1
|
Shatara M, Abdelbaki MS. Pediatric Suprasellar Tumors: Unveiling the Mysteries of Craniopharyngioma and Germ Cell Tumors-Insights From Diagnosis to Advanced Therapeutics. Pediatr Neurol 2025; 162:55-68. [PMID: 39561686 DOI: 10.1016/j.pediatrneurol.2024.10.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 08/07/2024] [Accepted: 10/23/2024] [Indexed: 11/21/2024]
Abstract
BACKGROUND Pediatric suprasellar tumors represent a unique and intricate challenge in the landscape of pediatric neuro-oncology. METHODS We conducted an in-depth literature review, focusing on large clinical trials and major publications in pediatric suprasellar tumors, particularly craniopharyngiomas and germ cell tumors, to provide a comprehensive perspective on the challenges in the diagnosis, treatment, and molecular aspects of these tumors. RESULTS Nestled within the critical confines of the suprasellar region, these tumors manifest against the backdrop of crucial growth and developmental processes. The suprasellar region, housing the pituitary gland and surrounding structures, plays a pivotal role in orchestrating hormonal regulation and growth. The emergence of tumors within this delicate terrain introduces a complex array of challenges, encompassing neurological, endocrinological, and developmental dimensions from damage to the hypothalamic-pituitary axis. CONCLUSIONS This article provides a thorough exploration of pediatric craniopharyngiomas and germ cell tumors, elucidating their clinical presentations, treatment modalities, and outcomes. The focused analysis aims to deepen our understanding of these tumors by offering insights for refined clinical management and improved patient outcomes.
Collapse
Affiliation(s)
- Margaret Shatara
- Department of Pediatric Hematology and Oncology, Children's Hospitals and Clinics of Minnesota, Minneapolis, Minnesota.
| | - Mohamed S Abdelbaki
- The Division of Hematology and Oncology, St. Louis Children's Hospital, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
2
|
Zhou J, Wu C, Li S. CNS Germ Cell Tumors: Molecular Advances, Significance in Risk Stratification and Future Directions. Brain Sci 2024; 14:445. [PMID: 38790424 PMCID: PMC11119131 DOI: 10.3390/brainsci14050445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/23/2024] [Accepted: 04/28/2024] [Indexed: 05/26/2024] Open
Abstract
Central Nervous System Germ Cell Tumors (CNS GCTs) represent a subtype of intracranial malignant tumors characterized by highly heterogeneous histology. Current diagnostic methods in clinical practice have notable limitations, and treatment strategies struggle to achieve personalized therapy based on patient risk stratification. Advances in molecular genetics, biology, epigenetics, and understanding of the tumor microenvironment suggest the diagnostic potential of associated molecular alterations, aiding risk subgroup identification at diagnosis. Furthermore, they suggest the existence of novel therapeutic approaches targeting chromosomal alterations, mutated genes and altered signaling pathways, methylation changes, microRNAs, and immune checkpoints. Moving forward, further research is imperative to explore the pathogenesis of CNS GCTs and unravel the intricate interactions among various molecular alterations. Additionally, these findings require validation in clinical cohorts to assess their role in the diagnosis, risk stratification, and treatment of patients.
Collapse
Affiliation(s)
| | | | - Shouwei Li
- Department of Neuro-Oncology (No.6 Neurosurgery Department), Sanbo Brain Hospital, Capital Medical University, No.50. Yi-Ke-Song, Xiangshan, Haidian District, Beijing 100093, China; (J.Z.); (C.W.)
| |
Collapse
|
3
|
Liu S, Ren L, Gao X, Hao M, Wang G. Pathogenesis of central nervous system germ cell tumors. Front Oncol 2022; 12:991484. [PMID: 36158643 PMCID: PMC9500539 DOI: 10.3389/fonc.2022.991484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
Intracranial germ cell tumors (IGCTs) are clinically rare. They are more common in children and adolescents and the incidence in Asia is higher than in Western countries. Histologically, IGCTs are divided into germinoma and non-germinomatous germ cell tumor (NGGCT). Germinoma is sensitive to radiotherapy and chemotherapy and therefore, patients with germinoma have a good prognosis. However, NGGCTs, especially those with malignant components, are not sensitive to radiotherapy and chemoradiotherapy, leading to a poor prognosis. The pathogenesis of IGCTs is not fully understood. By summarizing previous literature, we found that the occurrence of IGCTs may be related to the following factors: chromosomal instability, MAPK and/or PI3K pathway changes, and DNA hypomethylation in pure germ cell tumors.
Collapse
|
4
|
Goschzik T, Gessi M, Dreschmann V, Gebhardt U, Wang L, Yamaguchi S, Wheeler DA, Lauriola L, Lau CC, Müller HL, Pietsch T. Genomic Alterations of Adamantinomatous and Papillary Craniopharyngioma. J Neuropathol Exp Neurol 2017; 76:126-134. [PMID: 28069929 DOI: 10.1093/jnen/nlw116] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Craniopharyngiomas are rare histologically benign but clinically challenging neoplasms. To obtain further information on the molecular genetics and biology of craniopharyngiomas, we analyzed a cohort of 121 adamantinomatous and 16 papillary craniopharyngiomas (ACP, PCP). We extracted DNA from formalin-fixed paraffin-embedded tissue and determined mutational status of CTNNB1, BRAF, and DDX3X by Sanger sequencing, next generation panel sequencing, and pyrosequencing. Sixteen craniopharyngiomas were further analyzed by molecular inversion profiling (MIP); 76.1% of the ACP were mutated in exon 3 of CTNNB1 encoding for β-catenin and there was a trend towards a worse event-free survival in cases mutated at Thr41. Next generation panel sequencing of 26 ACP did not detect any recurrent mutations other than CTNNB1 mutations. BRAF V600E mutations were found in 94% of the PCP, but not in ACP. GISTIC analysis of MIP data showed no significant larger chromosomal aberrations but a fraction of ACP showed recurrent focal gains of chromosomal material, other cases showed loss in the chromosomal region Xq28, and a third group and the PCP had stable genomes. In conclusion, the crucial pathogenetic event appears to be WNT activation in ACP, whereas it appears to be activation of the Ras/Raf/MEK/ERK pathway by BRAF V600E mutations in PCP.
Collapse
Affiliation(s)
- Tobias Goschzik
- Department of Neuropathology, University of Bonn Medical Center, Bonn, Germany
| | - Marco Gessi
- Department of Neuropathology, University of Bonn Medical Center, Bonn, Germany
| | - Verena Dreschmann
- Department of Neuropathology, University of Bonn Medical Center, Bonn, Germany
| | - Ursel Gebhardt
- Department of Pediatrics, Klinikum Oldenburg AöR, Medical Campus University Oldenburg, Oldenburg, Germany
| | - Linghua Wang
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Houston, Texas, USA
| | - Shigeru Yamaguchi
- Department of Pediatrics, Texas Children's Cancer Center, Baylor College of Medicine, Houston, Texas, USA
| | - David A Wheeler
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Houston, Texas, USA
| | - Libero Lauriola
- Department of Anatomic Pathology, Catholic University of Sacred Heart, Rome, Italy
| | - Ching C Lau
- Department of Pediatrics, Texas Children's Cancer Center, Baylor College of Medicine, Houston, Texas, USA
| | - Hermann L Müller
- Department of Pediatrics, Klinikum Oldenburg AöR, Medical Campus University Oldenburg, Oldenburg, Germany
| | - Torsten Pietsch
- Department of Neuropathology, University of Bonn Medical Center, Bonn, Germany
| |
Collapse
|
5
|
An integrative molecular and genomic analysis of pediatric hemispheric low-grade gliomas: an update. Childs Nerv Syst 2016; 32:1789-97. [PMID: 27659822 DOI: 10.1007/s00381-016-3163-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 06/27/2016] [Indexed: 12/13/2022]
Abstract
Hemispheric low-grade gliomas account for the second most common location in pediatric low-grade gliomas (PLGGs) after the cerebellum. The pathological spectrum includes gangliogliomas, dysembryoplastic neuroepithelial tumors (DNETs), diffuse astrocytomas, pilocytic astrocytomas, and pleomorphic xanthoastrocytomas (PXAs), among others. Clinically, hemispheric PLGGs represent a well-recognized cause of intractable epilepsy in children and adolescents. With an excellent long-term outcome, surgery remains the cornerstone and patients with gross total resection typically do not need any further therapies. The recent literature about hemispheric PLGGs was reviewed to provide an up-to-date overview of the molecular and cell biology of these tumors. Hemispheric PLGGs can harbor multiple alterations involving BRAFV600E, FGFR, NTRK, MYB/MYBL1, IDH, and BRAF-KIAA1549 fusions. However, the clinical significance of most of these alterations is still to be defined. The role of RAS/MAPK mutations and other alterations in hemispheric PLGGs is of interest from diagnostic, prognostic, and therapeutic perspectives. Molecular testing for these tumors should be encouraged, since the findings can have an important impact not only in prognosis but also in therapeutic strategies.
Collapse
|
6
|
Bui L, Hendricks A, Wright J, Chuong CJ, Davé D, Bachoo R, Kim YT. Brain Tumor Genetic Modification Yields Increased Resistance to Paclitaxel in Physical Confinement. Sci Rep 2016; 6:26134. [PMID: 27184621 PMCID: PMC4869028 DOI: 10.1038/srep26134] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 04/27/2016] [Indexed: 01/13/2023] Open
Abstract
Brain tumor cells remain highly resistant to radiation and chemotherapy, particularly malignant and secondary cancers. In this study, we utilized microchannel devices to examine the effect of a confined environment on the viability and drug resistance of the following brain cancer cell lines: primary cancers (glioblastoma multiforme and neuroblastoma), human brain cancer cell lines (D54 and D54-EGFRvIII), and genetically modified mouse astrocytes (wild type, p53-/-, p53-/- PTEN-/-, p53-/- Braf, and p53-/- PTEN-/- Braf). We found that loss of PTEN combined with Braf activation resulted in higher viability in narrow microchannels. In addition, Braf conferred increased resistance to the microtubule-stabilizing drug Taxol in narrow confinement. Similarly, survival of D54-EGFRvIII cells was unaffected following treatment with Taxol, whereas the viability of D54 cells was reduced by 75% under these conditions. Taken together, our data suggests key targets for anticancer drugs based on cellular genotypes and their specific survival phenotypes during confined migration.
