1
|
Drakul M, Čolić M. Immunomodulatory activity of dipeptidyl peptidase-4 inhibitors in immune-related diseases. Eur J Immunol 2023; 53:e2250302. [PMID: 37732495 DOI: 10.1002/eji.202250302] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/22/2023] [Accepted: 09/20/2023] [Indexed: 09/22/2023]
Abstract
Dipeptidyl peptidase-4 (DPP-4), also known as CD26, is a 110-kDa cell surface glycoprotein with enzymatic and signal transducing activity. DPP-4/CD26 is expressed by various cells, including CD4+ and CD8+ T cells, B cells, dendritic cells, macrophages, and NK cells. DPP-4 inhibitors (DPP-4i) were introduced to clinics in 2006 as new oral antihyperglycemic drugs approved for type 2 diabetes mellitus treatment. In addition to glucose-lowering effects, emerging data, from clinical studies and their animal models, suggest that DPP-4i could display anti-inflammatory and immunomodulatory effects as well, but the molecular and immunological mechanisms of these actions are insufficiently investigated. This review focuses on the modulatory activity of DPP-4i in the immune system and the possible application of DPP-4i in other immune-related diseases in patients with or without diabetes.
Collapse
Affiliation(s)
- Marija Drakul
- Medical Faculty Foča, University of East Sarajevo, Foča, Bosnia and Herzegovina
| | - Miodrag Čolić
- Medical Faculty Foča, University of East Sarajevo, Foča, Bosnia and Herzegovina
- Serbian Academy of Sciences and Arts, Belgrade, Serbia
| |
Collapse
|
2
|
Han K, Singh K, Rodman MJ, Hassanzadeh S, Baumer Y, Huffstutler RD, Chen J, Candia J, Cheung F, Stagliano KER, Pirooznia M, Powell-Wiley TM, Sack MN. Identification and Validation of Nutrient State-Dependent Serum Protein Mediators of Human CD4 + T Cell Responsiveness. Nutrients 2021; 13:nu13051492. [PMID: 33924911 PMCID: PMC8146063 DOI: 10.3390/nu13051492] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/22/2021] [Accepted: 04/26/2021] [Indexed: 02/07/2023] Open
Abstract
Intermittent fasting and fasting mimetic diets ameliorate inflammation. Similarly, serum extracted from fasted healthy and asthmatic subjects' blunt inflammation in vitro, implicating serum components in this immunomodulation. To identify the proteins orchestrating these effects, SOMAScan technology was employed to evaluate serum protein levels in healthy subjects following an overnight, 24-h fast and 3 h after refeeding. Partial least square discriminant analysis identified several serum proteins as potential candidates to confer feeding status immunomodulation. The characterization of recombinant IGFBP1 (elevated following 24 h of fasting) and PYY (elevated following refeeding) in primary human CD4+ T cells found that they blunted and induced immune activation, respectively. Furthermore, integrated univariate serum protein analysis compared to RNA-seq analysis from peripheral blood mononuclear cells identified the induction of IL1RL1 and MFGE8 levels in refeeding compared to the 24-h fasting in the same study. Subsequent quantitation of these candidate proteins in lean versus obese individuals identified an inverse regulation of serum levels in the fasted subjects compared to the obese subjects. In parallel, IL1RL1 and MFGE8 supplementation promoted increased CD4+ T responsiveness to T cell receptor activation. Together, these data show that caloric load-linked conditions evoke serological protein changes, which in turn confer biological effects on circulating CD4+ T cell immune responsiveness.
Collapse
Affiliation(s)
- Kim Han
- Laboratory of Mitochondrial Biology and Metabolism, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; (K.H.); (M.J.R.); (S.H.)
| | - Komudi Singh
- Bioinformatics and Computational Core Facility, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; (K.S.); (M.P.)
| | - Matthew J. Rodman
- Laboratory of Mitochondrial Biology and Metabolism, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; (K.H.); (M.J.R.); (S.H.)
| | - Shahin Hassanzadeh
- Laboratory of Mitochondrial Biology and Metabolism, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; (K.H.); (M.J.R.); (S.H.)
| | - Yvonne Baumer
- Determinants of Obesity and Cardiovascular Risk, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; (Y.B.); (T.M.P.-W.)
| | - Rebecca D. Huffstutler
- Cardiovascular Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA;
| | - Jinguo Chen
- Center of Human Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (J.C.); (J.C.); (F.C.); (K.E.R.S.)
| | - Julián Candia
- Center of Human Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (J.C.); (J.C.); (F.C.); (K.E.R.S.)
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Foo Cheung
- Center of Human Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (J.C.); (J.C.); (F.C.); (K.E.R.S.)
| | - Katherine E. R. Stagliano
- Center of Human Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (J.C.); (J.C.); (F.C.); (K.E.R.S.)
| | - Mehdi Pirooznia
- Bioinformatics and Computational Core Facility, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; (K.S.); (M.P.)
| | - Tiffany M. Powell-Wiley
- Determinants of Obesity and Cardiovascular Risk, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; (Y.B.); (T.M.P.-W.)
- National Institute on Minority Health and Health Disparities, National Institutes of Health, Bethesda, MD 20892, USA
| | - Michael N. Sack
- Laboratory of Mitochondrial Biology and Metabolism, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; (K.H.); (M.J.R.); (S.H.)
- Cardiovascular Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA;
- Correspondence:
| |
Collapse
|
3
|
Strollo R, Pozzilli P. DPP4 inhibition: Preventing SARS-CoV-2 infection and/or progression of COVID-19? Diabetes Metab Res Rev 2020; 36:e3330. [PMID: 32336007 PMCID: PMC7267128 DOI: 10.1002/dmrr.3330] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 04/16/2020] [Accepted: 04/20/2020] [Indexed: 12/15/2022]
Abstract
Dipeptidyl peptidase 4 (DPP4), also known as cluster of differentiation 26 (CD26), is a serine exopeptidase expressed ubiquitously in several tissues, including but not limited to lung, kidney, liver, gut, and immune cells. The question has been raised on whether DPP4 modulation or inhibition may prevent infection and/or progression of the COVID-19. A docked complex model of the SARS-CoV-2 spike glycoprotein and DPP4 has been proposed, showing a large interface between the proteins and proposing close similarity with other coronaviruses using DPP4 as functional receptor. In absence of experimental validation, these data should be interpreted with caution. Nevertheless, this observation may rise the question on whether DPP4 is directly involved in SARS-CoV-2 cell adhesion/virulence, and whether DPP4 inhibition might be a therapeutic strategy for preventing infection. Although a direct involvement of DPP4 in SARS-CoV-2 infection needs to be clarified, there is also evidence suggesting that DPP4 inhibitors modulate inflammation and exert anti-fibrotic activity. These properties may be of potential use for halting progression to the hyperinflammatory state associated with severe COVID-19. Taken together these findings may suggest a potential role for DPP4 inhibition or modulation in one or more steps of COVID-19 immunopathogenesis.
Collapse
Affiliation(s)
- Rocky Strollo
- Unit of Endocrinology and Diabetes, Department of MedicineCampus Bio‐Medico, University of RomeRomeItaly
| | - Paolo Pozzilli
- Unit of Endocrinology and Diabetes, Department of MedicineCampus Bio‐Medico, University of RomeRomeItaly
- Centre for Immunobiology, Barts and The London School of Medicine and DentistryQueen Mary, University of LondonLondonUK
| |
Collapse
|
4
|
Cornejo-Pareja IM, Gómez-Pérez AM, Fernández-García JC, Barahona San Millan R, Aguilera Luque A, de Hollanda A, Jiménez A, Jimenez-Murcia S, Munguia L, Ortega E, Fernandez-Aranda F, Fernández Real JM, Tinahones F. Coronavirus disease 2019 (COVID-19) and obesity. Impact of obesity and its main comorbidities in the evolution of the disease. EUROPEAN EATING DISORDERS REVIEW 2020; 28:799-815. [PMID: 32974994 DOI: 10.1002/erv.2770] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 06/22/2020] [Accepted: 06/29/2020] [Indexed: 01/08/2023]
Abstract
The COVID-19 pandemic is posing a great challenge worldwide. Its rapid progression has caused thousands of deaths worldwide. Although multiple aspects remain to be clarified, some risk factors associated with a worse prognosis have been identified. These include obesity and some of its main complications, such as diabetes and high blood pressure. Furthermore, although the possible long-term complications and psychological effects that may appear in survivors of COVID-19 are not well known yet, there is a concern that those complications may be greater in obese patients. In this manuscript, we review some of the data published so far and the main points that remain to be elucidated are emphasized.
