rauwolscine was synthesized and its binding characteristics investigated on sections of the mouse caudate putamen. [125I]rauwolscine-OHPC binding was saturable and revealed interaction with a single class of binding sites (KD= 0.171 nM, Bmax = 3082 pCi/mg of tissue). The kinetically derived affinity was in close agreement with the affinity evaluated by saturation experiments: k(-1)/k(+1)(0.0403 min(-1)/114 10(6) M(-1) min(-1))=0.35 nM. Competition studies revealed interaction with one single class of binding sites for each of the twelve compounds tested. The rank of potency suggested an interaction with alpha2 adrenoceptors (atipamezole > or = RX 821002 > yohimbine > (-)epinephrine). Moreover, the good affinity of [125I] rauwolscine-OHPC binding sites for spiroxatrine, yohimbine, WB 4101, the relatively good affinity for prazosin (Ki =37.4 nM) and the affinity ratio prazosin/oxymetazoline (37.4/43.4=0.86) were consistent with an alpha2C selective labelling of [125I]rauwolscine-OHPC. The distribution of [125I]rauwolscine-OHPC binding sites in mouse brain was characterized by autoradiography. The density of binding sites was high in the islands of Calleja, accumbens nucleus, caudate putamen and olfactory tubercles, moderate in the hippocampus, amygdala and anterodorsal nucleus of the thalamus. These findings demonstrated that [125I]rauwolscine-OHPC is a useful radioiodinated probe to label alpha2C adrenoceptors in mouse brain.
Collapse
Affiliation(s)
- O Dossin
- Institut de Pharmacologie et de Biologie Structurale, CNRS UPR 9062, Toulouse, France
| | | | | | | | | | | |
Collapse
|
41
|
Receptor subtype-induced targeting and subtype-specific internalization of human alpha(2)-adrenoceptors in PC12 cells. J Neurosci 1999. [PMID: 10531432 DOI: 10.1523/jneurosci.19-21-09281.1999] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The three alpha(2)-adrenergic receptor subtypes have distinct tissue distributions, desensitization properties, and, in some cell types, subtype-specific subcellular localization and trafficking properties. The subtypes also differ in their neuronal physiology. Therefore, we have investigated the localization and targeting of human alpha(2)-adrenoceptors (alpha(2)-AR) in PC12 cells, which were transfected to express the alpha(2)-AR subtypes A, B, and C. Inspection of the receptors by indirect immunofluorescence and confocal microscopy showed that alpha(2A)-AR were mainly targeted to the tips of the neurites, alpha(2B)-AR were evenly distributed in the plasma membrane, and alpha(2C)-AR were mostly located in an intracellular perinuclear compartment. After agonist treatment, alpha(2A)- and alpha(2B)-AR were internalized into partly overlapping populations of intracellular vesicles. Receptor subtype-specific changes in PC12 cell morphology were also discovered: expression of alpha(2A)-AR, but not of alpha(2B)- or alpha(2C)-AR, induced differentiation-like changes in cells not treated with NGF. Also alpha(2B)-AR were targeted to the tips of neurites when they were coexpressed in the same cells with alpha(2A)-AR, indicating that the targeting of receptors to the tips of neurites is a consequence of a change in PC12 cell membrane protein trafficking that the alpha(2A)-subtype induces. The marked agonist-induced internalization of alpha(2A)-AR observed in both nondifferentiated and differentiated PC12 cells contrasts with earlier results from non-neuronal cells and points out the importance of the cellular environment for receptor endocytosis and trafficking. The targeting of alpha(2A)-AR to nerve terminals in PC12 cells is in line with the putative physiological role of this receptor subtype as a presynaptic autoreceptor.