Collapse
Affiliation(s)
- Loan Bui
- Department of Bioengineering, University of Texas at Arlington, TX, USA
| | - Alissa Hendricks
- Department of Bioengineering, University of Texas at Arlington, TX, USA
| | - Jamie Wright
- Department of Bioengineering, University of Texas at Arlington, TX, USA
| | - Cheng-Jen Chuong
- Department of Bioengineering, University of Texas at Arlington, TX, USA
| | - Digant Davé
- Department of Bioengineering, University of Texas at Arlington, TX, USA.,Advanced Imaging Research Center, UT Southwestern Medical Center, TX, USA
| | - Robert Bachoo
- Department of Neurology and Neurotherapeutics, UT Southwestern Medical Center, TX, USA
| | - Young-Tae Kim
- Department of Bioengineering, University of Texas at Arlington, TX, USA.,Department of Urology, UT Southwestern Medical Center, TX, USA
| |
Collapse
|
7
|
Increased expression of the immune modulatory molecule PD-L1 (CD274) in anaplastic meningioma. Oncotarget 2016; 6:4704-16. [PMID: 25609200 PMCID: PMC4467109 DOI: 10.18632/oncotarget.3082] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 12/28/2014] [Indexed: 12/17/2022] Open
Abstract
There are no effective medical treatments for WHO grade III (anaplastic) meningioma. Patients with this high-grade malignancy have a median survival of less than two years. Therapeutics that modulate the mechanisms that inhibit local immune responses in the tumor microenvironment are showing significant and durable clinical responses in patients with treatment refractory high-grade tumors. We examined the immune infiltrate of 291 meningiomas including WHO grade I-III meningiomas using immunohistochemistry and we examined the expression of PD-L1 mRNA by RNAscope in situ hybridization and PD-L1 protein by immunohistochemistry. In meningioma, the tumor infiltrating lymphocytes are predominantly T cells. In anaplastic meningioma, there is a sharp decrease in the number of T cells, including the numbers of CD4+ and CD8+ T cells and cells expressing PD-1 and there is also an increase in the number of FOXP3 expressing immunoregulatory (Treg) cells. PD-L1 expression is increased in anaplastic meningioma – both mRNA and protein. Using patient derived meningioma cell, we confirm that PD-L1 is expressed in meningioma cells themselves, and not solely in infiltrating immune cells. This work indicates that high-grade meningioma harbor an immunosuppressive tumor microenviroment and that increased Treg cells and elevated PD-L1 may contribute to the aggressive phenotype of these tumors.
Collapse
|
8
|
KIAA1549: BRAF Gene Fusion and FGFR1 Hotspot Mutations Are Prognostic Factors in Pilocytic Astrocytomas. J Neuropathol Exp Neurol 2015; 74:743-54. [PMID: 26083571 PMCID: PMC4470527 DOI: 10.1097/nen.0000000000000213] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Up to 20% of patients with pilocytic astrocytoma (PA) experience a poor outcome. BRAF alterations and Fibroblast growth factor receptor 1 (FGFR1) point mutations are key molecular alterations in Pas, but their clinical implications are not established. We aimed to determine the frequency and prognostic role of these alterations in a cohort of 69 patients with PAs. We assessed KIAA1549:BRAF fusion by fluorescence in situ hybridization and BRAF (exon 15) mutations by capillary sequencing. In addition, FGFR1 expression was analyzed using immunohistochemistry, and this was compared with gene amplification and hotspot mutations (exons 12 and 14) assessed by fluorescence in situ hybridization and capillary sequencing. KIAA1549:BRAF fusion was identified in almost 60% of cases. Two tumors harbored mutated BRAF. Despite high FGFR1 expression overall, no cases had FGFR1 amplifications. Three cases harbored a FGFR1 p.K656E point mutation. No correlation was observed between BRAF and FGFR1 alterations. The cases were predominantly pediatric (87%), and no statistical differences were observed in molecular alterations–related patient ages. In summary, we confirmed the high frequency of KIAA1549:BRAF fusion in PAs and its association with a better outcome. Oncogenic mutations of FGFR1, although rare, occurred in a subset of patients with worse outcome. These molecular alterations may constitute alternative targets for novel clinical approaches, when radical surgical resection is unachievable.
Collapse
|
9
|
Bonney PA, Boettcher LB, Krysiak RS, Fung KM, Sughrue ME. Histology and molecular aspects of central neurocytoma. Neurosurg Clin N Am 2015; 26:21-9. [PMID: 25432180 DOI: 10.1016/j.nec.2014.09.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Central neurocytoma (CN) is a well-differentiated tumor of neural cells occurring within the ventricles. It is composed of monomorphic cells with round, regular nuclei within clear cytoplasm and must be distinguished from other clear cell tumors. Immunohistochemical markers of CN that aid in diagnosis include synaptophysin and neuronal nuclear antigen. The molecular biology of these tumors is becoming increasingly elucidated, particularly with the use of microarray analyses. Several oncogenic pathways have been suggested by these studies. Although progress continues to be made, knowledge of CN has yet to dictate targeted therapies in treating patients with these tumors.
Collapse
Affiliation(s)
- Phillip A Bonney
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, 1000 North Lincoln Boulevard, Suite 4000, Oklahoma City, OK 73104, USA
| | - Lillian B Boettcher
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, 1000 North Lincoln Boulevard, Suite 4000, Oklahoma City, OK 73104, USA
| | - Richard S Krysiak
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, 1000 North Lincoln Boulevard, Suite 4000, Oklahoma City, OK 73104, USA
| | - Kar-Ming Fung
- Department of Pathology, University of Oklahoma Health Sciences Center, 940 Stanton L. Young Boulevard, BMSB 451, Oklahoma City, OK 73104, USA
| | - Michael E Sughrue
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, 1000 North Lincoln Boulevard, Suite 4000, Oklahoma City, OK 73104, USA; Oklahoma Comprehensive Brain Tumor Clinic, Oklahoma City, OK 73104, USA.
| |
Collapse
|
10
|
Abstract
The WHO grading scheme for glial neoplasms assigns Grade II to 5 distinct tumors of astrocytic or oligodendroglial lineage: diffuse astrocytoma, oligodendroglioma, oligoastrocytoma, pleomorphic xanthoastrocytoma, and pilomyxoid astrocytoma. Although commonly referred to collectively as among the "low-grade gliomas," these 5 tumors represent molecularly and clinically unique entities. Each is the subject of active basic research aimed at developing a more complete understanding of its molecular biology, and the pace of such research continues to accelerate. Additionally, because managing and predicting the course of these tumors has historically proven challenging, translational research regarding Grade II gliomas continues in the hopes of identifying novel molecular features that can better inform diagnostic, prognostic, and therapeutic strategies. Unfortunately, the basic and translational literature regarding the molecular biology of WHO Grade II gliomas remains nebulous. The authors' goal for this review was to present a comprehensive discussion of current knowledge regarding the molecular characteristics of these 5 WHO Grade II tumors on the chromosomal, genomic, and epigenomic levels. Additionally, they discuss the emerging evidence suggesting molecular differences between adult and pediatric Grade II gliomas. Finally, they present an overview of current strategies for using molecular data to classify low-grade gliomas into clinically relevant categories based on tumor biology.
Collapse
Affiliation(s)
- Nicholas F Marko
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.
| | | |
Collapse
|
11
|
Pećina-Šlaus N, Gotovac K, Kafka A, Tomas D, Borovečki F. Genetic changes observed in a case of adult pilocytic astrocytoma revealed by array CGH analysis. Mol Cytogenet 2014; 7:95. [PMID: 25606054 PMCID: PMC4300045 DOI: 10.1186/s13039-014-0095-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 11/27/2014] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND A palette of copy number changes in a case of adult pilocytic astrocytoma analyzed by Array Comparative Genomic Hybridization (aCGH) is presented. Pilocytic astrocytomas are specific gliomas that are benign and biologically distinct and the molecular mechanisms responsible for their development remain unexplained. The aCGH was performed using SurePrint G3 Human CGH microarrays 4 × 180 K (Agilent Technologies). To ascertain whether some of the aberrations were of constitutive nature, we also analyzed the blood sample from the same patient. RESULTS The result of aCGH analysis demonstrated differences in the tumor tissue when compared to normal control on the array and also to autologous DNA from patient's blood. The total number of aberrations found in our case was 41 including 37 deletions and 4 amplifications. Whole chromosomal gains and losses were not observed. Collectively, our results showed three deletions and one amplification at 1p, two deletions at 2q, two deletions at 4q, two deletion at 5q, two deletions at 7p and two deletions at 7q; there were also three deletions at 8q, one deletion at 9p, one deletion at 10p, three deletions and one amplification at 10q. Chromosome 11 showed two deletions at 11p, while there was one deletion at 12p and one at 12q. Four deletions at 14q; two deletions at 15q, one amplification at 17q and one deletion at 17q; one deletion at 18p, two deletions at 22q and finally one deletion at Xp and one deletion and one amplification at Xq. Among the signaling pathways, olfactory transduction, Fc gamma R-mediated phagocytosis and p53 signaling pathway showed significant enrichment ascertained by gene ontology (GO) analysis using the DAVID software. CONCLUSIONS Our aCGH analysis is bringing subtle genomic alterations thus broadening genetic spectrum of adult pilocytic astrocytoma in order to offer new molecular biomarkers that will help in diagnostics and therapeutic decision-making.
