1
|
SoRelle ED, Luftig MA. Multiple sclerosis and infection: history, EBV, and the search for mechanism. Microbiol Mol Biol Rev 2025; 89:e0011923. [PMID: 39817754 PMCID: PMC11948499 DOI: 10.1128/mmbr.00119-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025] Open
Abstract
SUMMARYInfection has long been hypothesized as the cause of multiple sclerosis (MS), and recent evidence for Epstein-Barr virus (EBV) as the trigger of MS is clear and compelling. This clarity contrasts with yet uncertain viral mechanisms and their relation to MS neuroinflammation and demyelination. As long as this disparity persists, it will invigorate virologists, molecular biologists, immunologists, and clinicians to ascertain how EBV potentiates MS onset, and possibly the disease's chronic activity and progression. Such efforts should take advantage of the diverse body of basic and clinical research conducted over nearly two centuries since the first clinical descriptions of MS plaques. Defining the contribution of EBV to the complex and multifactorial pathology of MS will also require suitable experimental models and techniques. Such efforts will broaden our understanding of virus-driven neuroinflammation and specifically inform the development of EBV-targeted therapies for MS management and, ultimately, prevention.
Collapse
Affiliation(s)
- Elliott D. SoRelle
- Department of Molecular Genetics & Microbiology, Center for Virology, Duke University, Durham, North Carolina, USA
| | - Micah A. Luftig
- Department of Molecular Genetics & Microbiology, Center for Virology, Duke University, Durham, North Carolina, USA
| |
Collapse
|
2
|
Borghol AH, Bitar ER, Hanna A, Naim G, Rahal EA. The role of Epstein-Barr virus in autoimmune and autoinflammatory diseases. Crit Rev Microbiol 2025; 51:296-316. [PMID: 38634723 DOI: 10.1080/1040841x.2024.2344114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/15/2024] [Accepted: 04/11/2024] [Indexed: 04/19/2024]
Abstract
Epstein-Barr Virus (EBV), a dsDNA herpesvirus, is believed to play a significant role in exacerbating and potentially triggering autoimmune and autoinflammatory maladies. Around 90% of the world is infected with the virus, which establishes latency within lymphocytes. EBV is also known to cause infectious mononucleosis, a self-limited flu-like illness, in adolescents. EBV is often reactivated and it employs several mechanisms of evading the host immune system. It has also been implicated in inducing host immune dysfunction potentially resulting in exacerbation or triggering of inflammatory processes. EBV has therefore been linked to a number of autoimmune diseases, including systemic lupus erythematosus, multiple sclerosis, rheumatoid arthritis, and Sjögren's syndrome. The review examines the molecular mechanisms through which the virus alters host immune system components thus possibly resulting in autoimmune processes. Understanding the mechanisms underpinning EBV-associated autoimmunity is pivotal; however, the precise causal pathways remain elusive. Research on therapeutic agents and vaccines for EBV has been stagnant for a long number of years until recent advances shed light on potential therapeutic targets. The implications of EBV in autoimmunity underscore the importance of developing targeted therapeutic strategies and, potentially, vaccines to mitigate the autoimmune burden associated with this ubiquitous virus.
Collapse
Affiliation(s)
- Abdul Hamid Borghol
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Center for Infectious Diseases Research (CIDR), American University of Beirut, Beirut, Lebanon
| | - Elio R Bitar
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Center for Infectious Diseases Research (CIDR), American University of Beirut, Beirut, Lebanon
| | - Aya Hanna
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Center for Infectious Diseases Research (CIDR), American University of Beirut, Beirut, Lebanon
| | - Georges Naim
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Center for Infectious Diseases Research (CIDR), American University of Beirut, Beirut, Lebanon
| | - Elias A Rahal
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Center for Infectious Diseases Research (CIDR), American University of Beirut, Beirut, Lebanon
| |
Collapse
|
3
|
Bauer A, Hegen H, Reindl M. Body fluid markers for multiple sclerosis and differential diagnosis from atypical demyelinating disorders. Expert Rev Mol Diagn 2024; 24:283-297. [PMID: 38533708 DOI: 10.1080/14737159.2024.2334849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/21/2024] [Indexed: 03/28/2024]
Abstract
INTRODUCTION Body fluid markers could be helpful to predict the conversion into clinically definite multiple sclerosis (MS) in people with a first demyelinating event of the central nervous system (CNS). Consequently, biomarkers such as oligoclonal bands, which are integrated in the current MS diagnostic criteria, could assist early MS diagnosis. AREAS COVERED This review examines existing knowledge on a broad spectrum of body fluid markers in people with a first CNS demyelinating event, explores their potential to predict conversion to MS, to assess MS disease activity, as well as their utility to differentiate MS from atypical demyelinating disorders such as neuromyelitis optica spectrum disorder and myelin oligodendrocyte glycoprotein associated disease. EXPERT OPINION This field of research has shown a dramatic increase of evidence, especially in the last decade. Some biomarkers are already established in clinical routine (e.g. oligoclonal bands) while others are currently implemented (e.g. kappa free light chains) or considered as breakthroughs (e.g. neurofilament light). Determination of biomarkers poses challenges for continuous monitoring, especially if exclusively detectable in cerebrospinal fluid. A handful of biomarkers are measurable in blood which holds a significant potential.
Collapse
Affiliation(s)
- Angelika Bauer
- Clinical Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Harald Hegen
- Clinical Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Markus Reindl
- Clinical Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
4
|
Raghib MF, Bernitsas E. From Animal Models to Clinical Trials: The Potential of Antimicrobials in Multiple Sclerosis Treatment. Biomedicines 2023; 11:3069. [PMID: 38002068 PMCID: PMC10668955 DOI: 10.3390/biomedicines11113069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 11/05/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic, autoimmune, demyelinating disease of the central nervous system (CNS). Microbes, including bacteria and certain viruses, particularly Epstein-Barr virus (EBV), have been linked to the pathogenesis of MS. While there is currently no cure for MS, antibiotics and antivirals have been studied as potential treatment options due to their immunomodulatory ability that results in the regulation of the immune process. The current issue addressed in this systematic review is the effect of antimicrobials, including antibiotics, antivirals, and antiparasitic agents in animals and humans. We performed a comprehensive search of PubMed, Google Scholar, and Scopus for articles on antimicrobials in experimental autoimmune encephalomyelitis animal models of MS, as well as in people with MS (pwMS). In animal models, antibiotics tested included beta-lactams, minocycline, rapamycin, macrolides, and doxycycline. Antivirals included acyclovir, valacyclovir, and ganciclovir. Hydroxychloroquine was the only antiparasitic that was tested. In pwMS, we identified a total of 24 studies, 17 of them relevant to antibiotics, 6 to antivirals, and 1 relevant to antiparasitic hydroxychloroquine. While the effect of antimicrobials in animal models was promising, only minocycline and hydroxychloroquine improved outcome measures in pwMS. No favorable effect of the antivirals in humans has been observed yet. The number and size of clinical trials testing antimicrobials have been limited. Large, multicenter, well-designed studies are needed to further evaluate the effect of antimicrobials in MS.
Collapse
Affiliation(s)
- Muhammad Faraz Raghib
- Department of Neurology, Wayne State University School of Medicine, Detroit, MI 48201, USA;
| | - Evanthia Bernitsas
- Department of Neurology, Wayne State University School of Medicine, Detroit, MI 48201, USA;
- Sastry Neuroimaging Laboratory, Department of Neurology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| |
Collapse
|
5
|
Pereira JG, Leon LAA, de Almeida NAA, Raposo-Vedovi JV, Fontes-Dantas FL, Farinhas JGD, Pereira VCSR, Alves-Leon SV, de Paula VS. Higher frequency of Human herpesvirus-6 (HHV-6) viral DNA simultaneously with low frequency of Epstein-Barr virus (EBV) viral DNA in a cohort of multiple sclerosis patients from Rio de Janeiro, Brazil. Mult Scler Relat Disord 2023; 76:104747. [PMID: 37267685 DOI: 10.1016/j.msard.2023.104747] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 04/18/2023] [Accepted: 04/30/2023] [Indexed: 06/04/2023]
Abstract
Multiple sclerosis (MS) is a chronic neuroinflammatory and neurodegenerative disease of the central nervous system (CNS). The etiology of MS is not well understood, but it's likely one of the genetic and environmental factors. Approximately 85% of patients have relapsing-remitting MS (RRMS), while 10-15% have primary progressive MS (PPMS). Epstein-Barr virus (EBV) and Human herpesvirus 6 (HHV-6), members of the human Herpesviridae family, are strong candidates for representing the macroenvironmental factors associated with MS) pathogenesis. Antigenic mimicry of EBV involving B-cells has been implicate in MS risk factors and concomitance of EBV and HHV-6 latent infection has been associated to inflammatory MS cascade. To verify the possible role of EBV and HHV-6 as triggering or aggravating factors in RRMS and PPMS, we compare their frequency in blood samples collected from 166 MS patients. The presence of herpes DNA was searched by real-time PCR (qPCR). The frequency of EBV and HHV-6 in MS patients were 1.8% (3/166) and 8.9% (14/166), respectively. Among the positive patients, 100% (3/3) EBV and 85.8% (12/14) HHV-6 are RRMS and 14.4% (2/14) HHV-6 are PPMS. Detection of EBV was 1.2% (2/166) and HHV-6 was 0.6% (1/166) in blood donors. About clinical phenotype of these patients, incomplete multifocal myelitis, and optic neuritis were the main CNS manifestations. These are the first data about concomitant infection of these viruses in MS patients from Brazil. Up to date, our findings confirm a higher prevalence in female with MS and a high frequency of EBV and HHV-6 in RRMS patients.
