1
|
Abstract
Animal models with high translational validity are essential tools in understanding disease pathogenesis and in the development of therapeutic strategies. Multiple sclerosis (MS) is an autoimmune demyelinating disease of the central nervous system characterized by progressive neurological deficits and socioeconomic burden. Experimental autoimmune encephalomyelitis (EAE) is the most extensively utilized animal model of MS, with well-characterized rodent and non-human primate variants. The EAE model is typically induced by either active immunization with myelin-derived proteins or peptides in adjuvant or by passive transfer of activated myelin-specific CD4+ T lymphocytes. To date, the EAE model has been an essential tool in the development of at least seven U.S. Food and Drug Administration (FDA)-approved immunomodulatory drugs for the treatment of MS, including glatiramer acetate, fingolimod, and natalizumab. However, the translational validity of the EAE model is frequently compromised due to poor study design, inconsistent clinical scoring endpoints, and inappropriate statistical calculations. No single animal model accurately reflects the complexity of human MS pathogenesis. Beyond EAE, multiple additional animal models are described, including Theiler's murine encephalomyelitis virus and cuprizone-induced demyelination, which facilitate the study of pathogen-induced CNS autoimmunity and remyelination, respectively. This overview summarizes several of the most frequently used animal models of MS and highlights key factors that significantly influence the experimental outcome and affect translational validity. © 2021 Wiley Periodicals LLC.
Collapse
Affiliation(s)
- Paul Smith
- Incyte Research Institute, Wilmington, Delaware
| |
Collapse
|
2
|
Kaushansky N, Bakos E, Becker-Herman S, Shachar I, Ben-Nun A. Circulating Picomolar Levels of CCL2 Downregulate Ongoing Chronic Experimental Autoimmune Encephalomyelitis by Induction of Regulatory Mechanisms. THE JOURNAL OF IMMUNOLOGY 2019; 203:1857-1866. [PMID: 31484731 DOI: 10.4049/jimmunol.1900424] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 07/29/2019] [Indexed: 12/27/2022]
Abstract
Multiple sclerosis is an inflammatory disease of the CNS characterized by neurologic impairment resulting from primary demyelination and axonal damage. The pathogenic mechanisms of disease development include Ag-specific T cell activation and Th1 differentiation, followed by T cell and macrophage migration into the CNS. CCL2 is a chemokine that induces migration of monocytes, memory T cells, and dendritic cells. We previously demonstrated that picomolar levels of CCL2 strongly restrict the development of inflammation in models of inflammatory bowel disease. Moreover, CCR2 deficiency in T cells promotes a program inducing the accumulation of Foxp3+ regulatory T cells while decreasing the levels of Th17 cells in vivo. In the current study, the effect of picomolar levels of CCL2 on the autoimmune inflammatory response associated with a multiple sclerosis-like disease in mice was analyzed. We found that low dosages of CCL2 were effective in suppressing MOG-induced experimental autoimmune encephalomyelitis (EAE), and they downregulated chronic EAE. The modulation of EAE by CCL2 was associated with downregulation of Th1/Th17 cells and upregulation of TGF-β and induction of regulatory CD4+Foxp3 T cells. Most strikingly, these low levels of CCL2 induced formation of highly functional regulatory T cells. Thus, this study strongly supports the potential use of CCL2 as a regulatory mediator for treating inflammatory autoimmune diseases.
Collapse
Affiliation(s)
- Nathali Kaushansky
- Department of Immunology, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Eszter Bakos
- Department of Immunology, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Shirly Becker-Herman
- Department of Immunology, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Idit Shachar
- Department of Immunology, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Avraham Ben-Nun
- Department of Immunology, The Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
3
|
Kaushansky N, Kaminitz A, Allouche-Arnon H, Ben-Nun A. Modulation of MS-like disease by a multi epitope protein is mediated by induction of CD11c +CD11b +Gr1 + myeloid-derived dendritic cells. J Neuroimmunol 2019; 333:476953. [PMID: 31108399 DOI: 10.1016/j.jneuroim.2019.04.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/24/2019] [Accepted: 04/24/2019] [Indexed: 12/16/2022]
Abstract
Specific neutralization of the pathogenic autoimmune cells is the ultimate goal in therapy of Multiple Sclerosis (MS). However, the pathogenic autoimmunity in MS, can be directed against several major target antigens, and therefore targeting pathogenic T-cells directed against a single target antigen is unlikely to be effective. To overcome this multiplicity and the potential complexity of pathogenic autoreactivities in MS, we have put forward the concept of concomitant multi-antigen/multi-epitope targeting as, a conceivably more effective approach to immunotherapy of MS. We constructed an (Experimental Autoimmune Encephalomeylitis (EAE)/MS-related synthetic human Target Autoantigen Gene (MS-shMultiTAG) designed to encode in tandem only EAE/MS related epitopes of all known encephalitogenic proteins. The MS-related protein product (designated Y-MSPc) was immunofunctional and upon tolerogenic administration, it effectively suppressed and reversed EAE induced by a single encephalitogenic protein. Furthermore, Y-MSPc also fully abrogated the development of "complex EAE" induced by a mixture of five encephalitogenic T-cell lines, each specific for a different encephalitogenic epitope of MBP, MOG, PLP, MOBP and OSP. Strikingly, Y-MSPc was consistently more effective than treatment with the single disease-specific peptide or with the peptide cocktail, both in suppressing the development of "classical" or "complex" EAE and in ameliorating ongoing disease. Overall, the modulation of EAE by Y-MSPc was associated with anergizing the pathogenic autoreactive T-cells, downregulation of Th1/Th17 cytokine secretion and upregulation of TGF-β secretion. Moreover, we show that both suppression and treatment of ongoing EAE by tolerogenic administration of Y-MSPc is associated also with a remarkable increase in a unique subset of dendritic-cells (DCs), CD11c+CD11b+Gr1+-myeloid derived DCs in both spleen and CNS of treated mice. These DCs, which are with strong immunoregulatory characteristics and are functional in down-modulation of MS-like-disease displayed increased production of IL-4, IL-10 and TGF-β and low IL-12. Functionally, these myeloid DCs suppress the in-vitro proliferation of myelin-specific T-cells and more importantly, the cells were functional in-vivo, as their adoptive transfer into EAE induced mice resulted in strong suppression of the disease, associated with a remarkable induction of CD4 + FoxP3+ regulatory cells. These results, which highlight the efficacy of "multi-epitope-targeting" agent in induction of functional regulatory CD11c+CD11b+Gr1+myeloid DCs, further indicate the potential role of these DCs in maintaining peripheral tolerance and their involvement in downregulation of MS-like-disease.