Collapse
Affiliation(s)
- Nives Pećina-Šlaus
- />Laboratory of Neurooncology, Croatian Institute for Brain Research, School of Medicine University of Zagreb, Šalata 12, 10000 Zagreb, Croatia
- />Department of Biology, School of Medicine, University of Zagreb, Šalata 3, 10000 Zagreb, Croatia
| | - Kristina Gotovac
- />Department for Functional Genomics, Center for Translational and Clinical Research, University of Zagreb School of Medicine, and University Hospital Center Zagreb, Šalata 2, 10 000 Zagreb, Croatia
| | - Anja Kafka
- />Laboratory of Neurooncology, Croatian Institute for Brain Research, School of Medicine University of Zagreb, Šalata 12, 10000 Zagreb, Croatia
- />Department of Biology, School of Medicine, University of Zagreb, Šalata 3, 10000 Zagreb, Croatia
| | - Davor Tomas
- />Department of Pathology, School of Medicine, University of Zagreb, Šalata 10, 10000 Zagreb, Croatia
- />Hospital Center “Sisters of Charity”, Vinogradska 29, 10000 Zagreb, Croatia
| | - Fran Borovečki
- />Department for Functional Genomics, Center for Translational and Clinical Research, University of Zagreb School of Medicine, and University Hospital Center Zagreb, Šalata 2, 10 000 Zagreb, Croatia
- />Department of Neurology, University Hospital Center Zagreb, Kišpatićeva 12, 10000 Zagreb, Croatia
| |
Collapse
|
12
|
Terashima K, Yu A, Chow WYT, Hsu WCJ, Chen P, Wong S, Hung YS, Suzuki T, Nishikawa R, Matsutani M, Nakamura H, Ng HK, Allen JC, Aldape KD, Su JM, Adesina AM, Leung HCE, Man TK, Lau CC. Genome-wide analysis of DNA copy number alterations and loss of heterozygosity in intracranial germ cell tumors. Pediatr Blood Cancer 2014; 61:593-600. [PMID: 24249158 DOI: 10.1002/pbc.24833] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 10/01/2013] [Indexed: 12/20/2022]
Abstract
BACKGROUNDS Intracranial germ cell tumors (GCTs) are rare and heterogeneous with very little is known about their pathogenesis and underlying genetic abnormalities. PROCEDURES In order to identify candidate genes and pathways which are involved in the pathogenesis of these tumors, we have profiled 62 intracranial GCTs for DNA copy number alterations (CNAs) and loss of heterozygosity (LOH) by using single nucleotide polymorphism (SNP) array and quantitative real time PCR (qPCR). RESULTS Initially 27 cases of tumor tissues with matched blood samples were fully analyzed by SNP microarray and qPCR. Statistical analysis using the genomic identification of significant targets in cancer (GISTIC) tool identified 10 regions of significant copy number gain and 11 regions of significant copy number loss. While overall pattern of genomic aberration was similar between germinoma and nongerminomatous germ cell tumors (NGGCTs), a few subtype-specific peak regions were identified. Analysis by SNP array and qPCR was replicated using an independent cohort of 35 cases. CONCLUSIONS Frequent aberrations of CCND2 (12p13) and RB1 (13q14) suggest that Cyclin/CDK-RB-E2F pathway might play a critical role in the pathogenesis of intracranial GCTs. Frequent gain of PRDM14 (8q13) implies that transcriptional regulation of primordial germ cell specification might be an important factor in the development of this tumor.
Collapse
Affiliation(s)
- Keita Terashima
- Department of Pediatrics, Texas Children's Cancer and Hematology Centers, Baylor College of Medicine, Houston, Texas
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Bergthold G, Bandopadhayay P, Bi WL, Ramkissoon L, Stiles C, Segal RA, Beroukhim R, Ligon KL, Grill J, Kieran MW. Pediatric low-grade gliomas: how modern biology reshapes the clinical field. Biochim Biophys Acta Rev Cancer 2014; 1845:294-307. [PMID: 24589977 DOI: 10.1016/j.bbcan.2014.02.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 02/20/2014] [Indexed: 12/17/2022]
Abstract
Low-grade gliomas represent the most frequent brain tumors arising during childhood. They are characterized by a broad and heterogeneous group of tumors that are currently classified by the WHO according to their morphological appearance. Here we review the clinical features of these tumors, current therapeutic strategies and the recent discovery of genomic alterations characteristic to these tumors. We further explore how these recent biological findings stand to transform the treatment for these tumors and impact the diagnostic criteria for pediatric low-grade gliomas.
Collapse
Affiliation(s)
| | - Pratiti Bandopadhayay
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Division of Pediatric Hematology and Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Boston Children's Hospital, Boston, MA, USA
| | - Wenya Linda Bi
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Lori Ramkissoon
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA; Center for Molecular Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Charles Stiles
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Rosalind A Segal
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Rameen Beroukhim
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Keith L Ligon
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA; Center for Molecular Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Jacques Grill
- Departement de Cancerologie de l'enfant et de l'adolescent, Gustave Roussy and Unité Mixte de Recherche 8203 du Centre National de la Recherche Scientifique, Université Paris-Sud, Villejuif, France
| | - Mark W Kieran
- Center for Molecular Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA, USA; Center for Molecular Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA, USA.
| |
Collapse
|
14
|
Ruland V, Hartung S, Kordes U, Wolff JE, Paulus W, Hasselblatt M. Choroid plexus carcinomas are characterized by complex chromosomal alterations related to patient age and prognosis. Genes Chromosomes Cancer 2014; 53:373-80. [PMID: 24478045 DOI: 10.1002/gcc.22148] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 01/09/2014] [Indexed: 02/05/2023] Open
Abstract
Choroid plexus carcinoma is a malignant brain tumor predominantly occurring in young children. Only limited data are available regarding the underlying molecular genetic alterations. Therefore, molecular inversion probe single nucleotide polymorphism (MIP SNP) arrays were performed on a series of 26 neuropathologically well-characterized choroid plexus carcinomas. Recurrent copy number losses of chromosomes 5, 6, 16, 18, 19, and 22 as well as gains of chromosomes 1, 2, 4, 12, and 20 were identified. Furthermore, GISTIC analysis identified significant recurrent gains of 17 genes in 9 regions, and recurrent losses of 96 genes in 14 regions. Clustering analysis separated choroid plexus carcinomas into two groups: one characterized by marked losses and the other characterized by gains across the chromosomes. Chromosomal losses of 9, 19p, and 22q were significantly more frequent in younger children (<36 months), whereas gains on chromosomes 7 and 19, and chromosome arms 8q, 14q, and 21q prevailed in older patients. Multivariate analysis revealed that loss of 12q was associated with shorter survival [12 ± 5 months vs. 86 ± 8 months; (mean ± SD; P = 0.001)] and, in addition, 45 smaller chromosomal regions showing genetic alterations significantly associated with survival could be identified. The MIP SNP array profiles also contributed to the diagnosis of two difficult SMARCB1-negative tumors as choroid plexus carcinoma and cribriform neuroepithelial tumor (CRINET), respectively. In conclusion, choroid plexus carcinomas are characterized by complex genetic alterations, which are related to patient age and may have prognostic and diagnostic value.
Collapse
Affiliation(s)
- Vincent Ruland
- Institute of Neuropathology, University Hospital Münster, Münster, Germany
| | | | | | | | | | | |
Collapse
|
15
|
Mutually exclusive mutations of KIT and RAS are associated with KIT mRNA expression and chromosomal instability in primary intracranial pure germinomas. Acta Neuropathol 2014; 127:911-25. [PMID: 24452629 DOI: 10.1007/s00401-014-1247-5] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 01/14/2014] [Indexed: 01/13/2023]
Abstract
Intracranial germ cell tumors (iGCTs) are the second most common brain tumors among children under 15 in Japan. The pathogenesis of iGCTs is largely unexplored. Although a subset of iGCTs is known to have KIT mutation, its impact on the biology and patients' survival has not been established. In this study, we investigated genes involved in the KIT signaling pathway. 65 iGCTs (30 pure germinomas, 14 teratomas, 18 mixed GCTs, 2 yolk sac tumors, 1 choriocarcinoma) were screened for mutation of KIT, KRAS, NRAS, HRAS, BRAF, PDGFRA, and IDH1 by direct sequencing. KIT expression was examined by immunohistochemistry and quantitative PCR. Chromosomal status was analyzed by array-comparative genomic hybridization (aCGH). Somatic mutations were detected only in KIT and RAS, which were frequently observed in pure germinomas (60.0 %), but rare in non-germinomatous GCTs (NGGCTs) (8.6 %). All KIT/RAS mutations were mutually exclusive. Regardless of the mutation status or mRNA expression, the KIT protein was expressed in all germinomas, while only in 54.3 % of NGGCTs. Amplification of KIT was found in one pure germinoma by aCGH. In pure germinomas, high expression of KIT mRNA was associated with the presence of KIT/RAS alterations and severe chromosomal instability. Our results indicate that alterations of the KIT signaling pathway play an important role in the development of germinomas. Pure germinomas may develop through two distinct pathogeneses: one with KIT/RAS alterations, elevated KIT mRNA expression and severe chromosomal instability, and the other through yet an unidentified mechanism without any of the above abnormalities.
Collapse
|
16
|
Hussain I, Eloy JA, Carmel PW, Liu JK. Molecular oncogenesis of craniopharyngioma: current and future strategies for the development of targeted therapies. J Neurosurg 2013; 119:106-12. [PMID: 23560577 DOI: 10.3171/2013.3.jns122214] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Craniopharyngiomas are benign intracranial tumors that arise in the suprasellar and intrasellar region in children and adults. They are associated with calcification on neuroimaging, endocrinopathies, vision problems, and recurrence following subtotal resection. Molecular studies into their genetic basis have been limited, and therefore targeted medical therapies for this tumor have eluded physicians. With the discovery of aberrant Wnt/β-catenin pathway signaling in the pathogenesis of the most common subtype of craniopharyngioma (adamantinomatous), the identification of candidate genes and proteins implicated in this cascade provide attractive targets for future therapies. The recent development of a genetically engineered animal model of this tumor may also serve as a platform for evaluating potential therapies prior to clinical trials in humans. Advances in understanding the molecular pathogenesis of tumor recurrence have also been made, providing clues to develop adjuvant and neoadjuvant therapies to couple with tumor resection for optimal response rates. Finally, advances in genomic technologies and next-generation sequencing will underlie the translation of these genetic and molecular studies from the bench to clinical practice. In this review, the authors present an analysis of the molecular oncogenesis of craniopharyngioma and current directions in the development of novel therapies for these morbid, yet poorly understood brain tumors.
Collapse
Affiliation(s)
- Ibrahim Hussain
- Department of Neurological Surgery, Neurological Institute of New Jersey, University of Medicine and Dentistry of New Jersey-New Jersey Medical School, Newark, NJ 07103, USA
| | | | | | | |
Collapse
|
17
|
Abstract
World Health Organization (WHO) grade I astrocytomas include pilocytic astrocytoma (PA) and subependymal giant cell astrocytoma (SEGA). As technologies in pharmacologic neo-adjuvant therapy continue to progress and as molecular characteristics are progressively recognized as potential markers of both clinically significant tumor subtypes and response to therapy, interest in the biology of these tumors has surged. An updated review of the current knowledge of the molecular biology of these tumors is needed. We conducted a Medline search to identify published literature discussing the molecular biology of grade I astrocytomas. We then summarized this literature and discuss it in a logical framework through which the complex biology of these tumors can be clearly understood. A comprehensive review of the molecular biology of WHO grade I astrocytomas is presented. The past several years have seen rapid progress in the level of understanding of PA in particular, but the molecular literature regarding both PA and SEGA remains nebulous, ambiguous, and occasionally contradictory. In this review we provide a comprehensive discussion of the current understanding of the chromosomal, genomic, and epigenomic features of both PA and SEGA and provide a logical framework in which these data can be more readily understood.