Collapse
Affiliation(s)
| | - Luciane A Amado Leon
- Laboratory of Technological Development in Virology, Oswaldo Cruz Institute/ Fiocruz, Rio de Janeiro, Brazil
| | | | - Jéssica Vasques Raposo-Vedovi
- Laboratory of Translacional Neurosciences, Biomedical Institute, Federal University of the State of Rio de Janeiro/UNIRIO, Rio de Janeiro, Brazil
| | - Fabrícia Lima Fontes-Dantas
- Department of Pharmacology, Institute of Biology, Rio de Janeiro State University, (UERJ), Rio de Janeiro, Brazil
| | - João Gabriel Dib Farinhas
- Department of Neurology/Reference and Research Center for Multiple Sclerosis and Other Central Nervous System Idiopathic Demyelinating Inflammatory Diseases, Clementino Fraga Filho University Hospital, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Valéria Coelho Santa Rita Pereira
- Department of Neurology/Reference and Research Center for Multiple Sclerosis and Other Central Nervous System Idiopathic Demyelinating Inflammatory Diseases, Clementino Fraga Filho University Hospital, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Soniza V Alves-Leon
- Department of Neurology/Reference and Research Center for Multiple Sclerosis and Other Central Nervous System Idiopathic Demyelinating Inflammatory Diseases, Clementino Fraga Filho University Hospital, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Laboratory of Translacional Neurosciences, Biomedical Institute, Federal University of the State of Rio de Janeiro/UNIRIO, Rio de Janeiro, Brazil.
| | - Vanessa S de Paula
- Laboratory of Molecular Virology, Oswaldo Cruz Institute/ Fiocruz, Rio de Janeiro, Brazil
| |
Collapse
|
6
|
Serafini B, Rosicarelli B, Veroni C, Aloisi F. Tissue-resident memory T cells in the multiple sclerosis brain and their relationship to Epstein-Barr virus infected B cells. J Neuroimmunol 2023; 376:578036. [PMID: 36753806 DOI: 10.1016/j.jneuroim.2023.578036] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/23/2023] [Accepted: 01/23/2023] [Indexed: 01/27/2023]
Abstract
Presence of EBV infected B cells and EBV-specific CD8 T cells in the multiple sclerosis (MS) brain suggests a role for virus-driven immunopathology in brain inflammation. Tissue-resident memory (Trm) T cells differentiating in MS lesions could provide local protection against EBV reactivation. Using immunohistochemical techniques to analyse canonical tissue residency markers in postmortem brains from control and MS cases, we report that CD103 and/or CD69 are mainly expressed in a subset of CD8+ T cells that intermingle with and contact EBV infected B cells in the infiltrated MS white matter and meninges, including B-cell follicles. Some Trm-like cells were found to express granzyme B and PD-1, mainly in white matter lesions. In the MS brain, Trm cells could fail to constrain EBV infection while contributing to sustain inflammation.
Collapse
Affiliation(s)
- Barbara Serafini
- Department of Neuroscience, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| | - Barbara Rosicarelli
- Department of Neuroscience, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| | - Caterina Veroni
- Department of Neuroscience, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| | - Francesca Aloisi
- Department of Neuroscience, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| |
Collapse
|
7
|
Abstract
Epstein-Barr virus (EBV) is a ubiquitous human lymphotropic herpesvirus with a well-established causal role in several cancers. Recent studies have provided compelling epidemiological and mechanistic evidence for a causal role of EBV in multiple sclerosis (MS). MS is the most prevalent chronic inflammatory and neurodegenerative disease of the central nervous system and is thought to be triggered in genetically predisposed individuals by an infectious agent, with EBV as the lead candidate. How a ubiquitous virus that typically leads to benign latent infections can promote cancer and autoimmune disease in at-risk populations is not fully understood. Here we review the evidence that EBV is a causal agent for MS and how various risk factors may affect EBV infection and immune control. We focus on EBV contributing to MS through reprogramming of latently infected B lymphocytes and the chronic presentation of viral antigens as a potential source of autoreactivity through molecular mimicry. We consider how knowledge of EBV-associated cancers may be instructive for understanding the role of EBV in MS and discuss the potential for therapies that target EBV to treat MS.
Collapse
Affiliation(s)
- Samantha S. Soldan
- grid.251075.40000 0001 1956 6678The Wistar Institute, Philadelphia, PA USA
| | - Paul M. Lieberman
- grid.251075.40000 0001 1956 6678The Wistar Institute, Philadelphia, PA USA
| |
Collapse
|
8
|
Lezhnyova V, Davidyuk Y, Mullakhmetova A, Markelova M, Zakharov A, Khaiboullina S, Martynova E. Analysis of herpesvirus infection and genome single nucleotide polymorphism risk factors in multiple sclerosis, Volga federal district, Russia. Front Immunol 2022; 13:1010605. [PMID: 36451826 PMCID: PMC9703080 DOI: 10.3389/fimmu.2022.1010605] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 10/03/2022] [Indexed: 09/29/2023] Open
Abstract
Multiple sclerosis (MS) is a heterogeneous disease where herpesvirus infection and genetic predisposition are identified as the most consistent risk factors. Serum and blood samples were collected from 151 MS and 70 controls and used to analyze circulating antibodies for, and DNA of, Epstein Barr virus (EBV), human cytomegalovirus (HCMV), human herpes virus 6 (HHV6), and varicella zoster virus (VZV). The frequency of selected single nucleotide polymorphisms (SNPs) in MS and controls were studied. Herpesvirus DNA in blood samples were analyzed using qPCR. Anti-herpesvirus antibodies were detected by ELISA. SNPs were analyzed by the allele-specific PCR. For statistical analysis, Fisher exact test, odds ratio and Kruskall-Wallis test were used; p<0.05 values were considered as significant. We have found an association between circulating anti-HHV6 antibodies and MS diagnosis. We also confirmed higher frequency of A and C alleles in rs2300747 and rs12044852 of CD58 gene and G allele in rs929230 of CD6 gene in MS as compared to controls. Fatigue symptom was linked to AC and AA genotype in rs12044852 of CD58 gene. An interesting observation was finding higher frequency of GG genotype in rs12722489 of IL2RA and T allele in rs1535045 of CD40 genes in patient having anti-HHV6 antibodies. A link was found between having anti-VZV antibodies in MS and CC genotype in rs1883832 of CD40 gene.
Collapse
Affiliation(s)
- Vera Lezhnyova
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, Russia
| | - Yuriy Davidyuk
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, Russia
| | - Asia Mullakhmetova
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, Russia
| | - Maria Markelova
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, Russia
| | - Alexander Zakharov
- Department of Neurology and Neurosurgery, Samara State Medical University, Samara, Russia
| | - Svetlana Khaiboullina
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, Russia
| | - Ekaterina Martynova
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, Russia
| |
Collapse
|
9
|
Saez-Calveras N, Stuve O. The role of the complement system in Multiple Sclerosis: A review. Front Immunol 2022; 13:970486. [PMID: 36032156 PMCID: PMC9399629 DOI: 10.3389/fimmu.2022.970486] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 07/21/2022] [Indexed: 11/13/2022] Open
Abstract
The complement system has been involved in the pathogenesis of multiple neuroinflammatory and neurodegenerative conditions. In this review, we evaluated the possible role of complement activation in multiple sclerosis (MS) with a focus in progressive MS, where the disease pathogenesis remains to be fully elucidated and treatment options are limited. The evidence for the involvement of the complement system in the white matter plaques and gray matter lesions of MS stems from immunohistochemical analysis of post-mortem MS brains, in vivo serum and cerebrospinal fluid biomarker studies, and animal models of Experimental Autoimmune Encephalomyelitis (EAE). Complement knock-out studies in these animal models have revealed that this system may have a “double-edge sword” effect in MS. On the one hand, complement proteins may aid in promoting the clearance of myelin degradation products and other debris through myeloid cell-mediated phagocytosis. On the other, its aberrant activation may lead to demyelination at the rim of progressive MS white matter lesions as well as synapse loss in the gray matter. The complement system may also interact with known risk factors of MS, including as Epstein Barr Virus (EBV) infection, and perpetuate the activation of CNS self-reactive B cell populations. With the mounting evidence for the involvement of complement in MS, the development of complement modulating therapies for this condition is appealing. Herein, we also reviewed the pharmacological complement inhibitors that have been tested in MS animal models as well as in clinical trials for other neurologic diseases. The potential use of these agents, such as the C5-binding antibody eculizumab in MS will require a detailed understanding of the role of the different complement effectors in this disease and the development of better CNS delivery strategies for these compounds.
Collapse
Affiliation(s)
- Nil Saez-Calveras
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Olaf Stuve
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, United States
- Neurology Section, Veterans Affairs (VA) North Texas Health Care System, Dallas, TX, United States
- *Correspondence: Olaf Stuve,
| |
Collapse
|
10
|
MINI-review of Epstein-Barr virus involvement in multiple sclerosis etiology and pathogenesis. J Neuroimmunol 2022; 371:577935. [DOI: 10.1016/j.jneuroim.2022.577935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/11/2022] [Accepted: 07/24/2022] [Indexed: 11/18/2022]
|
11
|
Viral Proteins with PxxP and PY Motifs May Play a Role in Multiple Sclerosis. Viruses 2022; 14:v14020281. [PMID: 35215874 PMCID: PMC8879583 DOI: 10.3390/v14020281] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/19/2022] [Accepted: 01/26/2022] [Indexed: 02/04/2023] Open
Abstract
Multiple sclerosis (MS) is a debilitating disease that arises from immune system attacks to the protective myelin sheath that covers nerve fibers and ensures optimal communication between brain and body. Although the cause of MS is unknown, a number of factors, which include viruses, have been identified as increasing the risk of displaying MS symptoms. Specifically, the ubiquitous and highly prevalent Epstein–Barr virus, human herpesvirus 6, cytomegalovirus, varicella–zoster virus, and other viruses have been identified as potential triggering agents. In this review, we examine the specific role of proline-rich proteins encoded by these viruses and their potential role in MS at a molecular level.
Collapse
|
12
|
Schroeter CB, Huntemann N, Bock S, Nelke C, Kremer D, Pfeffer K, Meuth SG, Ruck T. Crosstalk of Microorganisms and Immune Responses in Autoimmune Neuroinflammation: A Focus on Regulatory T Cells. Front Immunol 2021; 12:747143. [PMID: 34691057 PMCID: PMC8529161 DOI: 10.3389/fimmu.2021.747143] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 09/20/2021] [Indexed: 12/22/2022] Open
Abstract
Regulatory T cells (Tregs) are the major determinant of peripheral immune tolerance. Many Treg subsets have been described, however thymus-derived and peripherally induced Tregs remain the most important subpopulations. In multiple sclerosis, a prototypical autoimmune disorder of the central nervous system, Treg dysfunction is a pathogenic hallmark. In contrast, induction of Treg proliferation and enhancement of their function are central immune evasion mechanisms of infectious pathogens. In accordance, Treg expansion is compartmentalized to tissues with high viral replication and prolonged in chronic infections. In friend retrovirus infection, Treg expansion is mainly based on excessive interleukin-2 production by infected effector T cells. Moreover, pathogens seem also to enhance Treg functions as shown in human immunodeficiency virus infection, where Tregs express higher levels of effector molecules such as cytotoxic T-lymphocyte-associated protein 4, CD39 and cAMP and show increased suppressive capacity. Thus, insights into the molecular mechanisms by which intracellular pathogens alter Treg functions might aid to find new therapeutic approaches to target central nervous system autoimmunity. In this review, we summarize the current knowledge of the role of pathogens for Treg function in the context of autoimmune neuroinflammation. We discuss the mechanistic implications for future therapies and provide an outlook for new research directions.
