1
|
Pramanik S, Devi M H, Chakrabarty S, Paylar B, Pradhan A, Thaker M, Ayyadhury S, Manavalan A, Olsson PE, Pramanik G, Heese K. Microglia signaling in health and disease - Implications in sex-specific brain development and plasticity. Neurosci Biobehav Rev 2024; 165:105834. [PMID: 39084583 DOI: 10.1016/j.neubiorev.2024.105834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/21/2024] [Accepted: 07/27/2024] [Indexed: 08/02/2024]
Abstract
Microglia, the intrinsic neuroimmune cells residing in the central nervous system (CNS), exert a pivotal influence on brain development, homeostasis, and functionality, encompassing critical roles during both aging and pathological states. Recent advancements in comprehending brain plasticity and functions have spotlighted conspicuous variances between male and female brains, notably in neurogenesis, neuronal myelination, axon fasciculation, and synaptogenesis. Nevertheless, the precise impact of microglia on sex-specific brain cell plasticity, sculpting diverse neural network architectures and circuits, remains largely unexplored. This article seeks to unravel the present understanding of microglial involvement in brain development, plasticity, and function, with a specific emphasis on microglial signaling in brain sex polymorphism. Commencing with an overview of microglia in the CNS and their associated signaling cascades, we subsequently probe recent revelations regarding molecular signaling by microglia in sex-dependent brain developmental plasticity, functions, and diseases. Notably, C-X3-C motif chemokine receptor 1 (CX3CR1), triggering receptors expressed on myeloid cells 2 (TREM2), calcium (Ca2+), and apolipoprotein E (APOE) emerge as molecular candidates significantly contributing to sex-dependent brain development and plasticity. In conclusion, we address burgeoning inquiries surrounding microglia's pivotal role in the functional diversity of developing and aging brains, contemplating their potential implications for gender-tailored therapeutic strategies in neurodegenerative diseases.
Collapse
Affiliation(s)
- Subrata Pramanik
- Jyoti and Bhupat Mehta School of Health Sciences and Technology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
| | - Harini Devi M
- Jyoti and Bhupat Mehta School of Health Sciences and Technology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Saswata Chakrabarty
- Jyoti and Bhupat Mehta School of Health Sciences and Technology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Berkay Paylar
- Biology, The Life Science Center, School of Science and Technology, Örebro University, Örebro 70182, Sweden
| | - Ajay Pradhan
- Biology, The Life Science Center, School of Science and Technology, Örebro University, Örebro 70182, Sweden
| | - Manisha Thaker
- Eurofins Lancaster Laboratories, Inc., 2425 New Holland Pike, Lancaster, PA 17601, USA
| | - Shamini Ayyadhury
- The Donnelly Centre, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Arulmani Manavalan
- Department of Cariology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu 600077, India
| | - Per-Erik Olsson
- Biology, The Life Science Center, School of Science and Technology, Örebro University, Örebro 70182, Sweden
| | - Gopal Pramanik
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand 835215, India.
| | - Klaus Heese
- Graduate School of Biomedical Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 133791, the Republic of Korea.
| |
Collapse
|
2
|
Lal R, Dharavath RN, Chopra K. Alpha-Lipoic Acid Ameliorates Doxorubicin-Induced Cognitive Impairments by Modulating Neuroinflammation and Oxidative Stress via NRF-2/HO-1 Signaling Pathway in the Rat Hippocampus. Neurochem Res 2023:10.1007/s11064-023-03914-y. [PMID: 37017891 DOI: 10.1007/s11064-023-03914-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 04/06/2023]
Abstract
Chemotherapy-induced cognitive impairment (CICI) is a common complication associated with the use of chemotherapeutics. Doxorubicin (DOX) is a reactive oxygen species (ROS) producing anticancer agent capable of causing potential neurotoxic effects via cytokine-induced oxidative and nitrosative damage to brain tissues. On the other hand, alpha-lipoic acid (ALA), a nutritional supplement, is reputable for its excellent antioxidant, anti-inflammatory, and anti-apoptotic activities. Consequently, the objective of the current investigation was to examine any potential neuroprotective and memory-improving benefits of ALA against DOX-induced behavioral and neurological anomalies. DOX (2 mg/kg/week, i.p.) was administrated for 4 weeks to Sprague-Dawley rats. ALA (50, 100, and 200 mg/kg) was administered for 4 weeks. The Morris water maze (MWM) and novel objective recognition task (NORT) tests were used to assess memory function. Biochemical assays with UV-visible spectrophotometry were used to analyze oxidative stress markers [malondialdehyde (MDA), protein carbonylation (PCO)], endogenous antioxidants [reduced glutathione (GSH), catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GSH-Px)] and acetylcholinesterase (AChE) activity in hippocampal tissue. Inflammatory markers [tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and nuclear factor kappa B (NF-κB)], nuclear factor erythroid 2-related factor-2 (NRF-2) and hemeoxygenase-1 (HO-1) levels were estimated using enzyme-linked immunosorbent assay (ELISA). In addition, reactive oxygen species (ROS) levels were measured in hippocampus tissue using 2-7-dichlorofluorescein-diacetate (DCFH-DA) assay with fluorimetry. ALA treatment significantly protected against DOX-induced memory impairment. Furthermore, ALA restored hippocampal antioxidants, halted DOX-induced oxidative and inflammatory insults via upregulation of NRF-2/HO-1 levels, and alleviated the increase in NF-κB expression. These results indicate that ALA offers neuroprotection against DOX-induced cognitive impairment, which could be attributed to its antioxidant potential via the NRF-2/HO-1 signaling pathway.
Collapse
Affiliation(s)
- Roshan Lal
- Pharmacology Research Laboratory, Pharmacology Division, UGC Centre of Advanced Studies, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh, 160014, India
| | - Ravinder Naik Dharavath
- Pharmacology Research Laboratory, Pharmacology Division, UGC Centre of Advanced Studies, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh, 160014, India
| | - Kanwaljit Chopra
- Pharmacology Research Laboratory, Pharmacology Division, UGC Centre of Advanced Studies, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
3
|
Zhang R, Song Y, Su X. Necroptosis and Alzheimer's Disease: Pathogenic Mechanisms and Therapeutic Opportunities. J Alzheimers Dis 2023; 94:S367-S386. [PMID: 36463451 PMCID: PMC10473100 DOI: 10.3233/jad-220809] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2022] [Indexed: 11/30/2022]
Abstract
Alzheimer's disease (AD) is considered to be the most common neurodegenerative disease, with clinical symptoms encompassing progressive memory loss and cognitive impairment. Necroptosis is a form of programmed necrosis that promotes cell death and neuroinflammation, which further mediates the pathogenesis of several neurodegenerative diseases, especially AD. Current evidence has strongly suggested that necroptosis is activated in AD brains, resulting in neuronal death and cognitive impairment. We searched the PubMed database, screening all articles published before September 28, 2022 related to necroptosis in the context of AD pathology. The keywords in the search included: "necroptosis", "Alzheimer's disease", "signaling pathways", "Aβ", Aβo", "Tau", "p-Tau", "neuronal death", "BBB damage", "neuroinflammation", "microglia", "mitochondrial dysfunction", "granulovacuolar degeneration", "synaptic loss", "axonal degeneration", "Nec-1", "Nec-1s", "GSK872", "NSA", "OGA", "RIPK1", "RIPK3", and "MLKL". Results show that necroptosis has been involved in multiple pathological processes of AD, including amyloid-β aggregation, Tau accumulation, neuronal death, and blood-brain barrier damage, etc. More importantly, existing research on AD necroptosis interventions, including drug intervention and potential gene targets, as well as its current clinical development status, was discussed. Finally, the issues pertaining to necroptosis in AD were presented. Accordingly, this review may provide further insight into clinical perspectives and challenges for the future treatment of AD by targeting the necroptosis pathway.
Collapse
Affiliation(s)
- Ruxin Zhang
- Linfen People’s Hospital, Linfen, Shanxi, China
| | | | - Xuefeng Su
- Linfen People’s Hospital, Linfen, Shanxi, China
| |
Collapse
|
4
|
Chen YL, Feng XL, Cheung CW, Liu JA. Mode of action of astrocytes in pain: From the spinal cord to the brain. Prog Neurobiol 2022; 219:102365. [DOI: 10.1016/j.pneurobio.2022.102365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/09/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022]
|
5
|
Wang L, Liang Y. MicroRNAs as T Lymphocyte Regulators in Multiple Sclerosis. Front Mol Neurosci 2022; 15:865529. [PMID: 35548667 PMCID: PMC9082748 DOI: 10.3389/fnmol.2022.865529] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/30/2022] [Indexed: 01/22/2023] Open
Abstract
MicroRNA (miRNA) is a class of endogenous non-coding small RNA with regulatory activities, which generally regulates the expression of target genes at the post-transcriptional level. Multiple Sclerosis (MS) is thought to be an autoimmune-mediated chronic inflammatory demyelinating disease of the central nervous system (CNS) that typically affect young adults. T lymphocytes play an important role in the pathogenesis of MS, and studies have suggested that miRNAs are involved in regulating the proliferation, differentiation, and functional maintenance of T lymphocytes in MS. Dysregulated expression of miRNAs may lead to the differentiation balance and dysfunction of T lymphocytes, and they are thus involved in the occurrence and development of MS. In addition, some specific miRNAs, such as miR-155 and miR-326, may have potential diagnostic values for MS or be useful for discriminating subtypes of MS. Moreover, miRNAs may be a promising therapeutic strategy for MS by regulating T lymphocyte function. By summarizing the recent literature, we reviewed the involvement of T lymphocytes in the pathogenesis of MS, the role of miRNAs in the pathogenesis and disease progression of MS by regulating T lymphocytes, the possibility of differentially expressed miRNAs to function as biomarkers for MS diagnosis, and the therapeutic potential of miRNAs in MS by regulating T lymphocytes.
Collapse
|
6
|
Wang X, Shi N, Hui M, Jin H, Gao S, Zhou Q, Zhang L, Yan M, Shen H. The Impact of β-1,4-Galactosyltransferase V on Microglial Function. Front Cell Neurosci 2021; 15:723308. [PMID: 34539352 PMCID: PMC8446519 DOI: 10.3389/fncel.2021.723308] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 08/10/2021] [Indexed: 01/10/2023] Open
Abstract
β-1,4 Galactosyltransferase V (β-1,4-GalT V) belongs to the β-1,4 galactosyltransferase family, which modifies proteins and plays a vital role in biological function. Our previous study revealed that β-1,4-GalT V was expressed in the cortex and hippocampus and participated in the recovery of spatial learning and memory in rats with traumatic brain injury. However, the expression of β-1,4-GalT V in microglia, resident immune cells in the central nervous system, and its impact on microglia in resting and lipopolysaccharide-triggered activated stages are elusive. In this study, we clarified that β-1,4-GalT V expresses in microglia, and it regulates microglial migration, proliferation, and release of the inflammatory factors. We also observed that β-1,4-GalT V affects the expression level of tumor necrosis factor receptor (TNFR)2 instead of TNFR1. These results strongly support the fact that β-1,4-GalT V is involved in microglial function.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China.,Department of Aoyang Cancer Institute, Affiliated Aoyang Hospital of Jiangsu University, Suzhou, China
| | - Naiqi Shi
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Meiqi Hui
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Hui Jin
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Shumei Gao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Qiao Zhou
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Li Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Meijuan Yan
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Hongmei Shen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| |
Collapse
|
7
|
Li S, Qu L, Wang X, Kong L. Novel insights into RIPK1 as a promising target for future Alzheimer's disease treatment. Pharmacol Ther 2021; 231:107979. [PMID: 34480965 DOI: 10.1016/j.pharmthera.2021.107979] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/30/2021] [Accepted: 08/24/2021] [Indexed: 02/06/2023]
Abstract
Alzheimer's disease (AD) is an intractable neurodegenerative disease showing a clinical manifestation with memory loss, cognitive impairment and behavioral dysfunction. The predominant pathological characteristics of AD include neuronal loss, β-amyloid (Aβ) deposition and hyperphosphorylated Tau induced neurofibrillary tangles (NFTs), while considerable studies proved these could be triggered by neuronal death and neuroinflammation. Receptor-interacting protein kinase 1 (RIPK1) is a serine/threonine kinase existed at the cross-point of cell death and inflammatory signaling pathways. Emerging investigations have shed light on RIPK1 for its potential role in AD progression. The present review makes a bird's eye view on the functions of RIPK1 and mainly focus on the underlying linkages between RIPK1 and AD from comprehensive aspects including neuronal death, Aβ and Tau, inflammasome activation, BBB rupture, AMPK/mTOR, mitochondrial dysfunction and O-glcNAcylation. Moreover, the discovery of RIPK1 inhibitors, ongoing clinical trials along with future RIPK1-targeted therapeutics are also reviewed.
Collapse
Affiliation(s)
- Shang Li
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Lailiang Qu
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Xiaobing Wang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China.
| | - Lingyi Kong
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China.
| |
Collapse
|
8
|
Lindhout IA, Murray TE, Richards CM, Klegeris A. Potential neurotoxic activity of diverse molecules released by microglia. Neurochem Int 2021; 148:105117. [PMID: 34186114 DOI: 10.1016/j.neuint.2021.105117] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 05/18/2021] [Accepted: 06/24/2021] [Indexed: 01/02/2023]
Abstract
Microglia are the professional immune cells of the brain, which support numerous physiological processes. One of the defensive functions provided by microglia involves secretion of cytotoxins aimed at destroying invading pathogens. It is also recognized that the adverse activation of microglia in diseased brains may lead to secretion of cytotoxic molecules, which could be damaging to the surrounding cells, including neurons. Several of these toxins, such as reactive oxygen and nitrogen species, L-glutamate, and quinolinic acid, are widely recognized and well-studied. This review is focused on a structurally diverse group of less-established microglia neurotoxins, which were selected by applying the two criteria that these molecules 1) can be released by microglia, and 2) have the potential to be directly harmful to neurons. The following 11 molecules are discussed in detail: amyloid beta peptides (Aβ); cathepsin (Cat)B and CatD; C-X-C motif chemokine ligand (CXCL)10 and CXCL12 (5-67); high mobility group box (HMGB)1; lymphotoxin (LT)-α; matrix metalloproteinase (MMP)-2 and MMP-9; platelet-activating factor (PAF); and prolyl endopeptidase (PEP). Molecular mechanisms of their release by microglia and neurotoxicity, as well as available evidence implicating their involvement in human neuropathologies are summarized. Further studies on several of the above molecules are warranted to confirm either their microglial origin in the brain or direct neurotoxic effects. In addition, investigations into the differential secretion patterns of neurotoxins by microglia in response to diverse stimuli are required. This research could identify novel therapeutic targets for neurological disorders involving adverse microglial activation.