Collapse
Affiliation(s)
- Nicholas F Marko
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | | |
Collapse
|
18
|
Clinical heterogeneity of desmoplastic infantile ganglioglioma: a case series and literature review. J Pediatr Hematol Oncol 2012; 34:e232-6. [PMID: 22735886 DOI: 10.1097/mph.0b013e3182580330] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Desmoplastic infantile gangliogliomas (DIG) are intracranial tumors described in 1987 as benign lesions of infancy. A literature review and the clinical course of 3 patients reported herein suggest that the initial description should be amended. Nearly 23% of DIG cases occur in children older than 24 months. Approximately 40% of DIG cases require additional medical, radiation, and/or further surgical intervention, and 15% of infants and children develop leptomeningeal spread or die from DIG. Such adverse outcomes, combined with the recognition that DIG represents a heterogeneous disease, underscore the need for an expanded biological and molecular investigation.
Collapse
|
19
|
Cheung HC, Yatsenko SA, Kadapakkam M, Legay H, Su J, Lupski JR, Plon SE. Constitutional tandem duplication of 9q34 that truncates EHMT1 in a child with ganglioglioma. Pediatr Blood Cancer 2012; 58:801-5. [PMID: 21681934 PMCID: PMC3202030 DOI: 10.1002/pbc.23219] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Accepted: 05/03/2011] [Indexed: 01/08/2023]
Abstract
Point mutations of EHMT1 or deletions and duplications of chromosome 9q34.3 are found in patients with variable neurologic and developmental disorders. Here, we present a child with congenital cataract, developmental and speech delay who developed a metastatic ganglioglioma with progression to anaplastic astrocytoma. Molecular analysis identified a novel constitutional tandem duplication in 9q34.3 with breakpoints in intron 1 of TRAF2 and intron 16 of EHMT1 generating a fusion transcript predicted to encode a truncated form of EHMT1. The ganglioglioma showed complex chromosomal aberrations with further duplication of the dup9q34. Thus, this unique tandem 9q34.3 duplication may impact brain tumor formation.
Collapse
Affiliation(s)
- Hannah C. Cheung
- Texas Children’s Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Svetlana A. Yatsenko
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Meena Kadapakkam
- Texas Children’s Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Hélène Legay
- Faculté de Pharmacie, Université Claude Bernard, Lyon, France
| | - Jack Su
- Texas Children’s Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - James R. Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Sharon E. Plon
- Texas Children’s Cancer Center, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
20
|
|
21
|
Miller S, Rogers HA, Lyon P, Rand V, Adamowicz-Brice M, Clifford SC, Hayden JT, Dyer S, Pfister S, Korshunov A, Brundler MA, Lowe J, Coyle B, Grundy RG. Genome-wide molecular characterization of central nervous system primitive neuroectodermal tumor and pineoblastoma. Neuro Oncol 2011; 13:866-79. [PMID: 21798848 DOI: 10.1093/neuonc/nor070] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Central nervous system primitive neuroectodermal tumor (CNS PNET) and pineoblastoma are highly malignant embryonal brain tumors with poor prognoses. Current therapies are based on the treatment of pediatric medulloblastoma, even though these tumors are distinct at both the anatomical and molecular level. CNS PNET and pineoblastoma have a worse clinical outcome than medulloblastoma; thus, improved therapies based on an understanding of the underlying biology of CNS PNET and pineoblastoma are needed. To this end, we characterized the genomic alterations of 36 pediatric CNS PNETs and 8 pineoblastomas using Affymetrix single nucleotide polymorphism arrays. Overall, the majority of CNS PNETs contained a greater degree of genomic imbalance than pineoblastomas, with gain of 19p (8 [27.6%] of 29), 2p (7 [24.1%] of 29), and 1q (6 [20.7%] of 29) common events in primary CNS PNETs. Novel gene copy number alterations were identified and corroborated by Genomic Identification of Significant Targets In Cancer (GISTIC) analysis: gain of PCDHGA3, 5q31.3 in 62.1% of primary CNS PNETs and all primary pineoblastomas and FAM129A, 1q25 in 55.2% of primary CNS PNETs and 50% of primary pineoblastomas. Comparison of our GISTIC data with publically available data for medulloblastoma confirmed these CNS PNET-specific copy number alterations. With use of the collection of 5 primary and recurrent CNS PNET pairs, we found that gain of 2p21 was maintained at relapse in 80% of cases. Novel gene copy number losses included OR4C12, 11p11.12 in 48.2% of primary CNS PNETs and 50% of primary pineoblastomas. Loss of CDKN2A/B (9p21.3) was identified in 14% of primary CNS PNETs and was significantly associated with older age among children (P = .05). CADPS, 3p14.2 was lost in 27.6% of primary CNS PNETs and was associated with poor prognosis (P = .043). This genome-wide analysis revealed the marked molecular heterogeneity of CNS PNETs and enabled the identification of novel genes and clinical associations potentially involved in the pathogenesis of these tumors.
Collapse
Affiliation(s)
- Suzanne Miller
- Children’s Brain Tumour Research Centre, School of Clinical Sciences, Queen’s Medical Centre, University of Nottingham, Nottingham, NG7 2UH, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Dahlback HSS, Brandal P, Gorunova L, Widing E, Meling TR, Krossnes BK, Heim S. Genomic aberrations in pediatric gliomas and embryonal tumors. Genes Chromosomes Cancer 2011; 50:788-99. [DOI: 10.1002/gcc.20898] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Revised: 04/29/2011] [Accepted: 05/11/2011] [Indexed: 12/15/2022] Open
|
23
|
Coccé MC, Lubieniecki F, Kordes U, Alderete D, Gallego MS. A complex karyotype in an atypical teratoid/rhabdoid tumor: case report and review of the literature. J Neurooncol 2010; 104:375-80. [PMID: 21127945 DOI: 10.1007/s11060-010-0478-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2010] [Accepted: 11/08/2010] [Indexed: 11/26/2022]
Abstract
Atypical teratoid/rhabdoid tumor (AT/RT) is a highly aggressive and uncommon neoplasm of the central nervous system that usually occurs in children less than 2 years of age. It is characterized by deletions and/or mutations of the INI1 tumor suppressor gene located in chromosome band 22q11.2. We performed cytogenetic and molecular studies of an AT/RT on a 15-month-old boy. The tumor showed a complex karyotype with one cell line showing monosomy 22 and another near-tetraploid one with additional chromosomal abnormalities, involving chromosomes 2, 3, 5, 6, and Y, which had not been previously described. Sequence analysis of the tumor did not identify mutations of the INI1 gene. The karyotypic evolution observed in this tumor suggests that INI1 has an epigenetic role in the maintenance of genome integrity by affecting genes, which produces mitotic defects and polyploidy. Finally, this case is the first to support the theory that loss of INI1 could induce the chromosomal instability that might be responsible for the genesis of this tumor.
Collapse
Affiliation(s)
- Mariela C Coccé
- Cytogenetics Laboratory, Genetics Department, Garrahan Pediatrics Hospital, Combate de los Pozos 1881, 1245 Buenos Aires, Argentina.
| | | | | | | | | |
Collapse
|
24
|
Dougherty MJ, Santi M, Brose MS, Ma C, Resnick AC, Sievert AJ, Storm PB, Biegel JA. Activating mutations in BRAF characterize a spectrum of pediatric low-grade gliomas. Neuro Oncol 2010; 12:621-30. [PMID: 20156809 PMCID: PMC2940652 DOI: 10.1093/neuonc/noq007] [Citation(s) in RCA: 230] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2009] [Accepted: 11/25/2009] [Indexed: 12/24/2022] Open
Abstract
In the present study, DNA from 27 grade I and grade II pediatric gliomas, including ganglioglioma, desmoplastic infantile ganglioglioma, dysembryoplastic neuroepithelial tumor, and pleomorphic xanthoastrocytoma was analyzed using the Illumina 610K Beadchip SNP-based oligonucleotide array. Several consistent abnormalities, including gain of chromosome 7 and loss of 9p21 were observed. Based on our previous studies, in which we demonstrated BRAF mutations in 3 gangliogliomas, 31 tumors were screened for activating mutations in exons 11 and 15 of the BRAF oncogene or a KIAA1549-BRAF fusion product. There were no cases with a KIAA1549-BRAF fusion. A BRAF V600E mutation was detected in 14 of 31 tumors, which was not correlated with any consistent pattern of aberrations detected by the SNP array analysis. Tumors were also screened for mutations in codon 132 in exon 4 of IDH1, exons 2 and 3 of KRAS, and exons 2-9 of TP53. No mutations in KRAS or TP53 were identified in any of the samples, and there was only 1 IDH1 R132H mutation detected among the sample set. BRAF mutations constitute a major genetic alteration in this histologic group of pediatric brain tumors and may serve as a molecular target for biologically based inhibitors.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jaclyn A. Biegel
- Departments of Pediatrics (M.J.D., A.J.S., J.A.B.); Pathology (M.S., J.A.B.); Medicine (M.S.B.); Otorhinolaryngology (M.S.B., C.M.); and Neurosurgery (A.C.R., P.B.S.), The Children's Hospital of Philadelphia and the University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
25
|
Horbinski C, Hamilton RL, Nikiforov Y, Pollack IF. Association of molecular alterations, including BRAF, with biology and outcome in pilocytic astrocytomas. Acta Neuropathol 2010; 119:641-9. [PMID: 20044755 DOI: 10.1007/s00401-009-0634-9] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2009] [Revised: 12/23/2009] [Accepted: 12/24/2009] [Indexed: 12/25/2022]
Abstract
Pilocytic astrocytoma (PA) is the most common glioma in the pediatric population. PAs can exhibit variable behavior that does not always correlate with location. Although oncogenic rearrangements of the BRAF gene have recently been described in PAs, it is not clear whether such alterations have an impact on outcome. An institutional cohort of 147 PAs (118 with outcome data) from both cerebellar and non-cerebellar locations (spine, diencephalon, midbrain, brainstem, and cortex) was utilized in this study. Parameters included quantification of characteristic morphologic variables as well as genes and molecular loci previously shown to be of relevance in high-grade gliomas, including 1p, 9p, 10q, 17p, 19q, and BRAF. Neither 1p, 9p, and 10q nor 19q showed significant association with outcome in PAs, although p16 deletion was more common in PAs of the midbrain, brainstem, and spinal cord. Loss of heterozygosity on 17p13 correlated with increased risk of recurrence in cerebellar tumors. BRAF gene rearrangements were more common in cerebellar tumors than non-cerebellar tumors and associated with classic biphasic histology in the cerebellum. However, clinical outcome was independent of BRAF status. The molecular biology of PAs differs according to location, yet BRAF rearrangements do not appear to produce PAs with different behavior. Nevertheless, such tumors may have altered sensitivity to pathway-specific adjuvant therapy. Additionally, deletion on 17p13 may be an adverse prognostic biomarker in cerebellar tumors.