Collapse
Affiliation(s)
- Isabel M Cornejo-Pareja
- Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, Málaga, Spain.,Instituto de Investigación Biomédica de Málaga (IBIMA), Virgen de la Victoria University Hospital, Málaga, Spain
| | - Ana M Gómez-Pérez
- Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, Málaga, Spain.,Instituto de Investigación Biomédica de Málaga (IBIMA), Virgen de la Victoria University Hospital, Málaga, Spain
| | - José C Fernández-García
- Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, Málaga, Spain.,Instituto de Investigación Biomédica de Málaga (IBIMA), Virgen de la Victoria University Hospital, Málaga, Spain
| | - Rebeca Barahona San Millan
- Unit of Diabetes, Endocrinology and Nutrition, Hospital de Girona Dr. Josep Trueta, 17007, Institut d'Investigació Biomèdica de Girona (IDIBGI) Girona, and Department of Medical Sciences, University of Girona, Girona, Spain
| | - Alexandre Aguilera Luque
- Unit of Diabetes, Endocrinology and Nutrition, Hospital de Girona Dr. Josep Trueta, 17007, Institut d'Investigació Biomèdica de Girona (IDIBGI) Girona, and Department of Medical Sciences, University of Girona, Girona, Spain
| | - Ana de Hollanda
- Department of Endocrinology and Nutrition, August Pi i Sunyer Biomedical Research Institute-IDIBAPS, Hospital Clínic of Barcelona, Barcelona, Spain.,CIBER Fisiopatología Obesidad y Nutrición (CIBERobn), ISCIII, Madrid, Spain
| | - Amanda Jiménez
- Department of Endocrinology and Nutrition, August Pi i Sunyer Biomedical Research Institute-IDIBAPS, Hospital Clínic of Barcelona, Barcelona, Spain.,CIBER Fisiopatología Obesidad y Nutrición (CIBERobn), ISCIII, Madrid, Spain
| | - Susana Jimenez-Murcia
- CIBER Fisiopatología Obesidad y Nutrición (CIBERobn), ISCIII, Madrid, Spain.,Department of Psychiatry, University Hospital of Bellvitge-IDIBELL and Department of Clinical Sciences, School of Medicine and Health Sciences. University of Barcelona, Barcelona, Spain
| | - Lucero Munguia
- Department of Psychiatry, University Hospital of Bellvitge-IDIBELL and Department of Clinical Sciences, School of Medicine and Health Sciences. University of Barcelona, Barcelona, Spain
| | - Emilio Ortega
- Department of Endocrinology and Nutrition, August Pi i Sunyer Biomedical Research Institute-IDIBAPS, Hospital Clínic of Barcelona, Barcelona, Spain.,CIBER Fisiopatología Obesidad y Nutrición (CIBERobn), ISCIII, Madrid, Spain
| | - Fernando Fernandez-Aranda
- CIBER Fisiopatología Obesidad y Nutrición (CIBERobn), ISCIII, Madrid, Spain.,Department of Psychiatry, University Hospital of Bellvitge-IDIBELL and Department of Clinical Sciences, School of Medicine and Health Sciences. University of Barcelona, Barcelona, Spain
| | - José M Fernández Real
- Unit of Diabetes, Endocrinology and Nutrition, Hospital de Girona Dr. Josep Trueta, 17007, Institut d'Investigació Biomèdica de Girona (IDIBGI) Girona, and Department of Medical Sciences, University of Girona, Girona, Spain.,CIBER Fisiopatología Obesidad y Nutrición (CIBERobn), ISCIII, Madrid, Spain
| | - Francisco Tinahones
- Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, Málaga, Spain.,Instituto de Investigación Biomédica de Málaga (IBIMA), Virgen de la Victoria University Hospital, Málaga, Spain.,CIBER Fisiopatología Obesidad y Nutrición (CIBERobn), ISCIII, Madrid, Spain
| |
Collapse
|
5
|
Singh A, Singh R. Dipeptidyl-peptidase-4 inhibitors in type 2 diabetes and COVID-19: From a potential repurposed agent to a useful treatment option. JOURNAL OF DIABETOLOGY 2020; 11:131. [DOI: 10.4103/jod.jod_53_20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
6
|
Davanso MR, Caliari-Oliveira C, Couri CEB, Covas DT, de Oliveira Leal AM, Voltarelli JC, Malmegrim KCR, Yaochite JNU. DPP-4 Inhibition Leads to Decreased Pancreatic Inflammatory Profile and Increased Frequency of Regulatory T Cells in Experimental Type 1 Diabetes. Inflammation 2019; 42:449-462. [PMID: 30707388 DOI: 10.1007/s10753-018-00954-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Sitagliptin is a dipeptidyl peptidase-4 inhibitor (iDPP-4), which has been used for type 2 diabetes treatment. Recently, iDPP-4 has been described as a promising treatment of type 1 diabetes (T1D) but is still necessary to evaluate immune effects of sitagliptin. C57BL/6 mice were induced by multiple low doses of streptozotocin. Diabetes incidence, insulin, glucagon, glucagon-like peptide-1 (GLP-1) serum levels, and inflammatory cytokine levels were quantified in pancreas homogenate after 30 and 90 days of treatment. In addition, frequencies of inflammatory and regulatory T cell subsets were determined in the spleen and in the pancreatic lymph nodes. iDPP-4 decreased blood glucose level while increased GLP-1 and insulin levels. After long-term treatment, treated diabetic mice presented decreased frequency of CD4+CD26+ T cells and increased percentage of CD4+CD25hiFoxp3+ T cells in the spleen. Besides, pancreatic lymph nodes from diabetic mice treated with iDPP-4 presented lower percentage of CD11b+ cells and decreased levels of inflammatory cytokines in the pancreas. Treatment of type 1 diabetic mice with iDPP-4 improved metabolic control, decreased inflammatory profile in the pancreatic microenvironment, and increased systemic regulatory T cell frequency. Therefore, we suggest the long-term use of sitagliptin as a feasible and effective therapy for T1D.
Collapse
Affiliation(s)
- Mariana Rodrigues Davanso
- Centro de Terapia Celular, Centro Regional de Hemoterapia do Hospital das Clínicas, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Rua Tenente Catão Roxo 2501, Ribeirão Preto, São Paulo, 14049-900, Brazil. .,Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, Ribeirão Preto, São Paulo, 14049-900, Brazil.
| | - Carolina Caliari-Oliveira
- In Situ Cell Therapy, Supera Innovation Technology Park, Av. Dra. Nadir Aguiar, 1805, prédio 2, sala 313, Ribeirão Preto, São Paulo, 14056-680, Brazil
| | - Carlos Eduardo Barra Couri
- Departamento de Clínica Médica, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, Ribeirão Preto, São Paulo, 14049-900, Brazil
| | - Dimas Tadeu Covas
- Centro de Terapia Celular, Centro Regional de Hemoterapia do Hospital das Clínicas, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Rua Tenente Catão Roxo 2501, Ribeirão Preto, São Paulo, 14049-900, Brazil.,Departamento de Clínica Médica, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, Ribeirão Preto, São Paulo, 14049-900, Brazil
| | - Angela Merice de Oliveira Leal
- Departamento de Medicina, Universidade Federal de São Carlos, Rodovia Washington Luís Km 235, São Carlos, São Paulo, 13565-905, Brazil
| | - Júlio César Voltarelli
- Centro de Terapia Celular, Centro Regional de Hemoterapia do Hospital das Clínicas, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Rua Tenente Catão Roxo 2501, Ribeirão Preto, São Paulo, 14049-900, Brazil.,Departamento de Clínica Médica, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, Ribeirão Preto, São Paulo, 14049-900, Brazil
| | - Kelen Cristina Ribeiro Malmegrim
- Centro de Terapia Celular, Centro Regional de Hemoterapia do Hospital das Clínicas, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Rua Tenente Catão Roxo 2501, Ribeirão Preto, São Paulo, 14049-900, Brazil.,Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. do Café, s/n, Ribeirão Preto, São Paulo, 14040-903, Brazil
| | - Juliana Navarro Ueda Yaochite
- Departmento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Odontologia e Enfermagem, Universidade Federal do Ceará, Rua Alexandre Baraúna, 949, Fortaleza, Ceará, 60430-160, Brazil
| |
Collapse
|
7
|
Nieto-Fontarigo JJ, González-Barcala FJ, San José E, Arias P, Nogueira M, Salgado FJ. CD26 and Asthma: a Comprehensive Review. Clin Rev Allergy Immunol 2019; 56:139-160. [PMID: 27561663 PMCID: PMC7090975 DOI: 10.1007/s12016-016-8578-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Asthma is a heterogeneous and chronic inflammatory family of disorders of the airways with increasing prevalence that results in recurrent and reversible bronchial obstruction and expiratory airflow limitation. These diseases arise from the interaction between environmental and genetic factors, which collaborate to cause increased susceptibility and severity. Many asthma susceptibility genes are linked to the immune system or encode enzymes like metalloproteases (e.g., ADAM-33) or serine proteases. The S9 family of serine proteases (prolyl oligopeptidases) is capable to process peptide bonds adjacent to proline, a kind of cleavage-resistant peptide bonds present in many growth factors, chemokines or cytokines that are important for asthma. Curiously, two serine proteases within the S9 family encoded by genes located on chromosome 2 appear to have a role in asthma: CD26/dipeptidyl peptidase 4 (DPP4) and DPP10. The aim of this review is to summarize the current knowledge about CD26 and to provide a structured overview of the numerous functions and implications that this versatile enzyme could have in this disease, especially after the detection of some secondary effects (e.g., viral nasopharyngitis) in type II diabetes mellitus patients (a subset with a certain risk of developing obesity-related asthma) upon CD26 inhibitory therapy.
Collapse
Affiliation(s)
- Juan J Nieto-Fontarigo
- Department of Biochemistry and Molecular Biology, Faculty of Biology-Biological Research Centre (CIBUS), University of Santiago de Compostela (USC), Santiago de Compostela, Spain
| | - Francisco J González-Barcala
- Department of Biochemistry and Molecular Biology, Faculty of Biology-Biological Research Centre (CIBUS), University of Santiago de Compostela (USC), Santiago de Compostela, Spain
- Respiratory Department, Clinic University Hospital (CHUS), Santiago de Compostela, Spain
| | - Esther San José
- Clinical Analysis Service, Clinic University Hospital (CHUS), Santiago de Compostela, Spain
| | - Pilar Arias
- Department of Biochemistry and Molecular Biology, Faculty of Biology-Biological Research Centre (CIBUS), University of Santiago de Compostela (USC), Santiago de Compostela, Spain
| | - Montserrat Nogueira
- Department of Biochemistry and Molecular Biology, Faculty of Biology-Biological Research Centre (CIBUS), University of Santiago de Compostela (USC), Santiago de Compostela, Spain
| | - Francisco J Salgado
- Department of Biochemistry and Molecular Biology, Faculty of Biology-Biological Research Centre (CIBUS), University of Santiago de Compostela (USC), Santiago de Compostela, Spain.
| |
Collapse
|
8
|
Tardif V, Muir R, Cubas R, Chakhtoura M, Wilkinson P, Metcalf T, Herro R, Haddad EK. Adenosine deaminase-1 delineates human follicular helper T cell function and is altered with HIV. Nat Commun 2019; 10:823. [PMID: 30778076 PMCID: PMC6379489 DOI: 10.1038/s41467-019-08801-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 01/23/2019] [Indexed: 12/18/2022] Open
Abstract
Follicular helper T cells (Tfh) play critical roles instructing, and initiating T-cell dependent antibody responses. The underlying mechanisms that enhance their function is therefore critical for vaccine development. Here we apply gene array analysis identifying adenosine deaminase (ADA) as a key molecule that delineates a human Tfh helper program in proliferating circulating Tfh (cTfh) cells and Germinal Centers Tfh (GC-Tfh). ADA-1 expression and enzymatic activity are increased in efficient cTfh2-17/GC-Tfh cells. Exogenous ADA-1 enhances less efficient cTfh1 and pro-follicular Tfh PD-1+ CXCR5+ cells to provide B cell help, while pharmacological inhibition of ADA-1 activity impedes cTfh2-17/GC-Tfh function and diminished antibody response. Mechanistically, ADA-1 controls the Tfh program by influencing IL6/IL-2 production, controlling CD26 extracellular expression and could balance signals through adenosine receptors. Interestingly, dysfunctional Tfh from HIV infected-individual fail to regulate the ADA pathway. Thus, ADA-1 regulates human Tfh and represents a potential target for development of vaccine strategy.
