1
|
Manandhar S, Gurram PC, Govindula A, Kabekkodu SP, Pai KSR. Voglibose Attenuates Amyloid Beta-Induced Memory Deficits in a Rodent Model: A Potential Alzheimer's Therapy via Wnt Signaling Modulation. Mol Neurobiol 2025:10.1007/s12035-025-05047-5. [PMID: 40381169 DOI: 10.1007/s12035-025-05047-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Accepted: 05/06/2025] [Indexed: 05/19/2025]
Abstract
Disruption of the Wnt signaling pathway (WSP), a highly conserved pathway essential for growth and organ development, has been proven to play a role in the pathogenesis of Alzheimer's disease (AD). This study focused on repurposing the FDA-approved drug, Voglibose to target the DKK1-LRP6 site with the goal of upregulating WSP in in vitro as well as rodent model of AD. Based on our previous computational approach, Voglibose was evaluated for the DKK1 binding, neuroprotective effects were examined using SHSY5Y cells, while WSP activation was analyzed through RTPCR in the HEK293/LRP6 cell line. Rodent model of AD was developed using intracerebroventricular administration of Aβ25-35. Male Wistar rats were randomly assigned to receive oral doses of Voglibose (1 and 10 mg/kg) for 28 days, after which behavioral assessments, biochemical analyses, RT-PCR, and histopathological evaluations were conducted. Voglibose showed significant reduction in the DKK1 binding, neuroprotective property in SHSY5Y as well as activation of WSP in LRP6 overexpressed HEK293 cells. There was a significant decrease in the island latency in rats treated with lower dose (p < 0.01) and higher dose (p < 0.05) of Voglibose when compared to the disease control rats. Similarly, in the behavioral tests, Voglibose significantly improved cognition. The deposition of amyloid plaques was found to be considerably more in the disease control rats which got reduced in the treatment groups as observed in the histopathological slides stained with Congo red. Significant alterations in mRNA levels and protein expression of glycogen synthase kinase-β (GSK-3β), β-catenin (β-cat) was observed in rat brain homogenates indicating upregulation of WSP. In conclusion, Voglibose demonstrated significant neuroprotective potential in a cell line study and showed potential cognitive benefits in a rat model of AD. Furthermore, its ability to activate WSP highlights its immense potential as AD therapeutic to enhance memory and modulate key neuroprotective mechanisms.
Collapse
Affiliation(s)
- Suman Manandhar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Prasada Chowdari Gurram
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Anusha Govindula
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - K Sreedhara Ranganath Pai
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
2
|
Karati D, Meur S, Roy S, Mukherjee S, Debnath B, Jha SK, Sarkar BK, Naskar S, Ghosh P. Glycogen synthase kinase 3 (GSK3) inhibition: a potential therapeutic strategy for Alzheimer's disease. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:2319-2342. [PMID: 39432068 DOI: 10.1007/s00210-024-03500-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/30/2024] [Indexed: 10/22/2024]
Abstract
Alzheimer's disease (AD), the most common type of dementia among older adults, is a chronic neurodegenerative pathology that causes a progressive loss of cognitive functioning with a decline of rational skills. It is well known that AD is multifactorial, so there are many different pharmacological targets that can be pursued. According to estimates from the World Health Organization (WHO), 18 million individuals worldwide suffer from AD. Major initiatives to identify risk factors, enhance care giving, and conduct basic research to delay the beginning of AD were started by the USA, France, Germany, France, and various other nations. Widely recognized as a key player in the development and subsequent progression of AD pathogenesis, glycogen synthase kinase-3 (GSK-3) controls a number of crucial targets associated with neuronal degeneration. GSK-3 inhibition has been linked to reduced tau hyperphosphorylation, β-amyloid formation, and neuroprotective benefits in Alzheimer's disease. Lithium, the very first inhibitor of GSK-3β that was used therapeutically, has been successfully used for many years with remarkable results. A great variety of structurally varied strong GSK-3β blockers have been identified in recent years. The purpose of this thorough review is to cover the biological and structural elements of glycogen synthase kinase, as well as the medicinal chemistry aspects of GSK inhibitors that have been produced in recent years.
Collapse
Affiliation(s)
- Dipanjan Karati
- Department of Pharmaceutical Technology, School of Pharmacy, Techno India University, Kolkata, West Bengal, 700091, India
| | - Shreyasi Meur
- Department of Pharmaceutical Technology, School of Pharmacy, Techno India University, Kolkata, West Bengal, 700091, India
| | - Souvik Roy
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata - Group of Institutions, 124, B.L Saha Road, Kolkata, West Bengal, 700053, India
| | - Swarupananda Mukherjee
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata - Group of Institutions, 124, B.L Saha Road, Kolkata, West Bengal, 700053, India.
| | - Biplab Debnath
- Department of Pharmaceutical Technology, Bharat Technology, Uluberia, Howrah, West Bengal, 711316, India
| | - Sajal Kumar Jha
- Department of Pharmaceutical Technology, Bengal College of Pharmaceutical Technology, Dubrajpur, West Bengal, 731123, India
| | | | - Saheli Naskar
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata - Group of Institutions, 124, B.L Saha Road, Kolkata, West Bengal, 700053, India
| | - Priya Ghosh
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata - Group of Institutions, 124, B.L Saha Road, Kolkata, West Bengal, 700053, India
| |
Collapse
|
3
|
Sai Varshini M, Aishwarya Reddy R, Thaggikuppe Krishnamurthy P. Unlocking hope: GSK-3 inhibitors and Wnt pathway activation in Alzheimer's therapy. J Drug Target 2024; 32:909-917. [PMID: 38838023 DOI: 10.1080/1061186x.2024.2365263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 06/07/2024]
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative disorder characterised by progressive cognitive decline and the accumulation of amyloid-β plaques and tau tangles. The Wnt signalling pathway known for its crucial role in neurodevelopment and adult neurogenesis has emerged as a potential target for therapeutic intervention in AD. Glycogen synthase kinase-3 beta (GSK-3β), a key regulator of the Wnt pathway, plays a pivotal role in AD pathogenesis by promoting tau hyperphosphorylation and neuroinflammation. Several preclinical studies have demonstrated that inhibiting GSK-3β leads to the activation of Wnt pathway thereby promoting neuroprotective effects, and mitigating cognitive deficits in AD animal models. The modulation of Wnt signalling appears to have multifaceted benefits including the reduction of amyloid-β production, tau hyperphosphorylation, enhancement of synaptic plasticity, and inhibition of neuroinflammation. These findings suggest that targeting GSK-3β to activate Wnt pathway may represent a novel approach for slowing or halting the progression of AD. This hypothesis reviews the current state of research exploring the activation of Wnt pathway through the inhibition of GSK-3β as a promising therapeutic strategy in AD.