Collapse
Affiliation(s)
- Christina B Schroeter
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Niklas Huntemann
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Stefanie Bock
- Department of Neurology With Institute of Translational Neurology, University of Münster, Münster, Germany
| | - Christopher Nelke
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - David Kremer
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Klaus Pfeffer
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Sven G Meuth
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Tobias Ruck
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
13
|
Veroni C, Aloisi F. The CD8 T Cell-Epstein-Barr Virus-B Cell Trialogue: A Central Issue in Multiple Sclerosis Pathogenesis. Front Immunol 2021; 12:665718. [PMID: 34305896 PMCID: PMC8292956 DOI: 10.3389/fimmu.2021.665718] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 06/07/2021] [Indexed: 12/11/2022] Open
Abstract
The cause and the pathogenic mechanisms leading to multiple sclerosis (MS), a chronic inflammatory disease of the central nervous system (CNS), are still under scrutiny. During the last decade, awareness has increased that multiple genetic and environmental factors act in concert to modulate MS risk. Likewise, the landscape of cells of the adaptive immune system that are believed to play a role in MS immunopathogenesis has expanded by including not only CD4 T helper cells but also cytotoxic CD8 T cells and B cells. Once the key cellular players are identified, the main challenge is to define precisely how they act and interact to induce neuroinflammation and the neurodegenerative cascade in MS. CD8 T cells have been implicated in MS pathogenesis since the 80's when it was shown that CD8 T cells predominate in MS brain lesions. Interest in the role of CD8 T cells in MS was revived in 2000 and the years thereafter by studies showing that CNS-recruited CD8 T cells are clonally expanded and have a memory effector phenotype indicating in situ antigen-driven reactivation. The association of certain MHC class I alleles with MS genetic risk implicates CD8 T cells in disease pathogenesis. Moreover, experimental studies have highlighted the detrimental effects of CD8 T cell activation on neural cells. While the antigens responsible for T cell recruitment and activation in the CNS remain elusive, the high efficacy of B-cell depleting drugs in MS and a growing number of studies implicate B cells and Epstein-Barr virus (EBV), a B-lymphotropic herpesvirus that is strongly associated with MS, in the activation of pathogenic T cells. This article reviews the results of human studies that have contributed to elucidate the role of CD8 T cells in MS immunopathogenesis, and discusses them in light of current understanding of autoreactivity, B-cell and EBV involvement in MS, and mechanism of action of different MS treatments. Based on the available evidences, an immunopathological model of MS is proposed that entails a persistent EBV infection of CNS-infiltrating B cells as the target of a dysregulated cytotoxic CD8 T cell response causing CNS tissue damage.
Collapse
Affiliation(s)
| | - Francesca Aloisi
- Department of Neuroscience, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
14
|
Jakhmola S, Upadhyay A, Jain K, Mishra A, Jha HC. Herpesviruses and the hidden links to Multiple Sclerosis neuropathology. J Neuroimmunol 2021; 358:577636. [PMID: 34174587 DOI: 10.1016/j.jneuroim.2021.577636] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/01/2021] [Accepted: 06/17/2021] [Indexed: 01/08/2023]
Abstract
Herpesviruses like Epstein-Barr virus, human herpesvirus (HHV)-6, HHV-1, VZV, and human endogenous retroviruses, have an age-old clinical association with multiple sclerosis (MS). MS is an autoimmune disease of the nervous system wherein the myelin sheath deteriorates. The most popular mode of virus mediated immune system manipulation is molecular mimicry. Numerous herpesvirus antigens are similar to myelin proteins. Other mechanisms described here include the activity of cytokines and autoantibodies produced by the autoreactive T and B cells, respectively, viral déjà vu, epitope spreading, CD46 receptor engagement, impaired remyelination etc. Overall, this review addresses the host-parasite association of viruses with MS.
Collapse
Affiliation(s)
- Shweta Jakhmola
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, India
| | - Arun Upadhyay
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology, Jodhpur, India
| | - Khushboo Jain
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology, Jodhpur, India
| | - Hem Chandra Jha
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, India.
| |
Collapse
|
15
|
Tarlinton RE, Martynova E, Rizvanov AA, Khaiboullina S, Verma S. Role of Viruses in the Pathogenesis of Multiple Sclerosis. Viruses 2020; 12:E643. [PMID: 32545816 PMCID: PMC7354629 DOI: 10.3390/v12060643] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/07/2020] [Accepted: 06/10/2020] [Indexed: 12/17/2022] Open
Abstract
Multiple sclerosis (MS) is an immune inflammatory disease, where the underlying etiological cause remains elusive. Multiple triggering factors have been suggested, including environmental, genetic and gender components. However, underlying infectious triggers to the disease are also suspected. There is an increasing abundance of evidence supporting a viral etiology to MS, including the efficacy of interferon therapy and over-detection of viral antibodies and nucleic acids when compared with healthy patients. Several viruses have been proposed as potential triggering agents, including Epstein-Barr virus, human herpesvirus 6, varicella-zoster virus, cytomegalovirus, John Cunningham virus and human endogenous retroviruses. These viruses are all near ubiquitous and have a high prevalence in adult populations (or in the case of the retroviruses are actually part of the genome). They can establish lifelong infections with periods of reactivation, which may be linked to the relapsing nature of MS. In this review, the evidence for a role for viral infection in MS will be discussed with an emphasis on immune system activation related to MS disease pathogenesis.
Collapse
Affiliation(s)
- Rachael E. Tarlinton
- School of Veterinary Medicine and Science, University of Nottingham, Loughborough LE12 5RD, UK;
| | - Ekaterina Martynova
- Insititute of Fundamental Medicine and Biology Kazan Federal University, 420008 Kazan, Russia; (E.M.); (A.A.R.)
| | - Albert A. Rizvanov
- Insititute of Fundamental Medicine and Biology Kazan Federal University, 420008 Kazan, Russia; (E.M.); (A.A.R.)
| | | | - Subhash Verma
- School of Medicine, University of Nevada, Reno, NV 89557, USA;
| |
Collapse
|
16
|
Bar-Or A, Pender MP, Khanna R, Steinman L, Hartung HP, Maniar T, Croze E, Aftab BT, Giovannoni G, Joshi MA. Epstein-Barr Virus in Multiple Sclerosis: Theory and Emerging Immunotherapies. Trends Mol Med 2019; 26:296-310. [PMID: 31862243 PMCID: PMC7106557 DOI: 10.1016/j.molmed.2019.11.003] [Citation(s) in RCA: 169] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 10/31/2019] [Accepted: 11/06/2019] [Indexed: 12/12/2022]
Abstract
New treatments for multiple sclerosis (MS) focused on B cells have created an atmosphere of excitement in the MS community. B cells are now known to play a major role in disease, demonstrated by the highly impactful effect of a B cell-depleting antibody on controlling MS. The idea that a virus may play a role in the development of MS has a long history and is supported mostly by studies demonstrating a link between B cell-tropic Epstein–Barr virus (EBV) and disease onset. Efforts to develop antiviral strategies for treating MS are underway. Although gaps remain in our understanding of the etiology of MS, the role, if any, of viruses in propagating pathogenic immune responses deserves attention.
Collapse
Affiliation(s)
- Amit Bar-Or
- Center for Neuroinflammation and Experimental Therapeutics, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael P Pender
- Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Rajiv Khanna
- Centre for Immunotherapy and Vaccine Development, Queensland Institute of Medical Research (QIMR) Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Lawrence Steinman
- Department of Neurology and Neurological Sciences, Beckman Center for Molecular Medicine, Stanford University Medical Center, Stanford, CA, USA
| | - Hans-Peter Hartung
- Department of Neurology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Tap Maniar
- Clinical Development, Torque Therapeutics, Boston, MA, USA
| | - Ed Croze
- IRIS-Bay, San Francisco, CA, USA.
| | - Blake T Aftab
- Preclinical Science and Translational Medicine, Atara Biotherapeutics, South San Francisco, CA, USA
| | - Gavin Giovannoni
- Blizard Institute, Queen Mary University London, Barts and the London School of Medicine, London, UK
| | - Manher A Joshi
- Medical Affairs, Atara Biotherapeutics, South San Francisco, CA, USA
| |
Collapse
|
17
|
Endosomal Toll-Like Receptors Mediate Enhancement of Interleukin-17A Production Triggered by Epstein-Barr Virus DNA in Mice. J Virol 2019; 93:JVI.00987-19. [PMID: 31375581 DOI: 10.1128/jvi.00987-19] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 07/18/2019] [Indexed: 01/03/2023] Open
Abstract
We previously demonstrated that Epstein-Barr virus (EBV) DNA increases the production of the proinflammatory cytokine interleukin-17A (IL-17A) in mice. This property may contribute to the established association between EBV and autoimmune diseases. The objective of the present study was to elucidate mechanisms through which EBV DNA modulates IL-17A levels in mice. To determine whether endosomal Toll-like receptors (TLRs) played a role in this pathway, the expression of TLR3, -7, or -9 was assessed by real-time reverse transcription-PCR in mouse spleens after injection of EBV DNA. Moreover, specific inhibitors were used for these TLRs in mouse peripheral blood mononuclear cells (PBMCs) cultured with EBV DNA and in mice injected with this viral DNA; IL-17A levels were then assessed using an enzyme-linked immunosorbent assay. The expression of the endosomal receptors TLR3, -7, and -9 was increased in mice injected with EBV DNA. When mouse immune cells were cultured with EBV DNA and a TLR3, -7, or -9 inhibitor or when mice were injected with the viral DNA along with either of these inhibitors, a significant decrease in IL-17A levels was detected. Therefore, endosomal TLRs are involved in the EBV DNA-mediated triggering of IL-17A production in mice. Targeting these receptors in EBV-positive subjects with autoimmunity may be useful pending investigations assessing whether they play a similar role in humans.IMPORTANCE Epstein-Barr virus is a pathogen that causes persistent infection with potential consistent viral DNA shedding. The enhancement of production of proinflammatory cytokines by viral DNA itself may contribute to autoimmune disease development or exacerbation. In this project, we identified that endosomal Toll-like receptors are involved in triggering proinflammatory mediators in response to viral DNA. Pathways and receptors involved may serve as future therapeutic targets for autoimmune diseases such as rheumatoid arthritis, multiple sclerosis, and systemic lupus erythematosus.