Collapse
Affiliation(s)
- Craig Horbinski
- Department of Pathology, University of Kentucky, 800 Rose St., Lexington, KY 40536, USA.
| | | | | | | |
Collapse
|
26
|
da Silva FE, Cordeiro AB, Nagamachi CY, Pieczarka JC, Rens W, Weise A, Liehr T, Mkrtchyan H, Anselmo NP, de Oliveira EHC. A case of aggressive medulloblastoma with multiple recurrent chromosomal alterations. CANCER GENETICS AND CYTOGENETICS 2010; 196:198-200. [PMID: 20082860 DOI: 10.1016/j.cancergencyto.2009.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2009] [Revised: 09/10/2009] [Accepted: 09/20/2009] [Indexed: 05/28/2023]
|
27
|
Ward SJ, Karakoula K, Phipps KP, Harkness W, Hayward R, Thompson D, Jacques TS, Harding B, Darling JL, Thomas DGT, Warr TJ. Cytogenetic analysis of paediatric astrocytoma using comparative genomic hybridisation and fluorescence in-situ hybridisation. J Neurooncol 2010; 98:305-18. [DOI: 10.1007/s11060-009-0081-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2009] [Accepted: 11/30/2009] [Indexed: 11/29/2022]
|
28
|
Brassesco MS, Valera ET, Becker AP, Oliveira RS, Scrideli CA, Machado HR, Tone LG. Grade II atypical choroid plexus papilloma with normal karyotype. Childs Nerv Syst 2009; 25:1623-6. [PMID: 19554332 DOI: 10.1007/s00381-009-0938-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2009] [Indexed: 10/20/2022]
Abstract
PURPOSE Cytogenetic studies of atypical choroid plexus papillomas (CPP) have been poorly described. In the present report, the cytogenetic investigation of an atypical CPP occurring in an infant is detailed. METHODS CPP chromosome preparations were analyzed by giemsa-trypsin-banding (GTG-banding) and comparative genome hybridization (CGH). RESULTS Conventional karyotype analysis of tumor culture showed a normal chromosome complement. The results were confirmed by CGH, showing normal hybridization patterns for the sample. CONCLUSIONS To date, the few atypical CPPs described in the literature have shown disparate cytogenetic information. This is the first report of a normal chromosome complement in atypical CPP. The heterogenic genetic features observed in these small series may reflect the diverse genetic background of choroid plexus tumors in children.
Collapse
Affiliation(s)
- María Sol Brassesco
- Division of Pediatric Oncology, Department of Pediatrics, University of São Paulo, São Paulo, Brazil.
| | | | | | | | | | | | | |
Collapse
|
29
|
Cytogenetic findings in a rare pediatric mixed glioneuronal tumor and review of the literature. Childs Nerv Syst 2009; 25:1485-90. [PMID: 19387654 DOI: 10.1007/s00381-009-0896-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Revised: 03/19/2009] [Indexed: 10/20/2022]
Abstract
OBJECTIVE The aim of the present study was to report the chromosomal abnormalities findings in rare pediatric mixed glioneuronal tumor (GNT), which could not be classified according to the WHO classification. METHODS Cytogenetic studies were performed using G-banding and fluorescence in situ hybridization (FISH) techniques. RESULTS Cytogenetic analyses showed a deletion of 1p as primary genetic event and gain of chromosome 7 as secondary change. Furthermore, we present a review of available cytogenetic data of 72 pediatric patients with GNT. Taken into account these data and the present case, we found that the most frequent chromosomal anomalies involved gains of chromosomes 7 (15.1%), 5 (8.2%), 1q32-qter (6.8%), 8p21-qter (6.8%), 12 (5.5%), 18 (5.5%), 20q11-qter (5.5%), and X (5.5%). Frequent losses were detected on chromosome regions 1p (8.2%) and 22q (5.5%). CONCLUSION The findings of our case combined with those of previous reports suggest that chromosomes 1 and 7 may contain candidate genes involved in the tumorigenesis of GNT.
Collapse
|
30
|
Abstract
Pediatric low-grade gliomas encompass a heterogeneous set of tumors of different histologies. Cerebellar pilocytic astrocytomas occur most frequently followed by supratentorial diffuse fibrillary astrocytomas. Recent research has implicated activation of the RAS/RAF/MEK pathway in tumorigenesis of these tumors. Surgery is the mainstay of therapy. Overall survival rates for patients whose tumors are completely resected are 90% or greater, 10 years from diagnosis. Conversely, most optic pathway/hypothalamic, deep midline, and brain stem gliomas have minimal potential for resection; these tumors can be difficult to treat and deserve special attention. Combination chemotherapy is currently recommended as front-line adjuvant treatment for progressive or recurrent tumors. Second-line radiotherapy can also improve overall survival but is associated with more frequent and significant neurocognitive, endocrine, and other long-term toxicities.
Collapse
Affiliation(s)
- Angela J Sievert
- Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | | |
Collapse
|
31
|
Hamlat A, Saikali S, Diabira S, Messerer M, Riffaud L. Diagnosis of childhood astrocytomas. EXPERT OPINION ON MEDICAL DIAGNOSTICS 2009; 3:501-522. [PMID: 23495981 DOI: 10.1517/17530050903032679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
BACKGROUND Astrocytomas are the most common brain tumours, accounting for 28 - 50% of all primary CNS tumours. Diagnosis of CNS tumours remains difficult because the varied and nonspecific presentations of CNS tumours in childhood. Objectives/method: The clinical presentations of CNS astrocytomas vary with their sites of location; therefore, a period of uncertainty often precedes diagnosis, and approximately 42% of patients with an intracranial process make several visits to various physicians between the onset and diagnosis. However, on clinical suspicion of a brain tumour, a wide range of neuroimaging techniques may be used to assess the diagnosis of paediatric brain lesions. In this review the authors, for ease of presentation, describe the clinical presentations of supratentorial, infratentorial and spinal cord astrocytomas as well as their radiological and pathological features, and discuss their differential diagnoses. RESULTS/CONCLUSIONS Understanding and mastering the numerous imaging features of several subtypes of primary brain tumours affecting children, in addition to radiological features of non-tumoural disorders, remains a significant challenge and demands increased awareness of the paediatric brain diseases.
Collapse
Affiliation(s)
- Abderrahmane Hamlat
- Department of Neurosurgery, CHU Pontchaillou, 2 Rue Henri Le Guilloux, 35000 Rennes Cedex 2, France +33 2 99 28 43 21 ; +33 2 99 28 41 80 ;
| | | | | | | | | |
Collapse
|
32
|
Forshew T, Tatevossian RG, Lawson ARJ, Ma J, Neale G, Ogunkolade BW, Jones TA, Aarum J, Dalton J, Bailey S, Chaplin T, Carter RL, Gajjar A, Broniscer A, Young BD, Ellison DW, Sheer D. Activation of the ERK/MAPK pathway: a signature genetic defect in posterior fossa pilocytic astrocytomas. J Pathol 2009; 218:172-81. [PMID: 19373855 DOI: 10.1002/path.2558] [Citation(s) in RCA: 216] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
We report genetic aberrations that activate the ERK/MAP kinase pathway in 100% of posterior fossa pilocytic astrocytomas, with a high frequency of gene fusions between KIAA1549 and BRAF among these tumours. These fusions were identified from analysis of focal copy number gains at 7q34, detected using Affymetrix 250K and 6.0 SNP arrays. PCR and sequencing confirmed the presence of five KIAA1549-BRAF fusion variants, along with a single fusion between SRGAP3 and RAF1. The resulting fusion genes lack the auto-inhibitory domains of BRAF and RAF1, which are replaced in-frame by the beginning of KIAA1549 and SRGAP3, respectively, conferring constitutive kinase activity. An activating mutation of KRAS was identified in the single pilocytic astrocytoma without a BRAF or RAF1 fusion. Further fusions and activating mutations in BRAF were identified in 28% of grade II astrocytomas, highlighting the importance of the ERK/MAP kinase pathway in the development of paediatric low-grade gliomas.
Collapse
Affiliation(s)
- Tim Forshew
- Neuroscience Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Institute of Cell and Molecular Science, London, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Kilday JP, Rahman R, Dyer S, Ridley L, Lowe J, Coyle B, Grundy R. Pediatric ependymoma: biological perspectives. Mol Cancer Res 2009; 7:765-86. [PMID: 19531565 DOI: 10.1158/1541-7786.mcr-08-0584] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Pediatric ependymomas are enigmatic tumors that continue to present a clinical management challenge despite advances in neurosurgery, neuroimaging techniques, and radiation therapy. Difficulty in predicting tumor behavior from clinical and histological factors has shifted the focus to the molecular and cellular biology of ependymoma in order to identify new correlates of disease outcome and novel therapeutic targets. This article reviews our current understanding of pediatric ependymoma biology and includes a meta-analysis of all comparative genomic hybridization (CGH) studies done on primary ependymomas to date, examining more than 300 tumors. From this meta-analysis and a review of the literature, we show that ependymomas in children exhibit a different genomic profile to those in adults and reinforce the evidence that ependymomas from different locations within the central nervous system (CNS) are distinguishable at a genomic level. Potential biological markers of prognosis in pediatric ependymoma are assessed and the ependymoma cancer stem cell hypothesis is highlighted with respect to tumor resistance and recurrence. We also discuss the shifting paradigm for treatment modalities in ependymoma that target molecular alterations in tumor-initiating cell populations.