Collapse
Affiliation(s)
- Magham Sai Varshini
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, India
| | - Ramakkamma Aishwarya Reddy
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, India
| | | |
Collapse
|
4
|
Bhole RP, Chikhale RV, Rathi KM. Current biomarkers and treatment strategies in Alzheimer disease: An overview and future perspectives. IBRO Neurosci Rep 2024; 16:8-42. [PMID: 38169888 PMCID: PMC10758887 DOI: 10.1016/j.ibneur.2023.11.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 11/06/2023] [Accepted: 11/09/2023] [Indexed: 01/05/2024] Open
Abstract
Alzheimer's disease (AD), a progressive degenerative disorder first identified by Alois Alzheimer in 1907, poses a significant public health challenge. Despite its prevalence and impact, there is currently no definitive ante mortem diagnosis for AD pathogenesis. By 2050, the United States may face a staggering 13.8 million AD patients. This review provides a concise summary of current AD biomarkers, available treatments, and potential future therapeutic approaches. The review begins by outlining existing drug targets and mechanisms in AD, along with a discussion of current treatment options. We explore various approaches targeting Amyloid β (Aβ), Tau Protein aggregation, Tau Kinases, Glycogen Synthase kinase-3β, CDK-5 inhibitors, Heat Shock Proteins (HSP), oxidative stress, inflammation, metals, Apolipoprotein E (ApoE) modulators, and Notch signaling. Additionally, we examine the historical use of Estradiol (E2) as an AD therapy, as well as the outcomes of Randomized Controlled Trials (RCTs) that evaluated antioxidants (e.g., vitamin E) and omega-3 polyunsaturated fatty acids as alternative treatment options. Notably, positive effects of docosahexaenoic acid nutriment in older adults with cognitive impairment or AD are highlighted. Furthermore, this review offers insights into ongoing clinical trials and potential therapies, shedding light on the dynamic research landscape in AD treatment.
Collapse
Affiliation(s)
- Ritesh P. Bhole
- Department of Pharmaceutical Chemistry, Dr. D. Y. Patil institute of Pharmaceutical Sciences & Research, Pimpri, Pune, India
- Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pimpri, Pune 411018, India
| | | | - Karishma M. Rathi
- Department of Pharmacy Practice, Dr. D. Y. Patil institute of Pharmaceutical Sciences & Research, Pimpri, Pune, India
| |
Collapse
|
5
|
Alexander C, Parsaee A, Vasefi M. Polyherbal and Multimodal Treatments: Kaempferol- and Quercetin-Rich Herbs Alleviate Symptoms of Alzheimer's Disease. BIOLOGY 2023; 12:1453. [PMID: 37998052 PMCID: PMC10669725 DOI: 10.3390/biology12111453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/08/2023] [Accepted: 11/14/2023] [Indexed: 11/25/2023]
Abstract
Alzheimer's Disease (AD) is a progressive neurodegenerative disorder impairing cognition and memory in the elderly. This disorder has a complex etiology, including senile plaque and neurofibrillary tangle formation, neuroinflammation, oxidative stress, and damaged neuroplasticity. Current treatment options are limited, so alternative treatments such as herbal medicine could suppress symptoms while slowing cognitive decline. We followed PRISMA guidelines to identify potential herbal treatments, their associated medicinal phytochemicals, and the potential mechanisms of these treatments. Common herbs, including Ginkgo biloba, Camellia sinensis, Glycyrrhiza uralensis, Cyperus rotundus, and Buplerum falcatum, produced promising pre-clinical results. These herbs are rich in kaempferol and quercetin, flavonoids with a polyphenolic structure that facilitate multiple mechanisms of action. These mechanisms include the inhibition of Aβ plaque formation, a reduction in tau hyperphosphorylation, the suppression of oxidative stress, and the modulation of BDNF and PI3K/AKT pathways. Using pre-clinical findings from quercetin research and the comparatively limited data on kaempferol, we proposed that kaempferol ameliorates the neuroinflammatory state, maintains proper cellular function, and restores pro-neuroplastic signaling. In this review, we discuss the anti-AD mechanisms of quercetin and kaempferol and their limitations, and we suggest a potential alternative treatment for AD. Our findings lead us to conclude that a polyherbal kaempferol- and quercetin-rich cocktail could treat AD-related brain damage.
Collapse
Affiliation(s)
- Claire Alexander
- Department of Biology, Lamar University, Beaumont, TX 77705, USA
| | - Ali Parsaee
- Biological Science, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Maryam Vasefi
- Department of Biology, Lamar University, Beaumont, TX 77705, USA
| |
Collapse
|
6
|
Riquelme R, Li L, Gambrill A, Barria A. ROR2 homodimerization is sufficient to activate a neuronal Wnt/calcium signaling pathway. J Biol Chem 2023; 299:105350. [PMID: 37832874 PMCID: PMC10654037 DOI: 10.1016/j.jbc.2023.105350] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 09/06/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
Wnt signaling plays a key role in the mature CNS by regulating trafficking of NMDA-type glutamate receptors and intrinsic properties of neurons. The Wnt receptor ROR2 has been identified as a necessary component of the neuronal Wnt5a/Ca2+ signaling pathway that regulates synaptic and neuronal function. Since ROR2 is considered a pseudokinase, its mechanism for downstream signaling upon ligand binding has been controversial. It has been suggested that its role is to function as a coreceptor of a G-protein-coupled Wnt receptor of the Frizzled family. We show that chemically induced homodimerization of ROR2 is sufficient to recapitulate key signaling events downstream of receptor activation in neurons, including PKC and JNK kinases activation, elevation of somatic and dendritic Ca2+ levels, and increased trafficking of NMDARs to synapses. In addition, we show that homodimerization of ROR2 induces phosphorylation of the receptor on Tyr residues. Point mutations in the conserved but presumed nonfunctional ATP-binding site of the receptor prevent its phosphorylation, as well as downstream signaling. This suggests an active kinase domain. Our results indicate that ROR2 can signal independently of Frizzled receptors to regulate the trafficking of a key synaptic component. Additionally, they suggest that homodimerization can overcome structural conformations that render the tyrosine kinase inactive. A better understanding of ROR2 signaling is crucial for comprehending the regulation of synaptic and neuronal function in normal brain processes in mature animals.
Collapse
Affiliation(s)
- Raul Riquelme
- Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, Washington, USA
| | - Laura Li
- Neuroscience Undergraduate Program, University of Washington, Seattle, Washington, USA
| | - Abigail Gambrill
- Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, Washington, USA
| | - Andres Barria
- Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, Washington, USA.