Collapse
|
18
|
Hussein HM, Rahal EA. The role of viral infections in the development of autoimmune diseases. Crit Rev Microbiol 2019; 45:394-412. [PMID: 31145640 DOI: 10.1080/1040841x.2019.1614904] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The exact aetiology of most autoimmune diseases remains unknown, nonetheless, several factors contributing to the induction or exacerbation of autoimmune reactions have been suggested. These include the genetic profile and lifestyle of the affected individual in addition to environmental triggers such as bacterial, parasitic, fungal and viral infections. Infections caused by viruses usually trigger a potent immune response that is necessary for the containment of the infection; however, in some cases, a failure in the regulation of this immune response may lead to harmful immune reactions directed against the host's antigens. The autoimmune attack can be carried out by different arms and components of the immune system and through different possible mechanisms including molecular mimicry, bystander activation, and epitope spreading among others. In this review, we examine the data available for the involvement of viral infections in triggering or exacerbating autoimmune diseases in addition to discussing the mechanisms by which these viral infections and the immune pathways they trigger possibly contribute to the development of autoimmunity.
Collapse
Affiliation(s)
- Hadi M Hussein
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut , Beirut , Lebanon.,Center for Infectious Diseases Research (CIDR), American University of Beirut , Beirut , Lebanon
| | - Elias A Rahal
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut , Beirut , Lebanon.,Center for Infectious Diseases Research (CIDR), American University of Beirut , Beirut , Lebanon
| |
Collapse
|
19
|
Michel L. Environmental factors in the development of multiple sclerosis. Rev Neurol (Paris) 2018; 174:372-377. [PMID: 29735167 DOI: 10.1016/j.neurol.2018.03.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 03/06/2018] [Accepted: 03/08/2018] [Indexed: 10/17/2022]
Abstract
Epidemiology of Multiple Sclerosis (MS) has been intensively studied and we know now that its occurrence result from the combined action of genetic and environmental factors. There are significant geographic and temporal variations in MS incidence and the risk associated with the development of MS may be affected by many potential factors (including infections, climate, diet, etc.). But none of these factors has been identified as "causal". The accumulation of these different agents as well as their interactions probably contribute to the development of the disease.
Collapse
Affiliation(s)
- L Michel
- Department of Neurology, Hôpital Pontchaillou, 2, rue Henri-Le-Guilloux, 35000 Rennes, France.
| |
Collapse
|
20
|
Kwon EY, Cha GS, Joo JY, Lee JY, Choi J. Robust immunoreactivity of teenager sera against peptide 19 from Porphyromonas gingivalis HSP60. J Periodontal Implant Sci 2017; 47:174-181. [PMID: 28680713 PMCID: PMC5494312 DOI: 10.5051/jpis.2017.47.3.174] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 06/03/2017] [Indexed: 12/30/2022] Open
Abstract
Purpose Epitope spreading is a phenomenon in which distinct subdominant epitopes become major targets of the immune response. Heat shock protein (HSP) 60 from Porphyromonas gingivalis (PgHSP60) and peptide 19 from PgHSP60 (Pep19) are immunodominant epitopes in autoimmune disease patients, including those with periodontitis. It remains unclear whether Pep19 is a dominant epitope in subjects without periodontitis or autoimmune disease. The purpose of this study was to determine the epitope spreading pattern and verify Pep19 as an immunodominant epitope in healthy teenagers using dot immunoblot analysis. The patterns of epitope spreading in age-matched patients with type 1 diabetes mellitus (type 1 DM) and healthy 20- to 29-year old subjects were compared with those of healthy teenagers. Methods Peptide from PgHSP60, Mycobacterium tuberculosis HSP60 (MtHSP60), and Chlamydia pneumoniae HSP60 (CpHSP60) was synthesized for comparative recognition by sera from healthy subjects and patients with autoimmune disease (type 1 DM). Dot immunoblot analysis against a panel of peptides of PgHSP60 and human HSP60 (HuHSP60) was performed to identify epitope spreading, and a densitometric image analysis was conducted. Results Of the peptide from PgHSP60, MtHSP60, and CpHSP60, PgHSP60 was the predominant epitope and was most consistently recognized by the serum samples of healthy teenagers. Most sera from healthy subjects and patients with type 1 DM reacted more strongly with PgHSP60 and Pep19 than the other peptides. The relative intensity of antibody reactivity to Pep19 was higher in the type 1 DM group than in the healthy groups. Conclusions Pep19 is an immunodominant epitope, not only in autoimmune disease patients, but also in healthy young subjects, as evidenced by their robust immunoreactivity. This result suggests that the Pep19-specific immune response may be an initiator that triggers autoimmune diseases.
Collapse
Affiliation(s)
- Eun-Young Kwon
- Department of Periodontology, Pusan National University School of Dentistry, Yangsan, Korea.,Biomedical Research Institute, Pusan National University Hospital, Busan, Korea
| | - Gil Sun Cha
- Department of Periodontology, Pusan National University School of Dentistry, Yangsan, Korea
| | - Ji-Young Joo
- Department of Periodontology, Pusan National University School of Dentistry, Yangsan, Korea
| | - Ju-Youn Lee
- Department of Periodontology, Pusan National University School of Dentistry, Yangsan, Korea
| | - Jeomil Choi
- Department of Periodontology, Pusan National University School of Dentistry, Yangsan, Korea
| |
Collapse
|
21
|
'tHart BA, Kap YS, Morandi E, Laman JD, Gran B. EBV Infection and Multiple Sclerosis: Lessons from a Marmoset Model. Trends Mol Med 2016; 22:1012-1024. [PMID: 27836419 DOI: 10.1016/j.molmed.2016.10.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 10/11/2016] [Accepted: 10/13/2016] [Indexed: 12/26/2022]
Abstract
Multiple sclerosis (MS) is thought to be initiated by the interaction of genetic and environmental factors, eliciting an autoimmune attack on the central nervous system. Epstein-Barr virus (EBV) is the strongest infectious risk factor, but an explanation for the paradox between high infection prevalence and low MS incidence remains elusive. We discuss new data using marmosets with experimental autoimmune encephalomyelitis (EAE) - a valid primate model of MS. The findings may help to explain how a common infection can contribute to the pathogenesis of MS. We propose that EBV infection induces citrullination of peptides in conjunction with autophagy during antigen processing, endowing B cells with the capacity to cross-present autoantigen to CD8+CD56+ T cells, thereby leading to MS progression.
Collapse
Affiliation(s)
- Bert A 'tHart
- Department of Immunobiology, Biomedical Primate Research Centre (BPRC), Rijswijk, The Netherlands; University of Groningen, University Medical Center, Department of Neuroscience, Groningen, The Netherlands.
| | - Yolanda S Kap
- Department of Immunobiology, Biomedical Primate Research Centre (BPRC), Rijswijk, The Netherlands
| | - Elena Morandi
- Division of Clinical Neuroscience, University of Nottingham School of Medicine, Nottingham, UK
| | - Jon D Laman
- University of Groningen, University Medical Center, Department of Neuroscience, Groningen, The Netherlands
| | - Bruno Gran
- Division of Clinical Neuroscience, University of Nottingham School of Medicine, Nottingham, UK; Department of Neurology, Nottingham University Hospitals National Health Service (NHS) Trust, Nottingham, UK
| |
Collapse
|
22
|
Fernández-Menéndez S, Fernández-Morán M, Fernández-Vega I, Pérez-Álvarez A, Villafani-Echazú J. Epstein-Barr virus and multiple sclerosis. From evidence to therapeutic strategies. J Neurol Sci 2016; 361:213-219. [PMID: 26810546 DOI: 10.1016/j.jns.2016.01.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 12/21/2015] [Accepted: 01/05/2016] [Indexed: 10/22/2022]
Abstract
Multiple sclerosis is caused by a complex interaction between genetic predisposition and environmental factors. Epstein-Barr virus (EBV) is an environmental risk factor that is strongly related to multiple sclerosis (MS), since EBV seropositivity is linked to a significant risk of developing MS. EBV may be involved in the pathogenesis of the disease and it is possibly a prerequisite for the development of MS. EBV infection persists in B-cells during the lifetime of the host and can modulate their function. In addition, MS patients might have a deficient capacity to eliminate latent EBV infection in the central nervous system and this would promote the accumulation of infected B cells. Several mechanisms of pathogenesis, including a direct and indirect function of infected B cells, have been postulated in inflammation and neurodegeneration. A relationship between EBV and human endogenous retroviruses in the pathogenesis of MS has also been reported. If EBV is important in the pathogenesis of MS, different therapeutic strategies seem possible for MS treatment.
Collapse
Affiliation(s)
| | - Marta Fernández-Morán
- Department of Neuropaediatrics, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Iván Fernández-Vega
- Pathology department (Neuropathology division), Hospital Universitario Araba, Álava, Spain
| | - Angel Pérez-Álvarez
- Department of Neurology, Hospital Universitario Central de Asturias, Oviedo, Spain
| | | |
Collapse
|
23
|
Correale J, Gaitán MI. Multiple sclerosis and environmental factors: the role of vitamin D, parasites, and Epstein-Barr virus infection. Acta Neurol Scand 2016; 132:46-55. [PMID: 26046559 DOI: 10.1111/ane.12431] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/10/2015] [Indexed: 01/08/2023]
Abstract
Pathogenic mechanisms underlying multiple sclerosis development have yet to be clearly identified, but considerable evidence indicates that autoimmunity plays an important role in the etiology of the disease. It is generally accepted that autoimmune diseases like MS arise from complex interactions between genetic susceptibility and environmental factors. Although environmental factors unequivocally influencing MS development have yet to be established, accumulating evidence singles out several candidates, including sunlight-UV exposure or vitamin D deficiency, viral infections, hygiene, and cigarette smoking. Vitamin D deficiency has been associated with different autoimmune diseases. Several investigations indicate 125 (OH)2 vitamin D plays a critical role in shaping T-cell response and inducing T cells with immunosuppressive properties. Likewise, helminth infections represent another potential environmental factor exerting immunomodulatory properties. Both epidemiological and experimental data provide evidence to support autoimmune down-regulation secondary to parasite infections in patients with MS, through regulatory T- and B-cell action, with effects extending beyond simple response to an infectious agent. Finally, different epidemiological studies have demonstrated that Epstein-Barr virus infection confers added risk of developing MS. Proposed mechanisms responsible for this association include activation and expansion of self-reactive T and B cells, lower threshold for self-tolerance breakdown, and enhanced autoreactive B-cell survival, all to be discussed in this review. Understanding environmental factors influencing propensity to MS will lead to new and more effective approaches to prevent and treat the disease.