Collapse
Affiliation(s)
- Ivan A Lindhout
- Department of Biology, University of British Columbia Okanagan Campus, 3187 University Way, Kelowna, British Columbia, V1V 1V7, Canada
| | - Taryn E Murray
- Department of Biology, University of British Columbia Okanagan Campus, 3187 University Way, Kelowna, British Columbia, V1V 1V7, Canada
| | - Christy M Richards
- Department of Biology, University of British Columbia Okanagan Campus, 3187 University Way, Kelowna, British Columbia, V1V 1V7, Canada
| | - Andis Klegeris
- Department of Biology, University of British Columbia Okanagan Campus, 3187 University Way, Kelowna, British Columbia, V1V 1V7, Canada.
| |
Collapse
|
9
|
Tang J, Bair M, Descalzi G. Reactive Astrocytes: Critical Players in the Development of Chronic Pain. Front Psychiatry 2021; 12:682056. [PMID: 34122194 PMCID: PMC8192827 DOI: 10.3389/fpsyt.2021.682056] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/03/2021] [Indexed: 12/16/2022] Open
Abstract
Chronic pain is associated with long term plasticity of nociceptive pathways in the central nervous system. Astrocytes can profoundly affect synaptic function and increasing evidence has highlighted how altered astrocyte activity may contribute to the pathogenesis of chronic pain. In response to injury, astrocytes undergo a shift in form and function known as reactive astrogliosis, which affects their release of cytokines and gliotransmitters. These neuromodulatory substances have been implicated in driving the persistent changes in central nociceptive activity. Astrocytes also release lactate which neurons can use to produce energy during synaptic plasticity. Furthermore, recent research has provided insight into lactate's emerging role as a signaling molecule in the central nervous system, which may be involved in directly modulating neuronal and astrocytic activity. In this review, we present evidence for the involvement of astrocyte-derived tumor necrosis factor alpha in pain-associated plasticity, in addition to research suggesting the potential involvement of gliotransmitters D-serine and adenosine-5'-triphosphate. We also discuss work implicating astrocyte-neuron metabolic coupling, and the possible role of lactate, which has been sparsely studied in the context of chronic pain, in supporting pathological changes in central nociceptive activity.
Collapse
Affiliation(s)
| | | | - Giannina Descalzi
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
10
|
Uray T, Dezfulian C, Palmer AA, Miner KM, Leak RK, Stezoski JP, Janesko‐Feldman K, Kochanek PM, Drabek T. Cardiac Arrest Induced by Asphyxia Versus Ventricular Fibrillation Elicits Comparable Early Changes in Cytokine Levels in the Rat Brain, Heart, and Serum. J Am Heart Assoc 2021; 10:e018657. [PMID: 33599149 PMCID: PMC8174297 DOI: 10.1161/jaha.120.018657] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 01/04/2021] [Indexed: 12/14/2022]
Abstract
Background Current postresuscitative care after cardiac arrest (CA) does not address the cause of CA. We previously reported that asphyxial CA (ACA) and ventricular fibrillation CA (VFCA) elicit unique injury signatures. We hypothesized that the early cytokine profiles of the serum, heart, and brain differ in response to ACA versus VFCA. Methods and Results Adult male rats were subjected to 10 minutes of either ACA or VFCA. Naives and shams (anesthesia and surgery without CA) served as controls (n=12/group). Asphyxiation produced an ≈4-minute period of progressive hypoxemia followed by a no-flow duration of ≈6±1 minute. Ventricular fibrillation immediately induced no flow. Return of spontaneous circulation was achieved earlier after ACA compared with VFCA (42±18 versus 105±22 seconds; P<0.001). Brain cytokines in naives were, in general, low or undetectable. Shams exhibited a modest effect on select cytokines. Both ACA and VFCA resulted in robust cytokine responses in serum, heart, and brain at 3 hours. Significant regional differences pinpointed the striatum as a key location of neuroinflammation. No significant differences in cytokines, neuron-specific enolase, S100b, and troponin T were observed across CA models. Conclusions Both models of CA resulted in marked systemic, heart, and brain cytokine responses, with similar degrees of change across the 2 CA insults. Changes in cytokine levels after CA were most pronounced in the striatum compared with other brain regions. These collective observations suggest that the amplitude of the changes in cytokine levels after ACA versus VFCA may not mediate the differences in secondary injuries between these 2 CA phenotypes.
Collapse
Affiliation(s)
- Thomas Uray
- Safar Center for Resuscitation ResearchUniversity of Pittsburgh School of MedicinePittsburghPA
- Department of Critical Care MedicineUniversity of Pittsburgh School of MedicinePittsburghPA
- Department of Emergency MedicineVienna General HospitalMedical University of ViennaViennaAustria
| | - Cameron Dezfulian
- Safar Center for Resuscitation ResearchUniversity of Pittsburgh School of MedicinePittsburghPA
- Department of Critical Care MedicineUniversity of Pittsburgh School of MedicinePittsburghPA
| | - Abigail A. Palmer
- Safar Center for Resuscitation ResearchUniversity of Pittsburgh School of MedicinePittsburghPA
- Lake Erie College of Osteopathic MedicineEriePA
| | - Kristin M. Miner
- Graduate School of Pharmaceutical SciencesDuquesne UniversityPittsburghPA
| | - Rehana K. Leak
- Graduate School of Pharmaceutical SciencesDuquesne UniversityPittsburghPA
| | - Jason P. Stezoski
- Safar Center for Resuscitation ResearchUniversity of Pittsburgh School of MedicinePittsburghPA
- Department of Critical Care MedicineUniversity of Pittsburgh School of MedicinePittsburghPA
- Department of Anesthesiology and Perioperative MedicineUniversity of Pittsburgh School of MedicinePittsburghPA
| | - Keri Janesko‐Feldman
- Safar Center for Resuscitation ResearchUniversity of Pittsburgh School of MedicinePittsburghPA
- Department of Critical Care MedicineUniversity of Pittsburgh School of MedicinePittsburghPA
| | - Patrick M. Kochanek
- Safar Center for Resuscitation ResearchUniversity of Pittsburgh School of MedicinePittsburghPA
- Department of Critical Care MedicineUniversity of Pittsburgh School of MedicinePittsburghPA
| | - Tomas Drabek
- Safar Center for Resuscitation ResearchUniversity of Pittsburgh School of MedicinePittsburghPA
- Department of Anesthesiology and Perioperative MedicineUniversity of Pittsburgh School of MedicinePittsburghPA
| |
Collapse
|
11
|
Fresegna D, Bullitta S, Musella A, Rizzo FR, De Vito F, Guadalupi L, Caioli S, Balletta S, Sanna K, Dolcetti E, Vanni V, Bruno A, Buttari F, Stampanoni Bassi M, Mandolesi G, Centonze D, Gentile A. Re-Examining the Role of TNF in MS Pathogenesis and Therapy. Cells 2020; 9:cells9102290. [PMID: 33066433 PMCID: PMC7602209 DOI: 10.3390/cells9102290] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/10/2020] [Accepted: 10/12/2020] [Indexed: 12/11/2022] Open
Abstract
Multiple sclerosis (MS) is a common neurological disorder of putative autoimmune origin. Clinical and experimental studies delineate abnormal expression of specific cytokines over the course of the disease. One major cytokine that has been shown to play a pivotal role in MS is tumor necrosis factor (TNF). TNF is a pleiotropic cytokine regulating many physiological and pathological functions of both the immune system and the central nervous system (CNS). Convincing evidence from studies in human and experimental MS have demonstrated the involvement of TNF in various pathological hallmarks of MS, including immune dysregulation, demyelination, synaptopathy and neuroinflammation. However, due to the complexity of TNF signaling, which includes two-ligands (soluble and transmembrane TNF) and two receptors, namely TNF receptor type-1 (TNFR1) and type-2 (TNFR2), and due to its cell- and context-differential expression, targeting the TNF system in MS is an ongoing challenge. This review summarizes the evidence on the pathophysiological role of TNF in MS and in different MS animal models, with a special focus on pharmacological treatment aimed at controlling the dysregulated TNF signaling in this neurological disorder.
Collapse
Affiliation(s)
- Diego Fresegna
- Synaptic Immunopathology Lab, IRCCS San Raffaele Pisana, 00166 Rome, Italy; (D.F.); (S.B.); (A.M.); (L.G.); (V.V.); (G.M.); (A.G.)
| | - Silvia Bullitta
- Synaptic Immunopathology Lab, IRCCS San Raffaele Pisana, 00166 Rome, Italy; (D.F.); (S.B.); (A.M.); (L.G.); (V.V.); (G.M.); (A.G.)
- Synaptic Immunopathology Lab, Department of Systems Medicine, Tor Vergata University, 00133 Rome, Italy; (F.R.R.); (S.B.); (K.S.); (E.D.); (A.B.)
| | - Alessandra Musella
- Synaptic Immunopathology Lab, IRCCS San Raffaele Pisana, 00166 Rome, Italy; (D.F.); (S.B.); (A.M.); (L.G.); (V.V.); (G.M.); (A.G.)
- Department of Human Sciences and Quality of Life Promotion, University of Rome San Raffaele, 00166 Roma, Italy
| | - Francesca Romana Rizzo
- Synaptic Immunopathology Lab, Department of Systems Medicine, Tor Vergata University, 00133 Rome, Italy; (F.R.R.); (S.B.); (K.S.); (E.D.); (A.B.)
| | - Francesca De Vito
- Unit of Neurology, IRCCS Neuromed, Pozzilli (Is), 86077 Pozzilli, Italy; (F.D.V.); (S.C.); (F.B.); (M.S.B.)
| | - Livia Guadalupi
- Synaptic Immunopathology Lab, IRCCS San Raffaele Pisana, 00166 Rome, Italy; (D.F.); (S.B.); (A.M.); (L.G.); (V.V.); (G.M.); (A.G.)
- Synaptic Immunopathology Lab, Department of Systems Medicine, Tor Vergata University, 00133 Rome, Italy; (F.R.R.); (S.B.); (K.S.); (E.D.); (A.B.)
| | - Silvia Caioli
- Unit of Neurology, IRCCS Neuromed, Pozzilli (Is), 86077 Pozzilli, Italy; (F.D.V.); (S.C.); (F.B.); (M.S.B.)
| | - Sara Balletta
- Synaptic Immunopathology Lab, Department of Systems Medicine, Tor Vergata University, 00133 Rome, Italy; (F.R.R.); (S.B.); (K.S.); (E.D.); (A.B.)
| | - Krizia Sanna
- Synaptic Immunopathology Lab, Department of Systems Medicine, Tor Vergata University, 00133 Rome, Italy; (F.R.R.); (S.B.); (K.S.); (E.D.); (A.B.)
| | - Ettore Dolcetti
- Synaptic Immunopathology Lab, Department of Systems Medicine, Tor Vergata University, 00133 Rome, Italy; (F.R.R.); (S.B.); (K.S.); (E.D.); (A.B.)
| | - Valentina Vanni
- Synaptic Immunopathology Lab, IRCCS San Raffaele Pisana, 00166 Rome, Italy; (D.F.); (S.B.); (A.M.); (L.G.); (V.V.); (G.M.); (A.G.)
- Synaptic Immunopathology Lab, Department of Systems Medicine, Tor Vergata University, 00133 Rome, Italy; (F.R.R.); (S.B.); (K.S.); (E.D.); (A.B.)
| | - Antonio Bruno
- Synaptic Immunopathology Lab, Department of Systems Medicine, Tor Vergata University, 00133 Rome, Italy; (F.R.R.); (S.B.); (K.S.); (E.D.); (A.B.)
| | - Fabio Buttari
- Unit of Neurology, IRCCS Neuromed, Pozzilli (Is), 86077 Pozzilli, Italy; (F.D.V.); (S.C.); (F.B.); (M.S.B.)
| | - Mario Stampanoni Bassi
- Unit of Neurology, IRCCS Neuromed, Pozzilli (Is), 86077 Pozzilli, Italy; (F.D.V.); (S.C.); (F.B.); (M.S.B.)
| | - Georgia Mandolesi
- Synaptic Immunopathology Lab, IRCCS San Raffaele Pisana, 00166 Rome, Italy; (D.F.); (S.B.); (A.M.); (L.G.); (V.V.); (G.M.); (A.G.)
- Department of Human Sciences and Quality of Life Promotion, University of Rome San Raffaele, 00166 Roma, Italy
| | - Diego Centonze
- Synaptic Immunopathology Lab, Department of Systems Medicine, Tor Vergata University, 00133 Rome, Italy; (F.R.R.); (S.B.); (K.S.); (E.D.); (A.B.)
- Unit of Neurology, IRCCS Neuromed, Pozzilli (Is), 86077 Pozzilli, Italy; (F.D.V.); (S.C.); (F.B.); (M.S.B.)
- Correspondence: ; Tel.: +39-06-7259-6010; Fax: +39-06-7259-6006
| | - Antonietta Gentile
- Synaptic Immunopathology Lab, IRCCS San Raffaele Pisana, 00166 Rome, Italy; (D.F.); (S.B.); (A.M.); (L.G.); (V.V.); (G.M.); (A.G.)
| |
Collapse
|
12
|
Regner GG, Torres ILS, de Oliveira C, Pflüger P, da Silva LS, Scarabelot VL, Ströher R, de Souza A, Fregni F, Pereira P. Transcranial direct current stimulation (tDCS) affects neuroinflammation parameters and behavioral seizure activity in pentylenetetrazole-induced kindling in rats. Neurosci Lett 2020; 735:135162. [PMID: 32569808 DOI: 10.1016/j.neulet.2020.135162] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 06/07/2020] [Accepted: 06/14/2020] [Indexed: 10/24/2022]
Abstract
Despite the introduction of new antiepileptic drugs, about 30 % of patients with epilepsy are refractory to drug therapy. Thus, the search for non-pharmacological interventions such as transcranial direct current stimulation (tDCS) may be an alternative, either alone or in combination with low doses of anticonvulsants. This study evaluated the effect of anodal (a-tDCS) and cathodal tDCS (c-tDCS) on seizure behavior and neuroinflammation parameters. Rats were submitted to the kindling model induced by pentylenetetrazole (PTZ) using diazepam (DZP) as anticonvulsant standard. tDCS groups were submitted to 10 sessions of a-tDCS or c-tDCS or SHAM-tDCS. Every 3 days they received saline (SAL), low dose of DZP (alone or in combination with tDCS) or effective dose of DZP 30 min before administration of PTZ, totaling 16 days of protocol. Neither a-tDCS nor c-tDCS reduced the occurrence of clonic forelimb seizures (convulsive motor seizures - stage 3 by the adapted Racine scale we based on). Associated with DZP, c-tDCS (c-tDCS/DZP0.15) increased the latency to first clonic forelimb seizure on the 10th and 16th days. Hippocampal IL-1β levels were reduced by c-tDCS and c-tDCS/DZP0.15. In contrast, these treatments induced an increase in cortical IL-1β levels. Hippocampal TNF-α levels were not altered by c-tDCS or a-tDCS, but c-tDCS and c-tDCS/DZP0.15 increased those levels in cerebral cortex. Cortical NGF levels were increased by c-tDCS and c-tDCS/DZP0.15. a-tDCS/DZP0.15 reduced hippocampal BDNF levels and c-tDCS/DZP0.15 increased these levels in cerebral cortex. In conclusion, c-tDCS alone or in combination with a low dose of DZP showed to affect neuroinflammation, improving central neurotrophin levels and decreasing hippocampal IL-1β levels after PTZ-induced kindling without statistically significant effect on seizure behavior.