Collapse
Affiliation(s)
- N Kaushansky
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel.
| | - A Kaminitz
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - H Allouche-Arnon
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - A Ben-Nun
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
4
|
Zilkha-Falb R, Kaushansky N, Kawakami N, Ben-Nun A. Post-CNS-inflammation expression of CXCL12 promotes the endogenous myelin/neuronal repair capacity following spontaneous recovery from multiple sclerosis-like disease. J Neuroinflammation 2016; 13:7. [PMID: 26747276 PMCID: PMC4706716 DOI: 10.1186/s12974-015-0468-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 12/26/2015] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Demyelination and axonal degeneration, hallmarks of multiple sclerosis (MS), are associated with the central nervous system (CNS) inflammation facilitated by C-X-C motif chemokine 12 (CXCL12) chemokine. Both in MS and in experimental autoimmune encephalomyelitis (EAE), the deleterious CNS inflammation has been associated with upregulation of CXCL12 expression in the CNS. We investigated the expression dynamics of CXCL12 in the CNS with progression of clinical EAE and following spontaneous recovery, with a focus on CXCL12 expression in the hippocampal neurogenic dentate gyrus (DG) and in the corpus callosum (CC) of spontaneously recovered mice, and its potential role in promoting the endogenous myelin/neuronal repair capacity. METHODS CNS tissue sections from mice with different clinical EAE phases or following spontaneous recovery and in vitro differentiated adult neural stem cell cultures were analyzed by immunofluorescent staining and confocal imaging for detecting and enumerating neuronal progenitor cells (NPCs) and oligodendrocyte precursor cells (OPCs) and for expression of CXCL12. RESULTS Our expression dynamics analysis of CXCL12 in the CNS with EAE progression revealed elevated CXCL12 expression in the DG and CC, which persistently increases following spontaneous recovery even though CNS inflammation has subsided. Correspondingly, the numbers of NPCs and OPCs in the DG and CC, respectively, of EAE-recovered mice increased compared to that of naïve mice (NPCs, p < 0.0001; OPCs, p < 0.00001) or mice with active disease (OPCs, p < 0.0005). Notably, about 30 % of the NPCs and unexpectedly also OPCs (~50 %) express CXCL12, and their numbers in DG and CC, respectively, are higher in EAE-recovered mice compared with naïve mice and also compared with mice with ongoing clinical EAE (CXCL12(+) NPCs, p < 0.005; CXCL12(+) OPCs, p < 0.0005). Moreover, a significant proportion (>20 %) of the CXCL12(+) NPCs and OPCs co-express the CXCL12 receptor, CXCR4, and their numbers significantly increase with recovery from EAE not only relative to naïve mice (p < 0.0002) but also to mice with ongoing EAE (p < 0.004). CONCLUSIONS These data link CXCL12 expression in the DG and CC of EAE-recovering mice to the promotion of neuro/oligodendrogenesis generating CXCR4(+) CXCL12(+) neuronal and oligodendrocyte progenitor cells endowed with intrinsic neuro/oligondendroglial differentiation potential. These findings highlight the post-CNS-inflammation role of CXCL12 in augmenting the endogenous myelin/neuronal repair capacity in MS-like disease, likely via CXCL12/CXCR4 autocrine signaling.
Collapse
Affiliation(s)
- Rina Zilkha-Falb
- Present address: Multiple Sclerosis Center, Neurogenomics Laboratory, Sheba Medical Center, Tel-Hashomer, Israel.
| | - Nathali Kaushansky
- Department of Immunology, The Weizmann Institute of Science, 234 Herzl Street, Rehovot, 7610001, Israel
| | - Naoto Kawakami
- Institute of Clinical Neuroimmunology, Ludwig-Maximilians-University, 81377, Munich, Germany.
| | - Avraham Ben-Nun
- Department of Immunology, The Weizmann Institute of Science, 234 Herzl Street, Rehovot, 7610001, Israel.
| |
Collapse
|
5
|
Kaushansky N, Eisenstein M, Boura-Halfon S, Hansen BE, Nielsen CH, Milo R, Zeilig G, Lassmann H, Altmann DM, Ben-Nun A. Role of a Novel Human Leukocyte Antigen-DQA1*01:02;DRB1*15:01 Mixed Isotype Heterodimer in the Pathogenesis of "Humanized" Multiple Sclerosis-like Disease. J Biol Chem 2015; 290:15260-78. [PMID: 25911099 DOI: 10.1074/jbc.m115.641209] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Indexed: 11/06/2022] Open
Abstract
Gene-wide association and candidate gene studies indicate that the greatest effect on multiple sclerosis (MS) risk is driven by the HLA-DRB1*15:01 allele within the HLA-DR15 haplotype (HLA-DRB1*15:01-DQA1*01:02-DQB1*0602-DRB5*01:01). Nevertheless, linkage disequilibrium makes it difficult to define, without functional studies, whether the functionally relevant effect derives from DRB1*15:01 only, from its neighboring DQA1*01:02-DQB1*06:02 or DRB5*01:01 genes of HLA-DR15 haplotype, or from their combinations or epistatic interactions. Here, we analyzed the impact of the different HLA-DR15 haplotype alleles on disease susceptibility in a new "humanized" model of MS induced in HLA-transgenic (Tg) mice by human oligodendrocyte-specific protein (OSP)/claudin-11 (hOSP), one of the bona fide potential primary target antigens in MS. We show that the hOSP-associated MS-like disease is dominated by the DRB1*15:01 allele not only as the DRA1*01:01;DRB1*15:01 isotypic heterodimer but also, unexpectedly, as a functional DQA1*01:02;DRB1*15:01 mixed isotype heterodimer. The contribution of HLA-DQA1/DRB1 mixed isotype heterodimer to OSP pathogenesis was revealed in (DRB1*1501xDQB1*0602)F1 double-Tg mice immunized with hOSP(142-161) peptide, where the encephalitogenic potential of prevalent DRB1*1501/hOSP(142-161)-reactive Th1/Th17 cells is hindered due to a single amino acid difference in the OSP(142-161) region between humans and mice; this impedes binding of DRB1*1501 to the mouse OSP(142-161) epitope in the mouse CNS while exposing functional binding of mouse OSP(142-161) to DQA1*01:02;DRB1*15:01 mixed isotype heterodimer. This study, which shows for the first time a functional HLA-DQA1/DRB1 mixed isotype heterodimer and its potential association with disease susceptibility, provides a rationale for a potential effect on MS risk from DQA1*01:02 through functional DQA1*01:02;DRB1*15:01 antigen presentation. Furthermore, it highlights a potential contribution to MS risk also from interisotypic combination between products of neighboring HLA-DR15 haplotype alleles, in this case the DQA1/DRB1 combination.