| |
Collapse
|
7
|
Wang C, Liu H, Xu S, Deng Y, Xu B, Yang T, Liu W. Ferroptosis and Neurodegenerative Diseases: Insights into the Regulatory Roles of SLC7A11. Cell Mol Neurobiol 2023; 43:2627-2642. [PMID: 36988772 PMCID: PMC11410137 DOI: 10.1007/s10571-023-01343-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 03/22/2023] [Indexed: 03/30/2023]
Abstract
Programed cell death plays a key role in promoting human development and maintaining homeostasis. Ferroptosis is a recently identified pattern of programmed cell death that is closely associated with the onset and progression of neurodegenerative diseases. Ferroptosis is mainly caused by the intracellular accumulation of iron-dependent lipid peroxides. The cysteine/glutamate antibody Solute carrier family 7 member 11 (SLC7A11, also known as xCT) functions to import cysteine for glutathione biosynthesis and antioxidant defense. SLC7A11 has a significant impact on ferroptosis, and inhibition of SLC7A11 expression promotes ferroptosis. Moreover, SLC7A11 is also closely associated with neurodegenerative diseases. In this paper, we summarize the relationship between ferroptosis and neurodegenerative diseases and the role of SLC7A11 during this process. The various regulatory mechanisms of SLC7A11 are also discussed. In conclusion, we are looking forward to a theoretical basis for further understanding the occurrence and development of ferroptosis in SLC7A11 and neurodegenerative diseases, and to seek new clues for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Chen Wang
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenbei New District, Shenyang, 110122, Liaoning, China
| | - Haihui Liu
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenbei New District, Shenyang, 110122, Liaoning, China
| | - Si Xu
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenbei New District, Shenyang, 110122, Liaoning, China
| | - Yu Deng
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenbei New District, Shenyang, 110122, Liaoning, China
| | - Bin Xu
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenbei New District, Shenyang, 110122, Liaoning, China
| | - Tianyao Yang
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenbei New District, Shenyang, 110122, Liaoning, China
| | - Wei Liu
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenbei New District, Shenyang, 110122, Liaoning, China.
| |
Collapse
|
8
|
Surya K, Manickam N, Jayachandran KS, Kandasamy M, Anusuyadevi M. Resveratrol Mediated Regulation of Hippocampal Neuroregenerative Plasticity via SIRT1 Pathway in Synergy with Wnt Signaling: Neurotherapeutic Implications to Mitigate Memory Loss in Alzheimer's Disease. J Alzheimers Dis 2023; 94:S125-S140. [PMID: 36463442 PMCID: PMC10473144 DOI: 10.3233/jad-220559] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Alzheimer's disease (AD) is a major form of dementia. Abnormal amyloidogenic event-mediated degeneration of cholinergic neurons in the cognitive centers of the brain has been attributed to neuropathological sequelae and behavioral deficits in AD. Besides, impaired adult neurogenesis in the hippocampus has experimentally been realized as an underlying cause of dementia regardless of neurodegeneration. Therefore, nourishing the neurogenic process in the hippocampus has been considered an effective therapeutic strategy to mitigate memory loss. In the physiological state, the Wnt pathway has been identified as a potent mitogenic generator in the hippocampal stem cell niche. However, downstream components of Wnt signaling have been noticed to be downregulated in AD brains. Resveratrol (RSV) is a potent Sirtuin1 (SIRT1) enhancer that facilitates neuroprotection and promotes neurogenesis in the hippocampus of the adult brain. While SIRT1 is an important positive regulator of Wnt signaling, ample reports indicate that RSV treatment strongly mediates the fate determination of stem cells through Wnt signaling. However, the possible therapeutic roles of RSV-mediated SIRT1 enhancement on the regulation of hippocampal neurogenesis and reversal of memory loss through the Wnt signaling pathway have not been addressed yet. Taken together, this review describes RSV-mediated effects on the regulation of hippocampal neurogenesis via the activation of SIRT1 in synergy with the Wnt signaling. Further, the article emphasizes a hypothesis that RSV treatment can provoke the activation of quiescent neural stem cells and prime their neurogenic capacity in the hippocampus via Wnt signaling in AD.
Collapse
Affiliation(s)
- Kumar Surya
- Department of Biochemistry, Molecular Neuro-gerontology Laboratory, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - Nivethitha Manickam
- Department of Animal Science, Laboratory of Stem Cells and Neuroregeneration, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - Kesavan Swaminathan Jayachandran
- Department of Bioinformatics, Molecular Cardiology and Drug Discovery Laboratory, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - Mahesh Kandasamy
- Department of Animal Science, Laboratory of Stem Cells and Neuroregeneration, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
- University Grants Commission-Faculty Recharge Programme (UGC-FRP), New Delhi, India
| | - Muthuswamy Anusuyadevi
- Department of Biochemistry, Molecular Neuro-gerontology Laboratory, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| |
Collapse
|
9
|
Manandhar S, Sankhe R, Priya K, Hari G, Kumar B H, Mehta CH, Nayak UY, Pai KSR. Molecular dynamics and structure-based virtual screening and identification of natural compounds as Wnt signaling modulators: possible therapeutics for Alzheimer's disease. Mol Divers 2022; 26:2793-2811. [PMID: 35146638 PMCID: PMC9532339 DOI: 10.1007/s11030-022-10395-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 01/22/2022] [Indexed: 11/29/2022]
Abstract
Wnt signaling pathway is an evolutionarily conserved pathway responsible for neurogenesis, axon outgrowth, neuronal polarity, synapse formation, and maintenance. Downregulation of Wnt signaling has been found in patients with Alzheimer's disease (AD). Several experimental approaches to activate Wnt signaling pathway have proven to be beneficial in alleviating AD, which is one of the new therapeutic approaches for AD. The current study focuses on the computational structure-based virtual screening followed by the identification of potential phytomolecules targeting different markers of Wnt signaling like WIF1, DKK1, LRP6, GSK-3β, and acetylcholine esterase. Initially, screening of 1924 compounds from the plant-based library of Zinc database was done for the selected five proteins using docking approach followed by MM-GBSA calculations. The top five hit molecules were identified for each protein. Based on docking score, and binding interactions, the top two hit molecules for each protein were selected as promising molecules for the molecular dynamic (MD) simulation study with the five proteins. Therefore, from this in silico based study, we report that Mangiferin could be a potential molecule targeting Wnt signaling pathway modulating the LRP6 activity, Baicalin for AChE activity, Chebulic acid for DKK1, ZINC103539689 for WIF1, and Morin for GSk-3β protein. However, further validation of the activity is warranted based on in vivo and in vitro experiments for better understanding and strong claim. This study provides an in silico approach for the identification of modulators of the Wnt signaling pathway as a new therapeutic approach for AD.
Collapse
Affiliation(s)
- Suman Manandhar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Runali Sankhe
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Keerthi Priya
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Gangadhar Hari
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Harish Kumar B
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Chetan H Mehta
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Usha Y Nayak
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - K Sreedhara Ranganath Pai
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, India.
| |
Collapse
|
10
|
Ai Y, Sakamuru S, Imler G, Xia M, Xue F. Improving the solubility and antileukemia activity of Wnt/β-catenin signaling inhibitors by disrupting molecular planarity. Bioorg Med Chem 2022; 69:116890. [PMID: 35777269 PMCID: PMC9390976 DOI: 10.1016/j.bmc.2022.116890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/10/2022] [Accepted: 06/15/2022] [Indexed: 11/02/2022]
Abstract
Leukemia cells depend on the Wnt/β-catenin signaling pathway for their growth. Pyrvinium, a known Wnt signaling inhibitor, has demonstrated promising efficacy in the treatment of the aggressive blast phase chronic myeloid leukemia (BP-CML). We previously developed potent inhibitors 1-2 for the Wnt/β-catenin signaling pathway. However, the further application of these compounds as anti-leukemia agents is limited by their modest anti-leukemia activity in cells and poor aqueous solubility, due to the high molecular planarity of the chemical scaffold. Here, we reported our efforts in the synthesis and in vitro evaluation of 18 new compounds (4a-r) that have been designed to disrupt the molecular planarity of the chemical scaffold. Several compounds of the series showed significantly improved anti-leukemia activity and aqueous solubility. As a highlight, compounds 4c not only maintained excellent inhibitory potency (IC50 = 1.3 nM) for Wnt signaling but also demonstrated good anti-leukemia potency (IC50 = 0.9 µM) in the CML K562 cells. Moreover, compound 4c had an aqueous solubility of 5.9 µg/mL, which is over 50-fold enhanced compared to its parents 1-2.