Collapse
Affiliation(s)
- John-Paul Kilday
- The Children's Brain Tumour Research Centre, University of Nottingham, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
34
|
Kim KE, Kim KU, Kim DC, Park JI, Han JY. Cytogenetic characterizations of central nervous system tumors: the first comprehensive report from a single institution in Korea. J Korean Med Sci 2009; 24:453-60. [PMID: 19543509 PMCID: PMC2698192 DOI: 10.3346/jkms.2009.24.3.453] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2008] [Accepted: 07/22/2008] [Indexed: 11/27/2022] Open
Abstract
The World Health Organization (WHO) classification of central nervous system (CNS) tumors incorporates morphology, cytogenetics, molecular genetics, and immunologic markers. Despite the relatively large number of CNS tumors with clonal chromosome abnormalities, only few studies have investigated cytogenetic abnormalities for CNS tumors in Korea. Thus, we investigated 119 CNS tumors by conventional G-banded karyotypes to characterize patterns of chromosomal abnormalities involving various CNS tumors, and 92.4% of them were cultured and karyotyped successfully. Totally, 51.8% of karyotypable CNS tumors showed abnormal cytogenetic results, including neuroepithelial tumors (75.0%), meningeal tumors (71.1%), pituitary adenomas (4.2%), schwannomas (44.4%), and metastatic tumors (100.0%). Glioblastomas had hyperdiploid, complex karyotypes, mainly involving chromosomes Y, 1, 2, 6, 7, 10, 12, 13, and 14. Monosomy 22 was observed in 56.4% of meningiomas. There was a significant increase in the frequencies of karyotypic complexity according to the increase of WHO grade between grades I and II (P=0.0422) or IV (P=0.0101). Abnormal karyotypes were more complex at high-grade tumors, suggesting that the karyotype reflects the biologic nature of the tumor. More detailed cytogenetic and molecular characterizations of CNS tumors contribute to better diagnostic criteria and deeper insights of tumorigenesis, eventually resulting in development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Kyung-Eun Kim
- Department of Laboratory Medicine, Dong-A University College of Medicine, Busan, Korea
| | - Ki-Uk Kim
- Department of Neurosurgery, Dong-A University College of Medicine, Busan, Korea
| | - Dae-Cheol Kim
- Department of Pathology, Dong-A University College of Medicine, Busan, Korea
- Medical Research Center for Cancer Molecular Therapy, Dong-A University, Busan, Korea
| | - Joo-In Park
- Department of Biochemistry, Dong-A University College of Medicine, Busan, Korea
- Medical Research Center for Cancer Molecular Therapy, Dong-A University, Busan, Korea
| | - Jin-Yeong Han
- Department of Laboratory Medicine, Dong-A University College of Medicine, Busan, Korea
- Medical Research Center for Cancer Molecular Therapy, Dong-A University, Busan, Korea
| |
Collapse
|
35
|
Brassesco MS, Valera ET, Neder L, Castro-Gamero AM, Arruda D, Machado HR, Sakamoto-Hojo ET, Tone LG. Polyploidy in atypical grade II choroid plexus papilloma of the posterior fossa. Neuropathology 2009; 29:293-8. [DOI: 10.1111/j.1440-1789.2008.00949.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
36
|
Qaddoumi I, Sultan I, Broniscer A. Pediatric low-grade gliomas and the need for new options for therapy: Why and how? Cancer Biol Ther 2009; 8:4-10. [PMID: 19164945 DOI: 10.4161/cbt.8.1.7237] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Pediatric low-grade gliomas are the most common tumors of the central nervous system in children, accounting for almost 50% of all childhood brain tumors. They are a heterogeneous group of tumors with different histologic subtypes. Most treatment studies address low-grade gliomas as a single entity, depriving us of histology-specific treatment outcomes. This is mostly due to a lack of understanding of tumor biology at the molecular level. Pediatric low-grade gliomas are not benign, and most incompletely resected tumors will progress and negatively affect quality of life. The advancements made in understanding sporadic pilocytic astrocytoma and neurofibromatosis 1-associated pilocytic astrocytoma in particular have paved the way for potential targeted therapy and biological stratification. Such progress in pilocytic astrocytoma needs to be consolidated and expanded to other histologic varieties of pediatric low-grade gliomas.
Collapse
Affiliation(s)
- Ibrahim Qaddoumi
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA.
| | | | | |
Collapse
|
37
|
De Tommasi A, Luzzi S, D'Urso PI, De Tommasi C, Resta N, Ciappetta P. Molecular genetic analysis in a case of ganglioglioma: identification of a new mutation. Neurosurgery 2008; 63:976-80; discussion 980. [PMID: 19005389 DOI: 10.1227/01.neu.0000327699.93146.cd] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE Ganglioglioma is a primary central nervous system low-grade tumor composed of mixed populations of glial and neuroepithelial elements. METHODS The authors report a case of ganglioglioma in a patient affected by Peutz-Jeghers syndrome, an autosomal dominant disease with varying expressions and incomplete penetrance responsible for an increased risk of gastrointestinal and other malignant tumor forms. RESULTS The polymerase chain reaction products of exon 6 of STK11/LKB1 showed an abnormal pattern in the single-strand conformation polymorphism analysis. Further sequencing analysis of the exon 6 identified a deletion of T and an insertion of AC at nucleotide 821 causing a shift of the reading frame. The same mutation was found in the patient's peripheral blood. The ribonucleic acid analysis on the ganglioglioma cells revealed an out-of-frame STK11 isoform, characterized by an exon 4 skipping, which resulted in nonsense mediated decay sensitive. CONCLUSION This report details the molecular genetic analysis of a ganglioglioma that allowed the identification of a new mutation.
Collapse
|
38
|
Grau E, Balaguer J, Canete A, Martinez F, Orellana C, Oltra S, Hernandez M, Castel V. Subtelomeric analysis of pediatric astrocytoma: subchromosomal instability is a distinctive feature of pleomorphic xanthoastrocytoma. J Neurooncol 2008; 93:175-82. [PMID: 19099200 DOI: 10.1007/s11060-008-9763-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2008] [Accepted: 12/08/2008] [Indexed: 10/21/2022]
Abstract
Astrocytic neoplasms are genetically heterogeneous; however a low frequency of genomic changes has been found in juvenile pilocytic astrocytoma (PA) in molecular studies. Concerning pleomorphic xanthoastrocytomas (PXA), recent studies have given heterogeneous results for chromosomal alterations. We studied the subtelomeric regions of 19 primary astrocytoma tumors. Results were near normality for the PA group with relative scarcity of chromosomal imbalances, except for the duplication of 3pter in 4/15 and deletion of 21qter in 5/15 of them. In contrast, a specific profile was observed in the 4 PXA tumoral samples. This involved 3pter, 14qter and 19pter duplication and 4qter, 6qter, 9qter, 13cen, 17pter, 18qter and 21qter deletion. Our results indicate that the chromosomal and genetic aberrations in PXAs differed from those typically associated with the diffusely infiltrating astrocytic and oligodendroglial gliomas. These genetic differences would likely contribute to the more favorable behavior of PXAs and may be helpful for molecular differential diagnosis of pediatric cerebral tumors.
Collapse
Affiliation(s)
- Elena Grau
- Hospital Universitario La Fe, Valencia, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Clinicopathological features and global genomic copy number alterations of pilomyxoid astrocytoma in the hypothalamus/optic pathway: comparative analysis with pilocytic astrocytoma using array-based comparative genomic hybridization. Mod Pathol 2008; 21:1345-56. [PMID: 18622384 DOI: 10.1038/modpathol.2008.88] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Pilomyxoid astrocytoma is a recently identified variant of pilocytic astrocytoma. We studied 11 circumscribed astrocytomas with focal (n=5) or diffuse (n=6) pilomyxoid features and compared them with 17 pilocytic astrocytomas from the hypothalamic/chiasmatic region in children. In one patient, a tumor that recurred after initial surgery had changed from pure-form pilomyxoid astrocytoma to the mixed form. The presence of a pilomyxoid area was associated with shorter survival. Next, we compared the comprehensive genome copy number changes in the pilomyxoid astrocytoma (n=4) with those in pilocytic astrocytoma (n=6) cases by array-based comparative genomic hybridization. The number of lost clones was larger in pilomyxoid astrocytoma than in pilocytic astrocytoma. Clones located in chromosome 8q24.3 were frequently gained in pilocytic astrocytoma (four of six) and in pilomyxoid astrocytoma (one of four). Clones located in 9p24.3 and 15q26.3 were lost in all of the pilomyxoid astrocytomas and in five of the pilocytic astrocytomas. Those in 8p23.3 showed a copy number loss in three of the pilomyxoid astrocytomas and four of the pilocytic astrocytomas. The frequency of copy number changes was significantly different between pilomyxoid astrocytoma and pilocytic astrocytoma in 47 (3.6%) clones, 20 of them having been located in 2p, 10 in 2q, and 11 in 3q. An unsupervised hierarchical clustering analysis classified the cases into three clusters: one pilomyxoid astrocytoma patient into one cluster, two pilomyxoid astrocytoma patients into another cluster, and six pilocytic astrocytoma patients and one pilomyxoid astrocytoma patient into the third cluster. In conclusion, the presence of mixed-form pilomyxoid astrocytoma, the acquisition of pilocytic astrocytoma features in a recurrent tumor in pure-form pilomyxoid astrocytoma, and the above results of the genome-wide gene copy number analysis suggest that pilomyxoid astrocytoma might be a pathologically and genetically related, aggressive variant of pilocytic astrocytoma with partially different genetic alterations.
Collapse
|
40
|
de Bont JM, Packer RJ, Michiels EM, den Boer ML, Pieters R. Biological background of pediatric medulloblastoma and ependymoma: a review from a translational research perspective. Neuro Oncol 2008; 10:1040-60. [PMID: 18676356 DOI: 10.1215/15228517-2008-059] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Survival rates of pediatric brain tumor patients have significantly improved over the years due to developments in diagnostic techniques, neurosurgery, chemotherapy, radiotherapy, and supportive care. However, brain tumors are still an important cause of cancer-related deaths in children. Prognosis is still highly dependent on clinical characteristics, such as the age of the patient, tumor type, stage, and localization, but increased knowledge about the genetic and biological features of these tumors is being obtained and might be useful to further improve outcome for these patients. It has become clear that the deregulation of signaling pathways essential in brain development, for example, sonic hedgehog (SHH), Wnt, and Notch pathways, plays an important role in pathogenesis and biological behavior, especially for medulloblastomas. More recently, data have become available about the cells of origin of brain tumors and the possible existence of brain tumor stem cells. Newly developed array-based techniques for studying gene expression, protein expression, copy number aberrations, and epigenetic events have led to the identification of other potentially important biological abnormalities in pediatric medulloblastomas and ependymomas.