Collapse
Affiliation(s)
| | - Miriam Eisenstein
- Chemical Research Support, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | - Bjarke Endel Hansen
- the Institute for Inflammation Research, Department of Infectious Diseases and Rheumatology, Rigshospitalet, Copenhagen University Hospital, Blegdamsvej 9, DK-2100 Copenhagen, Denmark
| | - Claus Henrik Nielsen
- the Institute for Inflammation Research, Department of Infectious Diseases and Rheumatology, Rigshospitalet, Copenhagen University Hospital, Blegdamsvej 9, DK-2100 Copenhagen, Denmark
| | - Ron Milo
- the Department of Neurology, Barzilai Medical Center, Faculty of Health Sciences, Ben-Gurion University of the Negev, Ashkelon 78278, Israel
| | - Gabriel Zeilig
- the Department of Neurological Rehabilitation, Chaim Sheba Medical Center, Tel Hashomer 52621, Israel, the Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Hans Lassmann
- the Center for Brain Research, Department of Neuroimmunology, Medical University of Vienna, 1090 Vienna, Austria, and
| | - Daniel M Altmann
- the Department of Medicine, Imperial College, Hammersmith Hospital, London W12 0HS, United Kingdom
| | | |
Collapse
|
6
|
Ben-Nun A, Kaushansky N, Kawakami N, Krishnamoorthy G, Berer K, Liblau R, Hohlfeld R, Wekerle H. From classic to spontaneous and humanized models of multiple sclerosis: impact on understanding pathogenesis and drug development. J Autoimmun 2014; 54:33-50. [PMID: 25175979 DOI: 10.1016/j.jaut.2014.06.004] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 06/04/2014] [Indexed: 12/25/2022]
Abstract
Multiple sclerosis (MS), a demyelinating disease of the central nervous system (CNS), presents as a complex disease with variable clinical and pathological manifestations, involving different pathogenic pathways. Animal models, particularly experimental autoimmune encephalomyelitis (EAE), have been key to deciphering the pathophysiology of MS, although no single model can recapitulate the complexity and diversity of MS, or can, to date, integrate the diverse pathogenic pathways. Since the first EAE model was introduced decades ago, multiple classic (induced), spontaneous, and humanized EAE models have been developed, each recapitulating particular aspects of MS pathogenesis. The advances in technologies of genetic ablation and transgenesis in mice of C57BL/6J background and the development of myelin-oligodendrocyte glycoprotein (MOG)-induced EAE in C57BL/6J mice yielded several spontaneous and humanized EAE models, and resulted in a plethora of EAE models in which the role of specific genes or cell populations could be precisely interrogated, towards modeling specific pathways of MS pathogenesis/regulation in MS. Collectively, the numerous studies on the different EAE models contributed immensely to our basic understanding of cellular and molecular pathways in MS pathogenesis as well as to the development of therapeutic agents: several drugs available today as disease modifying treatments were developed from direct studies on EAE models, and many others were tested or validated in EAE. In this review, we discuss the contribution of major classic, spontaneous, and humanized EAE models to our understanding of MS pathophysiology and to insights leading to devising current and future therapies for this disease.
Collapse
Affiliation(s)
- Avraham Ben-Nun
- Department of Immunology, The Weizmann Institute of Science, 234 Herzl St. Rehovot, 7610001, Israel.
| | - Nathali Kaushansky
- Department of Immunology, The Weizmann Institute of Science, 234 Herzl St. Rehovot, 7610001, Israel.
| | - Naoto Kawakami
- Department of Neuroimmunology, Max Planck Institute of Neurobiology, Martinsried 82152, Germany; Institute of Clinical Neuroimmunology, Ludwig-Maximilians-University, 81377 Munich, Germany.
| | | | - Kerstin Berer
- Department of Neuroimmunology, Max Planck Institute of Neurobiology, Martinsried 82152, Germany.
| | | | - Reinhard Hohlfeld
- Institute of Clinical Neuroimmunology, Ludwig-Maximilians-University, 81377 Munich, Germany.
| | - Hartmut Wekerle
- Department of Neuroimmunology, Max Planck Institute of Neurobiology, Martinsried 82152, Germany.
| |
Collapse
|
7
|
Wegmann KW, Bouwer HGA, Gregory CR, Whitham RH, Hinrichs DJ. Targeting T cells responsive to the priming epitope prevent the relapsing phase of experimental autoimmune encephalomyelitis. J Neuroimmunol 2013; 260:74-81. [PMID: 23611642 DOI: 10.1016/j.jneuroim.2013.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 03/29/2013] [Accepted: 04/01/2013] [Indexed: 10/26/2022]
Abstract
Upon recovery from the initial episode of experimental autoimmune encephalomyelitis (EAE), virtually all SJL mice develop relapsing/remitting episodes of disease. These relapses may occur due to the reactivation of memory T cells initially stimulated as part of the disease-inducing protocol or naïve T-cell populations stimulated by distinct encephalitogens derived from the inflammatory disease process (epitope spread). We have used encephalitogen-specific non-linear peptide octamers to modify the course of relapsing EAE (rEAE) in SJL mice immunized with an oliogodendrocyte-specific protein peptide (OSP 55-71). Our studies show that the peptide-octamers, which target the T cells stimulated by the priming encephalitogen, but not other candidate encephalitogens, prevent rEAE.
Collapse
Affiliation(s)
- Keith W Wegmann
- Immunology Research Group, Oregon Health & Science University, Portland, OR 97239, USA
| | | | | | | | | |
Collapse
|
8
|
A highly conserved sequence associated with the HIV gp41 loop region is an immunomodulator of antigen-specific T cells in mice. Blood 2013; 121:2244-52. [PMID: 23325839 DOI: 10.1182/blood-2012-11-468900] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Modulation of T-cell responses by HIV occurs via distinct mechanisms, 1 of which involves inactivation of T cells already at the stage of virus-cell fusion. Hydrophobic portions of the gp41 protein of the viral envelope that contributes to membrane fusion may modulate T-cell responsiveness. Here we found a highly conserved sequence (termed "ISLAD") that is associated with the membranotropic gp41 loop region. We showed that ISLAD has the ability to bind the T-cell membrane and to interact with the T-cell receptor (TCR) complex. Furthermore, ISLAD inhibited T-cell proliferation and interferon-γ secretion that resulted from TCR engagement through antigen-presenting cells. Moreover, administering ISLAD (10 µg per mouse) to an experimental autoimmune encephalomyelitis (EAE) model of multiple sclerosis reduced the severity of the disease. This was related to the inhibition of pathogenic T-cell proliferation and to reduced pro-inflammatory cytokine secretion in the lymph nodes of ISLAD-treated EAE mice. The data suggest that T-cell inactivation by HIV during membrane fusion may lie in part in this conserved sequence associated with the gp41 loop region.