Collapse
Affiliation(s)
- Virginie Tardif
- Department of Medicine, Division of Infectious Diseases and HIV Medicine, Drexel University, Philadelphia, 19102, PA, USA
| | - Roshell Muir
- Department of Medicine, Division of Infectious Diseases and HIV Medicine, Drexel University, Philadelphia, 19102, PA, USA
| | | | - Marita Chakhtoura
- Department of Medicine, Division of Infectious Diseases and HIV Medicine, Drexel University, Philadelphia, 19102, PA, USA
| | - Peter Wilkinson
- Department of Pathology, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Talibah Metcalf
- Department of Medicine, Division of Infectious Diseases and HIV Medicine, Drexel University, Philadelphia, 19102, PA, USA
| | - Rana Herro
- La Jolla Institute for Allergy and Immunology, San Diego, 92037, CA, USA
| | - Elias K Haddad
- Department of Medicine, Division of Infectious Diseases and HIV Medicine, Drexel University, Philadelphia, 19102, PA, USA.
| |
Collapse
|
9
|
Wang X, Zheng P, Huang G, Yang L, Zhou Z. Dipeptidyl peptidase-4(DPP-4) inhibitors: promising new agents for autoimmune diabetes. Clin Exp Med 2018; 18:473-480. [PMID: 30022375 DOI: 10.1007/s10238-018-0519-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 07/08/2018] [Indexed: 12/16/2022]
Abstract
Dipeptidyl peptidase-4 (DPP-4) inhibitors constitute a novel class of anti-diabetic agents confirmed to improve glycemic control and preserve β-cell function in type 2 diabetes. Three major large-scale studies, EXAMINE, SAVOR-TIMI 53, and TECOS, have confirmed the cardiovascular safety profile of DPP-4 inhibitors. Based on these results, DPP-4 inhibitors have gained widespread use in type 2 diabetes treatment. It is currently unknown, however, whether DPP-4 inhibitors have similar therapeutic efficacy against autoimmune diabetes. Several in vitro and in vivo studies have addressed this issue, but the results remain controversial. In this review, we summarize experimental findings and preliminary clinical trial results, and identify potentially effective immune modulation targets of DPP-4 inhibitors for autoimmune diabetes.
Collapse
Affiliation(s)
- Xia Wang
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, National Clinical Research Center for Metabolic Diseases, Changsha, Hunan, China.,Department of Metabolism and Endocrinology, Hunan Provincial People's Hospital, Changsha, Hunan, China
| | - Peilin Zheng
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, National Clinical Research Center for Metabolic Diseases, Changsha, Hunan, China
| | - Gan Huang
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, National Clinical Research Center for Metabolic Diseases, Changsha, Hunan, China
| | - Lin Yang
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, National Clinical Research Center for Metabolic Diseases, Changsha, Hunan, China
| | - Zhiguang Zhou
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China. .,Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, National Clinical Research Center for Metabolic Diseases, Changsha, Hunan, China.
| |
Collapse
|
10
|
Al-Badri G, Leggio GM, Musumeci G, Marzagalli R, Drago F, Castorina A. Tackling dipeptidyl peptidase IV in neurological disorders. Neural Regen Res 2018; 13:26-34. [PMID: 29451201 PMCID: PMC5840985 DOI: 10.4103/1673-5374.224365] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/15/2017] [Indexed: 12/25/2022] Open
Abstract
Dipeptidyl peptidase IV (DPP-IV) is a serine protease best known for its role in inactivating glucagon-like peptide-1 (GLP-1), pituitary adenylate cyclase-activating polypeptide (PACAP) and glucose-dependent insulinotropic peptide (GIP), three stimulators of pancreatic insulin secretion with beneficial effects on glucose disposal. Owing to the relationship between DPP-IV and these peptides, inhibition of DPP-IV enzyme activity is considered as an attractive treatment option for diabetic patients. Nonetheless, increasing studies support the idea that DPP-IV might also be involved in the development of neurological disorders with a neuroinflammatory component, potentially through its non-incretin activities on immune cells. In this review article, we aim at highlighting recent literature describing the therapeutic value of DPP-IV inhibitors for the treatment of such neurological conditions. Finally, we will illustrate some of the promising results obtained using berberine, a plant extract with potent inhibitory activity on DPP-IV.
Collapse
Affiliation(s)
- Ghaith Al-Badri
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, Australia
| | - Gian Marco Leggio
- Section of Pharmacology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Giuseppe Musumeci
- Section of Human Anatomy and Histology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Rubina Marzagalli
- Section of Human Anatomy and Histology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Filippo Drago
- Section of Pharmacology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Alessandro Castorina
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, Australia
- Discipline of Anatomy and Histology, School of Medical Sciences, The University of Sydney, Sydney, Australia
| |
Collapse
|
11
|
Aliyari Serej Z, Ebrahimi Kalan A, Mehdipour A, Nozad Charoudeh H. Regulation and roles of CD26/DPPIV in hematopoiesis and diseases. Biomed Pharmacother 2017; 91:88-94. [PMID: 28448874 DOI: 10.1016/j.biopha.2017.04.074] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Revised: 04/15/2017] [Accepted: 04/17/2017] [Indexed: 01/15/2023] Open
Abstract
Dipeptidyl peptidase IV (DPPIV),1 on the surface of certain cells, where it is also referred to as CD26, is involved in a vast majority of biological and pathological processes. CD26/DPPIV function contributes to cancer and tumor metastasis as well as inhibition of its expression which alters the expression of immune response-related genes. CD26/DPPIV is a widely distributed multifunctional integral membrane and secreted protein that is defined as early predictive biomarker in HIV, cancer and autoimmunity diseases like diabetes and multiple sclerosis. CD26/DPPIV-chemokine interaction may have a functional role in T-cells and overall immune function. It is expressed at low density on resting T cells, but is upregulated with T cell activation. In this review, we summarize valuable information about detailed biological aspects and pharmacokinetic characteristics of CD26/DPPIV and its clinical efficacy, focusing particularly on the role of CD26/DPPIV in immunological and non-immunological diseases. We also describe our recent work about umbilical cord blood (UCB)2 hematopoietic stem cell transplantation strategies in which identified CD26+ cells can be differentiated to immune cells under certain culture condition.
Collapse
Affiliation(s)
- Zeynab Aliyari Serej
- School of Advanced Medical Sciences, Applied Cell Sciences Department, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abbas Ebrahimi Kalan
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Neuroscience Department, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahmad Mehdipour
- School of Advanced Medical Sciences, Tissue Engineering Department, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hojjatollah Nozad Charoudeh
- School of Advanced Medical Sciences, Applied Cell Sciences Department, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
12
|
Sitagliptin inhibit human lymphocytes proliferation and Th1/Th17 differentiation in vitro. Eur J Pharm Sci 2017; 100:17-24. [PMID: 28065853 DOI: 10.1016/j.ejps.2016.12.040] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 11/20/2016] [Accepted: 12/31/2016] [Indexed: 02/06/2023]
Abstract
Dipeptidyl peptidase-4 (DPP-4) inhibitors are a new class of anti-diabetic agents that are widely used in clinical practice to improve glycemic control in patients with type 2 diabetes. DPP-4 is also known as lymphocyte cell surface protein, CD26, and plays an important role in T-cell immunity. Recent studies suggest that DPP-4 inhibitors improve beta-cell function and attenuate autoimmunity in type 1 diabetic mouse models. To investigate the direct effect of DPP4 in immune response, human peripheral blood mononuclear cells (PBMC) from healthy volunteers were obtained by Ficoll gradient and cultivated in the absence (control) or presence of phytohemagglutinin (PHA), or stimulated with PHA and treated with sitagliptin. The immune modulation mechanisms analyzed were: cell proliferation, by MTT assay; cytokine quantification by ELISA or cytometric bead array (CBA), Th1/Th2/Th17 phenotyping by flow cytometric analysis and CD26 gene expression by real time PCR. The results showed that sitagliptin treatment inhibited the proliferation of PBMC-PHA stimulated cells in a dose dependent manner and decreased CD26 expression by these cells, suggesting that sitagliptin may interfere in CD26 expression, dimerization and cell signaling. Sitagliptin treatment not only inhibited IL-10 (p<0.05) and IFN-gamma (p=0.07) cytokines, but also completely abolish IL-6 expression by PBMCs (p<0.001). On the other hand, IL-4 were secreted in culture supernatants from sitagliptin treated cells. A statistically significant increase (p<0.05) in the ratio of TGF-beta/proliferation index after sitagliptin treatment (2627.97±1351.65), when comparing to untreated cells (646.28±376.94), was also demonstrated, indicating higher TGF-beta1 production by viable cells in cultures. Sitagliptin treatment induced a significantly (p<0.05) decrease in IL-17 and IFN-gamma intracellular expression compared with PHA alone. Also, the percentage of T CD4+IL-17+, T CD4+IFNgamma+ and T CD4+IL-4+ cells were significantly reduced (p<0.05) by sitagliptin. Our data demonstrated an immunosuppressive effect of sitagliptin on Th1, Th17 and Th2 lymphocytes differentiation that leads to the generation of regulatory TGF-beta1 secreting cells with low CD26 gene expression that may influence the state of pancreatic beta-cells and controlling DM1 patients.