Collapse
Affiliation(s)
- Yong Ai
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, United States
| | - Srilatha Sakamuru
- 9800 Medical Center Drive, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, United States
| | - Greg Imler
- Naval Research Laboratory, Code 6930, 4555 Overlook Avenue, Washington, D.C. 20375, United States
| | - Menghang Xia
- 9800 Medical Center Drive, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, United States
| | - Fengtian Xue
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, United States.
| |
Collapse
|
11
|
Jha NK, Chen WC, Kumar S, Dubey R, Tsai LW, Kar R, Jha SK, Gupta PK, Sharma A, Gundamaraju R, Pant K, Mani S, Singh SK, Maccioni RB, Datta T, Singh SK, Gupta G, Prasher P, Dua K, Dey A, Sharma C, Mughal YH, Ruokolainen J, Kesari KK, Ojha S. Molecular mechanisms of developmental pathways in neurological disorders: a pharmacological and therapeutic review. Open Biol 2022; 12:210289. [PMID: 35291879 PMCID: PMC8924757 DOI: 10.1098/rsob.210289] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 02/01/2022] [Indexed: 01/07/2023] Open
Abstract
Developmental signalling pathways such as Wnt/β-catenin, Notch and Sonic hedgehog play a central role in nearly all the stages of neuronal development. The term 'embryonic' might appear to be a misnomer to several people because these pathways are functional during the early stages of embryonic development and adulthood, albeit to a certain degree. Therefore, any aberration in these pathways or their associated components may contribute towards a detrimental outcome in the form of neurological disorders such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis and stroke. In the last decade, researchers have extensively studied these pathways to decipher disease-related interactions, which can be used as therapeutic targets to improve outcomes in patients with neurological abnormalities. However, a lot remains to be understood in this domain. Nevertheless, there is strong evidence supporting the fact that embryonic signalling is indeed a crucial mechanism as is manifested by its role in driving memory loss, motor impairments and many other processes after brain trauma. In this review, we explore the key roles of three embryonic pathways in modulating a range of homeostatic processes such as maintaining blood-brain barrier integrity, mitochondrial dynamics and neuroinflammation. In addition, we extensively investigated the effect of these pathways in driving the pathophysiology of a range of disorders such as Alzheimer's, Parkinson's and diabetic neuropathy. The concluding section of the review is dedicated to neurotherapeutics, wherein we identify and list a range of biological molecules and compounds that have shown enormous potential in improving prognosis in patients with these disorders.
Collapse
Affiliation(s)
- Niraj Kumar Jha
- Department of Biotechnology, School of Engineering and Technology (SET), Sharda University, Greater Noida, Uttar Pradesh 201310, India
| | - Wei-Chih Chen
- Division of General Surgery, Department of Surgery, Taipei Medical University Hospital, Taipei 11031, Taiwan
| | - Sanjay Kumar
- Department of Life Science, School of Basic Science and Research, Sharda University, Greater Noida, Uttar Pradesh 201310, India
| | - Rajni Dubey
- Department of Medicine Research, Taipei Medical University Hospital, Taipei 11031, Taiwan
| | - Lung-Wen Tsai
- Department of Medicine Research, Taipei Medical University Hospital, Taipei 11031, Taiwan
- Department of Information Technology Office, Taipei Medical University Hospital, Taipei 11031, Taiwan
- Graduate Institute of Data Science, College of Management, Taipei Medical University, Taipei 110, Taiwan
| | - Rohan Kar
- Indian Institute of Management Ahmedabad (IIMA), Gujarat 380015, India
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering and Technology (SET), Sharda University, Greater Noida, Uttar Pradesh 201310, India
| | - Piyush Kumar Gupta
- Department of Life Science, School of Basic Science and Research, Sharda University, Greater Noida, Uttar Pradesh 201310, India
| | - Ankur Sharma
- Department of Life Science, School of Basic Science and Research, Sharda University, Greater Noida, Uttar Pradesh 201310, India
| | - Rohit Gundamaraju
- ER Stress and Mucosal Immunology Laboratory, School of Health Sciences, University of Tasmania, Launceston, Tasmania 7248, Australia
| | - Kumud Pant
- Department of Biotechnology, Graphic Era deemed to be University Dehradun Uttarakhand, 248002 Dehradun, India
| | - Shalini Mani
- Department of Biotechnology, Jaypee Institute of Information Technology, A-10, Sector 62, Noida, Uttar Pradesh 201301, India
| | - Sandeep Kumar Singh
- Indian Scientific Education and Technology Foundation, Lucknow 226002, India
| | - Ricardo B. Maccioni
- Laboratory of Neurosciences and Functional Medicine, International Center for Biomedicine (ICC) and Faculty of Sciences, University of Chile, Santiago de Chile, Chile
| | - Tirtharaj Datta
- Department of Biotechnology, School of Engineering and Technology (SET), Sharda University, Greater Noida, Uttar Pradesh 201310, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Gaurav Gupta
- Department of Pharmacology, School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, 302017 Jagatpura, Jaipur, India
| | - Parteek Prasher
- Department of Chemistry, University of Petroleum and Energy Studies, Dehradun 248007, Uttarakhand, India
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata 700073, India
- Department of Applied Physics, School of Science, and
| | - Charu Sharma
- Department of Internal Medicine, College of Medicine and Health Sciences, United Arab Emirates University, PO Box 15551, Al Ain, United Arab Emirates
| | - Yasir Hayat Mughal
- Department of Health Administration, College of Public Health and Health Informatics, Qassim University, Buraidah, Saudi Arabia
| | | | - Kavindra Kumar Kesari
- Department of Applied Physics, School of Science, and
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Espoo 00076, Finland
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, PO Box 15551, Al Ain, United Arab Emirates
| |
Collapse
|
12
|
Marcogliese PC, Dutta D, Ray SS, Dang NDP, Zuo Z, Wang Y, Lu D, Fazal F, Ravenscroft TA, Chung H, Kanca O, Wan J, Douine ED, Network UD, Pena LDM, Yamamoto S, Nelson SF, Might M, Meyer KC, Yeo NC, Bellen HJ. Loss of IRF2BPL impairs neuronal maintenance through excess Wnt signaling. SCIENCE ADVANCES 2022; 8:eabl5613. [PMID: 35044823 PMCID: PMC8769555 DOI: 10.1126/sciadv.abl5613] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 11/30/2021] [Indexed: 05/12/2023]
Abstract
De novo truncations in Interferon Regulatory Factor 2 Binding Protein Like (IRF2BPL) lead to severe childhood-onset neurodegenerative disorders. To determine how loss of IRF2BPL causes neural dysfunction, we examined its function in Drosophila and zebrafish. Overexpression of either IRF2BPL or Pits, the Drosophila ortholog, represses Wnt transcription in flies. In contrast, neuronal depletion of Pits leads to increased wingless (wg) levels in the brain and is associated with axonal loss, whereas inhibition of Wg signaling is neuroprotective. Moreover, increased neuronal expression of wg in flies is sufficient to cause age-dependent axonal loss, similar to reduction of Pits. Loss of irf2bpl in zebrafish also causes neurological defects with an associated increase in wnt1 transcription and downstream signaling. WNT1 is also increased in patient-derived astrocytes, and pharmacological inhibition of Wnt suppresses the neurological phenotypes. Last, IRF2BPL and the Wnt antagonist, CKIα, physically and genetically interact, showing that IRF2BPL and CkIα antagonize Wnt transcription and signaling.