Collapse
Affiliation(s)
- Judith M de Bont
- Department of Pediatric Oncology and Hematology, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
41
|
Faria C, Miguéns J, Antunes JL, Barroso C, Pimentel J, Martins MDC, Moura-Nunes V, Roque L. Genetic alterations in a papillary glioneuronal tumor. J Neurosurg Pediatr 2008; 1:99-102. [PMID: 18352813 DOI: 10.3171/ped-08/01/099] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Papillary glioneuronal tumors (PGNTs) are rare lesions of the central nervous system, and no information exists on the genetic alterations in these neoplasms. The authors report on such a case in a child. Genetic studies revealed that the tumor was characterized by gains and structural alterations involving only chromosome 7 with breakpoints at 7p22. By using comparative genomic hybridization, the authors observed a high-level amplification region at 7p14~q12. Fluorescence in situ hybridization with a probe for EGFR revealed that this gene was not amplified. Similar to other patients with PGNTs, the patient in the present case fared well. From a genetic point of view the data in the present case are in accordance with previous findings of EGFR amplifications as uncommon in low-grade gliomas and gangliogliomas. Recurrent rearrangements of chromosome 7 have been noted in other mixed glioneuronal tumors. The data in this case suggest that genes located at chromosome 7 can also be involved in the pathogenesis of PGNT. In clinical terms it will be especially important to corroborate, through the analysis of further cases, the involvement of the chromosome 7p22 locus, a region where glial and neuronal linked genes (RAC1 and NXPH1) are known to be located.
Collapse
Affiliation(s)
- Claudia Faria
- Department of Neurosurgery, Hospital de Santa Maria, Lisbon, Portugal
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Jones DTW, Ichimura K, Liu L, Pearson DM, Plant K, Collins VP. Genomic analysis of pilocytic astrocytomas at 0.97 Mb resolution shows an increasing tendency toward chromosomal copy number change with age. J Neuropathol Exp Neurol 2006; 65:1049-58. [PMID: 17086101 PMCID: PMC2761618 DOI: 10.1097/01.jnen.0000240465.33628.87] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Brain tumors are the most common solid tumors of childhood, accounting for over 20% of cancers in children under 15 years of age. Pilocytic astrocytomas (PAs), World Health Organization grade I, are one of the most frequently occurring childhood brain tumors, yet little is known about genetic changes characterizing this entity. We have used microarray comparative genomic hybridization at 0.97 Mb resolution to study a series of PAs (n = 44). No copy number abnormality was seen in 64% of cases at this resolution. However, whole chromosomal gain (median 5 chromosomes affected) occurred in 32% of tumors. The most frequently affected chromosomes were 5 and 7 (11 of 44 cases each) followed by 6, 11, 15, and 20 (greater than 10% of cases each). Findings were confirmed by fluorescence in situ hybridization and microsatellite analysis in a subset of tumors. Chromosomal gain was significantly more frequent in PAs from patients over 15 years old (p = 0.03, Fisher exact test). The number of chromosomes involved was also significantly greater in the older group (p = 0.02, Mann-Whitney U test). One case (2%) showed a region of gain on chromosome 3 and one (2%) a deletion on 6q as their sole abnormalities. This is the first genomewide study to show this nonrandom pattern of genetic alteration in pilocytic astrocytomas.
Collapse
Affiliation(s)
- David T W Jones
- Department of Pathology, Division of Molecular Histopathology, Cambridge University, Cambridge, UK.
| | | | | | | | | | | |
Collapse
|
43
|
Scheil S, Brüderlein S, Eicker M, Herms J, Herold-Mende C, Steiner HH, Barth TF, Möller P. Low frequency of chromosomal imbalances in anaplastic ependymomas as detected by comparative genomic hybridization. Brain Pathol 2006; 11:133-43. [PMID: 11303789 PMCID: PMC8098350 DOI: 10.1111/j.1750-3639.2001.tb00386.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
We screened 26 ependymomas in 22 patients (7 WHO grade I, myxopapillary, myE; 6 WHO grade II, E; 13 WHO grade III, anaplastic, aE) using comparative genomic hybridization (CGH) and fluorescence in situ hybridization (FISH). 25 out of 26 tumors showed chromosomal imbalances on CGH analysis. The chromosomal region most frequently affected by losses of genomic material clustered on 13q (9/26). 6/7 myE showed a loss on 13q14-q31. Other chromosomes affected by genomic losses were 6q (5/26), 4q (5/26), 10 (5/26), and 2q (4/26). The most consistent chromosomal abnormality in ependymomas so far reported, is monosomy 22 or structural abnormality 22q, identified in approximately one third of Giemsa-banded cases with abnormal karyotypes. Using FISH, loss or monosomy 22q was detected in small subpopulations of tumor cells in 36% of cases. The most frequent gains involved chromosome arms 17 (8/26), 9q (7/26), 20q (7/26), and 22q (6/26). Gains on 1q were found exclusively in pediatric ependymomas (5/10). Using FISH, MYCN proto-oncogene DNA amplifications mapped to 2p23-p24 were found in 2 spinal ependymomas of adults. On average, myE demonstrated 9.14, E 5.33, and aE 1.77 gains and/or losses on different chromosomes per tumor using CGH. Thus, and quite paradoxically, in ependymomas, a high frequency of imbalanced chromosomal regions as revealed by CGH does not indicate a high WHO grade of the tumor but is more frequent in grade I tumors.
Collapse
Affiliation(s)
- S Scheil
- Institute of Pathology, University of Ulm, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Bayani J, Pandita A, Squire JA. Molecular cytogenetic analysis in the study of brain tumors: findings and applications. Neurosurg Focus 2005; 19:E1. [PMID: 16398459 DOI: 10.3171/foc.2005.19.5.2] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Classic cytogenetics has evolved from black and white to technicolor images of chromosomes as a result of advances in fluorescence in situ hybridization (FISH) techniques, and is now called molecular cytogenetics. Improvements in the quality and diversity of probes suitable for FISH, coupled with advances in computerized image analysis, now permit the genome or tissue of interest to be analyzed in detail on a glass slide. It is evident that the growing list of options for cytogenetic analysis has improved the understanding of chromosomal changes in disease initiation, progression, and response to treatment. The contributions of classic and molecular cytogenetics to the study of brain tumors have provided scientists and clinicians alike with new avenues for investigation. In this review the authors summarize the contributions of molecular cytogenetics to the study of brain tumors, encompassing the findings of classic cytogenetics, interphase- and metaphase-based FISH studies, spectral karyotyping, and metaphase- and array-based comparative genomic hybridization. In addition, this review also details the role of molecular cytogenetic techniques in other aspects of understanding the pathogenesis of brain tumors, including xenograft, cancer stem cell, and telomere length studies.
Collapse
Affiliation(s)
- Jane Bayani
- Department of Applied Molecular Oncology, Ontario Cancer Institute, Princess Margaret Hospital, University Health Network, Ontario, Canada.
| | | | | |
Collapse
|
45
|
Li MH, Bouffet E, Hawkins CE, Squire JA, Huang A. Molecular genetics of supratentorial primitive neuroectodermal tumors and pineoblastoma. Neurosurg Focus 2005; 19:E3. [PMID: 16398467 DOI: 10.3171/foc.2005.19.5.4] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The supratentorial primitive neuroectodermal tumors (PNETs) are a group of highly malignant lesions primarily affecting young children. Although these tumors are histologically indistinguishable from infratentorial medulloblastoma, they often respond poorly to medulloblastoma-specific therapy. Indeed, existing molecular genetic studies indicate that supratentorial PNETs have transcriptional and cytogenetic profiles that are different from those of medullo-blastomas, thus pointing to unique biological derivation for the supratentorial PNET. Due to the rarity of these tumors and disagreement about their histopathological diagnoses, very little is known about the molecular characteristics of the supratentorial PNET. Clearly, future concerted efforts to characterize the molecular features of these rare tumors will be necessary for development of more effective supratentorial PNET treatment protocols and appropriate disease models. In this article the authors review existing molecular genetic data derived from human and mouse studies, with the aim of providing some insight into the putative histogenesis of these rare tumors and the underlying transforming pathways that drive their development. Studies of the related but distinct pineoblastoma PNET are also reviewed.
Collapse
Affiliation(s)
- Mei Hua Li
- Arthur and Sonia Labatt Brain Tumor Research Centre, Cancer Research Program, Division of Hematology and Oncology, Department of Pediatric Laboratory Medicine, Hospital for Sick Children, Toronto, Canada
| | | | | | | | | |
Collapse
|
46
|
Metwaly H, Cheng J, Maruyama S, Ohshiro K, Suzuki I, Hoshina Y, Saku T. Establishment and characterization of new cell lines derived from melanotic neuroectodermal tumor of infancy arising in the mandible. Pathol Int 2005; 55:331-42. [PMID: 15943790 DOI: 10.1111/j.1440-1827.2005.01833.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Three cell systems (MINT1/2/3) derived from a melanotic neuroectodermal tumor of infancy (MNTI) arising in the mandible of a 1-month-old newborn boy have been established, and their cytological natures have been characterized. The cells had immunopositivities for pan-keratin, vimentin, neuron-specific enolase, S-100 protein and melanoma-associated antigen (HMB-45). These immunohistochemical phenotypes were basically the same as those observed in tissue sections, in which, synaptophysin, myelin basic protein, c-myc gene products, carcinoembryonic antigen, and epithelial membrane antigen were also immunolocalized in tumor cells. Karyotyping analyzes revealed that the chromosome numbers of the three cell systems ranged from 60 to 67 with 3n ploidies, and that there were many structural aberrations, such as del(11)(q13), del(22)(q13), add(2)(p11), add(7)(q22), extra copies for chromosomes 1, 2, 3, 5, 7, 9, 10, 11, 12, 16, 20, and 22, der(9)t(9;13)(p13;q12)add(9)(q34), and der(13;21)(q10;q10), which were shared by the three cell systems, while der(19)t(11;19)(q13;p13) was found in MINT1 and MINT3. When stimulated by endothelin-3 and vitamin D(3), the cells had spinous cell shapes with immunopositivities for HMB-45, neurofilament protein and glial fibrillary acidic protein, which indicated more neural differentiation. The established cell systems will be useful for further investigation on the molecular and genetic basis of MNTI to understand its pathogenesis, which is largely unknown.