Collapse
|
13
|
Klemann C, Wagner L, Stephan M, von Hörsten S. Cut to the chase: a review of CD26/dipeptidyl peptidase-4's (DPP4) entanglement in the immune system. Clin Exp Immunol 2016; 185:1-21. [PMID: 26919392 DOI: 10.1111/cei.12781] [Citation(s) in RCA: 317] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 02/14/2016] [Accepted: 02/21/2016] [Indexed: 12/11/2022] Open
Abstract
CD26/DPP4 (dipeptidyl peptidase 4/DP4/DPPIV) is a surface T cell activation antigen and has been shown to have DPP4 enzymatic activity, cleaving-off amino-terminal dipeptides with either L-proline or L-alanine at the penultimate position. It plays a major role in glucose metabolism by N-terminal truncation and inactivation of the incretins glucagon-like peptide-1 (GLP) and gastric inhibitory protein (GIP). In 2006, DPP4 inhibitors have been introduced to clinics and have been demonstrated to efficiently enhance the endogenous insulin secretion via prolongation of the half-life of GLP-1 and GIP in patients. However, a large number of studies demonstrate clearly that CD26/DPP4 also plays an integral role in the immune system, particularly in T cell activation. Therefore, inhibition of DPP4 might represent a double-edged sword. Apart from the metabolic benefit, the associated immunological effects of long term DPP4 inhibition on regulatory processes such as T cell homeostasis, maturation and activation are not understood fully at this stage. The current data point to an important role for CD26/DPP4 in maintaining lymphocyte composition and function, T cell activation and co-stimulation, memory T cell generation and thymic emigration patterns during immune-senescence. In rodents, critical immune changes occur at baseline levels as well as after in-vitro and in-vivo challenge. In patients receiving DPP4 inhibitors, evidence of immunological side effects also became apparent. The scope of this review is to recapitulate the role of CD26/DPP4 in the immune system regarding its pharmacological inhibition and T cell-dependent immune regulation.
Collapse
Affiliation(s)
- C Klemann
- Center of Pediatric Surgery, Hannover Medical School, Hannover.,Center of Chronic Immunodeficiency, University Medical Center Freiburg, University Medical Center Freiburg
| | - L Wagner
- Deutschsprachige Selbsthilfegruppe für Alkaptonurie (DSAKU) e.V.,Department for Experimental Therapy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - M Stephan
- Clinic for Psychosomatics and Psychotherapy, Hannover Medical School, Hannover
| | - S von Hörsten
- Department for Experimental Therapy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
14
|
Alonso N, Julián MT, Carrascal J, Colobran R, Pujol-Autonell I, Rodriguez-Fernández S, Teniente A, Fernández MA, Miñarro A, Ruiz de Villa MC, Vives-Pi M, Puig-Domingo M. Type 1 Diabetes Prevention in NOD Mice by Targeting DPPIV/CD26 Is Associated with Changes in CD8⁺T Effector Memory Subset. PLoS One 2015; 10:e0142186. [PMID: 26555789 PMCID: PMC4640511 DOI: 10.1371/journal.pone.0142186] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 10/18/2015] [Indexed: 12/20/2022] Open
Abstract
CD26 is a T cell activation marker consisting in a type II transmembrane glycoprotein with dipeptidyl peptidase IV (DPPIV) activity in its extracellular domain. It has been described that DPPIV inhibition delays the onset of type 1 diabetes and reverses the disease in non-obese diabetic (NOD) mice. The aim of the present study was to assess the effect of MK626, a DPPIV inhibitor, in type 1 diabetes incidence and in T lymphocyte subsets at central and peripheral compartments. Pre-diabetic NOD mice were treated with MK626. Diabetes incidence, insulitis score, and phenotyping of T lymphocytes in the thymus, spleen and pancreatic lymph nodes were determined after 4 and 6 weeks of treatment, as well as alterations in the expression of genes encoding β-cell autoantigens in the islets. The effect of MK626 was also assessed in two in vitro assays to determine proliferative and immunosuppressive effects. Results show that MK626 treatment reduces type 1 diabetes incidence and after 6 weeks of treatment reduces insulitis. No differences were observed in the percentage of T lymphocyte subsets from central and peripheral compartments between treated and control mice. MK626 increased the expression of CD26 in CD8+ T effector memory (TEM) from spleen and pancreatic lymph nodes and in CD8+ T cells from islet infiltration. CD8+TEM cells showed an increased proliferation rate and cytokine secretion in the presence of MK626. Moreover, the combination of CD8+ TEM cells and MK626 induces an immunosuppressive response. In conclusion, treatment with the DPPIV inhibitor MK626 prevents experimental type 1 diabetes in association to increase expression of CD26 in the CD8+ TEM lymphocyte subset. In vitro assays suggest an immunoregulatory role of CD8+ TEM cells that may be involved in the protection against autoimmunity to β pancreatic islets associated to DPPIV inhibitor treatment.
Collapse
Affiliation(s)
- Núria Alonso
- Department of Endocrinology and Nutrition, Hospital Germans Trias i Pujol, Badalona, Department of Medicine, Autonomous University of Barcelona, Barcelona, Spain
- CIBER of Diabetes and Associated Metabolic Diseases (CIBERDEM). Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- * E-mail:
| | - María Teresa Julián
- Department of Endocrinology and Nutrition, Hospital Germans Trias i Pujol, Badalona, Department of Medicine, Autonomous University of Barcelona, Barcelona, Spain
| | - Jorge Carrascal
- Immunology Department, Germans Trias i Pujol Research Institute, Autonomous University of Barcelona, Badalona, Spain
| | - Roger Colobran
- Service of Immunology, Vall d’Hebron Research Institute, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Irma Pujol-Autonell
- Immunology Department, Germans Trias i Pujol Research Institute, Autonomous University of Barcelona, Badalona, Spain
| | - Silvia Rodriguez-Fernández
- Immunology Department, Germans Trias i Pujol Research Institute, Autonomous University of Barcelona, Badalona, Spain
| | - Aina Teniente
- Immunology Department, Germans Trias i Pujol Research Institute, Autonomous University of Barcelona, Badalona, Spain
| | | | - Antoni Miñarro
- Department of Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | | | - Marta Vives-Pi
- Immunology Department, Germans Trias i Pujol Research Institute, Autonomous University of Barcelona, Badalona, Spain
- CIBER of Diabetes and Associated Metabolic Diseases (CIBERDEM). Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Manel Puig-Domingo
- Department of Endocrinology and Nutrition, Hospital Germans Trias i Pujol, Badalona, Department of Medicine, Autonomous University of Barcelona, Barcelona, Spain
- CIBER of Diabetes and Associated Metabolic Diseases (CIBERDEM). Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| |
Collapse
|
15
|
Zhao Y, Yang L, Wang X, Zhou Z. The new insights from DPP-4 inhibitors: their potential immune modulatory function in autoimmune diabetes. Diabetes Metab Res Rev 2014; 30:646-53. [PMID: 24446278 DOI: 10.1002/dmrr.2530] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Revised: 12/26/2013] [Accepted: 01/04/2014] [Indexed: 12/12/2022]
Abstract
Dipeptidyl peptidase-4 (DPP-4) inhibitors are a new class of anti-diabetic agents that are widely used in clinical practice to improve glycemic control and protect β-cell function in patients with type 2 diabetes. DPP-4 is also known as lymphocyte cell surface protein CD26 and plays an important role in T-cell immunity. Autoimmune diabetes, a T-cell mediated organ-specific disease, is initiated by the imbalance between pathogenic and regulatory T-lymphocytes. DPP-4 inhibitors can suppress pathogenic effects of Th1 and Th17 cells and up-regulate Th2 cells and regulatory T cells, which play a critical role in ameliorating autoimmune diabetes. This provides a basis for the potential use of DPP-4 inhibitors in the treatment of autoimmune diabetes. Recent studies suggest that DPP-4 inhibitors improve β-cell function and attenuate autoimmunity in type 1 diabetic mouse models. However, there are few clinical studies on the treatment of autoimmune diabetes with DPP-4 inhibitors. Further studies are warranted to confirm the therapeutic effects of DPP-4 inhibitors on autoimmune diabetes in humans.
Collapse
Affiliation(s)
- Yunjuan Zhao
- Diabetes Center, Institute of Metabolism and Endocrinology, The Second Xiangya Hospital and Key Laboratory of Diabetes Immunology, Ministry of Education, Central South University, Changsha, China
| | | | | | | |
Collapse
|
16
|
Börnsen L, Christensen JR, Ratzer R, Oturai AB, Sørensen PS, Søndergaard HB, Sellebjerg F. Effect of natalizumab on circulating CD4+ T-cells in multiple sclerosis. PLoS One 2012; 7:e47578. [PMID: 23226199 PMCID: PMC3511477 DOI: 10.1371/journal.pone.0047578] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Accepted: 09/13/2012] [Indexed: 11/18/2022] Open
Abstract
In multiple sclerosis (MS), treatment with the monoclonal antibody natalizumab effectively reduces the formation of acute lesions in the central nervous system (CNS). Natalizumab binds the integrin very late antigen (VLA)-4, expressed on the surface of immune cells, and inhibits VLA-4 dependent transmigration of circulating immune-cells across the vascular endothelium into the CNS. Recent studies suggested that natalizumab treated MS patients have an increased T-cell pool in the blood compartment which may be selectively enriched in activated T-cells. Proposed causes are sequestration of activated T-cells due to reduced extravasation of activated and pro-inflammatory T-cells or due to induction of VLA-4 mediated co-stimulatory signals by natalizumab. In this study we examined how natalizumab treatment altered the distribution of effector and memory T-cell subsets in the blood compartment and if T-cells in general or myelin-reactive T-cells in particular showed signs of increased immune activation. Furthermore we examined the effects of natalizumab on CD4(+) T-cell responses to myelin in vitro. Natalizumab-treated MS patients had significantly increased numbers of effector-memory T-cells in the blood. In T-cells from natalizumab-treated MS patients, the expression of TNF-α mRNA was increased whereas the expression of fourteen other effector cytokines or transcription factors was unchanged. Natalizumab-treated MS patients had significantly decreased expression of the co-stimulatory molecule CD134 on CD4(+)CD26(HIGH) T-cells, in blood, and natalizumab decreased the expression of CD134 on MBP-reactive CD26(HIGH)CD4(+) T-cells in vitro. Otherwise CD4(+) T-cells from natalizumab-treated and untreated MS patients showed similar responses to MBP. In conclusion natalizumab treatment selectively increased the effector memory T-cell pool but not the activation state of T-cells in the blood compartment. Myelin-reactive T-cells were not selectively increased in natalizumab treated MS.