Collapse
Affiliation(s)
- Gabriela Gregory Regner
- Laboratory of Neuropharmacology and Preclinical Toxicology Laboratory, Postgraduate Program in Biological Sciences: Pharmacology and Therapeutics, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, 90050-170, Brazil; Laboratory of Pain Pharmacology and Neuromodulation: Preclinical Studies - Centro de Pesquisa Experimental (CPE), Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS 90035-003, Brazil
| | - Iraci L S Torres
- Laboratory of Pain Pharmacology and Neuromodulation: Preclinical Studies - Centro de Pesquisa Experimental (CPE), Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS 90035-003, Brazil; Postgraduate Program in Medical Sciences, School of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| | - Carla de Oliveira
- Laboratory of Pain Pharmacology and Neuromodulation: Preclinical Studies - Centro de Pesquisa Experimental (CPE), Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS 90035-003, Brazil; Postgraduate Program in Medical Sciences, School of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Pricila Pflüger
- Laboratory of Neuropharmacology and Preclinical Toxicology Laboratory, Postgraduate Program in Biological Sciences: Pharmacology and Therapeutics, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, 90050-170, Brazil
| | - Lisiane Santos da Silva
- Laboratory of Pain Pharmacology and Neuromodulation: Preclinical Studies - Centro de Pesquisa Experimental (CPE), Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS 90035-003, Brazil
| | - Vanessa Leal Scarabelot
- Laboratory of Pain Pharmacology and Neuromodulation: Preclinical Studies - Centro de Pesquisa Experimental (CPE), Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS 90035-003, Brazil
| | - Roberta Ströher
- Laboratory of Pain Pharmacology and Neuromodulation: Preclinical Studies - Centro de Pesquisa Experimental (CPE), Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS 90035-003, Brazil
| | - Andressa de Souza
- Laboratory of Pain Pharmacology and Neuromodulation: Preclinical Studies - Centro de Pesquisa Experimental (CPE), Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS 90035-003, Brazil
| | - Felipe Fregni
- Laboratory of Neuromodulation, Department of Physical Medicine & Rehabilitation, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard University, Boston, United States
| | - Patrícia Pereira
- Laboratory of Neuropharmacology and Preclinical Toxicology Laboratory, Postgraduate Program in Biological Sciences: Pharmacology and Therapeutics, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, 90050-170, Brazil
| |
Collapse
|
13
|
Ongnok B, Chattipakorn N, Chattipakorn SC. Doxorubicin and cisplatin induced cognitive impairment: The possible mechanisms and interventions. Exp Neurol 2019; 324:113118. [PMID: 31756316 DOI: 10.1016/j.expneurol.2019.113118] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 10/18/2019] [Accepted: 11/15/2019] [Indexed: 12/24/2022]
Abstract
Chemotherapy has significantly increased the number of cancer survivors. However, chemotherapy itself carries various adverse effects that limit the efficacy of treatment and quality of life of the cancer patients. Most patients who have received chemotherapy report some cognitive deficit characterized by dysfunction in memory, learning, concentration, and reasoning. The phenomenon of cognitive decline developed from chemotherapy treatment is referred to as chemotherapy-induced cognitive impairment (CICI) or chemobrain. The two most common cancers occurring worldwide are lung and breast cancer. The predominant chemotherapeutic drugs used to treat lung and breast cancer are doxorubicin and cisplatin. There is evidence to suggest that both drugs potentially induce chemobrain. The evidence around the proposed pathogenesis of chemobrain caused by these two drugs is inconsistent. Understanding the underlying mechanisms involved in the development of chemobrain would aid in the prevention or treatment of the adverse effects of chemotherapy on brain. This review will summarize and discuss controversial findings and possible mechanisms involved in the development of chemobrain and the interventions which could limit it from in vitro, in vivo, and clinical studies.
Collapse
Affiliation(s)
- Benjamin Ongnok
- Neuroelectrophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nipon Chattipakorn
- Neuroelectrophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Siriporn C Chattipakorn
- Neuroelectrophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand; Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai 50200, Thailand.
| |
Collapse
|
14
|
Chen L, Liu YC, Zheng YY, Xu J, Zhang Y, Liu WL, Li ZY, Huang GD, Li WP. Furanodienone overcomes temozolomide resistance in glioblastoma through the downregulation of CSPG4-Akt-ERK signalling by inhibiting EGR1-dependent transcription. Phytother Res 2019; 33:1736-1747. [PMID: 31006910 DOI: 10.1002/ptr.6363] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 01/31/2019] [Accepted: 03/16/2019] [Indexed: 12/15/2022]
Abstract
Glioblastoma multiforme (GBM) is a highly aggressive type of brain tumour. Patients with GBM respond poorly to chemotherapy and have poor survival outcomes. Neuron-glial antigen 2 (NG2), also known as chondroitin sulphate proteoglycan 4 (CSPG4), has been shown to contribute to critical processes, such as cell survival, proliferation, and chemotherapy resistance, during glioma progression. In this study, we found that furanodienone (FUR), a diene-type sesquiterpene isolated from the rhizomes of Rhizoma curcumae, exhibited a potential cytotoxic effect on temozolomide (TMZ)-resistant GBM cells in vitro by inhibiting CSPG4 and related signalling pathways. Studies investigating the mechanism demonstrated that FUR suppressed CSPG4-Akt-ERK signalling, inflammatory responses, and cytokine levels but activated caspase-dependent pathways and mitochondrial dysfunction. Furthermore, an immunofluorescence assay and a dual-luciferase reporter assay revealed that inhibition of EGR1-mediated transcription might have contributed to the FUR-dependent blockade of CSPG4 signalling and glioma cell survival. These results established a link between FUR-induced CSPG4 inhibition and the suppression of EGR1-dependent transcription. Attenuation of ERK1/2 and cytokine signalling might have generated the EGR1-dependent negative feedback loop of the CSPG4 pathway during FUR-induced apoptosis. These findings suggested that FUR could be a therapeutic candidate for the treatment of malignant glioma via targeting CSPG4 signalling.
Collapse
Affiliation(s)
- Lei Chen
- Department of Neurosurgery, Shenzhen Key Laboratory of Neurosurgery, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, 3002# Sungang Road, Futian District, Shenzhen, 518035, China
| | - Yue-Cheng Liu
- Department of Neurosurgery, Shenzhen Key Laboratory of Neurosurgery, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, 3002# Sungang Road, Futian District, Shenzhen, 518035, China
| | - Yue-Yang Zheng
- Department of Neurosurgery, Shenzhen Key Laboratory of Neurosurgery, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, 3002# Sungang Road, Futian District, Shenzhen, 518035, China
| | - Ji Xu
- Department of Neurosurgery, Shenzhen Key Laboratory of Neurosurgery, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, 3002# Sungang Road, Futian District, Shenzhen, 518035, China
| | - Yuan Zhang
- Department of Neurosurgery, Shenzhen Key Laboratory of Neurosurgery, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, 3002# Sungang Road, Futian District, Shenzhen, 518035, China
| | - Wen-Lan Liu
- Department of Neurosurgery, Shenzhen Key Laboratory of Neurosurgery, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, 3002# Sungang Road, Futian District, Shenzhen, 518035, China
| | - Zong-Yang Li
- Department of Neurosurgery, Shenzhen Key Laboratory of Neurosurgery, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, 3002# Sungang Road, Futian District, Shenzhen, 518035, China
| | - Guo-Dong Huang
- Department of Neurosurgery, Shenzhen Key Laboratory of Neurosurgery, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, 3002# Sungang Road, Futian District, Shenzhen, 518035, China
| | - Wei-Ping Li
- Department of Neurosurgery, Shenzhen Key Laboratory of Neurosurgery, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, 3002# Sungang Road, Futian District, Shenzhen, 518035, China
| |
Collapse
|
15
|
Ruiz-Perera LM, Schneider L, Windmöller BA, Müller J, Greiner JFW, Kaltschmidt C, Kaltschmidt B. NF-κB p65 directs sex-specific neuroprotection in human neurons. Sci Rep 2018; 8:16012. [PMID: 30375448 PMCID: PMC6207661 DOI: 10.1038/s41598-018-34394-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 10/15/2018] [Indexed: 12/17/2022] Open
Abstract
Protection of neurons against oxidative stress is crucial during neuronal development, maintenance and for treating neurodegenerative diseases. However, little is known about the molecular mechanisms underlying sex-specific maturation and survival of neurons. In the present study, we demonstrate NF-κB-p65 mediated neuroprotection in human glutamatergic neurons differentiated from inferior turbinate stem cells (ITSCs) in a sex-dependent manner. We successfully differentiated ITSCs into MAP-2+/NF200+/Synaptophysin+/vGlut2+-glutamatergic neurons in vitro and ex vivo and validated their functionality. TNF-α-dependent NF-κB-p65 activation was accompanied by significant neuroprotection against oxidative stress-induced neuronal death, which was surprisingly higher in neurons from female donors. Accordingly, sex-specific neuroprotection of female neurons was followed by an increased expression of special NF-κB target genes SOD2 and IGF2. Among these, SOD2 is a well known gene protecting cells against oxidative stress resulting in longevity. In addition, IGF2 is known to promote synapse formation and spine maturation, and it has antioxidant and neuroprotective effects against oxidative damage. In conclusion, we show that NF-κB-p65 is a key player in neuroprotection of human neurons, however the protective gene expression program beneath it differs between sexes. Our findings are in accordance with the increasing evidences pointing towards sex-specific differences in risk and severity of neurodegenerative diseases.
Collapse
Affiliation(s)
| | | | | | - Janine Müller
- Molecular Neurobiology, University of Bielefeld, Bielefeld, Germany
| | | | | | - Barbara Kaltschmidt
- Molecular Neurobiology, University of Bielefeld, Bielefeld, Germany. .,Department of Cell Biology, University of Bielefeld, Bielefeld, Germany.
| |
Collapse
|
16
|
Reardon C, Murray K, Lomax AE. Neuroimmune Communication in Health and Disease. Physiol Rev 2018; 98:2287-2316. [PMID: 30109819 PMCID: PMC6170975 DOI: 10.1152/physrev.00035.2017] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 04/09/2018] [Accepted: 04/09/2018] [Indexed: 12/14/2022] Open
Abstract
The immune and nervous systems are tightly integrated, with each system capable of influencing the other to respond to infectious or inflammatory perturbations of homeostasis. Recent studies demonstrating the ability of neural stimulation to significantly reduce the severity of immunopathology and consequently reduce mortality have led to a resurgence in the field of neuroimmunology. Highlighting the tight integration of the nervous and immune systems, afferent neurons can be activated by a diverse range of substances from bacterial-derived products to cytokines released by host cells. While activation of vagal afferents by these substances dominates the literature, additional sensory neurons are responsive as well. It is becoming increasingly clear that although the cholinergic anti-inflammatory pathway has become the predominant model, a multitude of functional circuits exist through which neuronal messengers can influence immunological outcomes. These include pathways whereby efferent signaling occurs independent of the vagus nerve through sympathetic neurons. To receive input from the nervous system, immune cells including B and T cells, macrophages, and professional antigen presenting cells express specific neurotransmitter receptors that affect immune cell function. Specialized immune cell populations not only express neurotransmitter receptors, but express the enzymatic machinery required to produce neurotransmitters, such as acetylcholine, allowing them to act as signaling intermediaries. Although elegant experiments have begun to decipher some of these interactions, integration of these molecules, cells, and anatomy into defined neuroimmune circuits in health and disease is in its infancy. This review describes these circuits and highlights continued challenges and opportunities for the field.
Collapse
Affiliation(s)
- Colin Reardon
- Department of Anatomy, Physiology, and Cell Biology, UC Davis School of Veterinary Medicine, UC Davis, Davis, California ; and Department of Biomedical and Molecular Sciences and Department of Medicine, Queen's University , Kingston, Ontario , Canada
| | - Kaitlin Murray
- Department of Anatomy, Physiology, and Cell Biology, UC Davis School of Veterinary Medicine, UC Davis, Davis, California ; and Department of Biomedical and Molecular Sciences and Department of Medicine, Queen's University , Kingston, Ontario , Canada
| | - Alan E Lomax
- Department of Anatomy, Physiology, and Cell Biology, UC Davis School of Veterinary Medicine, UC Davis, Davis, California ; and Department of Biomedical and Molecular Sciences and Department of Medicine, Queen's University , Kingston, Ontario , Canada
| |
Collapse
|
17
|
Jang SA, Park DW, Sohn EH, Lee SR, Kang SC. Hyperoside suppresses tumor necrosis factor α-mediated vascular inflammatory responses by downregulating mitogen-activated protein kinases and nuclear factor-κB signaling. Chem Biol Interact 2018; 294:48-55. [DOI: 10.1016/j.cbi.2018.08.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 08/13/2018] [Accepted: 08/17/2018] [Indexed: 01/06/2023]
|
18
|
Zarbato GF, de Souza Goldim MP, Giustina AD, Danielski LG, Mathias K, Florentino D, de Oliveira Junior AN, da Rosa N, Laurentino AO, Trombetta T, Gomes ML, Steckert AV, Moreira AP, Schuck PF, Fortunato JJ, Barichello T, Petronilho F. Dimethyl Fumarate Limits Neuroinflammation and Oxidative Stress and Improves Cognitive Impairment After Polymicrobial Sepsis. Neurotox Res 2018; 34:418-430. [PMID: 29713994 DOI: 10.1007/s12640-018-9900-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 04/02/2018] [Accepted: 04/06/2018] [Indexed: 12/18/2022]
Abstract
Sepsis is caused by a dysregulated host response to infection, often associated with acute central nervous system (CNS) dysfunction, which results in long-term cognitive impairment. Dimethyl fumarate (DMF) is an important agent against inflammatory response and reactive species in CNS disorders. Evaluate the effect of DMF on acute and long-term brain dysfunction after experimental sepsis in rats. Male Wistar rats were submitted to the cecal ligation and puncture (CLP) model. The groups were divided into sham (control) + vehicle, sham + NAC, sham + DMF, CLP + vehicle, CLP + NAC, and CLP + DMF. The animals were treated with DMF (15 mg/kg at 0 and 12 h after CLP, per gavage) and the administration of n-acetylcysteine (NAC) (20 mg/kg; 3, 6, and 12 h after CLP, subcutaneously) was used as positive control. Twenty-four hours after CLP, cytokines, myeloperoxidase (MPO), nitrite/nitrate (N/N), oxidative damage to lipids and proteins, and antioxidant enzymes were evaluated in the hippocampus, total cortex, and prefrontal cortex. At 10 days after sepsis induction, behavioral tests were performed to assess cognitive damage. We observed an increase in cytokine levels, MPO activity, N/N concentration, and oxidative damage, a reduction in SOD and GPx activity in the brain structures, and cognitive damage in CLP rats. DMF treatment was effective in reversing these parameters. DMF reduces sepsis-induced neuroinflammation, oxidative stress, and cognitive impairment in rats subjected to the CLP model.