Collapse
|
9
|
Kaushansky N, Altmann DM, David CS, Lassmann H, Ben-Nun A. DQB1*0602 rather than DRB1*1501 confers susceptibility to multiple sclerosis-like disease induced by proteolipid protein (PLP). J Neuroinflammation 2012; 9:29. [PMID: 22316121 PMCID: PMC3344688 DOI: 10.1186/1742-2094-9-29] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Accepted: 02/08/2012] [Indexed: 12/20/2022] Open
Abstract
Background Multiple sclerosis (MS) is associated with pathogenic autoimmunity primarily focused on major CNS-myelin target antigens including myelin basic protein (MBP), proteolipidprotein (PLP), myelin oligodendrocyte protein (MOG). MS is a complex trait whereby the HLA genes, particularly class-II genes of HLA-DR15 haplotype, dominate the genetic contribution to disease-risk. Due to strong linkage disequilibrium in HLA-II region, it has been hard to establish precisely whether the functionally relevant effect derives from the DRB1*1501, DQA1*0102-DQB1*0602, or DRB5*0101 loci of HLA-DR15 haplotype, their combinations, or their epistatic interactions. Nevertheless, most genetic studies have indicated DRB1*1501 as a primary risk factor in MS. Here, we used 'HLA-humanized' mice to discern the potential relative contribution of DRB1*1501 and DQB1*0602 alleles to susceptibility to "humanized" MS-like disease induced by PLP, one of the most prominent and encephalitogenic target-antigens implicated in human MS. Methods The HLA-DRB1*1501- and HLA-DQB1*0602-Tg mice (MHC-II-/-), and control non-HLA-DR15-relevant-Tg mice were immunized with a set of overlapping PLP peptides or with recombinant soluble PLP for induction of "humanized" MS-like disease, as well as for ex-vivo analysis of immunogenic/immunodominant HLA-restricted T-cell epitopes and associated cytokine secretion profile. Results PLP autoimmunity in both HLA-DR15-Tg mice was focused on 139-151 and 175-194 epitopes. Strikingly, however, the HLA-DRB1*1501-transgenics were refractory to disease induction by any of the overlapping PLP peptides, while HLA-DQB1*0602 transgenics were susceptible to disease induction by PLP139-151 and PLP175-194 peptides. Although both transgenics responded to both peptides, the PLP139-151- and PLP175-194-reactive T-cells were directed to Th1/Th17 phenotype in DQB1*0602-Tg mice and towards Th2 in DRB1*1501-Tg mice. Conclusions While genome studies map a strong MS susceptibility effect to the region of DRB1*1501, our findings offer a rationale for potential involvement of pathogenic DQ6-associated autoimmunity in MS. Moreover, that DQB1*0602, but not DRB1*1501, determines disease-susceptibility to PLP in HLA-transgenics, suggests a potential differential, functional role for DQB1*0602 as a predisposing allele in MS. This, together with previously demonstrated disease-susceptibility to MBP and MOG in DRB1*1501-transgenics, also suggests a differential role for DRB1*1501 and DQB1*0602 depending on target antigen and imply a potential complex 'genotype/target antigen/phenotype' relationship in MS heterogeneity.
Collapse
Affiliation(s)
- Nathali Kaushansky
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel
| | | | | | | | | |
Collapse
|
10
|
Kaushansky N, Kerlero de Rosbo N, Zilkha-Falb R, Yosef-Hemo R, Cohen L, Ben-Nun A. 'Multi-epitope-targeted' immune-specific therapy for a multiple sclerosis-like disease via engineered multi-epitope protein is superior to peptides. PLoS One 2011; 6:e27860. [PMID: 22140475 PMCID: PMC3226621 DOI: 10.1371/journal.pone.0027860] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Accepted: 10/26/2011] [Indexed: 11/26/2022] Open
Abstract
Antigen-induced peripheral tolerance is potentially one of the most efficient and specific therapeutic approaches for autoimmune diseases. Although highly effective in animal models, antigen-based strategies have not yet been translated into practicable human therapy, and several clinical trials using a single antigen or peptidic-epitope in multiple sclerosis (MS) yielded disappointing results. In these clinical trials, however, the apparent complexity and dynamics of the pathogenic autoimmunity associated with MS, which result from the multiplicity of potential target antigens and “epitope spread”, have not been sufficiently considered. Thus, targeting pathogenic T-cells reactive against a single antigen/epitope is unlikely to be sufficient; to be effective, immunospecific therapy to MS should logically neutralize concomitantly T-cells reactive against as many major target antigens/epitopes as possible. We investigated such “multi-epitope-targeting” approach in murine experimental autoimmune encephalomyelitis (EAE) associated with a single (“classical”) or multiple (“complex”) anti-myelin autoreactivities, using cocktail of different encephalitogenic peptides vis-a-vis artificial multi-epitope-protein (designated Y-MSPc) encompassing rationally selected MS-relevant epitopes of five major myelin antigens, as “multi-epitope-targeting” agents. Y-MSPc was superior to peptide(s) in concomitantly downregulating pathogenic T-cells reactive against multiple myelin antigens/epitopes, via inducing more effective, longer lasting peripheral regulatory mechanisms (cytokine shift, anergy, and Foxp3+ CTLA4+ regulatory T-cells). Y-MSPc was also consistently more effective than the disease-inducing single peptide or peptide cocktail, not only in suppressing the development of “classical” or “complex EAE” or ameliorating ongoing disease, but most importantly, in reversing chronic EAE. Overall, our data emphasize that a “multi-epitope-targeting” strategy is required for effective immune-specific therapy of organ-specific autoimmune diseases associated with complex and dynamic pathogenic autoimmunity, such as MS; our data further demonstrate that the “multi-epitope-targeting” approach to therapy is optimized through specifically designed multi-epitope-proteins, rather than myelin peptide cocktails, as “multi-epitope-targeting” agents. Such artificial multi-epitope proteins can be tailored to other organ-specific autoimmune diseases.
Collapse
Affiliation(s)
- Nathali Kaushansky
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel
| | | | - Rina Zilkha-Falb
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel
| | - Reut Yosef-Hemo
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel
| | - Lydia Cohen
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel
| | - Avraham Ben-Nun
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel
- * E-mail:
| |
Collapse
|
11
|
Abstract
EAE comes in many shapes and colors. Individual variants of EAE present a baffling complexity of different aspects and traits, clinical, immunological, and structural. But, embedded in this seemingly chaotic image, the educated eye will discern patterns that retrace fundamental features of immune response, in particular, autoimmunity and self-tolerance. EAE and its variants thus can be likened to an autostereogram, i.e. they are an immunologist's magic eye.