Collapse
Affiliation(s)
- Lars Börnsen
- Danish Multiple Sclerosis Center, Department of Neurology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark.
| | | | | | | | | | | | | |
Collapse
|
17
|
Dimitrijević M, Mitić K, Kuštrimović N, Vujić V, Stanojević S. NPY suppressed development of experimental autoimmune encephalomyelitis in Dark Agouti rats by disrupting costimulatory molecule interactions. J Neuroimmunol 2012; 245:23-31. [PMID: 22365383 DOI: 10.1016/j.jneuroim.2012.01.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 01/13/2012] [Accepted: 01/31/2012] [Indexed: 11/30/2022]
Abstract
Neuropeptide Y (NPY) suppressed clinical experimental autoimmune encephalomyelitis (EAE) and reduced numbers of CD28+, CD11b+ and CD80+ cells among spinal cord infiltrating cells at the peak of disease in Dark Agouti rat strain. Suppression of EAE was accompanied by the reduced expression of costimulatory CD80 and CD86 molecules on ED1+ macrophages and OX62+ dendritic cells in draining lymph nodes during the inductive phase of EAE. An inhibitor of dipeptidyl peptidase 4, an enzyme which terminates the action of NPY on Y1 receptor subtype, did not sustain the suppressive effect of NPY on the EAE development, suggesting involvement of Y2 and Y5 receptors.
Collapse
Affiliation(s)
- Mirjana Dimitrijević
- Institute of Virology, Vaccines and Sera, "Torlak", Immunology Research Center "Branislav Janković", Vojvode Stepe 458, 11152 Belgrade, Serbia.
| | | | | | | | | |
Collapse
|
18
|
Reinhold D, Bank U, Entz D, Goihl A, Stoye D, Wrenger S, Brocke S, Thielitz A, Stefin S, Nordhoff K, Heimburg A, Täger M, Ansorge S. PETIR-001, a dual inhibitor of dipeptidyl peptidase IV (DP IV) and aminopeptidase N (APN), ameliorates experimental autoimmune encephalomyelitis in SJL/J mice. Biol Chem 2011; 392:233-7. [PMID: 21194377 DOI: 10.1515/bc.2011.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Cellular dipeptidyl peptidase IV (DP IV, CD26) and amino-peptidase N (APN, CD13) play regulatory roles in T cell activation and represent potential targets for treatment of inflammatory disorders. We have developed a novel therapeutic strategy, 'peptidase-targeted Immunoregulation' (PETIR™), which simultaneously targets both cellular DP IV and APN via selective binding sites different from the active sites with a single inhibitor. To prove the therapeutic concept of PETIR™ in autoimmunity of the central nervous system (CNS), we evaluated the effect of a single substance, PETIR-001, in an animal model of multiple sclerosis, experimental autoimmune encephalomyelitis (EAE) in SJL/J mice. Administration of PETIR-001 significantly delayed and decreased clinical signs of active EAE, when given in a therapeutic manner intraperitoneally from day 15 to day 24 after induction of EAE. Both the acute phase and the first relapse of EAE were markedly inhibited. Importantly, a similar therapeutic benefit was obtained after oral administration of PETIR-001 from day 12 to day 21 after disease induction. Our results demonstrate that PETIR-001 exhibits a therapeutic effect on EAE in SJL/J mice. Thus, PETIR™ represents a novel and efficient therapeutic approach for immunotherapy of CNS inflammation.
Collapse
Affiliation(s)
- Dirk Reinhold
- Institute of Molecular and Clinical Immunology, Otto von Guericke University Magdeburg, D-39120 Magdeburg, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Reinhold D, Goihl A, Wrenger S, Reinhold A, Kühlmann UC, Faust J, Neubert K, Thielitz A, Brocke S, Täger M, Ansorge S, Bank U. Role of dipeptidyl peptidase IV (DP IV)-like enzymes in T lymphocyte activation: investigations in DP IV/CD26-knockout mice. Clin Chem Lab Med 2009; 47:268-74. [PMID: 19676138 DOI: 10.1515/cclm.2009.062] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND Dipeptidyl peptidase IV (DP IV, CD26) and DP IV-like enzymes, such as dipeptidyl peptidase II (DP II), dipeptidyl peptidase 8 (DP8), and dipeptidyl peptidase 9 (DP9), have been recognized to regulate T lymphocyte activation. Lys[Z(NO2)]-thiazolidide (LZNT) and Lys[Z(NO2)]-pyrrolidide (LZNP), non-selective inhibitors of DP IV-like activity known to target DP IV as well as DP II, DP8, and DP9, suppress T lymphocyte proliferation in vitro. Moreover, these inhibitors are capable of attenuating the severity of autoimmune diseases, such as experimental autoimmune encephalomyelitis, the animal model of multiple sclerosis, and experimental arthritis, a model of human rheumatoid arthritis, in vivo, particularly in combination with inhibitors of aminopeptidase N (APN, CD13) enzymatic activity. METHODS Here, we studied the influence of non-selective and selective inhibitors of DP IV-like enzymes on DNA synthesis in mitogen-stimulated splenocytes from wild-type C57BL/6 mice and DP IV/CD26-knockout (DP IV/CD26-KO) mice. RESULTS LZNT and LZNP, the non-selective inhibitors of DP IV-like activity, suppressed the DNA synthesis in stimulated splenocytes from wild-type and DP IV/ CD26-KO mice to a comparable extent. Further, a selective inhibitor of DP8/DP9 activity was capable of suppressing DNA synthesis in mitogen-stimulated splenocytes of both wild-type and knockout mice to the same extent. In contrast, selective inhibitors of DP IV and DP II lacked this suppressive activity. CONCLUSIONS Our data support the hypothesis that DP8 and/or DP9 represent additional pharmacological targets for the suppression of T cell proliferation and for anti-inflammatory therapy.
Collapse
Affiliation(s)
- Dirk Reinhold
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Kattah MG, Coller J, Cheung RK, Oshidary N, Utz PJ. HIT: a versatile proteomics platform for multianalyte phenotyping of cytokines, intracellular proteins and surface molecules. Nat Med 2008; 14:1284-9. [PMID: 18849997 PMCID: PMC3334282 DOI: 10.1038/nm.1755] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2007] [Accepted: 03/13/2008] [Indexed: 11/08/2022]
Abstract
We have developed a multianalyte fluid-phase protein array technology termed high-throughput immunophenotyping using transcription (HIT). This method employs a panel of monoclonal antibodies, each tagged with a unique oligonucleotide sequence that serves as a molecular bar code. After staining a sample, T7 polymerase amplifies the tags, which are then hybridized to a DNA microarray for indirect measurement of each analyte. Although there are many potential applications for this technology, here we report its suitability for profiling cytokines, intracellular molecules and cell surface markers. Using HIT, we profiled 90 surface markers on human naive T helper cells activated in vitro. The markers identified in this screen are consistent with previously described activation markers and were validated by flow cytometry. Additionally, a HIT screen of surface markers expressed on T helper cells activated in the presence of transforming growth factor-beta identified downregulation of CD26 in these cells. HIT arrays are an ideal platform for rapidly identifying markers for further characterization and therapeutic intervention.
Collapse
Affiliation(s)
- Michael G Kattah
- Department of Medicine, Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, California 94305, USA
| | | | | | | | | |
Collapse
|
21
|
Ohnuma K, Dang NH, Morimoto C. Revisiting an old acquaintance: CD26 and its molecular mechanisms in T cell function. Trends Immunol 2008; 29:295-301. [PMID: 18456553 DOI: 10.1016/j.it.2008.02.010] [Citation(s) in RCA: 191] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2007] [Revised: 01/21/2008] [Accepted: 02/11/2008] [Indexed: 12/19/2022]
Abstract
The role of CD26 in human T cell biology is puzzling. Despite being extensively characterized, it has been called 'a moonlighting protein' since it has multifunctional effects, but a definitive native ligand has not been identified. We summarize the current knowledge on the molecular mechanisms of CD26-mediated T cell costimulation and immune regulation. Work identifying a ligand for CD26 and elucidating the proximal signaling events associated with CD26-mediated T cell costimulation is also described. Finally, we discuss the involvement of CD26 in various pathophysiologic states as well as its suitability as a potential therapeutic target in selected immune diseases.
Collapse
Affiliation(s)
- Kei Ohnuma
- Division of Clinical Immunology, Advanced Clinical Research Center, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | | | | |
Collapse
|
22
|
Reinhold D, Biton A, Goihl A, Pieper S, Lendeckel U, Faust J, Neubert K, Bank U, Täger M, Ansorge S, Brocke S. Dual inhibition of dipeptidyl peptidase IV and aminopeptidase N suppresses inflammatory immune responses. Ann N Y Acad Sci 2007; 1110:402-9. [PMID: 17911455 DOI: 10.1196/annals.1423.042] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The ectopeptidases dipeptidyl peptidase IV (DP IV, CD26) and aminopeptidase N (APN, CD13) are known to regulate T cell activation. Since selective inhibitors of DP IV and APN suppress DNA synthesis and cytokine production of stimulated T cells in a TGF-beta1-dependent manner, we tested whether combined application of DP IV and APN inhibitors enhances this immunomodulatory effect. The results show that simultaneous application of DP IV and APN inhibitors significantly suppressed DNA synthesis in mitogen- or anti-CD3-stimulated human T cells in vitro when compared to the use of a single DP IV or APN inhibitor. Moreover, the combined action of DP IV and APN inhibitors markedly increased TGF-beta1 production associated with the observed immunosuppressive effects. In vivo, targeting both DP IV and APN led to a potent treatment of experimental autoimmune encephalomyelitis, an animal model of multiple sclerosis (MS). This review summarizes the evidence for the role of both enzymes in T cell activation in vitro and in vivo and provides a rationale for using combined and dual peptidase inhibitors to treat autoimmune diseases like MS.