Collapse
MESH Headings
- Animals
- Antigens, Neoplasm
- Carcinoembryonic Antigen/analysis
- Cell Differentiation/drug effects
- Cell Line, Tumor
- Cholecalciferol/pharmacology
- Chromosome Aberrations
- Endothelin-3/pharmacology
- Female
- Fluorescent Antibody Technique
- Humans
- Immunohistochemistry
- Infant, Newborn
- Karyotyping
- Keratins/analysis
- Male
- Mandibular Neoplasms/genetics
- Mandibular Neoplasms/metabolism
- Mandibular Neoplasms/pathology
- Melanoma-Specific Antigens
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- Mucin-1/analysis
- Myelin Basic Protein/analysis
- Neoplasm Proteins/analysis
- Neoplasm Transplantation
- Neoplasms, Experimental/pathology
- Neuroectodermal Tumor, Melanotic/genetics
- Neuroectodermal Tumor, Melanotic/metabolism
- Neuroectodermal Tumor, Melanotic/pathology
- Phosphopyruvate Hydratase/analysis
- Proto-Oncogene Proteins c-myc/analysis
- S100 Proteins/analysis
- Transplantation, Heterologous
- Vimentin/analysis
Collapse
Affiliation(s)
- Hamdy Metwaly
- Division of Oral Pathology, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | | | | | | | | | | | | |
Collapse
|
47
|
Tan LHC, Do E, Tan SY, Chong SM, Koay ESC. Multi-lineage interrogation of the performance characteristics of a split-signal fluorescence in situ hybridization probe for anaplastic lymphoma kinase gene rearrangements: a study of 101 cases characterized by immunohistomorphology on fixed archival tissue. ACTA ACUST UNITED AC 2005; 8:213-29. [PMID: 15887977 DOI: 10.1007/bf03260066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
BACKGROUND Fluorescence in situ hybridization (FISH) can identify chromosomal translocations on fixed archival tissue, but studies cross-validating the utility of FISH on lesions of different cell lineages that harbor similar translocations (e.g. those involving anaplastic lymphoma kinase [ALK]) have not been published. AIM Our objective was to define the diagnostic utility, performance characteristics, and limitations of a commercially available, split-signal, FISH probe for ALK gene rearrangements on fixed, archived tissue from lesions of diverse cell lineage. STUDY DESIGN The sensitivity, specificity, and positive and negative predictive values of the Vysis ALK FISH probe were compared with those of the ALK-1 antibody (Dako) in a series of 101 cases, comprising 43 hematolymphoid neoplasms, 4 reactive lymphoid controls, 50 non-hematolymphoid (including neuroectodermal, epithelial, myofibroblastic, and germ cell) lesions, and 4 early-trimester aborted fetuses that served as neuroblastic controls. METHODS The study involved a predominantly (72%) Singaporean Chinese population aged between 9 months and 88 years (excluding the aborted fetal controls). All cases were reviewed both histologically and immunohistochemically with a wide panel of antibodies using the standard protocols in order to diagnose them according to the latest WHO classification systems. A positive cut-off value was determined, both by comparison with diagnostic categories with and without ALK translocations, as well as with negative controls. RESULTS The ALK FISH probe suffered a 33% non-informative rate, but in informative cases it showed 94% concordance with the ALK-1 immunostain. A minimum cut-off value of 5 in 200 informative cells was adopted to make a positive call in each case. Of the ALK-1 immunoreactive lesions, nine lymphomas were concordantly ALK translocation-positive but one vesical inflammatory myofibroblastic tumor was discordantly FISH-negative. Among the ALK-1-immunonegative lesions, one case each of anaplastic lymphoma and pulmonary mycobacterial spindle cell pseudotumor were discordantly ALK FISH-positive, while a case each of intestinal myeloblastic tumor and ganglioglioma showed initial--but not reproducible--positive FISH readings. The remaining cases were concordantly negative. DISCUSSION The discrepancies between ALK FISH results and well-established immunomorphological parameters indicate that interpretation is not always straightforward. Notably, the derivation of threshold cut-off values for positive calls on FISH assays has seldom been addressed in the literature, and has raised issues in interpreting cases with borderline positivity in this study. The factors that may influence such cut-off values are extensively reviewed. CONCLUSIONS We propose the term 'conditional threshold positivity' to encourage the adoption of different cut-off values for making positive calls in lesions of different origin.
Collapse
|
48
|
Sarkar C, Deb P, Sharma MC. Recent advances in embryonal tumours of the central nervous system. Childs Nerv Syst 2005; 21:272-93. [PMID: 15682321 DOI: 10.1007/s00381-004-1066-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2004] [Indexed: 01/19/2023]
Abstract
INTRODUCTION Embryonal tumours of the central nervous system (CNS) are the commonest malignant paediatric brain tumours. This group includes medulloblastomas, supratentorial primitive neuroectodermal tumours, atypical teratoid/rhabdoid tumours, ependymoblastomas, and medulloepitheliomas. Earlier, all these tumours were grouped under a broad category of primitive neuroectodermal tumours (PNETs). However, the current WHO classification (2000) separates them into individual types based on significant progress in the understanding of their distinctive clinical, pathological, molecular genetic, histogenetic, and behavioural characteristics. Furthermore, advances in histopathology and molecular genetics have shown great promise for refining risk assessment in these tumours, especially medulloblastomas, thus providing a more accurate basis for tailoring therapies to individual patients. Correlation of histological changes with genetic events has also led to a new model of medulloblastoma tumorigenesis. REVIEW This review presents an updated comparative profile of these tumours, highlighting the clinical and biological relevance of the recent advances.
Collapse
Affiliation(s)
- Chitra Sarkar
- Department of Pathology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi.
| | | | | |
Collapse
|
49
|
Suarez-Merino B, Hubank M, Revesz T, Harkness W, Hayward R, Thompson D, Darling JL, Thomas DGT, Warr TJ. Microarray analysis of pediatric ependymoma identifies a cluster of 112 candidate genes including four transcripts at 22q12.1-q13.3. Neuro Oncol 2005. [PMID: 15701279 DOI: 10.1215/s1152851704000596] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Ependymomas are glial cell-derived tumors characterized by varying degrees of chromosomal abnormalities and variability in clinical behavior. Cytogenetic analysis of pediatric ependymoma has failed to identify consistent patterns of abnormalities, with the exception of monosomy of 22 or structural abnormalities of 22q. In this study, a total of 19 pediatric ependymoma samples were used in a series of expression profiling, quantitative real-time PCR (Q-PCR), and loss of heterozygosity experiments to identify candidate genes involved in the development of this type of pediatric malignancy. Of the 12,627 genes analyzed, a subset of 112 genes emerged as being abnormally expressed when compared to three normal brain controls. Genes with increased expression included the oncogene WNT5A; the p53 homologue p63; and several cell cycle, cell adhesion, and proliferation genes. Underexpressed genes comprised the NF2 interacting gene SCHIP-1 and the adenomatous polyposis coli (APC)-associated gene EB1 among others. We validated the abnormal expression of six of these genes by Q-PCR. The subset of differentially expressed genes also included four underexpressed transcripts mapping to 22q12.313.3. By Q-PCR we show that one of these genes, 7 CBX7(22q13.1), was deleted in 55% of cases. Other genes mapping to cytogenetic hot spots included two overexpressed and three underexpressed genes mapping to 1q31-41 and 6q21-q24.3, respectively. These genes represent candidate genes involved in ependymoma tumorigenesis. To the authors' knowledge, this is the first time microarray analysis and Q-PCR have been linked to identify heterozygous/homozygous deletions.
Collapse
Affiliation(s)
- Blanca Suarez-Merino
- Department of Molecular Neuroscience, Institute of Neurology, National Hospital for Neurology and Neurosurgery, University College London, London, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Suarez-Merino B, Hubank M, Revesz T, Harkness W, Hayward R, Thompson D, Darling JL, Thomas DG, Warr TJ. Microarray analysis of pediatric ependymoma identifies a cluster of 112 candidate genes including four transcripts at 22q12.1-q13.3. Neuro Oncol 2005; 7:20-31. [PMID: 15701279 PMCID: PMC1871622 DOI: 10.1215/s1152851704000596)] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Ependymomas are glial cell-derived tumors characterized by varying degrees of chromosomal abnormalities and variability in clinical behavior. Cytogenetic analysis of pediatric ependymoma has failed to identify consistent patterns of abnormalities, with the exception of monosomy of 22 or structural abnormalities of 22q. In this study, a total of 19 pediatric ependymoma samples were used in a series of expression profiling, quantitative real-time PCR (Q-PCR), and loss of heterozygosity experiments to identify candidate genes involved in the development of this type of pediatric malignancy. Of the 12,627 genes analyzed, a subset of 112 genes emerged as being abnormally expressed when compared to three normal brain controls. Genes with increased expression included the oncogene WNT5A; the p53 homologue p63; and several cell cycle, cell adhesion, and proliferation genes. Underexpressed genes comprised the NF2 interacting gene SCHIP-1 and the adenomatous polyposis coli (APC)-associated gene EB1 among others. We validated the abnormal expression of six of these genes by Q-PCR. The subset of differentially expressed genes also included four underexpressed transcripts mapping to 22q12.313.3. By Q-PCR we show that one of these genes, 7 CBX7(22q13.1), was deleted in 55% of cases. Other genes mapping to cytogenetic hot spots included two overexpressed and three underexpressed genes mapping to 1q31-41 and 6q21-q24.3, respectively. These genes represent candidate genes involved in ependymoma tumorigenesis. To the authors' knowledge, this is the first time microarray analysis and Q-PCR have been linked to identify heterozygous/homozygous deletions.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Tracy J. Warr
- Address correspondence to Tracy J. Warr, Department of Molecular Neuroscience, Neuro-Oncology Group, Institute of Neurology, Queen Square, London WC1N 3BG, UK (
)
| |
Collapse
|