Collapse
|
12
|
Kaushansky N, Eisenstein M, Zilkha-Falb R, Ben-Nun A. The myelin-associated oligodendrocytic basic protein (MOBP) as a relevant primary target autoantigen in multiple sclerosis. Autoimmun Rev 2009; 9:233-6. [PMID: 19683076 DOI: 10.1016/j.autrev.2009.08.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2009] [Accepted: 08/02/2009] [Indexed: 10/20/2022]
Abstract
Multiple sclerosis (MS) is a disease of the human CNS, characterized by perivascular inflammation, demyelination and axonal damage. Although the etiology of MS is unknown, it is believed that the disease results from destructive autoimmune mechanisms, presumably initiated by abnormal activation of potentially pathogenic autoimmune T-cells recognizing CNS components. The myelin-associated oligodendrocyte basic protein (MOBP), a relatively abundant CNS-specific myelin protein, which plays a role in stabilizing the myelin sheath in the CNS, has recently been implicated in the pathogenesis of MS. Here we review studies showing that MOBP is as an important candidate target antigen in MS as the other widely studied target antigens, myelin basic protein (MBP), proteolipid protein (PLP), and myelin oligodendrocyte glycoprotein (MOG). The studies summarized below indicate that T-cell autoimmunity against MOBP can be detected in MS patients; T-cells reactive against MOBP can be pathogenic in several mouse strains as well as in the "humanized" HLA-DR15-Tg mice; and, that the HLA-DQ6-restricted, but not HLA-DR15-restricted, MOBP-reactive T-cells cause in HLA-DR15-Tg mice MS-like clinical disease associated with perivascular and parenchymal infiltration, demyelination, axonal loss, and optic neuritis. Accordingly, the MOBP should be considered a bona fide primary target antigen in MS, in addition to MBP, PLP, and MOG.
Collapse
Affiliation(s)
- Nathali Kaushansky
- Department of Immunology, The Weizmann Institute of Science, P.O. Box 26, Rehovot 76000, Israel
| | | | | | | |
Collapse
|
13
|
Kaushansky N, Altmann DM, Ascough S, David CS, Lassmann H, Ben-Nun A. HLA-DQB1*0602 Determines Disease Susceptibility in a New “Humanized” Multiple Sclerosis Model in HLA-DR15 (DRB1*1501;DQB1*0602) Transgenic Mice. THE JOURNAL OF IMMUNOLOGY 2009; 183:3531-41. [DOI: 10.4049/jimmunol.0900784] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
14
|
Kaushansky N, Eisenstein M, Oved JH, Ben-Nun A. Activation and control of pathogenic T cells in OSP/claudin-11-induced EAE in SJL/J mice are dominated by their focused recognition of a single epitopic residue (OSP58M). Int Immunol 2008; 20:1439-49. [DOI: 10.1093/intimm/dxn099] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
15
|
Bajramovic JJ, Brok HPM, Ouwerling B, Jagessar SA, van Straalen L, Kondova I, Bauer J, Amor S, 't Hart BA, Ben-Nun A. Oligodendrocyte-specific protein is encephalitogenic in rhesus macaques and induces specific demyelination of the optic nerve. Eur J Immunol 2008; 38:1452-64. [PMID: 18412169 DOI: 10.1002/eji.200737164] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Oligodendrocyte-specific protein (OSP) is a candidate autoantigen in the development of multiple sclerosis (MS). We evaluated the potential of OSP to induce EAE in rhesus monkeys, an out bred animal model for MS that is immunologically close to humans. Since OSP is a four-membrane spanning protein with highly hydrophobic regions, we synthesized recombinant proteins encompassing only the hydrophilic regions of human OSP (soluble (s)hOSP). Immunization with shOSP proteins induced clinical signs and histological features of optic neuritis in four out of ten rhesus monkeys. The development of clinical disease was associated with the presence of a strong cellular proliferative response to the immunizing shOSP protein. Analysis of the cellular responses in combination with neuropathological observations also indicates an important role for neutrophils in the disease process. Interestingly, all immunized monkeys developed antibody responses to OSP peptide 103-123, a B cell epitope previously identified in MS patients. These responses did not correlate with the development of clinical disease, but may have relevance as a biomarker for immunoreactivity towards OSP in myelin disorders. Our data demonstrate that in rhesus monkeys immune responses directed at OSP are encephalitogenic, leading to inflammatory responses throughout the central nervous system and to selective demyelination of the optic nerve.
Collapse
Affiliation(s)
- Jeffrey J Bajramovic
- Department of Immunobiology, Biomedical Primate Research Centre, Rijswijk, The Netherlands.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Winkler-Pickett R, Young HA, Cherry JM, Diehl J, Wine J, Back T, Bere WE, Mason AT, Ortaldo JR. In vivo regulation of experimental autoimmune encephalomyelitis by NK cells: alteration of primary adaptive responses. THE JOURNAL OF IMMUNOLOGY 2008; 180:4495-506. [PMID: 18354171 DOI: 10.4049/jimmunol.180.7.4495] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Innate immune responses provide the host with its first line of defense against infections. Signals generated by subsets of lymphocytes, including NK cells, NKT cells, and APC during this early host response determine the nature of downstream adaptive immune responses. In the present study, we have examined the role of innate NK cells in an autoimmune model through the use of primary immunization with the myelin oligodendrocyte glycoprotein peptide to induce experimental autoimmune encephalomyelitis (EAE). Our studies have shown that in vivo depletion of NK cells can affect the adaptive immune responses, because NK cells were found to regulate the degree of clinical paralysis and to alter immune adaptive responses to the myelin oligodendrocyte glycoprotein peptide. The requirement for NK cells was reflected by changes in the T cell responses and diminished clinical disease seen in mice treated with anti-NK1.1, anti-asialo GM1, and selected Ly49 subtype-depleted mice. In addition to alteration in T cell responses, the maturational status of dendritic cells in lymph nodes was altered both quantitatively and qualitatively. Finally, examination of TCR Vbeta usage of the brain lymphocytes from EAE mice indicated a spectra-type change in receptor expression in NK- depleted mice as compared with non-NK-depleted EAE mice. These findings further establish a recently postulated link between NK cells and the generation of autoreactive T cells.