Collapse
Affiliation(s)
- Dirk Reinhold
- Institute of Immunology, Otto-von-Guericke-University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Preller V, Gerber A, Wrenger S, Togni M, Marguet D, Tadje J, Lendeckel U, Röcken C, Faust J, Neubert K, Schraven B, Martin R, Ansorge S, Brocke S, Reinhold D. TGF-beta1-mediated control of central nervous system inflammation and autoimmunity through the inhibitory receptor CD26. THE JOURNAL OF IMMUNOLOGY 2007; 178:4632-40. [PMID: 17372022 DOI: 10.4049/jimmunol.178.7.4632] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The T cell marker CD26/dipeptidyl peptidase (DP) IV is associated with an effector phenotype and markedly elevated in the human CNS disorder multiple sclerosis. However, little is known about the in vivo role of CD26/DP IV in health and disease, and the underlying mechanism of its function in CNS inflammation. To directly address the role of CD26/DP IV in vivo, we examined Th1 immune responses and susceptibility to experimental autoimmune encephalomyelitis in CD26(-/-) mice. We show that gene deletion of CD26 in mice leads to deregulation of Th1 immune responses. Although production of IFN-gamma and TNF-alpha by pathogenic T cells in response to myelin Ag was enhanced in CD26(-/-) mice, production of the immunosuppressive cytokine TGF-beta1 was diminished in vivo and in vitro. In contrast to the reduction in TGF-beta1 production, responsiveness to external TGF-beta1 was normal in T cells from CD26(-/-) mice, excluding alterations in TGF-beta1 sensitivity as a mechanism causing the loss of immune regulation. Natural ligands of CD26/DP IV induced TGF-beta1 production in T cells from wild-type mice. However, natural ligands of CD26/DP IV failed to elicit TGF-beta1 production in T cells from CD26(-/-) mice. The striking functional deregulation of Th1 immunity was also seen in vivo. Thus, clinical experimental autoimmune encephalomyelitis scores were significantly increased in CD26(-/-) mice immunized with peptide from myelin oligodendrocyte glycoprotein. These results identify CD26/DP IV as a nonredundant inhibitory receptor controlling T cell activation and Th1-mediated autoimmunity, and may have important therapeutic implications for the treatment of autoimmune CNS disease.
Collapse
MESH Headings
- Animals
- Autoimmunity/genetics
- Autoimmunity/immunology
- Central Nervous System/enzymology
- Central Nervous System/immunology
- Cytokines/metabolism
- Dipeptidyl Peptidase 4/genetics
- Dipeptidyl Peptidase 4/metabolism
- Dipeptidyl Peptidase 4/physiology
- Down-Regulation
- Encephalomyelitis, Autoimmune, Experimental/enzymology
- Encephalomyelitis, Autoimmune, Experimental/genetics
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Ligands
- Lymphocyte Activation
- Mice
- Mice, Mutant Strains
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell/physiology
- Sequence Deletion
- Th1 Cells/immunology
- Transforming Growth Factor beta1/genetics
- Transforming Growth Factor beta1/metabolism
Collapse
Affiliation(s)
- Vera Preller
- Institute of Immunology, Otto-von-Guericke-University Magdeburg, Leipziger Strasse 44, 39120 Magdeburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Biton A, Bank U, Täger M, Ansorge S, Reinhold D, Lendeckel U, Brocke S. Dipeptidyl Peptidase IV (DP IV, CD26) and Aminopeptidase N (APN, CD13) as Regulators of T Cell Function and Targets of Immunotherapy in CNS Inflammation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2006; 575:177-86. [PMID: 16700521 DOI: 10.1007/0-387-32824-6_19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Aliza Biton
- Department of Pathology, Faculty of Medicine, Hebrew University-Hadassah Medical School, POB 12272, 91120 Jerusalem, Israel
| | | | | | | | | | | | | |
Collapse
|
25
|
Krakauer M, Sorensen PS, Sellebjerg F. CD4(+) memory T cells with high CD26 surface expression are enriched for Th1 markers and correlate with clinical severity of multiple sclerosis. J Neuroimmunol 2006; 181:157-64. [PMID: 17081623 DOI: 10.1016/j.jneuroim.2006.09.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2006] [Revised: 09/06/2006] [Accepted: 09/14/2006] [Indexed: 11/30/2022]
Abstract
An aberrant immune activation is believed to be important in the pathogenesis of multiple sclerosis (MS). Expression of CD4(+) T lymphocyte surface molecules indicative of immune activation and effector functions has been correlated with disease severity and activity. CD4(+) CD45R0(+) CD26(high) memory T lymphocytes contained the high levels of markers of Th1, activation, and effector functions and cell counts of this subset correlated with MS disease severity. This subset had lower expression of PD-1, CCR4, and L-selectin in MS than in controls. These changes were only partially normalised by treatment with interferon-beta. We point to this subset as a putative target for immunological monitoring of MS disease activity and of treatment efficacy.
Collapse
Affiliation(s)
- M Krakauer
- Danish Multiple Sclerosis Research Center, Department of Neurology, Section 2082, Copenhagen University Hospital, Rigshospitalet, Blegdamsvej 9, DK-2100 Copenhagen, Denmark.
| | | | | |
Collapse
|
26
|
Dipeptidyl peptidase IV (DP IV, CD26) and aminopeptidase N (APN, CD13) as regulators of T cell function and targets of immunotherapy in CNS inflammation. Int Immunopharmacol 2006; 6:1935-42. [PMID: 17161346 DOI: 10.1016/j.intimp.2006.07.023] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2006] [Accepted: 07/22/2006] [Indexed: 11/27/2022]
Abstract
The ectoenzymes dipeptidyl peptidase IV (DP IV, CD26) and aminopeptidase N (APN, CD13) have been implicated in the regulation of T cell activation and function. Both DP IV and APN serve as targets of efficient enzymatic inhibitors which induce autocrine production of TGF-beta1 and subsequent suppression of T cell proliferation and cytokine release. Here, we tested the hypothesis that the simultaneous inhibition of DP IV and APN enzymatic activity on leukocytes potentiates the anti-inflammatory effect of single DP IV or APN inhibitors. Our data show that the combined application of DP IV and APN inhibitors increased suppression of DNA synthesis in human peripheral blood mononuclear cells and isolated T cells in vitro when compared to the use of a single ectopeptidase inhibitor. Moreover, the combined action of DP IV and APN inhibitors markedly increased TGF-beta1 production associated with the observed immunosuppressive effects. In vivo, targeting DP IV and APN provided a potent therapeutic approach for the treatment of experimental autoimmune encephalomyelitis, an animal model of multiple sclerosis. Taken together, our study suggests that combined DP IV and APN inhibition on pathogenic T cells represents a novel and efficient therapy for autoimmune disease of the central nervous system by a mechanism that involves an active TGF-beta1-mediated anti-inflammatory effect at the site of pathology.
Collapse
|
27
|
Preller V, Gerber A, Togni M, Wrenger S, Schraven B, Röcken C, Marguet D, Ansorge S, Brocke S, Reinhold D. CD26/DP IV in T cell activation and autoimmunity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2006; 575:187-93. [PMID: 16700522 DOI: 10.1007/0-387-32824-6_20] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Affiliation(s)
- Vera Preller
- Institute of Immunology Otto-von-Guericke University, Leipziger Str 44, D-39120 Magdeburg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Sellebjerg F, Ross C, Koch-Henriksen N, Sørensen PS, Frederiksen JL, Bendtzen K, Sørensen TL. CD26 + CD4 + T cell counts and attack risk in interferon-treated multiple sclerosis. Mult Scler 2006; 11:641-5. [PMID: 16320722 DOI: 10.1191/1352458505ms1217oa] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Biomarkers that allow the identification of patients with multiple sclerosis (MS) with an insufficient response to immunomodulatory treatment would be desirable, as currently available treatments are only incompletely efficacious. Previous studies have shown that the expression of CD25, CD26 and CCR5 on T cells is altered in patients with active MS. We studied the expression of these molecules by flow cytometry in patients followed for six months during immunomodulatory treatment. In interferon (IFN)-beta-treated patients, we found that the hazard ratio for developing an attack was 28 in patients with CD26 + CD4 + T cell counts above median, and this risk was independent of the risk conferred by neutralizing anti-IFN-beta antibodies. CD26 + CD4 + T cell counts may identify patients with MS at increased risk of attack during treatment with IFN-beta.