Collapse
Affiliation(s)
- J. Correale
- Department of Neurology; Institute for Neurological Research Dr. Raúl Carrea; FLENI; Buenos Aires Argentina
| | - M. I. Gaitán
- Department of Neurology; Institute for Neurological Research Dr. Raúl Carrea; FLENI; Buenos Aires Argentina
| |
Collapse
|
24
|
Márquez AC, Horwitz MS. The Role of Latently Infected B Cells in CNS Autoimmunity. Front Immunol 2015; 6:544. [PMID: 26579121 PMCID: PMC4623415 DOI: 10.3389/fimmu.2015.00544] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 10/09/2015] [Indexed: 11/16/2022] Open
Abstract
The onset of multiple sclerosis (MS) is caused by both genetic and environmental factors. Among the environmental factors, it is believed that previous infection with Epstein–Barr virus (EBV) may contribute in the development of MS. EBV has been associated with other autoimmune diseases, such as systemic lupus erythematous, and cancers like Burkitt’s lymphoma. EBV establishes a life-long latency in B cells with occasional reactivation of the virus throughout the individual’s life. The role played by B cells in MS pathology has been largely studied, yet is not clearly understood. In MS patients, Rituximab, a novel treatment that targets CD20+ B cells, has proven to have successful results in diminishing the number of relapses in remitting relapsing MS; however, the mechanism of how this drug acts has not been clearly established. In this review, we analyze the evidence of how B cells latently infected with EBV might be altering the immune system response and helping in the development of MS. We will also discuss how animal models, such as experimental autoimmune encephalomyelitis (EAE) and murine gammaherpesvirus-68 (γHV-68), can be used as powerful tools in the study of the relationship between EBV, MS, and B cells.
Collapse
Affiliation(s)
- Ana Citlali Márquez
- Department of Microbiology and Immunology, The University of British Columbia , Vancouver, BC , Canada
| | - Marc Steven Horwitz
- Department of Microbiology and Immunology, The University of British Columbia , Vancouver, BC , Canada
| |
Collapse
|
25
|
Ball RJ, Avenell A, Aucott L, Hanlon P, Vickers MA. Systematic review and meta-analysis of the sero-epidemiological association between Epstein-Barr virus and rheumatoid arthritis. Arthritis Res Ther 2015; 17:274. [PMID: 26416719 PMCID: PMC4587583 DOI: 10.1186/s13075-015-0755-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 08/12/2015] [Indexed: 12/17/2022] Open
Abstract
Introduction Infection with Epstein-Barr virus (EBV) has been suggested to contribute to the pathogenesis of autoimmune diseases, including rheumatoid arthritis (RA). We sought to determine whether prior infection with the virus occurs more frequently in patients with RA compared to controls. Methods We performed a systematic review and meta-analyses of studies that reported the prevalence of anti-EBV antibodies in the sera of cases with RA and controls by searching Medline and Embase databases from 1946 to 2014, with no language restriction. Mantel-Haenszel odds ratios for the detection of anti-EBV antibodies were calculated, and meta-analyses conducted. Quality assessments were performed using a modified version of the Newcastle-Ottawa scale. Results Twenty-three studies were included. Quality assessment found most studies reported acceptable selection criteria but poor descriptions of how cases and controls were recruited. When all studies were included, there was a statistically significant higher seroprevalence of anti-VCA IgG in patients with RA compared to controls with an odds ratio (OR) of 1.61 (95 % confidence interval (CI) 1.05–2.46, p = 0.03), which is a similar-sized summary OR to that reported for systemic lupus erythematosus (SLE). However, when studies were restricted to those reporting more plausible levels of exposure to EBV in the control groups, no significant association was apparent, OR 1.47 (95 % CI 0.88–2.46, p = 0.14). Using anti-EBNA 1 or anti-EA IgG as markers of previous infection also did not yield significant associations (OR 1.05, 95 % CI 0.68–1.61, p = 0.82; OR 2.2, 95 % CI 0.86–5.65, p = 0.10 respectively). Conclusions Overall, these findings do not demonstrate an association between EBV seroprevalence and RA and therefore do not support the hypothesis that prior infection with EBV predisposes to the development of RA. This contrasts with meta-analyses that indicate EBV infection is associated with multiple sclerosis and SLE. Electronic supplementary material The online version of this article (doi:10.1186/s13075-015-0755-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Robert J Ball
- Health Services Research Unit, Division of Applied Health Sciences, University of Aberdeen, Foresterhill, AB25 2ZD, Aberdeen, UK.
| | - Alison Avenell
- Research Health Services Research Unit, Division of Applied Health Sciences, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK.
| | - Lorna Aucott
- School of Medicine and Dentistry, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK.
| | - Peter Hanlon
- Health Services Research Unit, Division of Applied Health Sciences, University of Aberdeen, Foresterhill, AB25 2ZD, Aberdeen, UK.
| | - Mark A Vickers
- Division of Applied Medicine, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK. .,Blood Transfusion Centre, Foresterhill Road, Aberdeen, AB25 2ZW, UK.
| |
Collapse
|
26
|
Pender MP, Burrows SR. Epstein-Barr virus and multiple sclerosis: potential opportunities for immunotherapy. Clin Transl Immunology 2014; 3:e27. [PMID: 25505955 PMCID: PMC4237030 DOI: 10.1038/cti.2014.25] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Revised: 09/30/2014] [Accepted: 09/30/2014] [Indexed: 01/04/2023] Open
Abstract
Multiple sclerosis (MS) is a common chronic inflammatory demyelinating disease of the central nervous system (CNS) causing progressive disability. Many observations implicate Epstein–Barr virus (EBV) in the pathogenesis of MS, namely universal EBV seropositivity, high anti-EBV antibody levels, alterations in EBV-specific CD8+ T-cell immunity, increased spontaneous EBV-induced transformation of peripheral blood B cells, increased shedding of EBV from saliva and accumulation of EBV-infected B cells and plasma cells in the brain. Several mechanisms have been postulated to explain the role of EBV in the development of MS including cross-reactivity between EBV and CNS antigens, bystander damage to the CNS by EBV-specific CD8+ T cells, activation of innate immunity by EBV-encoded small RNA molecules in the CNS, expression of αB-crystallin in EBV-infected B cells leading to a CD4+ T-cell response against oligodendrocyte-derived αB-crystallin and EBV infection of autoreactive B cells, which produce pathogenic autoantibodies and provide costimulatory survival signals to autoreactive T cells in the CNS. The rapidly accumulating evidence for a pathogenic role of EBV in MS provides ground for optimism that it might be possible to prevent and cure MS by effectively controlling EBV infection through vaccination, antiviral drugs or treatment with EBV-specific cytotoxic CD8+ T cells. Adoptive immunotherapy with in vitro-expanded autologous EBV-specific CD8+ T cells directed against viral latent proteins was recently used to treat a patient with secondary progressive MS. Following the therapy, there was clinical improvement, decreased disease activity on magnetic resonance imaging and reduced intrathecal immunoglobulin production.
Collapse
Affiliation(s)
- Michael P Pender
- School of Medicine, The University of Queensland , Brisbane, QLD, Australia ; Department of Neurology, Royal Brisbane and Women's Hospital , Brisbane, QLD, Australia ; QIMR Berghofer Medical Research Institute , Brisbane, QLD, Australia
| | - Scott R Burrows
- School of Medicine, The University of Queensland , Brisbane, QLD, Australia ; QIMR Berghofer Medical Research Institute , Brisbane, QLD, Australia
| |
Collapse
|
27
|
Elfaitouri A, Herrmann B, Bölin-Wiener A, Wang Y, Gottfries CG, Zachrisson O, Pipkorn R, Rönnblom L, Blomberg J. Epitopes of microbial and human heat shock protein 60 and their recognition in myalgic encephalomyelitis. PLoS One 2013; 8:e81155. [PMID: 24312270 PMCID: PMC3842916 DOI: 10.1371/journal.pone.0081155] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 10/08/2013] [Indexed: 12/04/2022] Open
Abstract
Myalgic encephalomyelitis (ME, also called Chronic Fatigue Syndrome), a common disease with chronic fatigability, cognitive dysfunction and myalgia of unknown etiology, often starts with an infection. The chaperonin human heat shock protein 60 (HSP60) occurs in mitochondria and in bacteria, is highly conserved, antigenic and a major autoantigen. The anti-HSP60 humoral (IgG and IgM) immune response was studied in 69 ME patients and 76 blood donors (BD) (the Training set) with recombinant human and E coli HSP60, and 136 30-mer overlapping and targeted peptides from HSP60 of humans, Chlamydia, Mycoplasma and 26 other species in a multiplex suspension array. Peptides from HSP60 helix I had a chaperonin-like activity, but these and other HSP60 peptides also bound IgG and IgM with an ME preference, theoretically indicating a competition between HSP60 function and antibody binding. A HSP60-based panel of 25 antigens was selected. When evaluated with 61 other ME and 399 non-ME samples (331 BD, 20 Multiple Sclerosis and 48 Systemic Lupus Erythematosus patients), a peptide from Chlamydia pneumoniae HSP60 detected IgM in 15 of 61 (24%) of ME, and in 1 of 399 non-ME at a high cutoff (p<0.0001). IgM to specific cross-reactive epitopes of human and microbial HSP60 occurs in a subset of ME, compatible with infection-induced autoimmunity.
Collapse
Affiliation(s)
- Amal Elfaitouri
- Section of Clinical Microbiology, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Björn Herrmann
- Section of Clinical Microbiology, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Agnes Bölin-Wiener
- Section of Clinical Microbiology, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Yilin Wang
- Section of Clinical Microbiology, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | | | | | | | - Lars Rönnblom
- Section of Rheumatology, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Jonas Blomberg
- Section of Clinical Microbiology, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
28
|
Gianchecchi E, Delfino DV, Fierabracci A. Recent insights into the role of the PD-1/PD-L1 pathway in immunological tolerance and autoimmunity. Autoimmun Rev 2013; 12:1091-1100. [PMID: 23792703 DOI: 10.1016/j.autrev.2013.05.003] [Citation(s) in RCA: 213] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 05/20/2013] [Indexed: 12/11/2022]
Abstract
Autoimmune diseases represent a heterogeneous group of conditions whose incidence is increasing worldwide. This has stimulated studies on their etiopathogenesis, derived from a complex interaction between genetic and environmental factors, in order to improve prevention and treatment of these disorders. The relevance of T regulatory cells and of the PD-1/PD-L1 pathway in controlling immune responses has been highlighted. Recent studies have in particular elucidated the putative role of the PD-1/PD-L1 pathway in regulating T cell responses and its effects on immunological tolerance and immune-mediated tissue damage. The role of the PD-1/PD-L1 pathway in autoimmunity has been already investigated in vivo in several experimental animal models including insulin-dependent diabetes mellitus, systemic lupus erythematosus, myocarditis, encephalomyelitis, rheumatoid arthritis and inflammatory bowel diseases. With the advent of candidate gene and genome-wide association studies, single nucleotide polymorphisms (SNPs) in PD-1 gene in humans have demonstrated relevant associations with a higher risk of developing autoimmune diseases in certain ethnic groups. In this review we present recent insights into the role of the PD-1/PD-L1 pathway in regulating lymphocyte activation, promotion of T regulatory cell development and function, breakdown of tolerance and development of autoimmunity. We finally speculate on the possible development of novel therapeutic treatments in human autoimmunity by modulating the PD-1/PD-L1 pathway.