Collapse
Affiliation(s)
- Graciela Freitas Zarbato
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarao, SC, Brazil
| | - Mariana Pereira de Souza Goldim
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarao, SC, Brazil
| | - Amanda Della Giustina
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarao, SC, Brazil
| | - Lucinéia Gainski Danielski
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarao, SC, Brazil
| | - Khiany Mathias
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarao, SC, Brazil
| | - Drielly Florentino
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarao, SC, Brazil
| | - Aloir Neri de Oliveira Junior
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarao, SC, Brazil
| | - Naiana da Rosa
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarao, SC, Brazil
| | - Ana Olivia Laurentino
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarao, SC, Brazil
| | - Taina Trombetta
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarao, SC, Brazil
| | - Maria Luiza Gomes
- Laboratory Inborn Errors of Metabolism, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciuma, SC, Brazil
| | - Amanda Valnier Steckert
- Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciuma, SC, Brazil
| | - Ana Paula Moreira
- Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciuma, SC, Brazil
| | - Patricia Fernanda Schuck
- Laboratory Inborn Errors of Metabolism, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciuma, SC, Brazil
| | - Jucelia Jeremias Fortunato
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarao, SC, Brazil
| | - Tatiana Barichello
- Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciuma, SC, Brazil.,Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Fabricia Petronilho
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarao, SC, Brazil.
| |
Collapse
|
19
|
Expression and Differential Responsiveness of Central Nervous System Glial Cell Populations to the Acute Phase Protein Serum Amyloid A. Sci Rep 2017; 7:12158. [PMID: 28939905 PMCID: PMC5610307 DOI: 10.1038/s41598-017-12529-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 09/12/2017] [Indexed: 02/07/2023] Open
Abstract
Acute-phase response is a systemic reaction to environmental/inflammatory insults and involves hepatic production of acute-phase proteins, including serum amyloid A (SAA). Extrahepatically, SAA immunoreactivity is found in axonal myelin sheaths of cortex in Alzheimer's disease and multiple sclerosis (MS), although its cellular origin is unclear. We examined the responses of cultured rat cortical astrocytes, microglia and oligodendrocyte precursor cells (OPCs) to master pro-inflammatory cytokine tumour necrosis factor (TNF)-α and lipopolysaccaride (LPS). TNF-α time-dependently increased Saa1 (but not Saa3) mRNA expression in purified microglia, enriched astrocytes, and OPCs (as did LPS for microglia and astrocytes). Astrocytes depleted of microglia were markedly less responsive to TNF-α and LPS, even after re-addition of microglia. Microglia and enriched astrocytes showed complementary Saa1 expression profiles following TNF-α or LPS challenge, being higher in microglia with TNF-α and higher in astrocytes with LPS. Recombinant human apo-SAA stimulated production of both inflammatory mediators and its own mRNA in microglia and enriched, but not microglia-depleted astrocytes. Co-ultramicronized palmitoylethanolamide/luteolin, an established anti-inflammatory/ neuroprotective agent, reduced Saa1 expression in OPCs subjected to TNF-α treatment. These last data, together with past findings suggest that co-ultramicronized palmitoylethanolamide/luteolin may be a novel approach in the treatment of inflammatory demyelinating disorders like MS.
Collapse
|
20
|
Silva AA, Silva RR, Gibaldi D, Mariante RM, Dos Santos JB, Pereira IR, Moreira OC, Lannes-Vieira J. Priming astrocytes with TNF enhances their susceptibility to Trypanosoma cruzi infection and creates a self-sustaining inflammatory milieu. J Neuroinflammation 2017; 14:182. [PMID: 28877735 PMCID: PMC5588596 DOI: 10.1186/s12974-017-0952-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 08/27/2017] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND In conditions of immunosuppression, the central nervous sty 5ystem (CNS) is the main target tissue for the reactivation of infection by Trypanosoma cruzi, the causative agent of Chagas disease. In experimental T. cruzi infection, interferon gamma (IFNγ)+ microglial cells surround astrocytes harboring amastigote parasites. In vitro, IFNγ fuels astrocyte infection by T. cruzi, and IFNγ-stimulated infected astrocytes are implicated as potential sources of tumor necrosis factor (TNF). Pro-inflammatory cytokines trigger behavioral alterations. In T. cruzi-infected mice, administration of anti-TNF antibody hampers depressive-like behavior. Herein, we investigated the effects of TNF on astrocyte susceptibility to T. cruzi infection and the regulation of cytokine production. METHODS Primary astrocyte cultures of neonatal C57BL/6 and C3H/He mice and the human U-87 MG astrocyte lineage were infected with the Colombian T. cruzi strain. Cytokine production, particularly TNF, and TNF receptor 1 (TNFR1/p55) expression were analyzed. Recombinant cytokines (rIFNγ and rTNF), the anti-TNF antibody infliximab, and the TNFR1 modulator pentoxifylline were used to assess the in vitro effects of TNF on astrocyte susceptibility to T. cruzi infection. To investigate the role of TNF on CNS colonization by T. cruzi, infected mice were submitted to anti-TNF therapy. RESULTS rTNF priming of mouse and human astrocytes enhanced parasite/astrocyte interaction (i.e., the percentage of astrocytes invaded by trypomastigote parasites and the number of intracellular parasite forms/astrocyte). Furthermore, T. cruzi infection drove astrocytes to a pro-inflammatory profile with TNF and interleukin-6 production, which was amplified by rTNF treatment. Adding rTNF prior to infection fueled parasite growth and trypomastigote egression, in parallel with increased TNFR1 expression. Importantly, pentoxifylline inhibited the TNF-induced increase in astrocyte susceptibility to T. cruzi invasion. In T. cruzi-infected mice, anti-TNF therapy reduced the number of amastigote nests in the brain. CONCLUSIONS Our data implicate TNF as a promoter of T. cruzi invasion of mouse and human astrocytes. Moreover, the TNF-enriched inflammatory milieu and enhanced TNFR1 expression may favor TNF signaling, astrocyte colonization by T. cruzi and egression of trypomastigotes. Therefore, in T. cruzi infection, a self-sustaining TNF-induced inflammatory circuit may perpetuate the parasite cycle in the CNS and ultimately promote cytokine-driven behavioral alterations.
Collapse
Affiliation(s)
- Andrea Alice Silva
- Laboratório de Biologia das Interações, Instituto Oswaldo Cruz - Fiocruz, Av. Brasil 4365, Rio de Janeiro, RJ, 21040-360, Brazil.,Laboratório Multidisciplinar de Apoio à Pesquisa em Nefrologia e Ciências Médicas, Departamento de Patologia, Faculdade de Medicina, Universidade Federal Fluminense, Rua Marquês do Paraná, 303, Niterói, RJ, 24033-900, Brazil
| | - Rafael Rodrigues Silva
- Laboratório de Biologia das Interações, Instituto Oswaldo Cruz - Fiocruz, Av. Brasil 4365, Rio de Janeiro, RJ, 21040-360, Brazil.,Laboratório de Doença de Chagas, Escola de Farmácia, Universidade Federal de Ouro Preto, Campus Morro do Cruzeiro s/no, Ouro Preto, MG, 35400-000, Brazil
| | - Daniel Gibaldi
- Laboratório de Biologia das Interações, Instituto Oswaldo Cruz - Fiocruz, Av. Brasil 4365, Rio de Janeiro, RJ, 21040-360, Brazil
| | - Rafael Meyer Mariante
- Laboratório de Biologia Estrutural IOC/Fiocruz, Av. Brasil 4365, Rio de Janeiro, RJ, 21040-360, Brazil
| | - Jessica Brandão Dos Santos
- Laboratório de Biologia das Interações, Instituto Oswaldo Cruz - Fiocruz, Av. Brasil 4365, Rio de Janeiro, RJ, 21040-360, Brazil
| | - Isabela Resende Pereira
- Laboratório de Biologia das Interações, Instituto Oswaldo Cruz - Fiocruz, Av. Brasil 4365, Rio de Janeiro, RJ, 21040-360, Brazil.,Laboratório de Hematologia, Departamento de Patologia, Faculdade de Medicina, Universidade Federal Fluminense, Rua Marquês do Paraná, 303, Niterói, RJ, 24033-900, Brazil
| | - Otacílio Cruz Moreira
- Laboratório de Biologia Molecular e Doenças Endêmicas, IOC/Fiocruz, Av. Brasil 4365, Rio de Janeiro, RJ, 21040-360, Brazil
| | - Joseli Lannes-Vieira
- Laboratório de Biologia das Interações, Instituto Oswaldo Cruz - Fiocruz, Av. Brasil 4365, Rio de Janeiro, RJ, 21040-360, Brazil.
| |
Collapse
|
21
|
Thornton C, Leaw B, Mallard C, Nair S, Jinnai M, Hagberg H. Cell Death in the Developing Brain after Hypoxia-Ischemia. Front Cell Neurosci 2017; 11:248. [PMID: 28878624 PMCID: PMC5572386 DOI: 10.3389/fncel.2017.00248] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 08/07/2017] [Indexed: 01/11/2023] Open
Abstract
Perinatal insults such as hypoxia–ischemia induces secondary brain injury. In order to develop the next generation of neuroprotective therapies, we urgently need to understand the underlying molecular mechanisms leading to cell death. The cell death mechanisms have been shown to be quite different in the developing brain compared to that in the adult. The aim of this review is update on what cell death mechanisms that are operating particularly in the setting of the developing CNS. In response to mild stress stimuli a number of compensatory mechanisms will be activated, most often leading to cell survival. Moderate-to-severe insults trigger regulated cell death. Depending on several factors such as the metabolic situation, cell type, nature of the stress stimulus, and which intracellular organelle(s) are affected, the cell undergoes apoptosis (caspase activation) triggered by BAX dependent mitochondrial permeabilzation, necroptosis (mixed lineage kinase domain-like activation), necrosis (via opening of the mitochondrial permeability transition pore), autophagic cell death (autophagy/Na+, K+-ATPase), or parthanatos (poly(ADP-ribose) polymerase 1, apoptosis-inducing factor). Severe insults cause accidental cell death that cannot be modulated genetically or by pharmacologic means. However, accidental cell death leads to the release of factors (damage-associated molecular patterns) that initiate systemic effects, as well as inflammation and (regulated) secondary brain injury in neighboring tissue. Furthermore, if one mode of cell death is inhibited, another route may step in at least in a scenario when upstream damaging factors predominate over protective responses. The provision of alternative routes through which the cell undergoes death has to be taken into account in the hunt for novel brain protective strategies.
Collapse
Affiliation(s)
- Claire Thornton
- Division of Imaging Sciences and Biomedical Engineering, Centre for the Developing Brain, King's College London, King's Health Partners, St. Thomas' HospitalLondon, United Kingdom
| | - Bryan Leaw
- The Ritchie Centre, Hudson Institute of Medical ResearchClayton, VIC, Australia
| | - Carina Mallard
- Department of Physiology, Perinatal Center, Institute of Physiology and Neuroscience, Sahlgrenska Academy, University of GothenburgGothenburg, Sweden
| | - Syam Nair
- Department of Physiology, Perinatal Center, Institute of Physiology and Neuroscience, Sahlgrenska Academy, University of GothenburgGothenburg, Sweden
| | - Masako Jinnai
- Department of Physiology, Perinatal Center, Institute of Physiology and Neuroscience, Sahlgrenska Academy, University of GothenburgGothenburg, Sweden
| | - Henrik Hagberg
- Division of Imaging Sciences and Biomedical Engineering, Centre for the Developing Brain, King's College London, King's Health Partners, St. Thomas' HospitalLondon, United Kingdom.,Department of Clinical Sciences and Physiology and Neuroscience, Perinatal Center, Sahlgrenska Academy, Gothenburg UniversityGothenburg, Sweden
| |
Collapse
|
22
|
Yu Y, Wei SG, Weiss RM, Felder RB. TNF-α receptor 1 knockdown in the subfornical organ ameliorates sympathetic excitation and cardiac hemodynamics in heart failure rats. Am J Physiol Heart Circ Physiol 2017; 313:H744-H756. [PMID: 28710070 DOI: 10.1152/ajpheart.00280.2017] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 06/21/2017] [Accepted: 07/08/2017] [Indexed: 02/07/2023]
Abstract
In systolic heart failure (HF), circulating proinflammatory cytokines upregulate inflammation and renin-angiotensin system (RAS) activity in cardiovascular regions of the brain, contributing to sympathetic excitation and cardiac dysfunction. Important among these is the subfornical organ (SFO), a forebrain circumventricular organ that lacks an effective blood-brain barrier and senses circulating humors. We hypothesized that the tumor necrosis factor-α (TNF-α) receptor 1 (TNFR1) in the SFO contributes to sympathetic excitation and cardiac dysfunction in HF rats. Rats received SFO microinjections of a TNFR1 shRNA or a scrambled shRNA lentiviral vector carrying green fluorescent protein, or vehicle. One week later, some rats were euthanized to confirm the accuracy of the SFO microinjections and the transfection potential of the lentiviral vector. Other rats underwent coronary artery ligation (CL) to induce HF or a sham operation. Four weeks after CL, vehicle- and scrambled shRNA-treated HF rats had significant increases in TNFR1 mRNA and protein, NF-κB activity, and mRNA for inflammatory mediators, RAS components and c-Fos protein in the SFO and downstream in the hypothalamic paraventricular nucleus, along with increased plasma norepinephrine levels and impaired cardiac function, compared with vehicle-treated sham-operated rats. In HF rats treated with TNFR1 shRNA, TNFR1 was reduced in the SFO but not paraventricular nucleus, and the central and peripheral manifestations of HF were ameliorated. In sham-operated rats treated with TNFR1 shRNA, TNFR1 expression was also reduced in the SFO but there were no other effects. These results suggest a key role for TNFR1 in the SFO in the pathophysiology of systolic HF.NEW & NOTEWORTHY Activation of TNF-α receptor 1 in the subfornical organ (SFO) contributes to sympathetic excitation in heart failure rats by increasing inflammation and renin-angiotensin system activity in the SFO and downstream in the hypothalamic paraventricular nucleus. Cytokine receptors in the SFO may be a target for central intervention in cardiovascular conditions characterized by peripheral inflammation.