Collapse
Affiliation(s)
- F Sellebjerg
- The MS Clinic, Copenhagen University Hospital, Glostrup, Denmark.
| | | | | | | | | | | | | |
Collapse
|
29
|
Reinhold D, Kähne T, Steinbrecher A, Gerber A, Preller V, Gornickel B, Wrenger S, Ansorge S, Brocke S. The role of dipeptidyl peptidase IV (DP IV, CD26) in T cell activation and multiple sclerosis. ACTA ACUST UNITED AC 2005. [DOI: 10.1002/sita.200500069] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
30
|
Rüter J, Demuth HU, Arck PC, Hoffmann T, Klapp BF, Hildebrandt M. Inhibition of dipeptidylpeptidase IV (DPP IV, CD26) activity modulates surface expression of CTLA-4 in stress-induced abortions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2003; 524:155-63. [PMID: 12675235 DOI: 10.1007/0-306-47920-6_19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Affiliation(s)
- Jens Rüter
- Department of Internal Medicine/Psychosomatics, Charité Campus Mitte, Luisenstr. 13A, Berlin, Germany
| | | | | | | | | | | |
Collapse
|
31
|
Lorey S, Stöckel-Maschek A, Faust J, Brandt W, Stiebitz B, Gorrell MD, Kähne T, Mrestani-Klaus C, Wrenger S, Reinhold D, Ansorge S, Neubert K. Different modes of dipeptidyl peptidase IV (CD26) inhibition by oligopeptides derived from the N-terminus of HIV-1 Tat indicate at least two inhibitor binding sites. EUROPEAN JOURNAL OF BIOCHEMISTRY 2003; 270:2147-2156. [PMID: 12752434 DOI: 10.1046/j.1432-1033.2003.03568.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Dipeptidyl peptidase IV (DP IV, CD26) plays an essential role in the activation and proliferation of lymphocytes, which is shown by the immunosuppressive effects of synthetic DP IV inhibitors. Similarly, both human immunodeficiency virus-1 (HIV-1) Tat protein and the N-terminal peptide Tat(1-9) inhibit DP IV activity and T cell proliferation. Therefore, the N-terminal amino acid sequence of HIV-1 Tat is important for the inhibition of DP IV. Recently, we characterized the thromboxane A2 receptor peptide TXA2-R(1-9), bearing the N-terminal MWP sequence motif, as a potent DP IV inhibitor possibly playing a functional role during antigen presentation by inhibiting T cell-expressed DP IV [Wrenger, S., Faust, J., Mrestani-Klaus, C., Fengler, A., Stöckel-Maschek, A., Lorey, S., Kähne, T., Brandt, W., Neubert, K., Ansorge, S. & Reinhold, D. (2000) J. Biol. Chem.275, 22180-22186]. Here, we demonstrate that amino acid substitutions at different positions of Tat(1-9) can result in a change of the inhibition type. Certain Tat(1-9)-related peptides are found to be competitive, and others linear mixed-type or parabolic mixed-type inhibitors indicating different inhibitor binding sites on DP IV, at the active site and out of the active site. The parabolic mixed-type mechanism, attributed to both non-mutually exclusive inhibitor binding sites of the enzyme, is described in detail. From the kinetic investigations and molecular modeling experiments, possible interactions of the oligopeptides with specified amino acids of DP IV are suggested. These findings give new insights for the development of more potent and specific peptide-based DP IV inhibitors. Such inhibitors could be useful for the treatment of autoimmune and inflammatory diseases.
Collapse
Affiliation(s)
- Susan Lorey
- Department of Biochemistry/Biotechnology, Institute of Biochemistry, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
Treatment of neurodegenerative diseases, such as Alzheimer's disease, multiple sclerosis, Parkinson's disease and amyotrophic lateral sclerosis (ALS), represents a major challenge for the pharmaceutical industry. These disorders have common and unique molecular pathological characteristics that result in serious reductions in nervous-system functionality. Key to developing novel and efficacious therapeutics is the discovery of new gene targets. Genomic, proteomics and bioinformatic analyses are identifying vast amounts of genes whose expression is associated with the pathology of a specific disease. Extensive validation studies performed in parallel with drug development are crucial for the selection of appropriate target genes. This review outlines some of the current progress in gene discovery for neurodegenerative disease.
Collapse
|
33
|
Rüter J, Hoffmann T, Heiser U, Demuth HU, Arck PC, Klapp BF, Hildebrandt M. The expression of T-cell surface antigens CTLA-4, CD26, and CD28 is modulated by inhibition of dipeptidylpeptidase IV (DPP IV, CD26) activity in murine stress-induced abortions. Cell Immunol 2002; 220:150-6. [PMID: 12657250 DOI: 10.1016/s0008-8749(03)00028-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Inhibition of DPP IV has been shown to abrogate the stress-related increase in murine abortions and a concomitant increase in gamma-interferon. The aim of the present study was to investigate a potential impact of the DPP IV inhibitor Isoleucine Cyanopyrrolidide on the expression of surface antigens involved in T-cell responses. DBA/2-mated CBA mice were stressed on day 5.5 of pregnancy and received injections of a DPP IV inhibitor. On day 13 of gestation, the animals were sacrificed and the percentage of abortions was determined. As shown before, stress failed to boost the abortion rate in mice receiving the DPP IV inhibitor. In stressed animals, a lower surface density of CTLA-4 on decidual CD26-positive lymphocytes was observed than in non-stressed animals. Inhibition of DPP IV restored CTLA-4 surface density to normal and decreased surface expression of CD26 and CD28 on decidual lymphocytes irrespective of stress exposure. These observations suggest that a modulation of T-cell surface antigens expression due to inhibition of DPP IV activity may contribute to the potent anti-abortogenic effect observed here.
Collapse
MESH Headings
- Abatacept
- Abortion, Spontaneous/enzymology
- Abortion, Spontaneous/immunology
- Abortion, Spontaneous/metabolism
- Animals
- Antigens, CD
- Antigens, Differentiation/biosynthesis
- Antigens, Differentiation/immunology
- CD28 Antigens/biosynthesis
- CD28 Antigens/immunology
- CTLA-4 Antigen
- Decidua/immunology
- Dipeptidyl Peptidase 4/biosynthesis
- Dipeptidyl Peptidase 4/immunology
- Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/antagonists & inhibitors
- Enzyme Inhibitors/pharmacology
- Enzyme-Linked Immunosorbent Assay
- Female
- Flow Cytometry
- Immunoconjugates
- Interferon-gamma/immunology
- Interferon-gamma/metabolism
- Interleukin-10/immunology
- Interleukin-10/metabolism
- Male
- Mice
- Mice, Inbred CBA
- Mice, Inbred DBA
- Pregnancy
- Spleen/immunology
- Stress, Physiological/complications
- Stress, Physiological/enzymology
- Stress, Physiological/immunology
- Stress, Physiological/metabolism
- T-Lymphocytes/drug effects
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
Collapse
Affiliation(s)
- Jens Rüter
- Department of Medicine/Psychosomatics, Charité Campus Mitte, Humboldt University, Berlin, Germany.
| | | | | | | | | | | | | |
Collapse
|
34
|
Reinhold D, Kähne T, Steinbrecher A, Wrenger S, Neubert K, Ansorge S, Brocke S. The role of dipeptidyl peptidase IV (DP IV) enzymatic activity in T cell activation and autoimmunity. Biol Chem 2002; 383:1133-8. [PMID: 12437097 DOI: 10.1515/bc.2002.123] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Activated T lymphocytes express high levels of dipeptidyl peptidase IV (DP IV)/CD26. Recent studies support the notion that DP IV may play an important role in the regulation of differentiation and growth of T lymphocytes. This article gives a short overview on DP IV/CD26 expression and effects on immune cells in vitro and in vivo. A major focus of this review are clinical aspects of the function of CD26 on hematopoietic cells and the potential usage of synthetic DP IV inhibitors as therapeutics in inflammatory disorders.
Collapse
Affiliation(s)
- Dirk Reinhold
- Institute of Immunology, Otto-von-Gueircke University Magdeburg, Germany
| | | | | | | | | | | | | |
Collapse
|
35
|
Valenzuela-Fernández A, Planchenault T, Baleux F, Staropoli I, Le-Barillec K, Leduc D, Delaunay T, Lazarini F, Virelizier JL, Chignard M, Pidard D, Arenzana-Seisdedos F. Leukocyte elastase negatively regulates Stromal cell-derived factor-1 (SDF-1)/CXCR4 binding and functions by amino-terminal processing of SDF-1 and CXCR4. J Biol Chem 2002; 277:15677-89. [PMID: 11867624 DOI: 10.1074/jbc.m111388200] [Citation(s) in RCA: 163] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Activation of CXCR4 by the CXC chemokine stromal cell-derived factor-1 (SDF-1) requires interaction of the amino-terminal domains of both molecules. We report that proteinases released from either mononucleated blood cells or polymorphonuclear neutrophils degranulated by inflammatory stimuli generate an SDF-1 fragment that is deleted from amino-terminal residues Lys(1)-Pro(2)-Val(3), as characterized by mass spectrometry analysis. The proteolyzed chemokine fails to induce agonistic functions and is unable to prevent the fusogenic capacity of CXCR4-tropic human immunodeficiency viruses. Furthermore, we observed that exposure of CXCR4-expressing cells to leukocyte proteinases results in the proteolysis of the extracellular amino-terminal domain of the receptor, as assessed by flow cytometry analysis and electrophoretic separation of immunoprecipitated CXCR4. Blockade of SDF-1 and CXCR4 proteolysis by the specific leukocyte elastase inhibitor, N-methoxysuccinyl-alanine-alanine-proline-valine-chloromethyl ketone, identified elastase as the major enzyme among leukocyte-secreted proteinases that accounts for inactivation of both SDF-1 and CXCR4. Indeed, purified leukocyte elastase generated in either SDF-1 or CXCR4 a pattern of cleavage indistinguishable from that observed with leukocyte-secreted proteinases. Our findings suggest that elastase-mediated proteolysis of SDF-1/CXCR4 is part of a mechanism regulating their biological functions in both homeostatic and pathologic processes.
Collapse
|
36
|
Lendeckel U, Kähne T, Riemann D, Neubert K, Arndt M, Reinhold D. Review: the role of membrane peptidases in immune functions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2001; 477:1-24. [PMID: 10849726 DOI: 10.1007/0-306-46826-3_1] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- U Lendeckel
- Institute of Experimental Internal Medicine, Otto-von-Guericke University Magdeburg, Germany
| | | | | | | | | | | |
Collapse
|
37
|
Steinbrecher A, Reinhold D, Quigley L, Gado A, Tresser N, Izikson L, Born I, Faust J, Neubert K, Martin R, Ansorge S, Brocke S. Targeting dipeptidyl peptidase IV (CD26) suppresses autoimmune encephalomyelitis and up-regulates TGF-beta 1 secretion in vivo. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 166:2041-8. [PMID: 11160254 DOI: 10.4049/jimmunol.166.3.2041] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CD26 or dipeptidyl peptidase IV (DP IV) is expressed on various cell types, including T cells. Although T cells can receive activating signals via CD26, the physiological role of CD26/DP IV is largely unknown. We used the reversible DP IV inhibitor Lys[Z(NO(2))]-pyrrolidide (I40) to dissect the role of DP IV in experimental autoimmune encephalomyelitis (EAE) and to explore the therapeutic potential of DP IV inhibition for autoimmunity. I40 administration in vivo decreased and delayed clinical and neuropathological signs of adoptive transfer EAE. I40 blocked DP IV activity in vivo and increased the secretion of the immunosuppressive cytokine TGF-beta1 in spinal cord tissue and plasma during acute EAE. In vitro, while suppressing autoreactive T cell proliferation and TNF-alpha production, I40 consistently up-regulated TGF-beta1 secretion. A neutralizing anti-TGF-beta1 Ab blocked the inhibitory effect of I40 on T cell proliferation to myelin Ag. DP IV inhibition in vivo was not generally immunosuppressive, neither eliminating encephalitogenic T cells nor inhibiting T cell priming. These data suggest that DP IV inhibition represents a novel and specific therapeutic approach protecting from autoimmune disease by a mechanism that includes an active TGF-beta1-mediated antiinflammatory effect at the site of pathology.