Collapse
Affiliation(s)
- Paul C. Marcogliese
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA
| | - Debdeep Dutta
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA
| | - Shrestha Sinha Ray
- The Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Nghi D. P. Dang
- Department of Pharmacology and Toxicology, University of Alabama, Birmingham, AL 35294, USA
| | - Zhongyuan Zuo
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA
| | - Yuchun Wang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA
| | - Di Lu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA
| | - Fatima Fazal
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA
| | - Thomas A. Ravenscroft
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA
| | - Hyunglok Chung
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA
| | - Oguz Kanca
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA
| | - JiJun Wan
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Emilie D. Douine
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Undiagnosed Diseases Network
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA
- The Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA
- Department of Pharmacology and Toxicology, University of Alabama, Birmingham, AL 35294, USA
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
- Development, Disease Models & Therapeutics Graduate Program, Baylor College of Medicine, Houston, TX 77030, USA
- Precision Medicine Institute, University of Alabama, Birmingham, AL 35294, USA
- Department of Pediatrics, The Ohio State University, Columbus, OH 43210, USA
| | - Loren D. M. Pena
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Shinya Yamamoto
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
- Development, Disease Models & Therapeutics Graduate Program, Baylor College of Medicine, Houston, TX 77030, USA
| | - Stanley F. Nelson
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Matthew Might
- Precision Medicine Institute, University of Alabama, Birmingham, AL 35294, USA
| | - Kathrin C. Meyer
- The Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA
- Department of Pediatrics, The Ohio State University, Columbus, OH 43210, USA
| | - Nan Cher Yeo
- Department of Pharmacology and Toxicology, University of Alabama, Birmingham, AL 35294, USA
- Precision Medicine Institute, University of Alabama, Birmingham, AL 35294, USA
| | - Hugo J. Bellen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
13
|
Insights into Potential Targets for Therapeutic Intervention in Epilepsy. Int J Mol Sci 2020; 21:ijms21228573. [PMID: 33202963 PMCID: PMC7697405 DOI: 10.3390/ijms21228573] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/04/2020] [Accepted: 11/11/2020] [Indexed: 02/06/2023] Open
Abstract
Epilepsy is a chronic brain disease that affects approximately 65 million people worldwide. However, despite the continuous development of antiepileptic drugs, over 30% patients with epilepsy progress to drug-resistant epilepsy. For this reason, it is a high priority objective in preclinical research to find novel therapeutic targets and to develop effective drugs that prevent or reverse the molecular mechanisms underlying epilepsy progression. Among these potential therapeutic targets, we highlight currently available information involving signaling pathways (Wnt/β-catenin, Mammalian Target of Rapamycin (mTOR) signaling and zinc signaling), enzymes (carbonic anhydrase), proteins (erythropoietin, copine 6 and complement system), channels (Transient Receptor Potential Vanilloid Type 1 (TRPV1) channel) and receptors (galanin and melatonin receptors). All of them have demonstrated a certain degree of efficacy not only in controlling seizures but also in displaying neuroprotective activity and in modifying the progression of epilepsy. Although some research with these specific targets has been done in relation with epilepsy, they have not been fully explored as potential therapeutic targets that could help address the unsolved issue of drug-resistant epilepsy and develop new antiseizure therapies for the treatment of epilepsy.
Collapse
|
14
|
Wan Nasri WN, Makpol S, Mazlan M, Tooyama I, Wan Ngah WZ, Damanhuri HA. Tocotrienol Rich Fraction Supplementation Modulate Brain Hippocampal Gene Expression in APPswe/PS1dE9 Alzheimer's Disease Mouse Model. J Alzheimers Dis 2020; 70:S239-S254. [PMID: 30507571 PMCID: PMC6700627 DOI: 10.3233/jad-180496] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder characterized by loss of memory and other cognitive abilities. AD is associated with aggregation of amyloid-β (Aβ) deposited in the hippocampal brain region. Our previous work has shown that tocotrienol rich fraction (TRF) supplementation was able to attenuate the blood oxidative status, improve behavior, and reduce fibrillary-type Aβ deposition in the hippocampus of an AD mouse model. In the present study, we investigate the effect of 6 months of TRF supplementation on transcriptome profile in the hippocampus of APPswe/PS1dE9 double transgenic mice. TRF supplementation can alleviate AD conditions by modulating several important genes in AD. Moreover, TRF supplementation attenuated the affected biological process and pathways that were upregulated in the AD mouse model. Our findings indicate that TRF supplementation can modulate hippocampal gene expression as well as biological processes that can potentially delay the progression of AD.
Collapse
Affiliation(s)
- Wan Nurzulaikha Wan Nasri
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia
| | - Suzana Makpol
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia
| | - Musalmah Mazlan
- Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh, Selangor, Malaysia
| | - Ikuo Tooyama
- Molecular Neuroscience Research Centre, Shiga University of Medical Sciences, Seta Tsukinowacho, Otsu, Shiga, Japan
| | - Wan Zurinah Wan Ngah
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia
| | - Hanafi Ahmad Damanhuri
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia
| |
Collapse
|
15
|
Xu F, Na L, Li Y, Chen L. Roles of the PI3K/AKT/mTOR signalling pathways in neurodegenerative diseases and tumours. Cell Biosci 2020; 10:54. [PMID: 32266056 PMCID: PMC7110906 DOI: 10.1186/s13578-020-00416-0] [Citation(s) in RCA: 395] [Impact Index Per Article: 79.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 03/26/2020] [Indexed: 02/06/2023] Open
Abstract
The PI3 K/AKT/mTOR signalling pathway plays an important role in the regulation of signal transduction and biological processes such as cell proliferation, apoptosis, metabolism and angiogenesis. Compared with those of other signalling pathways, the components of the PI3K/AKT/mTOR signalling pathway are complicated. The regulatory mechanisms and biological functions of the PI3K/AKT/mTOR signalling pathway are important in many human diseases, including ischaemic brain injury, neurodegenerative diseases, and tumours. PI3K/AKT/mTOR signalling pathway inhibitors include single-component and dual inhibitors. Numerous PI3K inhibitors have exhibited good results in preclinical studies, and some have been clinically tested in haematologic malignancies and solid tumours. In this review, we briefly summarize the results of research on the PI3K/AKT/mTOR pathway and discuss the structural composition, activation, communication processes, regulatory mechanisms and biological functions of the PI3K/AKT/mTOR signalling pathway in the pathogenesis of neurodegenerative diseases and tumours.