Collapse
Affiliation(s)
- Yang Yu
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa; and
| | - Shun-Guang Wei
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa; and
| | - Robert M Weiss
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa; and
| | - Robert B Felder
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa; and .,Research Service, Veterans Affairs Medical Center, Iowa City, Iowa
| |
Collapse
|
23
|
Nan J, Hu H, Sun Y, Zhu L, Wang Y, Zhong Z, Zhao J, Zhang N, Wang Y, Wang Y, Ye J, Zhang L, Hu X, Zhu W, Wang J. TNFR2 Stimulation Promotes Mitochondrial Fusion via Stat3- and NF-kB-Dependent Activation of OPA1 Expression. Circ Res 2017. [PMID: 28637784 PMCID: PMC5542782 DOI: 10.1161/circresaha.117.311143] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Supplemental Digital Content is available in the text. Rationale: Mitochondria are important cellular organelles and play essential roles in maintaining cell structure and function. Emerging evidence indicates that in addition to having proinflammatory and proapoptotic effects, TNFα (tumor necrosis factor α) can, under certain circumstances, promote improvements in mitochondrial integrity and function, phenomena that can be ascribed to the existence of TNFR2 (TNFα receptor 2). Objective: The present study aimed to investigate whether and how TNFR2 activation mediates the effects of TNFα on mitochondria. Methods and Results: Freshly isolated neonatal mouse cardiac myocytes treated with shRNA targeting TNFR1 were used to study the effects of TNFR2 activation on mitochondrial function. Neonatal mouse cardiac myocytes exhibited increases in mitochondrial fusion, a change that was associated with increases in mitochondrial membrane potential, intracellular ATP levels, and oxygen consumption capacity. Importantly, TNFR2 activation–induced increases in OPA1 (optic atrophy 1) protein expression were responsible for the above enhancements, and these changes could be attenuated using siRNA targeting OPA1. Moreover, both Stat3 and RelA bound to the promoter region of OPA1 and their interactions synergistically upregulated OPA1 expression at the transcriptional level. Stat3 acetylation at lysine 370 or lysine 383 played a key role in the ability of Stat3 to form a supercomplex with RelA. Meanwhile, p300 modulated Stat3 acetylation in HEK293T (human embryonic kidney 293T) cells, and p300-mediated Stat3/RelA interactions played an indispensable role in OPA1 upregulation. Finally, TNFR2 activation exerted beneficial effects on OPA1 expression in an in vivo transverse aortic constriction model, whereby TNFR1-knockout mice exhibited better outcomes than in mice with both TNFR1 and TNFR2 knocked out. Conclusions: TNFR2 activation protects cardiac myocytes against stress by upregulating OPA1 expression. This process was facilitated by p300-mediated Stat3 acetylation and Stat3/RelA interactions, leading to improvements in mitochondrial morphology and function.
Collapse
Affiliation(s)
- Jinliang Nan
- From the Cardiovascular Key Laboratory of Zhejiang Province, Department of Cardiology (J.N., H.H., Y.S., L.Z., Y.W., Z.Z., J.Z., N.Z., Y.W., Y.W., J.Y., L.Z., X.H., W.Z., J.W.) and Clinical Research Center (L.Z., Y.W., Z.Z., J.Z.), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hengxun Hu
- From the Cardiovascular Key Laboratory of Zhejiang Province, Department of Cardiology (J.N., H.H., Y.S., L.Z., Y.W., Z.Z., J.Z., N.Z., Y.W., Y.W., J.Y., L.Z., X.H., W.Z., J.W.) and Clinical Research Center (L.Z., Y.W., Z.Z., J.Z.), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yong Sun
- From the Cardiovascular Key Laboratory of Zhejiang Province, Department of Cardiology (J.N., H.H., Y.S., L.Z., Y.W., Z.Z., J.Z., N.Z., Y.W., Y.W., J.Y., L.Z., X.H., W.Z., J.W.) and Clinical Research Center (L.Z., Y.W., Z.Z., J.Z.), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lianlian Zhu
- From the Cardiovascular Key Laboratory of Zhejiang Province, Department of Cardiology (J.N., H.H., Y.S., L.Z., Y.W., Z.Z., J.Z., N.Z., Y.W., Y.W., J.Y., L.Z., X.H., W.Z., J.W.) and Clinical Research Center (L.Z., Y.W., Z.Z., J.Z.), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yingchao Wang
- From the Cardiovascular Key Laboratory of Zhejiang Province, Department of Cardiology (J.N., H.H., Y.S., L.Z., Y.W., Z.Z., J.Z., N.Z., Y.W., Y.W., J.Y., L.Z., X.H., W.Z., J.W.) and Clinical Research Center (L.Z., Y.W., Z.Z., J.Z.), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhiwei Zhong
- From the Cardiovascular Key Laboratory of Zhejiang Province, Department of Cardiology (J.N., H.H., Y.S., L.Z., Y.W., Z.Z., J.Z., N.Z., Y.W., Y.W., J.Y., L.Z., X.H., W.Z., J.W.) and Clinical Research Center (L.Z., Y.W., Z.Z., J.Z.), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jing Zhao
- From the Cardiovascular Key Laboratory of Zhejiang Province, Department of Cardiology (J.N., H.H., Y.S., L.Z., Y.W., Z.Z., J.Z., N.Z., Y.W., Y.W., J.Y., L.Z., X.H., W.Z., J.W.) and Clinical Research Center (L.Z., Y.W., Z.Z., J.Z.), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Na Zhang
- From the Cardiovascular Key Laboratory of Zhejiang Province, Department of Cardiology (J.N., H.H., Y.S., L.Z., Y.W., Z.Z., J.Z., N.Z., Y.W., Y.W., J.Y., L.Z., X.H., W.Z., J.W.) and Clinical Research Center (L.Z., Y.W., Z.Z., J.Z.), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ya Wang
- From the Cardiovascular Key Laboratory of Zhejiang Province, Department of Cardiology (J.N., H.H., Y.S., L.Z., Y.W., Z.Z., J.Z., N.Z., Y.W., Y.W., J.Y., L.Z., X.H., W.Z., J.W.) and Clinical Research Center (L.Z., Y.W., Z.Z., J.Z.), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yaping Wang
- From the Cardiovascular Key Laboratory of Zhejiang Province, Department of Cardiology (J.N., H.H., Y.S., L.Z., Y.W., Z.Z., J.Z., N.Z., Y.W., Y.W., J.Y., L.Z., X.H., W.Z., J.W.) and Clinical Research Center (L.Z., Y.W., Z.Z., J.Z.), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jian Ye
- From the Cardiovascular Key Laboratory of Zhejiang Province, Department of Cardiology (J.N., H.H., Y.S., L.Z., Y.W., Z.Z., J.Z., N.Z., Y.W., Y.W., J.Y., L.Z., X.H., W.Z., J.W.) and Clinical Research Center (L.Z., Y.W., Z.Z., J.Z.), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ling Zhang
- From the Cardiovascular Key Laboratory of Zhejiang Province, Department of Cardiology (J.N., H.H., Y.S., L.Z., Y.W., Z.Z., J.Z., N.Z., Y.W., Y.W., J.Y., L.Z., X.H., W.Z., J.W.) and Clinical Research Center (L.Z., Y.W., Z.Z., J.Z.), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xinyang Hu
- From the Cardiovascular Key Laboratory of Zhejiang Province, Department of Cardiology (J.N., H.H., Y.S., L.Z., Y.W., Z.Z., J.Z., N.Z., Y.W., Y.W., J.Y., L.Z., X.H., W.Z., J.W.) and Clinical Research Center (L.Z., Y.W., Z.Z., J.Z.), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wei Zhu
- From the Cardiovascular Key Laboratory of Zhejiang Province, Department of Cardiology (J.N., H.H., Y.S., L.Z., Y.W., Z.Z., J.Z., N.Z., Y.W., Y.W., J.Y., L.Z., X.H., W.Z., J.W.) and Clinical Research Center (L.Z., Y.W., Z.Z., J.Z.), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jian'an Wang
- From the Cardiovascular Key Laboratory of Zhejiang Province, Department of Cardiology (J.N., H.H., Y.S., L.Z., Y.W., Z.Z., J.Z., N.Z., Y.W., Y.W., J.Y., L.Z., X.H., W.Z., J.W.) and Clinical Research Center (L.Z., Y.W., Z.Z., J.Z.), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
24
|
Kuperberg SJ, Wadgaonkar R. Sepsis-Associated Encephalopathy: The Blood-Brain Barrier and the Sphingolipid Rheostat. Front Immunol 2017; 8:597. [PMID: 28670310 PMCID: PMC5472697 DOI: 10.3389/fimmu.2017.00597] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 05/05/2017] [Indexed: 12/18/2022] Open
Abstract
Sepsis is not only a significant cause of mortality worldwide but has particularly devastating effects on the central nervous system of survivors. It is therefore crucial to understand the molecular structure, physiology, and events involved in the pathogenesis of sepsis-associated encephalopathy, so that potential therapeutic advances can be achieved. A key determinant to the development of this type of encephalopathy is morphological and functional modification of the blood–brain barrier (BBB), whose function is to protect the CNS from pathogens and toxic threats. Key mediators of pathologic sequelae of sepsis in the brain include cytokines, including TNF-α, and sphingolipids, which are biologically active components of cellular membranes that possess diverse functions. Emerging data demonstrated an essential role for sphingolipids in the pulmonary vascular endothelium. This raises the question of whether endothelial stability in other organs systems such as the CNS may also be mediated by sphingolipids and their receptors. In this review, we will model the structure and vulnerability of the BBB and hypothesize mechanisms for therapeutic stabilization and repair following a confrontation with sepsis-induced inflammation.
Collapse
Affiliation(s)
- Stephen J Kuperberg
- Pulmonary and Critical Care Medicine, Wake Forest University School of Medicine, Winston Salem, NC, United States
| | - Raj Wadgaonkar
- SUNY Downstate Medical Center, Brooklyn, NY, United States
| |
Collapse
|
25
|
Boese AC, Kim SC, Yin KJ, Lee JP, Hamblin MH. Sex differences in vascular physiology and pathophysiology: estrogen and androgen signaling in health and disease. Am J Physiol Heart Circ Physiol 2017. [PMID: 28626075 DOI: 10.1152/ajpheart.00217.2016] [Citation(s) in RCA: 138] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Sex differences between women and men are often overlooked and underappreciated when studying the cardiovascular system. It has been long assumed that men and women are physiologically similar, and this notion has resulted in women being clinically evaluated and treated for cardiovascular pathophysiological complications as men. Currently, there is increased recognition of fundamental sex differences in cardiovascular function, anatomy, cell signaling, and pathophysiology. The National Institutes of Health have enacted guidelines expressly to gain knowledge about ways the sexes differ in both normal function and diseases at the various research levels (molecular, cellular, tissue, and organ system). Greater understanding of these sex differences will be used to steer future directions in the biomedical sciences and translational and clinical research. This review describes sex-based differences in the physiology and pathophysiology of the vasculature, with a special emphasis on sex steroid receptor (estrogen and androgen receptor) signaling and their potential impact on vascular function in health and diseases (e.g., atherosclerosis, hypertension, peripheral artery disease, abdominal aortic aneurysms, cerebral aneurysms, and stroke).
Collapse
Affiliation(s)
- Austin C Boese
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana
| | - Seong C Kim
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana
| | - Ke-Jie Yin
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Jean-Pyo Lee
- Department of Neurology, Tulane University School of Medicine, New Orleans, Louisiana; and.,Center for Stem Cell Research and Regenerative Medicine, New Orleans, Louisiana
| | - Milton H Hamblin
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana;
| |
Collapse
|
26
|
Chronic TNFα Exposure Induces Robust Proliferation of Olfactory Ensheathing Cells, but not Schwann Cells. Neurochem Res 2017; 42:2595-2609. [PMID: 28497341 DOI: 10.1007/s11064-017-2285-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 04/21/2017] [Accepted: 04/27/2017] [Indexed: 10/19/2022]
Abstract
TNFα is persistently elevated in many injury and disease conditions. Previous reports of cytotoxicity of TNFα for oligodendrocytes and their progenitors suggest that the poor endogenous remyelination in patients with traumatic injury or multiple sclerosis may be due in part to persistent inflammation. Understanding the effects of inflammatory cytokines on potential cell therapy candidates is therefore important for evaluating the feasibility of their use. In this study, we assessed the effects of long term exposure to TNFα on viability, proliferation, migration and TNFα receptor expression of cultured rat olfactory ensheathing cells (OECs) and Schwann cells (SCs). Although OECs and SCs transplanted into the CNS produce similar myelinating phenotypes, and might be expected to have similar therapeutic uses, we report that they have very different sensitivities to TNFα. OECs exhibited positive proliferative responses to TNFα over a much broader range of concentrations than SCs. Low TNFα concentrations increased proliferation and migration of both OECs and SCs, but SC number declined in the presence of 100 ng/ml or higher concentrations of TNFα. In contrast, OECs exhibited enhanced proliferation even at high TNFα concentrations (up to 1 µg/ml) and showed no evidence of TNF cytotoxicity even at 4 weeks post-treatment. Furthermore, while both OECs and SCs expressed TNFαR1 and TNFαR2, TNFα receptor levels were downregulated in OECs after exposure to100 ng/ml TNFα for 5-7 days, but were either elevated or unchanged in SCs. These results imply that OECs may be a more suitable cell therapy candidate if transplanted into areas with persistent inflammation.
Collapse
|
27
|
Ampofo E, Schmitt BM, Menger MD, Laschke MW. The regulatory mechanisms of NG2/CSPG4 expression. Cell Mol Biol Lett 2017; 22:4. [PMID: 28536635 PMCID: PMC5415841 DOI: 10.1186/s11658-017-0035-3] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 02/22/2017] [Indexed: 12/24/2022] Open
Abstract
Neuron-glial antigen 2 (NG2), also known as chondroitin sulphate proteoglycan 4 (CSPG4), is a surface type I transmembrane core proteoglycan that is crucially involved in cell survival, migration and angiogenesis. NG2 is frequently used as a marker for the identification and characterization of certain cell types, but little is known about the mechanisms regulating its expression. In this review, we provide evidence that the regulation of NG2 expression underlies inflammation and hypoxia and is mediated by methyltransferases, transcription factors, including Sp1, paired box (Pax) 3 and Egr-1, and the microRNA miR129-2. These regulatory factors crucially determine NG2-mediated cellular processes such as glial scar formation in the central nervous system (CNS) or tumor growth and metastasis. Therefore, they are potential targets for the establishment of novel NG2-based therapeutic strategies in the treatment of CNS injuries, cancer and other conditions of these types.