Collapse
Affiliation(s)
- Robin Winkler-Pickett
- Laboratory of Experimental Immunology, Cancer and Inflammation Program, National Cancer Institute-Center for Cancer Research, SAIC-Frederick, National Cancer Institute-Frederick, Frederick, MD 21702, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Kaushansky N, Zilkha-Falb R, Hemo R, Lassman H, Eisenstein M, Sas A, Ben-Nun A. Pathogenic T cells in MOBP-induced murine EAE are predominantly focused to recognition of MOBP21F and MOBP27P epitopic residues. Eur J Immunol 2007; 37:3281-92. [DOI: 10.1002/eji.200737438] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
18
|
Kaushansky N, Hemo R, Eisenstein M, Ben-Nun A. OSP/claudin-11-induced EAE in mice is mediated by pathogenic T cells primarily governed by OSP192Y residue of major encephalitogenic region OSP179-207. Eur J Immunol 2007; 37:2018-31. [PMID: 17549734 DOI: 10.1002/eji.200636965] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Pathogenic autoimmunity against oligodendrocyte-specific protein (OSP/claudin-11), recently implicated in multiple sclerosis (MS) pathophysiology, has been poorly investigated as compared to that against other myelin encephalitogens. Using recombinant soluble mouse OSP (smOSP) and overlapping peptides thereof, we show that smOSP-induced chronic EAE in C57BL/6J mice is primarily associated with CD4(+) T cells reactive against OSP179-207 and OSP22-46, the major and minor encephalitogenic regions, respectively, and with a predominant B cell response against OSP22-46. The encephalitogenic OSP179-207-specific T cells recognized OSP190-202 as minimal stimulatory epitope, while minimal encephalitogenic sequence was OSP191-199. Further delineation and structural bioinformatic analysis of the major encephalitogenic region suggested four overlapping potential I-A(b) core epitopes, predicting OSP192Y as major TCR-contact residue shared by OSP 188-196, OSP190-198, and OSP191-199 cores, albeit at different MHC-II pockets. Accordingly, substitution at OSP192Y yielded OSP188-192A-202, a non-stimulatory/non-encephalitogenic altered peptide ligand (APL) that was antagonistic for OSP188-202-specific encephalitogenic T cells. Systemic administration of OSP188-192A-202 suppressed OSP188-202-induced EAE and fully reversed smOSP-induced EAE. These data suggest that a single epitopic residue (OSP192Y) governs the selection and control of most pathogenic T cells associated with smOSP-induced EAE in H-2(b) mice. This may impact profoundly on peripheral self-tolerance to OSP and on potential APL-mediated therapy of OSP-related autoimmune pathogenesis.
Collapse
Affiliation(s)
- Nathali Kaushansky
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel
| | | | | | | |
Collapse
|
19
|
Kaushansky N, Zhong MC, Kerlero de Rosbo N, Hoeftberger R, Lassmann H, Ben-Nun A. Epitope specificity of autoreactive T and B cells associated with experimental autoimmune encephalomyelitis and optic neuritis induced by oligodendrocyte-specific protein in SJL/J mice. THE JOURNAL OF IMMUNOLOGY 2007; 177:7364-76. [PMID: 17082656 DOI: 10.4049/jimmunol.177.10.7364] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The encephalitogenic potential of oligodendrocyte-specific protein (OSP) in mice, its specific localization in the intralamellar tight junctions in CNS myelin, and the detection of autoreactivity against OSP in multiple sclerosis (MS) strongly suggest the relevance of autoreactivity against OSP in the pathogenesis of MS. In this study, we have characterized the autoimmune T and B cells that are associated with clinicopathological manifestations of OSP-induced MS-like disease in mice by using recombinant soluble mouse OSP (smOSP) and synthetic overlapping peptides spanning smOSP. SJL/J mice immunized with smOSP developed chronic relapsing clinical experimental autoimmune encephalomyelitis accompanied with intense perivascular and parenchymal inflammatory infiltrates, widespread demyelination, axonal loss, and remarkable optic neuritis. The smOSP-primed lymph node cells reacted predominantly against OSP55-80 and to a lesser extent also to OSP22-46 and OSP179-207. Unexpectedly, in vitro selection with smOSP resulted in pathogenic smOSP-specific CD4+ T cells that reacted equally well against OSP55-80, OSP22-46, OSP45-66, and OSP179-207. Fine analysis of the anti-OSP autoimmunity revealed that the disease is primarily associated with CD4+ T cells directed against the major (OSP55-80) and the minor (OSP179-207) encephalitogenic regions that were further delineated, both in vitro and in vivo, to OSP55-66 and OSP194-207, respectively. In contrast, the OSP-induced Abs were predominantly directed against OSP22-46; these Abs were mostly of IgG1 isotype, but high levels of IgG2a and IgG2b and significant levels of IgE were also observed. The reactivity of pathogenic T cells to two encephalitogenic regions, OSP55-80 and OSP179-207, and their diverse TCRVbeta gene repertoire may impose difficulties for epitope-directed or TCR-targeting approaches to immune-specific modulation of OSP-related pathogenesis.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Autoantibodies/biosynthesis
- Autoantibodies/blood
- Autoantigens/administration & dosage
- Autoantigens/immunology
- B-Lymphocytes/immunology
- B-Lymphocytes/metabolism
- Cell Line
- Chronic Disease
- Claudins
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Epitope Mapping
- Epitopes, B-Lymphocyte/administration & dosage
- Epitopes, B-Lymphocyte/immunology
- Epitopes, T-Lymphocyte/administration & dosage
- Epitopes, T-Lymphocyte/immunology
- Female
- Gene Rearrangement, beta-Chain T-Cell Antigen Receptor
- Mice
- Mice, Inbred C3H
- Molecular Sequence Data
- Nerve Tissue Proteins/administration & dosage
- Nerve Tissue Proteins/immunology
- Oligodendroglia/immunology
- Optic Neuritis/immunology
- Optic Neuritis/pathology
- Peptide Fragments/administration & dosage
- Peptide Fragments/immunology
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
Collapse
Affiliation(s)
- Nathali Kaushansky
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel
| | | | | | | | | | | |
Collapse
|
20
|
Ben-Nun A, Kerlero de Rosbo N, Kaushansky N, Eisenstein M, Cohen L, Kaye JF, Mendel I. Anatomy of T cell autoimmunity to myelin oligodendrocyte glycoprotein (MOG): Prime role of MOG44F in selection and control of MOG-reactive T cells in H-2b mice. Eur J Immunol 2006; 36:478-93. [PMID: 16453383 DOI: 10.1002/eji.200535363] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Myelin oligodendrocyte glycoprotein (MOG) is an important myelin target antigen, and MOG-induced EAE is now a widely used model for multiple sclerosis. Clonal dissection revealed that MOG-induced EAE in H-2(b) mice is associated with activation of an unexpectedly large number of T cell clones reactive against the encephalitogenic epitope MOG35-55. These clones expressed extremely diverse TCR with no obvious CDR3alpha/CDR3beta motif(s). Despite extensive TCR diversity, the cells required MOG40-48 as their common core epitope and shared MOG44F as their major TCR contact. Fine epitope-specificity analysis with progressively truncated peptides suggested that the extensive TCR heterogeneity is mostly related to differential recognition of multiple overlapping epitopes nested within MOG37-52, each comprised of a MOG40-48 core flanked at the N- and/or the C-terminus by a variable number of residues important for interaction with different TCR. Abrogation of both the encephalitogenic potential of MOG and T cell reactivity against MOG by a single mutation (MOG44F/MOG44A), together with effective down-regulation of MOG-induced EAE by MOG37-44A-52, confirmed in vivo the primary role for MOG44F in the selection/activation of MOG-reactive T cells. We suggest that such a highly focused T cell autoreactivity could be a selective force that offsets the extensive TCR diversity to facilitate a more "centralized control" of pathogenic MOG-related T cell autoimmunity.