Collapse
Affiliation(s)
- Elena Gianchecchi
- Autoimmunity Laboratory, Immunology Area, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | | | | |
Collapse
|
29
|
Pakpoor J, Giovannoni G, Ramagopalan SV. Epstein-Barr virus and multiple sclerosis: association or causation? Expert Rev Neurother 2013; 13:287-97. [PMID: 23448218 DOI: 10.1586/ern.13.6] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Multiple sclerosis (MS) is a multifactorial disease in which both genetic and environmental factors and their interactions underlie causation. The current evidence base supports a strong association between Epstein-Barr virus (EBV) and MS, but potential causality remains strongly debated. It is not possible to exclude the possibility that an abnormal response to EBV infection is a consequence, rather than a cause, of the underlying pathophysiology of MS, or indeed that the association may be a reflection of a similar underlying disease mechanism. Substantial experimental progress is necessary to achieve consistency of molecular findings to complement the strong epidemiological association between EBV and MS, which cannot alone show causation. Collectively, the strength of the association between EBV and MS warrants careful development and trial of anti-EBV drugs to observe any effect on MS disease course.
Collapse
Affiliation(s)
- Julia Pakpoor
- Department of Physiology, Anatomy and Genetics and Medical Research Council Functional Genomics Unit, University of Oxford, Oxford, UK
| | | | | |
Collapse
|
30
|
Lossius A, Johansen JN, Torkildsen Ø, Vartdal F, Holmøy T. Epstein-Barr virus in systemic lupus erythematosus, rheumatoid arthritis and multiple sclerosis—association and causation. Viruses 2013; 4:3701-30. [PMID: 23342374 PMCID: PMC3528287 DOI: 10.3390/v4123701] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Epidemiological data suggest that the Epstein-Barr virus (EBV) is associated with several autoimmune diseases, such as systemic lupus erythematosus, rheumatoid arthritis and multiple sclerosis. However, it is not clear whether EBV plays a role in the pathogenesis of these diseases, and if so, by which mechanisms the virus may contribute. In this review, we discuss possible viral and immunological mechanisms that might explain associations between EBV and autoimmune diseases and whether these associations represent causes or effects of inflammation and autoimmunity.
Collapse
Affiliation(s)
- Andreas Lossius
- Institute of Immunology, Oslo University Hospital Rikshospitalet, Oslo, Norway.
| | | | | | | | | |
Collapse
|
31
|
van Noort JM, Bsibsi M, Nacken PJ, Gerritsen WH, Amor S, Holtman IR, Boddeke E, van Ark I, Leusink-Muis T, Folkerts G, Hennink WE, Amidi M. Activation of an immune-regulatory macrophage response and inhibition of lung inflammation in a mouse model of COPD using heat-shock protein alpha B-crystallin-loaded PLGA microparticles. Biomaterials 2012; 34:831-40. [PMID: 23117214 DOI: 10.1016/j.biomaterials.2012.10.028] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Accepted: 10/10/2012] [Indexed: 10/27/2022]
Abstract
As an extracellular protein, the small heat-shock protein alpha B-crystallin (HSPB5) has anti-inflammatory effects in several mouse models of inflammation. Here, we show that these effects are associated with the ability of HSPB5 to activate an immune-regulatory response in macrophages via endosomal/phagosomal CD14 and Toll-like receptors 1 and 2. Humans, however, possess natural antibodies against HSPB5 that block receptor binding. To protect it from these antibodies, we encapsulated HSPB5 in porous PLGA microparticles. We document here size, morphology, protein loading and release characteristics of such microparticles. Apart from effectively protecting HSPB5 from neutralization, PLGA microparticles also strongly promoted macrophage targeting of HSPB via phagocytosis. As a result, HSPB5 in porous PLGA microparticles was more than 100-fold more effective in activating macrophages than free soluble protein. Yet, the immune-regulatory nature of the macrophage response, as documented here by microarray transcript profiling, remained the same. In mice developing cigarette smoke-induced COPD, HSPB5-loaded PLGA microparticles were selectively taken up by alveolar macrophages upon intratracheal administration, and significantly suppressed lung infiltration by lymphocytes and neutrophils. In contrast, 30-fold higher doses of free soluble HSPB5 remained ineffective. Our data indicate that porous HSPB5-PLGA microparticles hold considerable promise as an anti-inflammatory biomaterial for humans.
Collapse
|
32
|
Environmental risk factors for multiple sclerosis: a review with a focus on molecular mechanisms. Int J Mol Sci 2012; 13:11718-11752. [PMID: 23109880 PMCID: PMC3472772 DOI: 10.3390/ijms130911718] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 08/31/2012] [Accepted: 09/06/2012] [Indexed: 12/15/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic disabling disease of the central nervous system commonly affecting young adults. Pathologically, there are patches of inflammation (plaques) with demyelination of axons and oligodendrocyte loss. There is a global latitude gradient in MS prevalence, and incidence of MS is increasing (particularly in females). These changes suggest a major role for environmental factors in causation of disease. We have reviewed the evidence and potential mechanisms of action for three exposures: vitamin D, Epstein Barr virus and cigarette smoking. Recent advances supporting gene-environment interactions are reviewed. Further research is needed to establish mechanisms of causality in humans and to explore preventative strategies.
Collapse
|
33
|
van Noort JM, Bsibsi M, Nacken P, Gerritsen WH, Amor S. The link between small heat shock proteins and the immune system. Int J Biochem Cell Biol 2012; 44:1670-9. [PMID: 22233974 DOI: 10.1016/j.biocel.2011.12.010] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Revised: 12/15/2011] [Accepted: 12/16/2011] [Indexed: 02/04/2023]
Abstract
There is now compelling evidence that members of the family of small heat shock proteins (HSP) can be secreted by a variety of different types of cells. Secretion of small HSP may at times represent altruistic delivery of supporting and stabilizing factors from one cell to another. A probably more general effect of extracellular small HSP, however, is exerted by their ability to activate macrophages and macrophage-like cells. When doing so, small HSP induce an immune-regulatory state of activation, stimulating macrophages to suppress inflammation. For this reason, small HSP deserve consideration as broadly applicable therapeutic agents for inflammatory disorders. In one particular case, however, adaptive immune responses to the small HSP itself may subvert the protective quality of the innate immune response it triggers. This situation only applies to alpha B-crystallin, and is unique for humans as well. In this special case, local concentrations of alpha B-crystallin determine the balance between protective innate responses and destructive adaptive responses, the latter of which are held responsible for the development of multiple sclerosis lesions. This article is part of a Directed Issue entitled: Small HSPs in physiology and pathology.
Collapse
|
34
|
Pender MP, Csurhes PA, Pfluger CMM, Burrows SR. Decreased CD8+ T cell response to Epstein-Barr virus infected B cells in multiple sclerosis is not due to decreased HLA class I expression on B cells or monocytes. BMC Neurol 2011; 11:95. [PMID: 21810280 PMCID: PMC3163532 DOI: 10.1186/1471-2377-11-95] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Accepted: 08/03/2011] [Indexed: 12/26/2022] Open
Abstract
Background Patients with multiple sclerosis (MS) have a decreased frequency of CD8+ T cells reactive to their own Epstein-Barr virus (EBV) infected B cells. We have proposed that this might predispose to the development of MS by allowing EBV-infected autoreactive B cells to accumulate in the central nervous system. The decreased CD8+ T cell response to EBV results from a general CD8+ T cell deficiency and also a decreased proportion of EBV-specific T cells within the total CD8+ T cell population. Because decreased HLA class I expression on monocytes and B cells has been reported in MS and could influence the generation and effector function of EBV-specific CD8+ T cells, the present study was undertaken to measure the expression of HLA molecules on B cells and monocytes in patients with MS. Methods We used flow cytometry to determine the proportions of T cells, natural killer cells, B cells and monocytes in peripheral blood mononuclear cells (PBMC) and to quantify the expression of HLA molecules on T cells, B cells and monocytes of 59 healthy subjects and 62 patients with MS who had not received corticosteroids or immunomodulatory therapy in the previous 3 months. Results The levels of HLA class I and class II molecules expressed on T cells, B cells and monocytes were normal in patients with MS, with the exception of two patients with secondary progressive MS with very low class II expression on B cells. In confirmation of previous studies we also found that the percentage of CD8+ T cells was significantly decreased whereas the percentage of CD4+ T cells and the CD4:CD8 ratio were significantly increased in patients with MS compared to healthy subjects. Conclusions The decreased CD8+ T cell response to EBV-infected B cells in MS patients is not due to decreased HLA class I expression on monocytes or B cells. In a small proportion of patients decreased HLA class II expression on B cells might impair the CD8+ T cell response to EBV by reducing CD4+ T cell help.
Collapse
Affiliation(s)
- Michael P Pender
- The University of Queensland, School of Medicine, Health Sciences Building, Royal Brisbane and Women's Hospital, Queensland 4029, Australia.
| | | | | | | |
Collapse
|
35
|
van Noort JM, Amor S, Bajramovic JJ. Comment on “Chaperone Activity of α B-Crystallin Is Responsible for Its Incorrect Assignment as an Autoantigen in Multiple Sclerosis”. THE JOURNAL OF IMMUNOLOGY 2011; 187:3; author reply 3-4. [DOI: 10.4049/jimmunol.1190025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
36
|
Podbielska M, Levery SB, Hogan EL. The structural and functional role of myelin fast-migrating cerebrosides: pathological importance in multiple sclerosis. ACTA ACUST UNITED AC 2011; 6:159-179. [PMID: 22701512 DOI: 10.2217/clp.11.8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A family of neutral glycosphingolipids containing a 3-O-acetyl-sphingosine galactosylceramide (3-SAG) has been characterized. Seven new derivatives of galactosylceramide (GalCer), designated as fast-migrating cerebrosides (FMCs) by TLC retention factor, have been identified. The simplest compounds - FMC-1 and FMC-2 - of this series have been characterized as the 3-SAG containing nonhydroxy and hydroxy fatty acyl, respectively. The next two - FMC-3 and FMC-4 - add 6-O-acetyl-galactose and the most complex glycosphingolipids, FMC-5, -6 and -7, are 2,3,4,6-tetra-O-acetyl-3-SAG. These hydrophobic myelin lipid biomarkers coappear with GalCer during myelinogenesis and disappear along with GalCer in de- or dys-myelinating disorders. Myelin lipid antigens, including FMCs, are keys to myelin biology, opening the possibility of new and novel immune modulatory tools for treatment of autoimmune diseases including multiple sclerosis.