Collapse
Affiliation(s)
- Fei Xu
- Department of Microbiology and Immunology, Shanghai University of Medicine & Health Sciences, 279 Zhouzhu Rd, Shanghai, 201318 China
- Collaborative Innovation Center of Shanghai University of Medicine & Health Sciences, Shanghai, 201318 China
| | - Lixin Na
- Collaborative Innovation Center of Shanghai University of Medicine & Health Sciences, Shanghai, 201318 China
- Department of Inspection and Quarantine, Shanghai University of Medicine & Health Sciences, Shanghai, 201318 China
| | - Yanfei Li
- Department of Inspection and Quarantine, Shanghai University of Medicine & Health Sciences, Shanghai, 201318 China
| | - Linjun Chen
- Department of Inspection and Quarantine, Shanghai University of Medicine & Health Sciences, Shanghai, 201318 China
| |
Collapse
|
16
|
Zhao C, Yu Y, Zhang Y, Shen J, Jiang L, Sheng G, Zhang W, Xu L, Jiang K, Mao S, Jiang P, Gao F. β-Catenin Controls the Electrophysiologic Properties of Skeletal Muscle Cells by Regulating the α2 Isoform of Na +/K +-ATPase. Front Neurosci 2019; 13:831. [PMID: 31440132 PMCID: PMC6693565 DOI: 10.3389/fnins.2019.00831] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 07/25/2019] [Indexed: 12/20/2022] Open
Abstract
β-Catenin is a key component of the canonical Wnt signaling pathway. It has been shown to have an important role in formation of the neuromuscular junction. Our previous studies showed that in the absence of β-catenin, the resting membrane potential (RMP) is depolarized in muscle cells and expression of the α2 subunit of sodium/potassium adenosine triphosphatase (α2NKA) is reduced. To understand the underlying mechanisms, we investigated the electrophysiologic properties of a primary cell line derived from mouse myoblasts (C2C12 cells) that were transfected with small-interfering RNAs and over-expressed plasmids targeting β-catenin. We found that the RMP was depolarized in β-catenin knocked-down C2C12 cells and was unchanged in β-catenin over-expressed muscle cells. An action potential (AP) was not released by knockdown or over-expression of β-catenin. α2NKA expression was reduced by β-catenin knockdown, and increased by β-catenin over-expression. We showed that β-catenin could interact physically with α2NKA (but not with α1NKA) in muscle cells. NKA activity and α2NKA content in the cell membranes of skeletal muscle cells were modulated positively by β-catenin. These results suggested that β-catenin (at least in part) regulates the RMP and AP in muscle cells, and does so by regulating α2NKA.
Collapse
Affiliation(s)
- Congying Zhao
- Department of Neurology, Children's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yonglin Yu
- Department of Rehabilitation, Children's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yi Zhang
- Department of Neurology, Children's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jue Shen
- Department of Neurology, Children's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lihua Jiang
- Department of Neurology, Children's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Guoxia Sheng
- Department of Neurology, Children's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Weiqin Zhang
- Department of Neurology, Children's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lu Xu
- Department of Neurology, Children's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Kewen Jiang
- Department of Neurology, Children's Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Department of Biobank, Children's Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Department of Neurobiology, Key Laboratory of Medical Neurobiology of Ministry of Health of China, Zhejiang Province Key Laboratory of Neurobiology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shanshan Mao
- Department of Neurology, Children's Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Scientific Research Office, Children's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Peifang Jiang
- Department of Neurology, Children's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Feng Gao
- Department of Neurology, Children's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
17
|
Forloni G, Chiesa R, Bugiani O, Salmona M, Tagliavini F. Review: PrP 106-126 - 25 years after. Neuropathol Appl Neurobiol 2019; 45:430-440. [PMID: 30635947 DOI: 10.1111/nan.12538] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 12/10/2018] [Indexed: 12/14/2022]
Abstract
A quarter of a century ago, we proposed an innovative approach to study the pathogenesis of prion disease, one of the most intriguing biomedical problems that remains unresolved. The synthesis of a peptide homologous to residues 106-126 of the human prion protein (PrP106-126), a sequence present in the PrP amyloid protein of Gerstmann-Sträussler-Scheinker syndrome patients, provided a tractable tool for investigating the mechanisms of neurotoxicity. Together with several other discoveries at the beginning of the 1990s, PrP106-126 contributed to underpin the role of amyloid in the pathogenesis of protein-misfolding neurodegenerative disorders. Later, the role of oligomers on one hand and of prion-like spreading of pathology on the other further clarified mechanisms shared by different neurodegenerative conditions. Our original report on PrP106-126 neurotoxicity also highlighted a role for programmed cell death in CNS diseases. In this review, we analyse the prion research context in which PrP106-126 first appeared and the advances in our understanding of prion disease pathogenesis and therapeutic perspectives 25 years later.
Collapse
Affiliation(s)
- G Forloni
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - R Chiesa
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - O Bugiani
- Department of Biochemistry, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - M Salmona
- Department of Biochemistry, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - F Tagliavini
- Fondazione IRCCS Istituto Neurologico "Carlo Besta", Milano, Italy
| |
Collapse
|
18
|
Fluoxetine attenuates the impairment of spatial learning ability and prevents neuron loss in middle-aged APPswe/PSEN1dE9 double transgenic Alzheimer's disease mice. Oncotarget 2018; 8:27676-27692. [PMID: 28430602 PMCID: PMC5438600 DOI: 10.18632/oncotarget.15398] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 01/31/2017] [Indexed: 01/04/2023] Open
Abstract
Selective serotonin reuptake inhibitors (SSRIs) have been reported to increase cognitive performance in some clinical studies of Alzheimer's disease (AD). However, there is a lack of evidence supporting the efficacy of SSRIs as cognition enhancers in AD, and the role of SSRIs as a treatment for AD remains largely unclear. Here, we characterized the impact of fluoxetine (FLX), a well-known SSRI, on neurons in the dentate gyrus (DG) and in CA1 and CA3 of the hippocampus of middle-aged (16 to 17 months old) APPswe/PSEN1dE9 (APP/PS1) transgenic AD model mice. We found that intraperitoneal (i.p.) injection of FLX (10 mg/kg/day) for 5 weeks effectively alleviated the impairment of spatial learning ability in middle-aged APP/PS1 mice as evaluated using the Morris water maze. More importantly, the number of neurons in the hippocampal DG was significantly increased by FLX. Additionally, FLX reduced the deposition of beta amyloid, inhibited GSK-3β activity and increased the level of β-catenin in middle-aged APP/PS1 mice. Collectively, the results of this study indicate that FLX delayed the progression of neuronal loss in the hippocampal DG in middle-aged AD mice, and this effect may underlie the FLX-induced improvement in learning ability. FLX may therefore serve as a promising therapeutic drug for AD.