Collapse
Affiliation(s)
- Emmanuel Ampofo
- Institute for Clinical & Experimental Surgery, Saarland University, 66421 Homburg, Germany
| | - Beate M Schmitt
- Institute for Clinical & Experimental Surgery, Saarland University, 66421 Homburg, Germany
| | - Michael D Menger
- Institute for Clinical & Experimental Surgery, Saarland University, 66421 Homburg, Germany
| | - Matthias W Laschke
- Institute for Clinical & Experimental Surgery, Saarland University, 66421 Homburg, Germany
| |
Collapse
|
28
|
Guruswamy R, ElAli A. Complex Roles of Microglial Cells in Ischemic Stroke Pathobiology: New Insights and Future Directions. Int J Mol Sci 2017; 18:ijms18030496. [PMID: 28245599 PMCID: PMC5372512 DOI: 10.3390/ijms18030496] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 02/21/2017] [Accepted: 02/22/2017] [Indexed: 12/16/2022] Open
Abstract
Ischemic stroke constitutes the major cause of death and disability in the industrialized world. The interest in microglia arose from the evidence outlining the role of neuroinflammation in ischemic stroke pathobiology. Microglia constitute the powerhouse of innate immunity in the brain. Microglial cells are highly ramified, and use these ramifications as sentinels to detect changes in brain homeostasis. Once a danger signal is recognized, cells become activated and mount specialized responses that range from eliminating cell debris to secreting inflammatory signals and trophic factors. Originally, it was suggested that microglia play essentially a detrimental role in ischemic stroke. However, recent reports are providing evidence that the role of these cells is more complex than what was originally thought. Although these cells play detrimental role in the acute phase, they are required for tissue regeneration in the post-acute phases. This complex role of microglia in ischemic stroke pathobiology constitutes a major challenge for the development of efficient immunomodulatory therapies. This review aims at providing an overview regarding the role of resident microglia and peripherally recruited macrophages in ischemic pathobiology. Furthermore, the review will highlight future directions towards the development of novel fine-tuning immunomodulatory therapeutic interventions.
Collapse
Affiliation(s)
- Revathy Guruswamy
- Neuroscience Axis, CHU de Québec Research Center (CHUL), Québec City, QC G1V 4G2, Canada.
- Department of Psychiatry and Neuroscience, Faculty of Medicine, Laval University, Québec City, QC G1V 4G2, Canada.
| | - Ayman ElAli
- Neuroscience Axis, CHU de Québec Research Center (CHUL), Québec City, QC G1V 4G2, Canada.
- Department of Psychiatry and Neuroscience, Faculty of Medicine, Laval University, Québec City, QC G1V 4G2, Canada.
| |
Collapse
|
29
|
Wang L, Hiller H, Smith JA, de Kloet AD, Krause EG. Angiotensin type 1a receptors in the paraventricular nucleus of the hypothalamus control cardiovascular reactivity and anxiety-like behavior in male mice. Physiol Genomics 2016; 48:667-76. [PMID: 27468749 PMCID: PMC5111882 DOI: 10.1152/physiolgenomics.00029.2016] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 07/13/2016] [Indexed: 01/19/2023] Open
Abstract
This study tested the hypothesis that deletion of angiotensin type 1a receptors (AT1a) from the paraventricular nucleus of hypothalamus (PVN) attenuates anxiety-like behavior, hypothalamic-pituitary-adrenal (HPA) axis activity, and cardiovascular reactivity. We used the Cre/LoxP system to generate male mice with AT1a specifically deleted from the PVN. Deletion of the AT1a from the PVN reduced anxiety-like behavior as indicated by increased time spent in the open arms of the elevated plus maze. In contrast, PVN AT1a deletion had no effect on HPA axis activation subsequent to an acute restraint challenge but did reduce hypothalamic mRNA expression for corticotropin-releasing hormone (CRH). To determine whether PVN AT1a deletion inhibits cardiovascular reactivity, we measured systolic blood pressure, heart rate, and heart rate variability (HRV) using telemetry and found that PVN AT1a deletion attenuated restraint-induced elevations in systolic blood pressure and elicited changes in HRV indicative of reduced sympathetic nervous activity. Consistent with the decreased HRV, PVN AT1a deletion also decreased adrenal weight, suggestive of decreased adrenal sympathetic outflow. Interestingly, the altered stress responsivity of mice with AT1a deleted from the PVN was associated with decreased hypothalamic microglia and proinflammatory cytokine expression. Collectively, these results suggest that deletion of AT1a from the PVN attenuates anxiety, CRH gene transcription, and cardiovascular reactivity and reduced brain inflammation may contribute to these effects.
Collapse
Affiliation(s)
- Lei Wang
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida; and
| | - Helmut Hiller
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida; and
| | - Justin A Smith
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida; and
| | - Annette D de Kloet
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville, Florida
| | - Eric G Krause
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida; and
| |
Collapse
|
30
|
Turhan L, Batmaz S, Kocbiyik S, Soygur AH. The role of tumour necrosis factor alpha and soluble tumour necrosis factor alpha receptors in the symptomatology of schizophrenia. Nord J Psychiatry 2016; 70:342-350. [PMID: 26754110 DOI: 10.3109/08039488.2015.1122079] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Background Immunological mechanisms may be responsible for the development and maintenance of schizophrenia symptoms. Aim The aim of this study is to measure tumour necrosis factor-alpha (TNF-α), soluble tumour necrosis factor-alpha receptor I (sTNF-αRI), and soluble tumour necrosis factor-alpha receptor II (sTNF-αRII) levels in patients with schizophrenia and healthy individuals, and to determine their relationship with the symptoms of schizophrenia. Methods Serum TNF-α, sTNF-αRI and sTNF-αRII levels were measured. The Positive and Negative Syndrome Scale (PANSS) was administered for patients with schizophrenia (n = 35), and the results were compared with healthy controls (n = 30). Hierarchical regression analyses were undertaken to predict the levels of TNF-α, sTNF-αRI and sTNF-αRII. Results No significant difference was observed in TNF-α levels, but sTNF-αRI and sTNF-αRII levels were lower in patients with schizophrenia. Serum sTNF-αRI and sTNF-αRII levels were found to be negatively correlated with the negative subscale score of the PANSS, and sTNF-αRI levels were also negatively correlated with the total score of the PANSS. Smoking, gender, body mass index were not correlated with TNF-α and sTNF-α receptor levels. Conclusions These results suggest that there may be a change in anti-inflammatory response in patients with schizophrenia due to sTNF-αRI and sTNF-αRII levels. The study also supports low levels of TNF activity in schizophrenia patients with negative symptoms.
Collapse
Affiliation(s)
- Levent Turhan
- a Kartal Lutfi Kirdar Training and Research Hospital, Psychiatry Clinic , Istanbul , Turkey
| | - Sedat Batmaz
- b School of Medicine, Department of Psychiatry , Gaziosmanpasa University , Tokat , Turkey
| | - Sibel Kocbiyik
- c Ataturk Training and Research Hospital, Psychiatry Clinic , Ankara , Turkey
| | | |
Collapse
|
31
|
Abstract
Tumor necrosis factor-α (TNFα) is a prototypic inflammatory cytokine up-regulated in most if not all neurodegenerative diseases. Many studies have reported variable roles in the adult or pathological brain. In contrast, the implication of TNFα in developmental neuronal cell death has been well documented in few studies. In sympathetic and trigeminal neurons, TNFα acts in an autocrine manner to induce immediate cell death on neurotrophic factor deprivation. In the spinal cord, TNFα is transiently produced by macrophages and commits motoneurons to become competent to die 2 days later. TNFα is also likely to induce immediate and delayed prodeath effects in adult and pathological tissues. Data obtained in embryonic systems will thus help to develop new therapeutic approaches to pathological neuronal death in adults.
Collapse
Affiliation(s)
- Alain Bessis
- Laboratoire de Biologie Cellulaire de la Synapse Normale et Pathologique, INSERM U497 Ecole Normale Supérieure, Paris, France.
| | | | | |
Collapse
|
32
|
Abstract
Microglia constitute the powerhouse of the innate immune system in the brain. It is now widely accepted that they are monocytic-derived cells that infiltrate the developing brain at the early embryonic stages, and acquire a resting phenotype characterized by the presence of dense branching processes, called ramifications. Microglia use these dynamic ramifications as sentinels to sense and detect any occurring alteration in brain homeostasis. Once a danger signal is detected, such as molecular factors associated to brain damage or infection, they get activated by acquiring a less ramified phenotype, and mount adequate responses that range from phagocyting cell debris to secreting inflammatory and trophic factors. Here, we review the origin of microglia and we summarize the main molecular signals involved in controlling their function under physiological conditions. In addition, their implication in the pathogenesis of multiple sclerosis and stress is discussed.
Collapse
Affiliation(s)
- Ayman ElAli
- Neuroscience Laboratory, CHU de Québec Research Center (CHUL), Department of Psychiatry and Neuroscience, Faculty of Medicine, Laval University Quebec, CA, Canada
| | - Serge Rivest
- Neuroscience Laboratory, CHU de Québec Research Center (CHUL), Department of Molecular Medicine, Faculty of Medicine, Laval University Quebec, CA, Canada
| |
Collapse
|
33
|
Wang J, Ding CP, Yu J, Zeng XY, Han SP, Wang JY. Dynamic distributions of tumor necrosis factor-alpha and its receptors in the red nucleus of rats with spared nerve injury. Neuropathology 2015; 36:346-53. [PMID: 26669937 DOI: 10.1111/neup.12282] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 11/23/2015] [Accepted: 11/24/2015] [Indexed: 01/12/2023]
Abstract
Previous studies have demonstrated that tumor necrosis factor-alpha (TNF-α) in the red nucleus (RN) plays a facilitated role in the development of neuropathic pain, and its effect is transmitted through TNF-α receptor (TNFR) subtypes 1 and 2. Here, the dynamic distributions of TNF-α and TNFRs in the RN of rats with spared nerve injury (SNI) were investigated. Western blot analysis and immunofluorescence staining indicated that TNF-α was hardly expressed in the RN of normal rats but significantly increased at 1 week and peaked at 2 weeks after SNI. Neurons and oligodendrocytes showed TNF-α expression at both 1 week and 2 weeks after SNI, while astrocytes and microglia produced TNF-α later than neurons and oligodendrocytes starting at 2 weeks after SNI. TNFR1 was constitutively expressed in the RN of normal rats and significantly enhanced at 2 weeks but not 1 week after SNI; it was mainly localized in neurons, oligodendrocytes and microglia. Astrocytes were not immunopositive for TNFR1 under normal conditions and at 1 week after injury, but small amounts of astrocytes showed TNFR1 expression at 2 weeks after SNI. A low level of TNFR2 was expressed in the RN of normal rats, but it was significantly increased at 1 week and 2 weeks after SNI and localized in neurons and all three types of glia. These findings suggest that neurons and three types of glia in the RN all contribute to TNF-α production and participate in the initiation and/or maintenance of neuropathic pain induced by SNI. TNF-α exerts its effects in different types of cells maybe through different receptors, TNFR1 and/or TNFR2, in the different stages of neuropathic pain.
Collapse
Affiliation(s)
- Jing Wang
- Departments of Pathogenic Biology and Immunology, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Cui-Ping Ding
- Departments of Pathogenic Biology and Immunology, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Jing Yu
- Departments of Pathogenic Biology and Immunology, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Xiao-Yan Zeng
- Department of Laboratory Medicine, The First Affiliated Hospital, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Shui-Ping Han
- Department of Pathology, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Jun-Yang Wang
- Departments of Pathogenic Biology and Immunology, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| |
Collapse
|
34
|
Pearson H, Britt RD, Pabelick CM, Prakash Y, Amrani Y, Pandya HC. Fetal human airway smooth muscle cell production of leukocyte chemoattractants is differentially regulated by fluticasone. Pediatr Res 2015; 78:650-6. [PMID: 26331770 PMCID: PMC4725051 DOI: 10.1038/pr.2015.168] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Accepted: 06/11/2015] [Indexed: 01/05/2023]
Abstract
BACKGROUND Adult human airway smooth muscle (ASM) produce cytokines involved in recruitment and survival of leukocytes within airway walls. Cytokine generation by adult ASM is glucocorticoid-sensitive. Whether developing lung ASM produces cytokines in a glucocorticoid-sensitive fashion is unknown. METHODS Cultured fetal human ASM cells stimulated with TNF-α (0-20 ng/ml) were incubated with TNF-α receptor-blocking antibodies, fluticasone (1 and 100 nm), or vehicle. Supernatants and cells were assayed for the production of CCL5, CXCL10, and CXCL8 mRNA and protein and glucocorticoid receptor phosphorylation. RESULTS CCL5, CXCL10, and CXCL8 mRNA and protein production by fetal ASM cell was significantly and dose-dependently following TNF-α treatment. Cytokine mRNA and protein production were effectively blocked by TNF-α R1 and R2 receptor neutralizing antibodies but variably inhibited by fluticasone. TNF-α-induced TNF-R1 and R2 receptor mRNA expression was only partially attenuated by fluticasone. Glucocorticoid receptor phosphorylation at serine (Ser) 211 but not at Ser 226 was enhanced by fluticasone. CONCLUSION Production of CCL5, CXCL10, and CXCL8 by fetal ASM appears to involve pathways that are both qualitatively and mechanistically distinct to those described for adult ASM. The findings imply developing ASM has potential to recruit leukocyte into airways and, therefore, of relevance to childhood airway diseases.