Collapse
Affiliation(s)
- Maria Podbielska
- Institute of Molecular Medicine & Genetics, Department of Neurology, Georgia Health Sciences University, 1120 15th Street, Building CB2803, Augusta, GA 30912-2620, USA
| | | | | |
Collapse
|
37
|
Gangalum RK, Atanasov IC, Zhou ZH, Bhat SP. AlphaB-crystallin is found in detergent-resistant membrane microdomains and is secreted via exosomes from human retinal pigment epithelial cells. J Biol Chem 2011; 286:3261-9. [PMID: 21097504 PMCID: PMC3030331 DOI: 10.1074/jbc.m110.160135] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 11/15/2010] [Indexed: 12/22/2022] Open
Abstract
αB-crystallin (αB) is known as an intracellular Golgi membrane-associated small heat shock protein. Elevated levels of this protein have been linked with a myriad of neurodegenerative pathologies including Alzheimer disease, multiple sclerosis, and age-related macular degeneration. The membrane association of αB has been known for more than 3 decades, yet its physiological import has remained unexplained. In this investigation we show that αB is secreted from human adult retinal pigment epithelial cells via microvesicles (exosomes), independent of the endoplasmic reticulum-Golgi protein export pathway. The presence of αB in these lipoprotein structures was confirmed by its susceptibility to digestion by proteinase K only when exosomes were exposed to Triton X-100. Transmission electron microscopy was used to localize αB in immunogold-labeled intact and permeabilized microvesicles. The saucer-shaped exosomes, with a median diameter of 100-200 nm, were characterized by the presence of flotillin-1, α-enolase, and Hsp70, the same proteins that associate with detergent-resistant membrane microdomains (DRMs), which are known to be involved in their biogenesis. Notably, using polarized adult retinal pigment epithelial cells, we show that the secretion of αB is predominantly apical. Using OptiPrep gradients we demonstrate that αB resides in the DRM fraction. The secretion of αB is inhibited by the cholesterol-depleting drug, methyl β-cyclodextrin, suggesting that the physiological function of this protein and the regulation of its export through exosomes may reside in its association with DRMs/lipid rafts.
Collapse
Affiliation(s)
| | | | - Z. Hong Zhou
- the California NanoSystems Institute, and
- the Department of Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, California 90095
| | - Suraj P. Bhat
- From the Jules Stein Eye Institute
- the Geffen School of Medicine, Brain Research Institute and Molecular Biology Institute
| |
Collapse
|
38
|
Abstract
There is increasing evidence that infection with the Epstein-Barr virus (EBV) plays a role in the development of multiple sclerosis (MS), a chronic inflammatory demyelinating disease of the CNS. This article provides a four-tier hypothesis proposing (1) EBV infection is essential for the development of MS; (2) EBV causes MS in genetically susceptible individuals by infecting autoreactive B cells, which seed the CNS where they produce pathogenic autoantibodies and provide costimulatory survival signals to autoreactive T cells that would otherwise die in the CNS by apoptosis; (3) the susceptibility to develop MS after EBV infection is dependent on a genetically determined quantitative deficiency of the cytotoxic CD8+ T cells that normally keep EBV infection under tight control; and (4) sunlight and vitamin D protect against MS by increasing the number of CD8+ T cells available to control EBV infection. The hypothesis makes predictions that can be tested, including the prevention and successful treatment of MS by controlling EBV infection.
Collapse
Affiliation(s)
- Michael P Pender
- School of Medicine, The University of Queensland, Queensland, Australia.
| |
Collapse
|
39
|
αB-Crystallin Is a Target for Adaptive Immune Responses and a Trigger of Innate Responses in Preactive Multiple Sclerosis Lesions. J Neuropathol Exp Neurol 2010; 69:694-703. [DOI: 10.1097/nen.0b013e3181e4939c] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
40
|
Relation between Epstein-Barr virus and multiple sclerosis: analytic study of scientific production. Eur J Clin Microbiol Infect Dis 2010; 29:857-66. [DOI: 10.1007/s10096-010-0940-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2009] [Accepted: 04/03/2010] [Indexed: 01/10/2023]
|
41
|
Chlamydophila pneumoniae Infection and Its Role in Neurological Disorders. Interdiscip Perspect Infect Dis 2010; 2010:273573. [PMID: 20182626 PMCID: PMC2825657 DOI: 10.1155/2010/273573] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2009] [Accepted: 11/25/2009] [Indexed: 12/26/2022] Open
Abstract
Chlamydophila pneumoniae is an intracellular pathogen responsible for a number of different acute and chronic infections. The recent deepening of knowledge on the biology and the use of increasingly more sensitive and
specific molecular techniques has allowed demonstration of C. pneumoniae in
a large number of persons suffering from different diseases including cardiovascular (atherosclerosis and stroke) and central nervous system (CNS) disorders. Despite this, many important issues remain unanswered with regard to the role that C. pneumoniae may play in initiating atheroma or in the progression of the disease. A growing body of evidence concerns the involvement of this pathogen in chronic neurological disorders and particularly in Alzheimer's disease (AD) and Multiple Sclerosis (MS). Monocytes may traffic C. pneumoniae across the blood-brain-barrier, shed the organism in the
CNS and induce neuroinflammation. The demonstration of C. pneumoniae by
histopathological, molecular and culture techniques in the late-onset AD dementia has suggested a relationship between CNS infection with C. pneumoniae and the AD neuropathogenesis. In particular subsets of MS patients, C. pneumoniae could induce a chronic persistent brain infection acting as a cofactor in the development of the disease. The role of Chlamydia in the pathogenesis of mental or neurobehavioral disorders including schizophrenia and autism is uncertain and fragmentary and will require further
confirmation.
Collapse
|
42
|
Wang C, Li Y, Proctor TM, Vandenbark AA, Offner H. Down-modulation of programmed death 1 alters regulatory T cells and promotes experimental autoimmune encephalomyelitis. J Neurosci Res 2010; 88:7-15. [PMID: 19642196 PMCID: PMC2783709 DOI: 10.1002/jnr.22181] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The regulatory role of programmed death 1 (PD-1) was investigated in the development of experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis. Typical EAE could be induced by immunization without pertussis toxin (PTX) in PD-1-null but not in wild-type (WT) mice. However, both strains developed a similar EAE phenotype when immunized with PTX or by adoptive transfer of pathogenic T cells. In WT mice that did not develop EAE after immunization without PTX, the frequency of CD4(+)FoxP3(+) Treg cells was boosted in the periphery but not in the thymus. This increase in Treg frequency was abrogated by PD-1 deficiency or inclusion of PTX. In addition, PD-1 expression was critical to in vitro conversion of naïve myelin-specific CD4 T cells into Treg cells and was directly related to Treg suppressive activity. Finally, PD-1 was markedly down-modulated in the periphery of WT mice after administration of PTX. Therefore, down-modulation of PD-1 in Treg cells may abrogate Treg-mediated immune suppression, permitting the activation of myelin-reactive T cells and induction of EAE.
Collapse
MESH Headings
- Animals
- Antigens, Surface/genetics
- Antigens, Surface/immunology
- Apoptosis Regulatory Proteins/genetics
- Apoptosis Regulatory Proteins/immunology
- CD4-Positive T-Lymphocytes/immunology
- Cell Proliferation
- Down-Regulation
- Encephalomyelitis, Autoimmune, Experimental/genetics
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Female
- Flow Cytometry
- Freund's Adjuvant/immunology
- Lymphocyte Activation/immunology
- Mice
- Mice, Knockout
- Pertussis Toxin/immunology
- Programmed Cell Death 1 Receptor
- Spinal Cord/pathology
- Staining and Labeling
- T-Lymphocytes, Regulatory/immunology
Collapse
Affiliation(s)
- Chunhe Wang
- Neuroimmunology Research, Veterans Affairs Medical Center, Portland, Oregon
- Department of Neurology, Oregon Health and Science University, Portland, Oregon
| | - Yuexin Li
- Neuroimmunology Research, Veterans Affairs Medical Center, Portland, Oregon
- Department of Neurology, Oregon Health and Science University, Portland, Oregon
| | - Thomas M. Proctor
- Neuroimmunology Research, Veterans Affairs Medical Center, Portland, Oregon
- Department of Neurology, Oregon Health and Science University, Portland, Oregon
| | - Arthur A. Vandenbark
- Neuroimmunology Research, Veterans Affairs Medical Center, Portland, Oregon
- Department of Neurology, Oregon Health and Science University, Portland, Oregon
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, Oregon
| | - Halina Offner
- Neuroimmunology Research, Veterans Affairs Medical Center, Portland, Oregon
- Department of Neurology, Oregon Health and Science University, Portland, Oregon
- Department of Anesthesiology and Perioperative Medicine, Oregon Health and Science University, Portland, Oregon
| |
Collapse
|
43
|
Podbielska M, Hogan EL. Molecular and immunogenic features of myelin lipids: incitants or modulators of multiple sclerosis? Mult Scler 2009; 15:1011-29. [PMID: 19692432 DOI: 10.1177/1352458509106708] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Myelin lipids have long been thought to play intriguing roles in the pathogenesis of multiple sclerosis (MS). This review summarizes current understanding of the molecular basis of MS with emphasis on the: (i.) physico-chemical properties, organization and accessibility of the lipids and their distribution within the myelin multilayer; (ii.) characterization of myelin lipid structures, and structure-function relationships relevant to MS mechanisms, and; (iii.) immunogenic and other features of lipids in MS including molecular mimicry, lipid enzyme genetic knockouts, glycolipid-reactive NKT cells, and monoclonal antibody-induced remyelination. New findings associate anti-lipid antibodies with pathophysiological biomarkers and suggest clinical utility. The structure of CD1d-lipid complexed with the lipophilic invariant T cell receptor (iTCR) may be crucial to understanding MS pathogenesis, and design of lipid antigen-specific therapeutics. Novel immuno-modulatory tools for treatment of autoimmune diseases including MS in which there is both constraint of inflammation and stimulation of remyelination are now emerging.