Collapse
Affiliation(s)
- Avraham Ben-Nun
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel.
| | | | | | | | | | | | | |
Collapse
|
21
|
Mandel M, Gurevich M, Lavie G, Cohen IR, Achiron A. Unique gene expression patterns in human T-cell lines generated from multiple sclerosis patients by stimulation with a synthetic MOG peptide. Clin Dev Immunol 2005; 12:203-9. [PMID: 16295526 PMCID: PMC2275419 DOI: 10.1080/17402520500233460] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Multiple sclerosis (MS) is an autoimmune disease where T-cells activated against myelin antigens are involved in myelin destruction. Yet, healthy subjects also harbor T-cells responsive to myelin antigens, suggesting that MS patient-derived autoimmune T-cells might bear functional differences from T-cells derived from healthy individuals. We addressed this issue by analyzing gene expression patterns of myelin oligodendrocytic glycoprotein (MOG) responsive T-cell lines generated from MS patients and healthy subjects. We identified 150 transcripts that were differentially expressed between MS patients and healthy controls. The most informative 43 genes exhibited > 1.5-fold change in expression level. Eighteen genes were upregulated including BCL2, lifeguard, IGFBP3 and VEGF. Twenty five genes were down-regulated, including apoptotic activators like TNF and heat shock protein genes. This gene expression pattern was unique to MOG specific T-cell lines and was not expressed in T-cell lines reactive to tetanus toxin (TTX). Our results indicate that activation in MS that promotes T-cell survival and expansion, has its own state and that the unique gene expression pattern that characterize autoreactive T-cells in MS represent a constellation of factors in which the chronicity, timing and accumulation of damage make the difference between health and disease.
Collapse
Affiliation(s)
- Mathilda Mandel
- Blood Center, Sheba Medical Center, Tel Hashomer 52621, Israel.
| | | | | | | | | |
Collapse
|
22
|
de Rosbo NK, Kaye JF, Eisenstein M, Mendel I, Hoeftberger R, Lassmann H, Milo R, Ben-Nun A. The Myelin-Associated Oligodendrocytic Basic Protein Region MOBP15–36 Encompasses the Immunodominant Major Encephalitogenic Epitope(s) for SJL/J Mice and Predicted Epitope(s) for Multiple Sclerosis-Associated HLA-DRB1*1501. THE JOURNAL OF IMMUNOLOGY 2004; 173:1426-35. [PMID: 15240739 DOI: 10.4049/jimmunol.173.2.1426] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Autoimmune response to the myelin-associated oligodendrocytic basic protein (MOBP), a CNS-specific myelin constituent, was recently suggested to play a role in the pathogenesis of multiple sclerosis (MS). The pathogenic autoimmune response to MOBP and the associated pathology in the CNS have not yet been fully investigated. In this study, we have characterized the clinical manifestations, pathology, T cell epitope-specificity, and TCRs associated with experimental autoimmune encephalomyelitis (EAE) induced in SJL/J mice with recombinant mouse MOBP (long isoform, 170 aa). Analysis of encephalitogenic MOBP-reactive T cells for reactivity to overlapping MOBP peptides defined MOBP15-36 as their major immunodominant epitope. Accordingly, MOBP15-36 was demonstrated to be the major encephalitogenic MOBP epitope for SJL/J mice, inducing severe/chronic clinical EAE associated with intense perivascular and parenchymal infiltrations, widespread demyelination, axonal loss, and remarkable optic neuritis. Molecular modeling of the interaction of I-A(s) with MOBP15-36, together with analysis of the MOBP15-36-specific T cell response to truncated peptides, suggests MOBP20-28 as the core sequence for I-A(s)-restricted recognition of the encephalitogenic region MOBP15-36. Although highly focused in their epitope specificity, the encephalitogenic MOBP-reactive T cells displayed a widespread usage of TCR Vbeta genes. These results would therefore favor epitope-directed, rather than TCR-targeted, approaches to therapy of MOBP-associated pathogenic autoimmunity. Localization by molecular modeling of a potential HLA-DRB1*1501-associated MOBP epitope within the encephalitogenic MOBP15-36 sequence suggests the potential relevance of T cell reactivity against MOBP15-36 to MS. The reactivity to MOBP15-36 detected in MS shown here and in another study further emphasizes the potential significance of this epitope for MS.
Collapse
|
23
|
Delarasse C, Daubas P, Mars LT, Vizler C, Litzenburger T, Iglesias A, Bauer J, Della Gaspera B, Schubart A, Decker L, Dimitri D, Roussel G, Dierich A, Amor S, Dautigny A, Liblau R, Pham-Dinh D. Myelin/oligodendrocyte glycoprotein-deficient (MOG-deficient) mice reveal lack of immune tolerance to MOG in wild-type mice. J Clin Invest 2003; 112:544-53. [PMID: 12925695 PMCID: PMC171383 DOI: 10.1172/jci15861] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
We studied the immunological basis for the very potent encephalitogenicity of myelin/oligodendrocyte glycoprotein (MOG), a minor component of myelin in the CNS that is widely used to induce experimental autoimmune encephalomyelitis (EAE). For this purpose, we generated a mutant mouse lacking a functional mog gene. This MOG-deficient mouse presents no clinical or histological abnormalities, permitting us to directly assess the role of MOG as a target autoantigen in EAE. In contrast to WT mice, which developed severe EAE following immunization with whole myelin, MOG-deficient mice had a mild phenotype, demonstrating that the anti-MOG response is a major pathogenic component of the autoimmune response directed against myelin. Moreover, while MOG transcripts are expressed in lymphoid organs in minute amounts, both MOG-deficient and WT mice show similar T and B cell responses against the extracellular domain of MOG, including the immunodominant MOG 35-55 T cell epitope. Furthermore, no differences in the fine specificity of the T cell responses to overlapping peptides covering the complete mouse MOG sequence were observed between MOG+/+ and MOG-/- mice. In addition, upon adoptive transfer, MOG-specific T cells from WT mice and those from MOG-deficient mice are equally pathogenic. This total lack of immune tolerance to MOG in WT C57BL/6 mice may be responsible for the high pathogenicity of the anti-MOG immune response as well as the high susceptibility of most animal strains to MOG-induced EAE.