Collapse
MESH Headings
- Antibodies/pharmacology
- Cells, Cultured
- Chemokine CCL5/genetics
- Chemokine CCL5/metabolism
- Chemokine CXCL10/genetics
- Chemokine CXCL10/metabolism
- Chemotaxis, Leukocyte/drug effects
- Cytokines/immunology
- Cytokines/metabolism
- Dose-Response Relationship, Drug
- Fluticasone/pharmacology
- Gestational Age
- Glucocorticoids/pharmacology
- Humans
- Interleukin-8/genetics
- Interleukin-8/metabolism
- Lung/drug effects
- Lung/embryology
- Lung/immunology
- Lung/metabolism
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/immunology
- Myocytes, Smooth Muscle/metabolism
- Phosphorylation
- Receptors, Glucocorticoid/agonists
- Receptors, Glucocorticoid/metabolism
- Receptors, Tumor Necrosis Factor, Type I/drug effects
- Receptors, Tumor Necrosis Factor, Type I/immunology
- Receptors, Tumor Necrosis Factor, Type I/metabolism
- Receptors, Tumor Necrosis Factor, Type II/drug effects
- Receptors, Tumor Necrosis Factor, Type II/immunology
- Receptors, Tumor Necrosis Factor, Type II/metabolism
- Serine
- Signal Transduction/drug effects
- Tumor Necrosis Factor-alpha/pharmacology
Collapse
Affiliation(s)
- Helen Pearson
- Department of Infection, Immunity and inflammation, University of Leicester, Leicester, UK
| | - Rodney D. Britt
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Christine M. Pabelick
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
- Department of Anesthesiology, Mayo Clinic, Rochester, Minnesota
| | - Y.S. Prakash
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
- Department of Anesthesiology, Mayo Clinic, Rochester, Minnesota
| | - Yassine Amrani
- Department of Infection, Immunity and inflammation, University of Leicester, Leicester, UK
- Institute of Lung Health, Glenfield Hospital Leicester, Leicester, UK
| | - Hitesh C. Pandya
- Department of Infection, Immunity and inflammation, University of Leicester, Leicester, UK
- Institute of Lung Health, Glenfield Hospital Leicester, Leicester, UK
| |
Collapse
|
35
|
Targeting of Tumor Necrosis Factor Alpha Receptors as a Therapeutic Strategy for Neurodegenerative Disorders. Antibodies (Basel) 2015. [DOI: 10.3390/antib4040369] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
36
|
Pozniak PD, Darbinyan A, Khalili K. TNF-α/TNFR2 Regulatory Axis Stimulates EphB2-Mediated Neuroregeneration Via Activation of NF-κB. J Cell Physiol 2015; 231:1237-48. [PMID: 26492598 DOI: 10.1002/jcp.25219] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 10/20/2015] [Indexed: 12/11/2022]
Abstract
HIV-1 infected individuals are at high risk of developing HIV-associated neurocognitive disorders (HAND) as HIV infection leads to neuronal injury and synaptic loss in the central nervous system (CNS). The neurotoxic effects of HIV-1 are primarily a result of viral replication leading to the production of inflammatory chemokines and cytokines, including TNF-α. Given an important role of TNF-α in regulating synaptic plasticity, we investigated the effects of TNF-α on the development of neuronal processes after mechanical injury, and we showed that TNF-α treatment stimulates the regrowth of neuronal processes. To investigate transcriptional effects of TNF-α on synaptic plasticity, we analyzed both human neurosphere and isolated neuronal cultures for the regulation of genes central to synaptic alterations during learning and memory. TNF-α treatment upregulated Ephrin receptor B2 (EphB2), which is strongly involved in dendritic arborization and synaptic integrity. TNF-α strongly activates the NF-κB pathway, therefore, we propose that TNF-α-induced neurite regrowth occurs primarily through EphB2 signaling via stimulation of NF-κB. EphB2 promoter activity increased with TNF-α treatment and overexpression of NF-κB. Direct binding of NF-κB to the EphB2 promoter occurred in the ChIP assay, and site-directed mutagenesis identified binding sites involved in TNF-α-induced EphB2 activation. TNF-α induction of EphB2 was determined to occur specifically through TNF-α receptor 2 (TNFR2) activation in human primary fetal neurons. Our observations provide a new avenue for the investigation on the impact of TNF-α in the context of HIV-1 neuronal cell damage as well as providing a potential therapeutic target in TNFR2 activation of EphB2.
Collapse
Affiliation(s)
- Paul D Pozniak
- Department of Neuroscience, Center for Neurovirology, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Armine Darbinyan
- Department of Neuroscience, Center for Neurovirology, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania.,Division of Neuropathology, Department of Pathology, The Icahn School of Medicine at Mount Sinai, New York, New York
| | - Kamel Khalili
- Department of Neuroscience, Center for Neurovirology, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| |
Collapse
|
37
|
Moravcová S, Červená K, Pačesová D, Bendová Z. Identification of STAT3 and STAT5 proteins in the rat suprachiasmatic nucleus and the Day/Night difference in astrocytic STAT3 phosphorylation in response to lipopolysaccharide. J Neurosci Res 2015; 94:99-108. [PMID: 26420542 DOI: 10.1002/jnr.23673] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 09/01/2015] [Accepted: 09/08/2015] [Indexed: 12/12/2022]
Abstract
Signal transducers and activators of transcription (STAT) proteins regulate many aspects of cellular physiology from growth and differentiations to immune responses. Using immunohistochemistry, we show the daily rhythm of STAT3 protein in the rat suprachiasmatic nucleus (SCN), with low but significant amplitude peaking in the morning. We also reveal the strong expression of STAT5A in astrocytes of the SCN and the STAT5B signal in nonastrocytic cells. Administration of lipopolysaccharide (LPS) acutely induced phosphorylation of STAT3 on Tyr705 during both the day and the night and induced phosphorylation on Ser727 but only after the daytime application. The LPS-induced phospho-STAT3 (Tyr705) remained elevated for 24 hr after the daytime application but declined within 8 hr when LPS was applied at night.
Collapse
Affiliation(s)
- Simona Moravcová
- Department of Physiology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Kateřina Červená
- Department of Physiology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Dominika Pačesová
- Department of Physiology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Zdeňka Bendová
- Department of Physiology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| |
Collapse
|
38
|
Männel C, Meyer L, Wilcke A, Boltze J, Kirsten H, Friederici AD. Working-memory endophenotype and dyslexia-associated genetic variant predict dyslexia phenotype. Cortex 2015; 71:291-305. [PMID: 26283516 DOI: 10.1016/j.cortex.2015.06.029] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 04/28/2015] [Accepted: 06/02/2015] [Indexed: 01/18/2023]
Abstract
Developmental dyslexia, a severe impairment of literacy acquisition, is known to have a neurological basis and a strong genetic background. However, effects of individual genetic variations on dyslexia-associated deficits are only moderate and call for the assessment of the genotype's impact on mediating neuro-endophenotypes by the imaging genetics approach. Using voxel-based morphometry (VBM) in German participants with and without dyslexia, we investigated gray matter changes and their association with impaired phonological processing, such as reduced verbal working memory. These endophenotypical alterations were, together with dyslexia-associated genetic variations, examined on their suitability as potential predictors of dyslexia. We identified two gray matter clusters in the left posterior temporal cortex related to verbal working memory capacity. Regional cluster differences correlated with genetic risk variants in TNFRSF1B. High-genetic-risk participants exhibit a structural predominance of auditory-association areas relative to auditory-sensory areas, which may partly compensate for deficient early auditory-sensory processing stages of verbal working memory. The reverse regional predominance observed in low-genetic-risk participants may in turn reflect reliance on these early auditory-sensory processing stages. Logistic regression analysis further supported that regional gray matter differences and genetic risk interact in the prediction of individuals' diagnostic status: With increasing genetic risk, the working-memory related structural predominance of auditory-association areas relative to auditory-sensory areas classifies participants with dyslexia versus control participants. Focusing on phonological deficits in dyslexia, our findings suggest endophenotypical changes in the left posterior temporal cortex could comprise novel pathomechanisms for verbal working memory-related processes translating TNFRSF1B genotype into the dyslexia phenotype.
Collapse
Affiliation(s)
- Claudia Männel
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
| | - Lars Meyer
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Arndt Wilcke
- Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany; Translational Centre for Regenerative Medicine, University of Leipzig, Leipzig, Germany
| | - Johannes Boltze
- Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany; Translational Centre for Regenerative Medicine, University of Leipzig, Leipzig, Germany; Massachusetts General Hospital and Harvard Medical School, Boston, USA
| | - Holger Kirsten
- Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany; Translational Centre for Regenerative Medicine, University of Leipzig, Leipzig, Germany; Institute for Medical Informatics, Statistics, and Epidemiology (IMISE), University of Leipzig, Leipzig, Germany
| | - Angela D Friederici
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| |
Collapse
|
39
|
Brüning CA, Martini F, Soares SM, Savegnago L, Sampaio TB, Nogueira CW. Depressive-like behavior induced by tumor necrosis factor-α is attenuated by m-trifluoromethyl-diphenyl diselenide in mice. J Psychiatr Res 2015; 66-67:75-83. [PMID: 25982254 DOI: 10.1016/j.jpsychires.2015.04.019] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 03/17/2015] [Accepted: 04/24/2015] [Indexed: 01/04/2023]
Abstract
A growing body of evidence associates activation of immune system with depressive symptoms. Accordingly, pro-inflammatory cytokines, such as tumor necrosis factor-α (TNF-α), have been shown to play a pivotal role in the pathophysiology of depression. The aim of this study was to evaluate the effectiveness of acute and subchronic treatments with (m-CF3-PhSe)2 to prevent the depressive-like behavior induced by intracerebroventricular injection of TNF-α in mice. TNF-α induced depressive-like behavior in the forced swimming test (FST) and tail suspension test (TST) (0.1 and 0.001 ƒg/5 μL/site, respectively) without changing locomotor activity, performed in the locomotor activity monitor (LAM). Acute (0.01-50 mg/kg; intragastric (i.g.); 30 min) and subchronic (0.01 and 0.1 mg/kg; i.g.; 14 days) treatments with (m-CF3-PhSe)2 at low doses were effective against the effect of TNF-α in the FST and TST. Nuclear factor-κB (NF-κB) and p38 mitogen-activated protein kinase (p38 MAPK), important proteins in TNF-activated signaling, were determined in the prefrontal cortex and hippocampus of mouse. TNF-α (0.1 ƒg/5 μL/site) increased NF-κB levels and p38 MAPK activation in both brain areas and acute (10 mg/kg; i.g.) and subchronic (0.01 mg/kg; i.g.) treatments with (m-CF3-PhSe)2 were effective in attenuating this increase. Although more studies are necessary to indicate this compound as a therapeutic alternative to depression, the antidepressant-like and anti-inflammatory effects of (m-CF3-PhSe)2 demonstrated herein may support it as an interesting molecule in the search for new drugs to treat depressive disorders that have been largely linked to immune process and inflammation.
Collapse
Affiliation(s)
- César Augusto Brüning
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria CEP 97105-900, RS, Brazil
| | - Franciele Martini
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria CEP 97105-900, RS, Brazil
| | - Suelen Mendonça Soares
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria CEP 97105-900, RS, Brazil
| | - Lucielli Savegnago
- Grupo de Pesquisa em Neurobiotecnologia - GPN, CDTec, Unidade Biotecnologia, Universidade Federal de Pelotas, UFPel, Pelotas, RS, Brazil
| | - Tuane Bazanella Sampaio
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria CEP 97105-900, RS, Brazil
| | - Cristina Wayne Nogueira
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria CEP 97105-900, RS, Brazil.
| |
Collapse
|
40
|
Gerard E, Spengler RN, Bonoiu AC, Mahajan SD, Davidson BA, Ding H, Kumar R, Prasad PN, Knight PR, Ignatowski TA. Chronic constriction injury-induced nociception is relieved by nanomedicine-mediated decrease of rat hippocampal tumor necrosis factor. Pain 2015; 156:1320-1333. [PMID: 25851457 PMCID: PMC4474806 DOI: 10.1097/j.pain.0000000000000181] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Neuropathic pain is a chronic pain syndrome that arises from nerve injury. Current treatments only offer limited relief, clearly indicating the need for more effective therapeutic strategies. Previously, we demonstrated that proinflammatory tumor necrosis factor-alpha (TNF) is a key mediator of neuropathic pain pathogenesis; TNF is elevated at sites of neuronal injury, in the spinal cord, and supraspinally during the initial development of pain. The inhibition of TNF action along pain pathways outside higher brain centers results in transient decreases in pain perception. The objective of this study was to determine whether specific blockade of TNF in the hippocampus, a site of pain integration, could prove efficacious in reducing sciatic nerve chronic constriction injury (CCI)-induced pain behavior. Small inhibitory RNA directed against TNF mRNA was complexed to gold nanorods (GNR-TNF siRNA; TNF nanoplexes) and injected into the contralateral hippocampus of rats 4 days after unilateral CCI. Withdrawal latencies to a noxious thermal stimulus (hyperalgesia) and withdrawal to innocuous forces (allodynia) were recorded up to 10 days and compared with baseline values and sham-operated rats. Thermal hyperalgesia was dramatically decreased in CCI rats receiving hippocampal TNF nanoplexes; and mechanical allodynia was transiently relieved. TNF levels (bioactive protein, TNF immunoreactivity) in hippocampal tissue were decreased. The observation that TNF nanoplex injection into the hippocampus alleviated neuropathic pain-like behavior advances our previous findings that hippocampal TNF levels modulate pain perception. These data provide evidence that targeting TNF in the brain using nanoparticle-protected siRNA may be an effective strategy for treatment of neuropathic pain.
Collapse
Affiliation(s)
- Elizabeth Gerard
- Department of Pathology and Anatomical Sciences, University at Buffalo, The State University of New York
| | | | - Adela C. Bonoiu
- Institute for Lasers, Photonics, and Biophotonics, University at Buffalo, The State University of New York
| | - Supriya D. Mahajan
- Department of Medicine, Division of Allergy, Immunology, and Rheumatology, University at Buffalo, The State University of New York
| | - Bruce A. Davidson
- Department of Pathology and Anatomical Sciences, University at Buffalo, The State University of New York
- NanoAxis, LLC, Clarence, New York 14031
- Department of Anesthesiology, University at Buffalo, The State University of New York
- Veterans Administration Western New York Healthcare System
| | - Hong Ding
- Institute for Lasers, Photonics, and Biophotonics, University at Buffalo, The State University of New York
| | - Rajiv Kumar
- Institute for Lasers, Photonics, and Biophotonics, University at Buffalo, The State University of New York
| | - Paras N. Prasad
- Institute for Lasers, Photonics, and Biophotonics, University at Buffalo, The State University of New York
- Department of Chemistry, University at Buffalo, The State University of New York
| | - Paul R. Knight
- NanoAxis, LLC, Clarence, New York 14031
- Institute for Lasers, Photonics, and Biophotonics, University at Buffalo, The State University of New York
- Department of Anesthesiology, University at Buffalo, The State University of New York
- Veterans Administration Western New York Healthcare System
- Department of Microbiology and Immunology, University at Buffalo, The State University of New York
| | - Tracey A. Ignatowski
- Department of Pathology and Anatomical Sciences, University at Buffalo, The State University of New York
- NanoAxis, LLC, Clarence, New York 14031
- Program for Neuroscience, University at Buffalo, The State University of New York
| |
Collapse
|
41
|
Fleiss B, Tann CJ, Degos V, Sigaut S, Van Steenwinckel J, Schang AL, Kichev A, Robertson NJ, Mallard C, Hagberg H, Gressens P. Inflammation-induced sensitization of the brain in term infants. Dev Med Child Neurol 2015; 57 Suppl 3:17-28. [PMID: 25800488 DOI: 10.1111/dmcn.12723] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/24/2014] [Indexed: 12/12/2022]
Abstract
Perinatal insults are a leading cause of infant mortality and amongst survivors are frequently associated with neurocognitive impairment, cerebral palsy (CP), and seizure disorders. The events leading to perinatal brain injury are multifactorial. This review describes how one subinjurious factor affecting the brain sensitizes it to a second injurious factor, causing an exacerbated injurious cascade. We will review the clinical and experimental evidence, including observations of high rates of maternal and fetal infections in term-born infants with neonatal encephalopathy and cerebral palsy. In addition, we will discuss preclinical evidence for the sensitizing effects of inflammation on injuries, such as hypoxia-ischaemia, our current understanding of the mechanisms underpinning the sensitization process, and the possibility for neuroprotection.