Collapse
Affiliation(s)
- M Podbielska
- Department of Neurology, Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, Georgia, USA
| | | |
Collapse
|
44
|
Abstract
Recent seroepidemiologic and pathologic evidence suggests that prior infection with Epstein-Barr virus (EBV) may be necessary for the development of multiple sclerosis (MS). EBV infects more than 90% of all humans, most of whom remain healthy. In contrast, 99% of MS patients have evidence of prior infection with EBV. EBV infects resting B lymphocytes, immortalizing them into long-lived memory B cells that survive largely undetected by the immune system in the peripheral circulation. MS patients show elevated titers to EBV years before developing any neurologic symptoms. Postmortem pathologic analysis of brains of patients with MS has revealed diffuse EBV-associated B-cell dysregulation in all forms of MS. Theories of pathogenesis of EBV in MS include antigenic mimicry, immortalization of B-cell clones, and cytotoxic T-cell dysfunction against virally infected B cells. This article reviews the existing evidence of the relationship between EBV and MS and considers the therapeutic implication of this evidence.
Collapse
Affiliation(s)
- Bridget A Bagert
- Department of Neurology, 1542 Tulane Avenue, Room 718B, Louisiana State University Health Science Center, New Orleans, LA 70112, USA.
| |
Collapse
|
45
|
Pender MP. Preventing and curing multiple sclerosis by controlling Epstein-Barr virus infection. Autoimmun Rev 2009; 8:563-8. [PMID: 19254880 DOI: 10.1016/j.autrev.2009.01.017] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2009] [Accepted: 01/23/2009] [Indexed: 10/21/2022]
Abstract
It has been noted since 1981 that late primary infection with the Epstein-Barr virus (EBV) in adolescence or young adulthood can account for the epidemiology of multiple sclerosis (MS), including the association with higher socio-economic status, the latitudinal variation in prevalence, the effects of migration on the risk of acquiring MS, and the occurrence of clusters and epidemics. Virtually all (>99%) people with MS are EBV seropositive, suggesting that EBV infection is essential for the development of MS. The EBV-infected autoreactive B-cell hypothesis of autoimmunity published in 2003 proposes that, in genetically susceptible individuals, EBV-infected autoreactive B cells seed the target organ where they produce pathogenic autoantibodies and provide costimulatory survival signals to autoreactive T cells. This hypothesis makes several predictions, some of which have been verified in the case of MS, namely: the presence of EBV-infected B cells in the central nervous system; a beneficial response to B-cell depletion with rituximab; and decreased CD8(+) T-cell immunity to EBV-infected B cells. The hypothesis also predicts that chronic autoimmune diseases will respond to treatment which controls EBV infection. Thus it is proposed that vaccination against EBV will prevent MS, and that effective antiviral drugs will inhibit disease progression in people with MS and potentially be curative.
Collapse
Affiliation(s)
- Michael P Pender
- School of Medicine, The University of Queensland, Brisbane, Queensland, Australia.
| |
Collapse
|
46
|
Abstract
Stress proteins or heat shock proteins (HSPs) are ubiquitous cellular components that have long been known to act as molecular chaperones. By assisting proper folding and transport of proteins, and by assisting in the degradation of aberrant proteins, they play key roles in cellular metabolism. The frequent accumulation of insoluble protein aggregates during chronic neurodegenerative disorders suggests failure of HSP functions to be a common denominator among such diseases. Recent developments have clarified that functions of HSPs extend well beyond their role in protein folding and degradation alone. Stress-inducible HSPs also regulate apoptosis, antigen presentation, inflammatory signalling pathways and, intriguingly, also serve as extracellular mediators of inflammation. Several receptors have been identified for extracellular HSPs, which control inflammatory pathways similar to those activated by cytokines and chemokines. In this review, both the traditional and the exciting novel functions of HSPs are discussed, with a focus on their relevance for neurodegeneration and neuroinflammation. Recent advances in this field suggest that HSPs represent attractive novel targets as well as therapeutic entities for CNS disorders.
Collapse
Affiliation(s)
- J M van Noort
- Department of Biosciences, TNO Quality of Life, PO Box 2215, 2301 CE Leiden, The Netherlands.
| |
Collapse
|
47
|
Abstract
During the last few years, the concept of multiple sclerosis (MS) as a pure inflammatory disease mediated by myelin reactive T cells has been challenged. Neither the specificity nor the mechanisms triggering or perpetuating the immune response are understood. Genetic studies have so far not identified therapeutic targets outside the HLA complex, but epidemiological and immunological studies have suggested putative pathogenetic factors which may be important in therapy or prevention, including the Epstein-Barr virus and vitamin D. Advances in the treatment of MS have been reached by manipulating the immune response where the pathogenesis of MS intersects experimental autoimmune encephalomyelitis, most recently by blocking T-cell migration through the blood-brain barrier. Antigen-specific approaches are effective in experimental models driven by a focused immune response against defined autoantigens, but MS may not fit into this concept. Novel candidate autoantigens which are not constitutively expressed in the brain, such as protein alpha-B crystallin or IgG V-region idiotopes, as well as evidence of pathogenetic heterogeneity and complexity, suggest that treating MS by tolerizing the immune system against an universal MS antigen may be a fata morgana. Further characterization of MS subtypes may lead to individualized treatment. However, shared immunological features, such as intrathecal production of oligoclonal IgG, suggest that potential therapeutic targets may be shared by most MS patients.
Collapse
Affiliation(s)
- T Holmøy
- Institute of Immunology, Faculty of Medicine, Rikshospitalet-Radiumhospitalet Medical Center, University of Oslo, Oslo, Norway.
| | | |
Collapse
|
48
|
Winquist RJ, Kwong A, Ramachandran R, Jain J. The complex etiology of multiple sclerosis. Biochem Pharmacol 2007; 74:1321-9. [PMID: 17537409 DOI: 10.1016/j.bcp.2007.04.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2007] [Revised: 04/25/2007] [Accepted: 04/27/2007] [Indexed: 01/18/2023]
Abstract
Multiple sclerosis is a demyelinating disease which is presumed to be a consequence of infiltrating lymphocytes autoreactive to myelin proteins. This is substantiated by several lines of clinical evidence and supported by correlative studies in preclinical models. The development of new therapeutics for MS has been guided by this perspective; however, the pathogenesis of MS has proven to be quite complex as observations exist which question the role of autoreactive lymphocytes in the etiology of MS. In addition the current immunomodulatory therapeutics do not prevent most patients from progressing into more serious forms of the disease. The development of truly transformational therapeutics for MS will likely require a broad assault that expands beyond the concept of MS being an autoimmune disease.
Collapse
Affiliation(s)
- Raymond J Winquist
- Department of Pharmacology, Vertex Pharmaceuticals Inc., 130 Waverly Street, Cambridge, MA 02139, United States.
| | | | | | | |
Collapse
|
49
|
Holmøy T. Vitamin D status modulates the immune response to Epstein Barr virus: Synergistic effect of risk factors in multiple sclerosis. Med Hypotheses 2007; 70:66-9. [PMID: 17574770 DOI: 10.1016/j.mehy.2007.04.030] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2007] [Accepted: 04/21/2007] [Indexed: 11/21/2022]
Abstract
MS risk is associated with low vitamin D status prior to disease, and Epstein Barr virus (EBV) infection seems to be a prerequisite for MS. EBV could activate autoreactive T cells by several mechanisms, but it is not clear why this leads to MS. Only a small proportion of those infected with EBV develops MS, whereas autoreactive T cells are present in the normal T cell repertoire. Genetic factors cannot explain this enigma alone, because the genetic predisposition to MS in most cases is quite weak. Vitamin D receptors are expressed on EBV infected B cells, antigen presenting cells and activated lymphocytes, and the bioactive vitamin D metabolite dihydroxyvitamin D(3) suppresses antibody production and T cell proliferation and skews T cells towards a less detrimental Th2 phenotype. EBV infected B cells constitute a constant challenge to the immune system, also during seasonal periods of relative low vitamin D status. I propose that vitamin D modulates the immune response to EBV, and that detrimental activation of autoreactive T cells leading to MS is more likely if the vitamin D status is suboptimal.
Collapse
Affiliation(s)
- Trygve Holmøy
- Institute of Immunology, University of Oslo, Rikshospitalet-Radiumhospitalet Medical Center and Department of Neurology, Ulleval University Hospital, 0027 Oslo, Norway.
| |
Collapse
|
50
|
Verbeek R, van der Mark K, Wawrousek EF, Plomp AC, van Noort JM. Tolerization of an established alphaB-crystallin-reactive T-cell response by intravenous antigen. Immunology 2007; 121:416-26. [PMID: 17386078 PMCID: PMC2265960 DOI: 10.1111/j.1365-2567.2007.02592.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Tolerance induction to prevent activation of a naïve T-cell repertoire has been well documented in rodents and can be readily achieved by intravenous, oral or intranasal administration of antigen in the absence of adjuvants. In autoimmune diseases such as multiple sclerosis (MS) the presence of an established memory/effector T-cell repertoire against self-antigens is likely to be more relevant than the potential reactivity of naive T cells. Methods to eliminate such an established T-cell response are less well understood. In this study, we explored the effectiveness of intravenous soluble antigen to eliminate a pre-existing T-cell response against alphaB-crystallin, a candidate autoantigen in MS. We used mice that are deficient for the target antigen. This condition allowed for a vigourous T-cell and antibody response to develop upon immunization, and eliminated all possible endogenous mechanisms of tolerance for alphaB-crystallin that are found in normal rodents. When applied 3 weeks after priming with alphaB-crystallin, intravenous administration of soluble antigen almost completely abrogated the established T-cell response in a dose-dependent manner as evidenced by T-cell non-responsiveness in tolerized animals to a re-challenge with antigen in complete Freund's adjuvant. Evaluating delayed-type hypersensitivity responses after tolerance induction revealed that the tolerizing effect was achieved within 24 hr. Furthermore, the tolerizing effect was found to be antigen-specific and long lasting. In contrast, serum antibody levels were markedly increased. Our data clarify that in the absence of any natural form of immune regulation, antigen-specific memory/effector T cells can be effectively silenced by intravenous antigen.
Collapse
Affiliation(s)
- Richard Verbeek
- Department of Biosciences, TNO Quality of Life, Leiden, The Netherlands
| | | | | | | | | |
Collapse
|