Collapse
|
42
|
Abstract
Norepinephrine has been suggested to play a neurotrophic role during development and is present in the brain as early as embryonic day (E) 12. We have recently demonstrated that the alpha2A adrenoceptor subtype is widely expressed during times of neuronal migration and differentiation throughout the developing brain. Here, we report the temporal and spatial expression pattern of alpha2A adrenoceptors in neocortex during late embryonic and early postnatal development using in situ hybridization and receptor autoradiography. Functional alpha2 receptors in embryonic rat cortex were also detected using agonist stimulated [35S]GTPgammaS autoradiography. Both alpha2A mRNA and protein expression were strongly increased by E19 and E20, respectively. The increased expression was in the cortical plate and intermediate and subventricular zones, corresponding to tiers of migrating and differentiating neurons. This transient up-regulation of alpha2A adrenoceptors was restricted to the lateral neocortex. At E20, functional alpha2 adrenoceptors were also detected in deep layers of lateral neocortex. During the first week of postnatal development, the expression of alpha2A mRNA and protein changed markedly, giving rise to a more mature pattern of anatomical distribution. The temporal and spatial distribution of alpha2A adrenoceptors in developing neocortex is consistent with expression of functional proteins on migrating and differentiating layer IV to II neurons. These findings suggest that alpha2A receptors may mediate a neurotrophic effect of norepinephrine during fetal cortical development. The early delineation of the lateral neocortex, which will develop into somatosensory and auditory cortices, suggests an intrinsic regulation of alpha2A mRNA expression.
Collapse
Affiliation(s)
- U H Winzer-Serhan
- Department of Pharmacology, College of Medicine, University of California Irvine, 92697, USA
| | | |
Collapse
|
43
|
McNeill AM, Leslie FM, Krause DN, Duckles SP. Gender difference in levels of alpha2-adrenoceptor mRNA in the rat tail artery. Eur J Pharmacol 1999; 366:233-6. [PMID: 10082204 DOI: 10.1016/s0014-2999(98)00948-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
To investigate the hypothesis that differing mRNA levels underlie gender differences in the contractile response of the rat tail artery, alpha2-adrenoceptor mRNA was measured using in situ hybridization. Messenger RNA for the alpha2A- and alpha2C-adrenoceptor subtypes was found localized to the smooth muscle layer. There was no detectable mRNA present for the alpha2B-adrenoceptor subtype. Levels of alpha2C-adrenoceptor mRNA were greater in female compared to male tail arteries (417 +/- 35 vs. 263 +/- 38 dpm/mg, P = 0.01), while levels of alpha2A-adrenoceptor mRNA were the same in both sexes. Levels of alpha2-adrenoceptor mRNA may parallel levels of functioning protein present in the rat tail artery.
Collapse
Affiliation(s)
- A M McNeill
- Department of Pharmacology, College of Medicine, University of California, Irvine 92697-4625, USA
| | | | | | | |
Collapse
|
44
|
Winzer-Serhan UH, Broide RS, Chen Y, Leslie FM. Highly sensitive radioactive in situ hybridization using full length hydrolyzed riboprobes to detect alpha 2 adrenoceptor subtype mRNAs in adult and developing rat brain. BRAIN RESEARCH. BRAIN RESEARCH PROTOCOLS 1999; 3:229-41. [PMID: 9974137 DOI: 10.1016/s1385-299x(98)00043-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The mRNA expression of highly homologous alpha 2 adrenoceptor subtypes was determined using a highly sensitive in situ hybridization protocol that allowed the detection of low abundance mRNA. Full-length 35S-labeled riboprobes specific for alpha 2A, alpha 2B and alpha 2C adrenoceptors were used for maximal sensitivity. The probes were hydrolyzed to an average length of 600 bp which, in combination with proteinase K digestion, resulted in optimal probe penetration in developmental and adult tissue. The expression intensity could be quantified and the ontogeny of receptor mRNA expression determined. At the same time receptor binding sites or functional proteins could be detected simultaneously in adjacent sections, because fresh frozen and post-fixed tissue was used.