Collapse
|
19
|
McQuate A, Latorre-Esteves E, Barria A. A Wnt/Calcium Signaling Cascade Regulates Neuronal Excitability and Trafficking of NMDARs. Cell Rep 2017; 21:60-69. [DOI: 10.1016/j.celrep.2017.09.023] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 08/24/2017] [Accepted: 09/06/2017] [Indexed: 02/06/2023] Open
|
20
|
Zhou L, Chen D, Huang XM, Long F, Cai H, Yao WX, Chen ZC, Liao ZJ, Deng ZZ, Tan S, Shan YL, Cai W, Wang YG, Yang RH, Jiang N, Peng T, Hong MF, Lu ZQ. Wnt5a Promotes Cortical Neuron Survival by Inhibiting Cell-Cycle Activation. Front Cell Neurosci 2017; 11:281. [PMID: 29033786 PMCID: PMC5626855 DOI: 10.3389/fncel.2017.00281] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Accepted: 08/30/2017] [Indexed: 01/11/2023] Open
Abstract
β-Amyloid protein (Aβ) is thought to cause neuronal loss in Alzheimer’s disease (AD). Aβ treatment promotes the re-activation of a mitotic cycle and induces rapid apoptotic death of neurons. However, the signaling pathways mediating cell-cycle activation during neuron apoptosis have not been determined. We find that Wnt5a acts as a mediator of cortical neuron survival, and Aβ42 promotes cortical neuron apoptosis by downregulating the expression of Wnt5a. Cell-cycle activation is mediated by the reduced inhibitory effect of Wnt5a in Aβ42 treated cortical neurons. Furthermore, Wnt5a signals through the non-canonical Wnt/Ca2+ pathway to suppress cyclin D1 expression and negatively regulate neuronal cell-cycle activation in a cell-autonomous manner. Together, aberrant downregulation of Wnt5a signaling is a crucial step during Aβ42 induced cortical neuron apoptosis and might contribute to AD-related neurodegeneration.
Collapse
Affiliation(s)
- Li Zhou
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Department of Rehabilitation, The First Affiliated Hospital of Clinical Medicine of Guangdong Pharmaceutical University, Guangzhou, China
| | - Di Chen
- Laboratory of Viral Immunology, State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Sino-French Hoffmann Institute of Immunology, Guangzhou Medical University, Guangzhou, China
| | - Xu-Ming Huang
- Department of Rehabilitation, The First Affiliated Hospital of Clinical Medicine of Guangdong Pharmaceutical University, Guangzhou, China
| | - Fei Long
- Laboratory of Viral Immunology, State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Sino-French Hoffmann Institute of Immunology, Guangzhou Medical University, Guangzhou, China
| | - Hua Cai
- Laboratory of Viral Immunology, State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Sino-French Hoffmann Institute of Immunology, Guangzhou Medical University, Guangzhou, China
| | - Wen-Xia Yao
- Laboratory of Viral Immunology, State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Sino-French Hoffmann Institute of Immunology, Guangzhou Medical University, Guangzhou, China
| | - Zhong-Cheng Chen
- Department of Laboratory, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | | | - Zhe-Zhi Deng
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Sha Tan
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yi-Long Shan
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Wei Cai
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yu-Ge Wang
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Ri-Hong Yang
- Department of Pathology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Nan Jiang
- Department of Hepatic Surgery, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Tao Peng
- Laboratory of Viral Immunology, State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Sino-French Hoffmann Institute of Immunology, Guangzhou Medical University, Guangzhou, China
| | - Ming-Fan Hong
- Department of Neurology, The First Affiliated Hospital of Clinical Medicine of Guangdong Pharmaceutical University, Guangzhou, China
| | - Zheng-Qi Lu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
21
|
Prenatal high sucrose intake affected learning and memory of aged rat offspring with abnormal oxidative stress and NMDARs/Wnt signaling in the hippocampus. Brain Res 2017; 1669:114-121. [PMID: 28532855 DOI: 10.1016/j.brainres.2017.05.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Revised: 04/29/2017] [Accepted: 05/19/2017] [Indexed: 01/07/2023]
Abstract
Maternal over-nutrition may predispose offspring to obesity, type 2 diabetes and other adult diseases. The present study investigated long-term impact of prenatal high sucrose (HS) diets on cognitive capabilities in aged rat offspring. The fasting plasma glucose concentration did not differ between the control and HS groups. However, the fasting plasma insulin and insulin resistance index values were significantly increased in HS offspring that showed abnormal glucose tolerance test. HS offspring exhibited increased escape latency and swimming path length to the platform, and reduced time in the target quadrant and the number of crossing the platform, as compared with the control group. The expression of Grin2b/NR2B, Wnt2, Wnt3a and active form of β-catenin protein were decreased, and Dickkopf-related protein 1 was increased in the HS group. In addition, the levels of lipid peroxidation biomarker thiobarbituricacid reactive substance, nicotinamide adenine dinucleotide phosphate oxidases 2 and superoxide dismutase 1 were significantly increased, and the activity of catalase was decreased in the hippocampus in the HS group. The results demonstrate that prenatal HS-induced metabolic changes cause cognitive deficits in aged rat offspring, probably due to altered N-methyl-d-aspartate receptors/Wnt signaling and oxidative stress in the hippocampus.
Collapse
|
22
|
Jeon Y, Lee S, Shin M, Lee JH, Suh YS, Hwang S, Yun HS, Cho KS. Phenotypic differences between Drosophila Alzheimer's disease models expressing human Aβ42 in the developing eye and brain. Anim Cells Syst (Seoul) 2017; 21:160-168. [PMID: 30460065 PMCID: PMC6138326 DOI: 10.1080/19768354.2017.1313777] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2016] [Revised: 03/06/2017] [Accepted: 03/17/2017] [Indexed: 12/20/2022] Open
Abstract
Drosophila melanogaster expressing amyloid-β42 (Aβ42) transgenes have been used as models to study Alzheimer's disease. Various Aβ42 transgenes with different structures induce different phenotypes, which make it difficult to compare data among studies which use different transgenic lines. In this study, we compared the phenotypes of four frequently used Aβ42 transgenic lines, UAS-Aβ422X , UAS-Aβ42BL33770 , UAS-Aβ4211C39 , and UAS-Aβ42H29.3 . Among the four transgenic lines, only UAS-Aβ422X has two copies of the upstream activation sequence-amyloid-β42 (UAS-Aβ42) transgene, while remaining three have one copy. UAS-Aβ42BL33770 has the 3' untranslated region of Drosophila α-tubulin, while the others have that of SV40. UAS-Aβ4211C39 and UAS-Aβ42H29.3 have the rat pre-proenkephalin signal peptide, while UAS-Aβ422X and UAS-Aβ42BL33770 have that of the fly argos protein. When the transgenes were expressed ectopically in the developing eyes of the flies, UAS-Aβ422X transgene resulted in a strongly reduced and rough eye phenotype, while UAS-Aβ42BL33770 only showed a strong rough eye phenotype; UAS-Aβ42H29.3 and UAS-Aβ4211C39 had mild rough eyes. The levels of cell death and reactive oxygen species (ROS) in the eye imaginal discs were consistently the highest in UAS-Aβ422X , followed by UAS-Aβ42BL33770 , UAS-Aβ4211C39 , and UAS-Aβ42H29.3 . Surprisingly, the reduction in survival during the development of these lines did not correlate with cell death or ROS levels. The flies which expressed UAS-Aβ4211C39 or UAS-Aβ42H29.3 experienced greatly reduced survival rates, although low levels of ROS or cell death were detected. Collectively, our results demonstrated that different Drosophila AD models show different phenotypic severity, and suggested that different transgenes may have different modes of cytotoxicity. Abbreviations: Aβ42: amyloid-β42; AD: Alzheimer's disease; UAS: upstream activation sequence.