Collapse
MESH Headings
- Animals
- Cell Division/immunology
- Cells, Cultured
- Dipeptidyl Peptidase 4/metabolism
- Encephalomyelitis, Autoimmune, Experimental/enzymology
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Encephalomyelitis, Autoimmune, Experimental/prevention & control
- Enzyme Activation/drug effects
- Enzyme Activation/immunology
- Female
- Freund's Adjuvant/administration & dosage
- Growth Inhibitors/physiology
- Immunosuppression Therapy
- Injections, Intraperitoneal
- Injections, Subcutaneous
- Lymphocyte Activation
- Lysine/administration & dosage
- Lysine/analogs & derivatives
- Lysine/pharmacology
- Mice
- Myelin Basic Protein/administration & dosage
- Myelin Basic Protein/immunology
- Protease Inhibitors/administration & dosage
- Protease Inhibitors/pharmacology
- Pyrrolidines/administration & dosage
- Pyrrolidines/pharmacology
- T-Lymphocyte Subsets/immunology
- Transforming Growth Factor beta/biosynthesis
- Transforming Growth Factor beta/metabolism
- Transforming Growth Factor beta/physiology
- Transforming Growth Factor beta1
- Up-Regulation/drug effects
- Up-Regulation/immunology
Collapse
Affiliation(s)
- A Steinbrecher
- Neurological Diseases, Neuroimmunology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Abbott CA, Yu DM, Woollatt E, Sutherland GR, McCaughan GW, Gorrell MD. Cloning, expression and chromosomal localization of a novel human dipeptidyl peptidase (DPP) IV homolog, DPP8. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:6140-6150. [PMID: 11012666 DOI: 10.1046/j.1432-1327.2000.01617.x] [Citation(s) in RCA: 199] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Dipeptidyl peptidase (DPP) IV has roles in T-cell costimulation, chemokine biology, type-II diabetes and tumor biology. Fibroblast activation protein (FAP) has been implicated in tumor growth and cirrhosis. Here we describe DPP8, a novel human postproline dipeptidyl aminopeptidase that is homologous to DPPIV and FAP. Northern-blot hybridization showed that the tissue expression of DPP8 mRNA is ubiquitous, similar to that of DPPIV. The DPP8 gene was localized to chromosome 15q22, distinct from a closely related gene at 19p13.3 which we named DPP9. The full-length DPP8 cDNA codes for an 882-amino-acid protein that has about 27% identity and 51% similarity to DPPIV and FAP, but no transmembrane domain and no N-linked or O-linked glycosylation. Western blots and confocal microscopy of transfected COS-7 cells showed DPP8 to be a 100-kDa monomeric protein expressed in the cytoplasm. Purified recombinant DPP8 hydrolyzed the DPPIV substrates Ala-Pro, Arg-Pro and Gly-Pro. Thus recombinant DPP8 shares a postproline dipeptidyl aminopeptidase activity with DPPIV and FAP. DPP8 enzyme activity had a neutral pH optimum consistent with it being nonlysosomal. The similarities between DPP8 and DPPIV in tissue expression pattern and substrates suggests a potential role for DPP8 in T-cell activation and immune function.
Collapse
Affiliation(s)
- C A Abbott
- A. W. Morrow Gastroenterology and Liver Centre, Royal Prince Alfred Hospital, Centenary Institute of Cancer Medicine and Cell Biologyand The University of Sydney, NSW, Australia.
| | | | | | | | | | | |
Collapse
|
39
|
Arndt M, Lendeckel U, Spiess A, Faust J, Neubert K, Reinhold D, Ansorge S. Dipeptidyl peptidase IV (DP IV/CD26) mRNA expression in PWM-stimulated T-cells is suppressed by specific DP IV inhibition, an effect mediated by TGF-beta(1). Biochem Biophys Res Commun 2000; 274:410-4. [PMID: 10913352 DOI: 10.1006/bbrc.2000.3144] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Stimulation of human T-cells by pokeweed mitogen (PWM) results in a significant increase of IL-2, IFN-gamma, and DP IV mRNA expression as analyzed by quantitative RT-PCR. Here we show for the first time that the changes observed in cytokine mRNA expression are dose-dependently suppressed by the specific dipeptidyl peptidase IV inhibitor Lys[Z(NO(2))]-thiazolidide. Most interestingly, the inhibition of DP IV activity leads to a decrease in mRNA expression of the enzyme itself. Furthermore, evidence is provided that this suppression is mediated by TGF-beta(1). The presented data fit into the hypothesis that inhibition of DP IV leads to the induction of TGF-beta(1), which in turn provokes an arrest of cell cycle in late G(1).
Collapse
Affiliation(s)
- M Arndt
- Institute of Immunology, Centre of Internal Medicine, Otto von Guericke University, Leipziger Strasse 44, Magdeburg, D-39120,
| | | | | | | | | | | | | |
Collapse
|
40
|
Sellebjerg F, Madsen HO, Jensen CV, Jensen J, Garred P. CCR5 delta32, matrix metalloproteinase-9 and disease activity in multiple sclerosis. J Neuroimmunol 2000; 102:98-106. [PMID: 10626673 DOI: 10.1016/s0165-5728(99)00166-6] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Chemokines and matrix metalloproteinases (MMPs) appear to be crucial in leukocyte recruitment to the central nervous system in multiple sclerosis (MS). CCR5 delta32, a truncated allele of the CC chemokine receptor CCR5 gene encoding a non-functional receptor, did not confer protection from MS. CCR5 delta32 was, however, associated with a lower risk of recurrent clinical disease activity. High CSF levels of MMP-9 activity were also associated with recurrent disease activity. These results directly link intrathecal inflammation to disease activity in patients with MS, suggesting that treatments targeting CCR5 or treatment with MMP inhibitors may attenuate disease activity in MS.
Collapse
Affiliation(s)
- F Sellebjerg
- Department of Neurology, University of Copenhagen, Glostrup Hospital, Denmark.
| | | | | | | | | |
Collapse
|
41
|
Brandsch M, Knütter I, Thunecke F, Hartrodt B, Born I, Börner V, Hirche F, Fischer G, Neubert K. Decisive structural determinants for the interaction of proline derivatives with the intestinal H+/peptide symporter. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 266:502-8. [PMID: 10561591 DOI: 10.1046/j.1432-1327.1999.00885.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
To elucidate the decisive structural factors relevant for dipeptide-carrier interaction, the affinity of short amide and imide derivatives for the intestinal H+/peptide symporter (PEPT1) was investigated by measuring their ability to inhibit Gly-Sar transport in Caco-2 cells. Dipeptides with proline or alanine in the C-terminal position displayed affinity constants (Ki) of 0.15-1.2 mM and 0.08-9.5 mM, respectively. There was no clear relationship between hydrophobicity, size or ionization status of the N-terminal amino acid and the affinity of the dipeptides. However, analyzing the individual peptide bond conformations of Xaa-Pro dipeptides, a striking correlation between the cis/trans ratios (trans contents 24-70%) and the affinity constants was observed. After correcting the Ki values for the incompetent cis isomers, the Ki corr values of most dipeptides were in a small range of 0.1-0.16 mM. This result revealed the decisive role of peptide bond conformation even for a transport protein that is quite promiscuous in substrate translocation. When measuring affinity constants of Xaa-Pro and Xaa-Sar dipeptides, the cis/trans ratios cannot be ignored. Lower affinities of Lys-Pro, Arg-Pro and Pro-Pro indicate that additional molecular factors affect their binding at PEPT1. The Ki values obtained for the corresponding Xaa-Ala dipeptides support this conclusion. Potential substrates or inhibitors of peptide transport were found among Xaa-piperidides and Xaa-thiazolidides. Dipeptides with N-terminal proline displayed a very diverse affinity profile. However, in contrast to current knowledge, several Pro-Xaa dipeptides such as Pro-Leu, Pro-Tyr and Pro-Pro are recognized by PEPT1 with appreciable affinities. Binding seems mainly determined by the hydrophobicity of the C-terminal amino acid and the rigidity of the structure.
Collapse
Affiliation(s)
- M Brandsch
- Biozentrum, Martin-Luther-University Halle-Wittenberg, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Abbott CA, McCaughan GW, Gorrell MD. Two highly conserved glutamic acid residues in the predicted beta propeller domain of dipeptidyl peptidase IV are required for its enzyme activity. FEBS Lett 1999; 458:278-284. [PMID: 10570924 DOI: 10.1016/s0014-5793(99)01166-7] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Dipeptidyl peptidase IV (DPP IV) is a member of the prolyl oligopeptidase family and modifies the biological activities of certain chemokines and neuropeptides by cleaving their N-terminal dipeptides. This paper reports the identification and possible significance of a novel conserved sequence motif Asp-Trp-(Val/Ile/Leu)-Tyr-Glu-Glu-Glu (DW(V/I/L)YEEE) in the predicted beta propeller domain of the DPP IV-like gene family. Single amino acid point mutations in this motif identified two glutamates, at positions 205 and 206, as essential for the enzyme activity of human DPP IV. This observation suggests a novel role in proteolysis for residues of DPP IV distant from the Ser-Asp-His catalytic triad.
Collapse
Affiliation(s)
- C A Abbott
- A.W. Morrow Gastroenterology and Liver Centre, Centenary Institute of Cell Biology and Cancer Medicine, Royal Prince Alfred Hospital and the University of Sydney, Newton, NSW, Australia.
| | | | | |
Collapse
|