Collapse
Affiliation(s)
- U H Winzer-Serhan
- Department of Pharmacology, College of Medicine, University of California, Irvine 92697, USA
| | | | | | | |
Collapse
|
45
|
Liu W, Alreja M. Norepinephrine inhibits neurons of the intermediate subnucleus of the lateral septum via alpha2-adrenoceptors. Brain Res 1998; 806:36-54. [PMID: 9739104 DOI: 10.1016/s0006-8993(98)00728-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The physiological and pharmacological actions of norepinephrine (NE) on neurons of the intermediate subnucleus of the lateral septum (LSI) were examined using intracellular recordings in rat brain-slices. Bath-applied NE inhibited 72.5%, excited 5.5% and had no effect on 22% of LSI neurons tested; this study focused on the inhibitory effects of NE. In current clamp recordings, 100 microM NE produced a hyperpolarization of 10.82+/-0.72 mV (n=84) with a decrease in input resistance. In voltage-clamp, NE produced a direct, post-synaptic outward current of 206.8+/-22 pA (n=37) with a 64. 3+/-4.9% increase in input conductance (IC50-17.7+/-4 microM). The NE-induced inhibition was mimicked by the alpha2-agonist, UK14,304, but not by the alpha1- or beta-adrenoceptor agonists. The alpha2-agonist, clonidine, had a weak effect in LSI neurons. Interestingly, the magnitude of the UK14,304-induced response varied between cells (ranging from 29.5 to 320% of the maximal NE inhibition), possibly suggesting the involvement of alpha2A-(high affinity for UK14,304) and non-alpha2A (low affinity for UK14,304) adrenoceptor subtypes. While the alpha2-antagonists, yohimbine, rauwolscine and idazoxan blocked NE-induced inhibition in all neurons tested, the prototypical alpha1-antagonist, prazosin produced a variable degree of block (9-58%), further indicating the possible involvement of alpha2A (prazosin-insensitive) and non-alpha2A (prazosin-sensitive) receptors. However a lack of more selective pharmacological tools precludes definitive classification of the alpha2-receptor-mediated responses into different subtypes. The alpha2-receptor-mediated current in LSI neurons displayed Ba2+-sensitive inward rectification, reversed polarity near EK and was sensitive to external K+. In conclusion, NE inhibits LSI neurons via alpha2-adrenoceptor subtypes.
Collapse
Affiliation(s)
- W Liu
- Department of Psychiatry, CMHC 306, Yale University School of Medicine and the Ribicoff Research Facilities, Connecticut Mental Health Center, 34 Park Street, New Haven, CT 06508, USA
| | | |
Collapse
|
46
|
Winzer-Serhan UH, Leslie FM. Codistribution of nicotinic acetylcholine receptor subunit alpha3 and beta4 mRNAs during rat brain development. J Comp Neurol 1997; 386:540-54. [PMID: 9378850 DOI: 10.1002/(sici)1096-9861(19971006)386:4<540::aid-cne2>3.0.co;2-2] [Citation(s) in RCA: 116] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We have used in situ hybridization to characterize the ontogeny of alpha3 and beta4 nicotinic acetylcholine receptor (nAChR) subunit mRNA expression in rat brain. Transcripts for both subunits were detected in embryonic brain, although overlapping expression of alpha3 mRNA was only evident in areas of strong beta4 mRNA expression, including the medial habenula, locus coeruleus, the cerebellar primordium, and several motor and sensory brainstem nuclei. During the perinatal period, the independent expression of alpha3 mRNA declined, and greater correspondence in the temporal and spatial expression of alpha3 and beta4 subunit mRNAs emerged. In general, beta4 mRNA expression preceded that of alpha3 mRNA by 1 to 2 days. Overlapping expression patterns were transiently detected in the caudate putamen, basal forebrain, frontal and visual cortices, and in the CA3 field of hippocampus. Codistribution that lasted throughout development and into adulthood was noted in a number of brain areas, including the retrosplenial cortex, subiculum, medial habenula, interpeduncular nucleus, locus coeruleus, and brainstem motor nuclei. In many of these regions, alpha5 subunit mRNA was also expressed. Colocalization of alpha3 and beta4 mRNAs with choline acetyltransferase mRNA was detected in cholinergic neurons of the brainstem motor nuclei, nucleus ambiguus, dorsal motor nucleus of the vagus, motor trigeminal nucleus, and facial nucleus, but not in most forebrain cholinergic cells. The extensive correspondence in temporal and spatial distribution of alpha3 and beta4 mRNAs throughout postnatal brain development suggests that these subunits may be coordinately regulated and may form functional neuronal nAChRs with significant developmental roles.
Collapse
Affiliation(s)
- U H Winzer-Serhan
- Department of Pharmacology, College of Medicine, University of California, Irvine 92697, USA
| | | |
Collapse
|