Collapse
MESH Headings
- Animals
- B-Lymphocytes/immunology
- Blotting, Northern
- Blotting, Western
- Brain/metabolism
- Cell Division
- Encephalomyelitis, Autoimmune, Experimental/genetics
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Female
- Immune Tolerance
- Immunohistochemistry
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Mutant Strains
- Microscopy, Electron
- Models, Genetic
- Myelin Proteins
- Myelin Sheath/metabolism
- Myelin-Associated Glycoprotein/genetics
- Myelin-Associated Glycoprotein/physiology
- Myelin-Oligodendrocyte Glycoprotein
- Peptides/chemistry
- Phenotype
- Polymerase Chain Reaction
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Time Factors
- Tissue Distribution
Collapse
Affiliation(s)
- Cécile Delarasse
- INSERM U546, Hôpital de la Salpêtrière, 105 Boulevard de l'Hôpital, Paris 75013, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Mor F, Quintana F, Mimran A, Cohen IR. Autoimmune encephalomyelitis and uveitis induced by T cell immunity to self beta-synuclein. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:628-34. [PMID: 12496452 DOI: 10.4049/jimmunol.170.1.628] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Beta-synuclein is a neuronal protein that accumulates in the plaques that characterize neurodegenerative diseases such as Parkinson's and Alzheimer's diseases. It has been proposed that immunization to peptides of plaque-forming proteins might be used therapeutically to help dissociate pathogenic plaques in the brain. We now report that immunization of Lewis rats with a peptide from beta-synuclein resulted in acute paralytic encephalomyelitis and uveitis. T cell lines and clones reactive to the peptide adoptively transferred the disease to naive rats. Immunoblotting revealed the presence of beta-synuclein in heavy myelin, indicating that the expression of beta-synuclein is not confined to neurons. These results add beta-synuclein to the roster of encephalitogenic self Ags, point out the potential danger of therapeutic autoimmunization to beta-synuclein, and alert us to the unsuspected possibility that autoimmunity to beta-synuclein might play an inflammatory role in the pathogenesis of neurodegeneration.
Collapse
Affiliation(s)
- Felix Mor
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel.
| | | | | | | |
Collapse
|
25
|
Abstract
Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system (CNS). Significant progress has been made in our understanding of the etiology of MS. MS is widely believed to be an autoimmune disease that results from aberrant immune responses to CNS antigens. T cells are considered to be crucial in orchestrating an immunopathological cascade that results in damage to the myelin sheath. This review summarizes the currently available data supporting the idea that myelin reactive T cells are actively involved in the immunopathogenesis of MS. Some of the therapeutic strategies for MS are discussed with a focus on immunotherapies that aim to specifically target the myelin reactive T cells.
Collapse
Affiliation(s)
- Niels Hellings
- Biomedical Research Institute, Limburg University Center, School for Life Sciences, Transnational University Diepenbeek, Belgium
| | | | | |
Collapse
|
26
|
Zhong MC, Kerlero de Rosbo N, Ben-Nun A. Multiantigen/multiepitope-directed immune-specific suppression of "complex autoimmune encephalomyelitis" by a novel protein product of a synthetic gene. J Clin Invest 2002; 110:81-90. [PMID: 12093891 PMCID: PMC151033 DOI: 10.1172/jci15692] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Systemic administration of antigen/peptide for peripheral T cell tolerance has long been investigated as a potential approach to therapy of autoimmune diseases. The multiple antimyelin T cell reactivities likely to be associated with multiple sclerosis (MS) impose major difficulties in devising such an immune-specific therapeutic approach to the disease, because targeting T cells specific for a single autoantigen/epitope is unlikely to be sufficiently effective. Here, we present a pilot study on the possibility of concomitantly inhibiting multiple potentially pathogenic antimyelin T cell reactivities by tolerogenic administration of an artificial "multiantigen/multiepitope" protein. A synthetic gene was constructed to encode selected disease-relevant epitopes of myelin basic protein (MBP), proteolipid protein (PLP), and myelin oligodendrocyte glycoprotein (MOG). The protein product, hmTAP (synthetic human multitarget autoantigen protein), was adequately processed for antigenic presentation of the relevant integral epitopes, in vitro and in vivo. Systemic administration of hmTAP not only suppressed and treated experimental autoimmune encephalomyelitis (EAE) initiated by autoreactivity to a PLP epitope, but also abrogated complex EAE transferred by multispecific line T cells reactive against encephalitogenic epitopes of MBP, PLP, and MOG. These data indicate that multiantigen/multiepitope-directed therapy of complex autoimmune diseases is effective and can be mediated by the protein product of a specifically designed synthetic gene.
Collapse
Affiliation(s)
- Ming-Chao Zhong
- Department of Immunology, The Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | |
Collapse
|
27
|
Zhong MC, Kerlero de Rosbo N, Ben-Nun A. Multiantigen/multiepitope–directed immune-specific suppression of “complex autoimmune encephalomyelitis” by a novel protein product of a synthetic gene. J Clin Invest 2002. [DOI: 10.1172/jci0215692] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
28
|
Vu T, Myers LW, Ellison GW, Mendoza F, Bronstein JM. T-cell responses to oligodendrocyte-specific protein in multiple sclerosis. J Neurosci Res 2001; 66:506-9. [PMID: 11746369 DOI: 10.1002/jnr.1241] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Oligodendrocyte-specific protein (OSP) is concentrated in CNS myelin and is a potential autoantigen in the development of multiple sclerosis (MS). We performed proliferation assays with lymphocytes from MS patients and normal controls. OSP peptide-induced proliferation was common in relapsing-remitting MS and controls samples but was less pronounced in samples from secondary progressive MS subjects. These data demonstrate that OSP-reactive T cells are part of the normal immune repertoire and therefore have the potential to contribute to the pathogenesis of MS. Given the lack of specificity to MS, OSP-reactive T-cells are unlikely to be solely responsible for the disease process.
Collapse
Affiliation(s)
- T Vu
- Department of Neurology and the Brain Research Institute, UCLA School of Medicine, Los Angeles, California 90095, USA
| | | | | | | | | |
Collapse
|