Collapse
Affiliation(s)
- Bobbi Fleiss
- Inserm, U1141, Paris, France; University Paris Diderot, Sorbonne Paris Cité, UMRS 1141, Paris, France; Department of Child Neurology, APHP, Robert Debré Hospital, Paris, France; PremUP, Paris, France; Division of Imaging Sciences, Department of Perinatal Imaging and Health, King's College London, King's Health Partners, St. Thomas' Hospital, London, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
White matter tract and glial-associated changes in 5-hydroxymethylcytosine following chronic cerebral hypoperfusion. Brain Res 2014; 1592:82-100. [DOI: 10.1016/j.brainres.2014.09.060] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 09/24/2014] [Accepted: 09/25/2014] [Indexed: 12/26/2022]
|
43
|
Gallo V, Deneen B. Glial development: the crossroads of regeneration and repair in the CNS. Neuron 2014; 83:283-308. [PMID: 25033178 DOI: 10.1016/j.neuron.2014.06.010] [Citation(s) in RCA: 150] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2014] [Indexed: 02/07/2023]
Abstract
Given the complexities of the mammalian CNS, its regeneration is viewed as the holy grail of regenerative medicine. Extraordinary efforts have been made to understand developmental neurogenesis, with the hopes of clinically applying this knowledge. CNS regeneration also involves glia, which comprises at least 50% of the cellular constituency of the brain and is involved in all forms of injury and disease response, recovery, and regeneration. Recent developmental studies have given us unprecedented insight into the processes that regulate the generation of CNS glia. Because restorative processes often parallel those found in development, we will peer through the lens of developmental gliogenesis to gain a clearer understanding of the processes that underlie glial regeneration under pathological conditions. Specifically, this review will focus on key signaling pathways that regulate astrocyte and oligodendrocyte development and describe how these mechanisms are reutilized in these populations during regeneration and repair after CNS injury.
Collapse
Affiliation(s)
- Vittorio Gallo
- Center for Neuroscience Research, Children's National Medical Center, Washington, DC 20010, USA.
| | - Benjamin Deneen
- Department of Neuroscience and Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
44
|
Neniskyte U, Vilalta A, Brown GC. Tumour necrosis factor alpha-induced neuronal loss is mediated by microglial phagocytosis. FEBS Lett 2014; 588:2952-6. [PMID: 24911209 PMCID: PMC4158418 DOI: 10.1016/j.febslet.2014.05.046] [Citation(s) in RCA: 122] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 05/13/2014] [Accepted: 05/28/2014] [Indexed: 11/18/2022]
Abstract
TNF-α induces neuronal loss in culture without neuronal necrosis or apoptosis. TNF-α induces microglial phagocytosis, and the neuronal loss requires microglia. Neuronal loss requires the microglial vitronectin receptor, P2Y6 receptor and MFG-E8. Blocking these phagocytic receptors leaves viable neurons. TNF-α induced phagoptosis might contribute to neuroinflammatory pathologies.
Tumour necrosis factor-α (TNF-α) is a pro-inflammatory cytokine, expressed in many brain pathologies and associated with neuronal loss. We show here that addition of TNF-α to neuronal–glial co-cultures increases microglial proliferation and phagocytosis, and results in neuronal loss that is prevented by eliminating microglia. Blocking microglial phagocytosis by inhibiting phagocytic vitronectin and P2Y6 receptors, or genetically removing opsonin MFG-E8, prevented TNF-α induced loss of live neurons. Thus TNF-α appears to induce neuronal loss via microglial activation and phagocytosis of neurons, causing neuronal death by phagoptosis.
Collapse
Affiliation(s)
- Urte Neniskyte
- Department of Biochemistry, University of Cambridge, UK; Mouse Biology Unit, European Molecular Biology Laboratory, Italy
| | - Anna Vilalta
- Department of Biochemistry, University of Cambridge, UK
| | - Guy C Brown
- Department of Biochemistry, University of Cambridge, UK.
| |
Collapse
|
45
|
Richter F, Lütz W, Eitner A, Leuchtweis J, Lehmenkühler A, Schaible HG. Tumor necrosis factor reduces the amplitude of rat cortical spreading depression in vivo. Ann Neurol 2014; 76:43-53. [PMID: 24798682 DOI: 10.1002/ana.24176] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 05/02/2014] [Accepted: 05/02/2014] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Brain damage and ischemia often trigger cortical spreading depression (CSD), which aggravates brain damage. The proinflammatory cytokine tumor necrosis factor (TNF) is significantly upregulated during brain damage, but it is unknown whether TNF influences spreading depression in cerebral cortex in vivo. This question is important because TNF not only furthers inflammatory reactions but might also be neuroprotective. Here we tested the hypothesis that TNF affects CSD, and we explored the direction in which CSD is modified by TNF. METHODS CSD, elicited by pressure microinjection of KCl, was recorded in anesthetized rats and mice. TNF was administered locally into a trough, providing local TNF treatment of a cortical area. For further analysis, antibodies to TNF receptor (TNFR) 1 or 2 were applied, or CSD was monitored in TNFR1 and TNFR2 knockout mice. γ-Aminobutyric acid (GABA)A receptors were blocked by bicuculline. Immunohistochemistry localized the cortical expression of TNFR1 and TNFR2. RESULTS Local application of TNF to the cortex reduced dose-dependently the amplitude of CSD. This effect was prevented by blockade or knockout of TNFR2 but not by blockade or knockout of TNFR1. TNFR2 was localized at cortical neurons including parvalbumin-positive inhibitory interneurons, and blockade of GABAA receptors by bicuculline prevented the reduction of CSD amplitudes by TNF. INTERPRETATION We identified a functional link between TNF and CSD. TNF activates TNFR2 in cortical inhibitory interneurons. The resulting release of GABA reduces CSD amplitudes. In this manner, TNF might be neuroprotective in pathological conditions.
Collapse
Affiliation(s)
- Frank Richter
- Institute of Physiology I/Neurophysiology, Jena University Hospital-Friedrich Schiller University Jena, Jena
| | | | | | | | | | | |
Collapse
|
46
|
Puimège L, Libert C, Van Hauwermeiren F. Regulation and dysregulation of tumor necrosis factor receptor-1. Cytokine Growth Factor Rev 2014; 25:285-300. [PMID: 24746195 DOI: 10.1016/j.cytogfr.2014.03.004] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 03/10/2014] [Indexed: 01/18/2023]
Abstract
TNF is an essential regulator of the immune system. Dysregulation of TNF plays a role in the pathology of many auto-immune diseases. TNF-blocking agents have proven successful in the treatment of such diseases. Development of novel, safer or more effective drugs requires a deeper understanding of the regulation of the pro-inflammatory activities of TNF and its receptors. The ubiquitously expressed TNFR1 is responsible for most TNF effects, while TNFR2 has a limited expression pattern and performs immune-regulatory functions. Despite extensive knowledge of TNFR1 signaling, the regulation of TNFR1 expression, its modifications, localization and processing are less clear and the data are scattered. Here we review the current knowledge of TNFR1 regulation and discuss the impact this has on the host.
Collapse
Affiliation(s)
- Leen Puimège
- Inflammation Research Center, VIB, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Claude Libert
- Inflammation Research Center, VIB, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Filip Van Hauwermeiren
- Inflammation Research Center, VIB, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.
| |
Collapse
|
47
|
Viviani B, Boraso M, Marchetti N, Marinovich M. Perspectives on neuroinflammation and excitotoxicity: a neurotoxic conspiracy? Neurotoxicology 2014; 43:10-20. [PMID: 24662010 DOI: 10.1016/j.neuro.2014.03.004] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 03/11/2014] [Accepted: 03/11/2014] [Indexed: 12/16/2022]
Abstract
Emerging evidences underline the ability of several environmental contaminants to induce an inflammatory response within the central nervous system, named neuroinflammation. This can occur as a consequence of a direct action of the neurotoxicant to the CNS and/or as a response secondary to the activation of the peripheral inflammatory response. In both cases, neuroinflammation is driven by the release of several soluble factors among which pro-inflammatory cytokines. IL-1β and TNF-α have been extensively studied for their effects within the CNS and emerged for their role in the modulation of the neuronal response, which allow the immune response to integrate with specific neuronal functions, as neurotransmission and synaptic plasticity. In particular, it has been evidenced a potential detrimental link between these cytokines and the glutamatergic system that seems to be part of increased brain excitability and excitotoxicity occurring in different pathological conditions. Aim of this mini-review will be to present experimental evidence on the way IL-1β and TNF-α impact neurons, focusing on the glutamatergic signalling, to provide a perspective on novel pathways possibly involved in environmental contaminants neurotoxicity.
Collapse
Affiliation(s)
- Barbara Viviani
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy.
| | - Mariaserena Boraso
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Natalia Marchetti
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Marina Marinovich
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
48
|
TNF-α and its receptors modulate complex behaviours and neurotrophins in transgenic mice. Psychoneuroendocrinology 2013; 38:3102-14. [PMID: 24094876 DOI: 10.1016/j.psyneuen.2013.09.010] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 09/09/2013] [Accepted: 09/09/2013] [Indexed: 02/01/2023]
Abstract
UNLABELLED Tumour necrosis factor-α (TNF-α) plays an important role not only in immunity but also in the normal functioning of the central nervous system (CNS). At physiological levels, studies have shown TNF-α is essential to maintain synaptic scaling and thus influence learning and memory formation while also playing a role in modulating pathological states of anxiety and depression. TNF-α signals mainly through its two receptors, TNF-R1 and TNF-R2, however the exact role that these receptors play in TNF-α mediated behavioural phenotypes is yet to be determined. METHODS We have assessed TNF(-/-), TNF-R1(-/-) and TNF-R2(-/-) mice against C57BL/6 wild-type (WT) mice from 12 weeks of age in order to evaluate measures of spatial memory and learning in the Barnes maze (BM) and Y-maze, as well as other behaviours such as exploration, social interaction, anxiety and depression-like behaviour in a battery of tests. We have also measured hippocampal and prefrontal cortex levels of the neurotrophins nerve growth factor (NGF) and brain derived neurotrophic factor (BDNF) as well as used immunohistochemical analyses to measure number of proliferating cells (Ki67) and immature neurons (DCX) within the dentate gyrus. RESULTS We have shown that young adult TNF(-/-) and TNF-R1(-/-) mice displayed impairments in learning and memory in the BM and Y-maze, while TNF-R2(-/-) mice showed good memory but slow learning in these tests. TNF(-/-)and TNF-R2(-/-) mice also demonstrated a decrease in anxiety like behaviour compared to WT mice. ELISA analyses showed TNF(-/-) and TNF-R2(-/-) mice had lower levels of NGF compared to WT mice. CONCLUSION These results indicate that while lack of TNF-α can decrease anxiety-like behaviour in mice, certain basal levels of TNF-α are required for the development of normal cognition. Furthermore our results suggest that both TNF-R1 and TNF-R2 signalling play a role in normal CNS function, with knockout of either receptor impairing cognition on the Barnes maze.
Collapse
|
49
|
Pozniak PD, White MK, Khalili K. TNF-α/NF-κB signaling in the CNS: possible connection to EPHB2. J Neuroimmune Pharmacol 2013; 9:133-41. [PMID: 24277482 DOI: 10.1007/s11481-013-9517-x] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 11/13/2013] [Indexed: 12/27/2022]
Abstract
Tumor necrosis factor-alpha, TNF-α, is a cytokine that is a well-known factor in multiple disease conditions and is recognized for its major role in central nervous system signaling. TNF-α signaling is most commonly associated with neurotoxicity, but in some conditions it has been found to be neuroprotective. TNF-α has long been known to induce nuclear factor-kappa B, NF-κB, signaling by, in most cases, translocating the p65 (RelA) DNA binding factor to the nucleus. p65 is a key member of NF-κB, which is well established as a family of transcription factors that regulates many signaling events, including growth and process development, in neuronal cell populations. NF-κB has been shown to affect both the receiving aspect of neuronal signaling events in dendritic development as well as the sending of neuronal signals in axonal development. In both cases, NK-κB functions as a promoter and/or inhibitor of growth, depending on the environmental conditions and signaling cascade. In addition, NF-κB is involved in memory formation or neurogenesis, depending on the region of the brain in which the signaling occurs. The ephrin (Eph) receptor family represents a subfamily of receptor tyrosine kinases, RTKs, which received much attention due to its potential involvement in neuronal cell health and function. There are two subsets of ephrin receptors, Eph A and Eph B, each with distinct functions in cardiovascular and skeletal development and axon guidance and synaptic plasticity. The presence of multiple binding sites for NF-κB within the regulatory region of EphB2 gene and its potential regulation by NF-κB pathway suggests that TNF-α may modulate EphB2 via NF-κB and that this may contribute to the neuroprotective activity of TNF-α.
Collapse
Affiliation(s)
- Paul D Pozniak
- Center for Neurovirology, Department of Neuroscience, Temple University School of Medicine, Room 741 MERB, 3500N. Broad Street, Philadelphia, PA, 19140, USA
| | | | | |
Collapse
|
50
|
TNF-α downregulates inhibitory neurotransmission through protein phosphatase 1-dependent trafficking of GABA(A) receptors. J Neurosci 2013; 33:15879-93. [PMID: 24089494 DOI: 10.1523/jneurosci.0530-13.2013] [Citation(s) in RCA: 181] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Inflammation has been implicated in the progression of neurological disease, yet precisely how inflammation affects neuronal function remains unclear. Tumor necrosis factor-α (TNFα) is a proinflammatory cytokine that regulates synapse function by controlling neurotransmitter receptor trafficking and homeostatic synaptic plasticity. Here we characterize the mechanisms through which TNFα regulates inhibitory synapse function in mature rat and mouse hippocampal neurons. Acute application of TNFα induces a rapid and persistent decrease of inhibitory synaptic strength and downregulation of cell-surface levels of GABA(A)Rs containing α1, α2, β2/3, and γ2 subunits. We show that trafficking of GABA(A)Rs in response to TNFα is mediated by neuronally expressed TNF receptor 1 and requires activation of p38 MAPK, phosphatidylinositol 3-kinase, protein phosphatase 1 (PP1), and dynamin GTPase. Furthermore, TNFα enhances the association of PP1 with GABA(A)R β3 subunits and dephosphorylates a site on β3 known to regulate phospho-dependent interactions with the endocytic machinery. Conversely, we find that calcineurin and PP2A are not essential components of the signaling pathway and that clustering of the scaffolding protein gephyrin is only reduced after the initial receptor endocytosis. Together, these findings demonstrate a distinct mechanism of regulated GABA(A)R endocytosis that may contribute to the disruption of circuit homeostasis under neuroinflammatory conditions.
Collapse
|