Collapse
Affiliation(s)
- Youngjae Jeon
- Department of Biological Sciences, Konkuk University, Seoul, Republic of Korea
| | - Soojin Lee
- Department of Biological Sciences, Konkuk University, Seoul, Republic of Korea
| | - Myoungchul Shin
- Department of Biological Sciences, Konkuk University, Seoul, Republic of Korea
| | - Jang Ho Lee
- Department of Biological Sciences, Konkuk University, Seoul, Republic of Korea
| | - Yoon Seok Suh
- Department of Biological Sciences, Konkuk University, Seoul, Republic of Korea
| | - Soojin Hwang
- Department of Biological Sciences, Konkuk University, Seoul, Republic of Korea
| | - Hye Sup Yun
- Department of Biological Sciences, Konkuk University, Seoul, Republic of Korea
| | - Kyoung Sang Cho
- Department of Biological Sciences, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
23
|
Yu HJ, Koh SH. The role of PI3K/AKT pathway and its therapeutic possibility in Alzheimer's disease. ACTA ACUST UNITED AC 2017. [DOI: 10.7599/hmr.2017.37.1.18] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Hyun-Jung Yu
- Department of Neurology, Bundang Jesaeng Hospital, Gyeonggi, South Korea
| | - Seong-Ho Koh
- Department of Neurology, Hanyang University Guri Hospital, Gyeonggi, South Korea
| |
Collapse
|
24
|
Choi J, Ma S, Kim HY, Yun JH, Heo JN, Lee W, Choi KY, No KT. Identification of small-molecule compounds targeting the dishevelled PDZ domain by virtual screening and binding studies. Bioorg Med Chem 2016; 24:3259-66. [DOI: 10.1016/j.bmc.2016.03.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Revised: 03/11/2016] [Accepted: 03/15/2016] [Indexed: 10/22/2022]
|
25
|
Pang L, Dong N, Wang D, Zhang N, Xing J. Increased Dickkopf-1 expression is correlated with poisoning severity in carbon monoxide-poisoned humans and rats. Inhal Toxicol 2016; 28:455-62. [PMID: 27353797 DOI: 10.1080/08958378.2016.1198440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
CONTEXT Carbon monoxide (CO) poisoning results in neuronal injury. The expression of Dickkopf-1 (DKK-1) has not been investigated previously after CO poisoning. OBJECTIVE The current study aimed to investigate the DKK-1 expression levels in humans and rats with acute CO poisoning and to analyze their correlation with poisoning severity. MATERIALS AND METHODS We measured serum DKK-1 levels in patients with acute CO poisoning (n = 94) and in healthy controls (n = 90). On admission, a poisoning severity score (PSS) was determined for each patient. In addition, 36 male Sprague-Dawley rats were randomly assigned into three groups: (a) Sham group, (b) Low CO group and (c) High CO group. At 2 h after CO poisoning, DKK-1 expression and histopathological damage in the hippocampal tissues were measured. RESULTS Serum DKK-1 levels were significantly higher in the acute CO-poisoned patients, compared to the healthy controls. Serum DKK-1 levels were significantly higher in the CO-poisoned patients with a lower PSS. In rats, CO poisoning induced significant upregulation of the gene and protein expression of DKK-1 in hippocampal tissues. Moreover, there was a positive correlation between DKK-1 levels and the degree of damage in the hippocampal tissues. DISCUSSION DKK-1 induction in neurons after CO poisoning causes further neuronal injury. The severity of acute CO poisoning in rat models is associated with elevated serum DKK-1 levels and its upregulation in the brain tissue. CONCLUSION DKK-1 appears to have potential utility in providing valuable information for determining the severity and damage of CO poisoning.
Collapse
Affiliation(s)
- Li Pang
- a Department of Emergency , the First Hospital of Jilin University , Changchun , China
| | - Ning Dong
- a Department of Emergency , the First Hospital of Jilin University , Changchun , China
| | - Dawei Wang
- a Department of Emergency , the First Hospital of Jilin University , Changchun , China
| | - Nan Zhang
- a Department of Emergency , the First Hospital of Jilin University , Changchun , China
| | - Jihong Xing
- a Department of Emergency , the First Hospital of Jilin University , Changchun , China
| |
Collapse
|
26
|
Sadigh-Eteghad S, Askari-Nejad MS, Mahmoudi J, Majdi A. Cargo trafficking in Alzheimer’s disease: the possible role of retromer. Neurol Sci 2015; 37:17-22. [DOI: 10.1007/s10072-015-2399-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 10/08/2015] [Indexed: 01/25/2023]
|
27
|
RoR2 functions as a noncanonical Wnt receptor that regulates NMDAR-mediated synaptic transmission. Proc Natl Acad Sci U S A 2015; 112:4797-802. [PMID: 25825749 DOI: 10.1073/pnas.1417053112] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Wnt signaling has a well-established role as a regulator of nervous system development, but its role in the maintenance and regulation of established synapses in the mature brain remains poorly understood. At excitatory glutamatergic synapses, NMDA receptors (NMDARs) have a fundamental role in synaptogenesis, synaptic plasticity, and learning and memory; however, it is not known what controls their number and subunit composition. Here we show that the receptor tyrosine kinase-like orphan receptor 2 (RoR2) functions as a Wnt receptor required to maintain basal NMDAR-mediated synaptic transmission. In addition, RoR2 activation by a noncanonical Wnt ligand activates PKC and JNK and acutely enhances NMDAR synaptic responses. Regulation of a key component of glutamatergic synapses through RoR2 provides a mechanism for Wnt signaling to modulate synaptic transmission, synaptic plasticity, and brain function acutely beyond embryonic development.
Collapse
|
28
|
Lauzon MA, Daviau A, Marcos B, Faucheux N. Growth factor treatment to overcome Alzheimer's dysfunctional signaling. Cell Signal 2015; 27:1025-38. [PMID: 25744541 DOI: 10.1016/j.cellsig.2015.02.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 02/16/2015] [Indexed: 10/23/2022]
Abstract
The number of people suffering from Alzheimer's disease (AD) will increase as the world population ages, creating a huge socio-economic burden. The three pathophysiological hallmarks of AD are the cholinergic system dysfunction, the β-amyloid peptide deposition and the Tau protein hyperphosphorylation. Current treatments have only transient effects and each tends to concentrate on a single pathophysiological aspect of AD. This review first provides an overall view of AD in terms of its pathophysiological symptoms and signaling dysfunction. We then examine the therapeutic potential of growth factors (GFs) by showing how they can overcome the dysfunctional cell signaling that occurs in AD. Finally, we discuss new alternatives to GFs that help overcome the problem of brain uptake, such as small peptides, with evidence from some of our unpublished data on human neuronal cell line.
Collapse
Affiliation(s)
- Marc-Antoine Lauzon
- Cell-Biomaterial Biohybrid Systems, Department of Chemical and Biotechnological Engineering, Université de Sherbrooke, 2500 boul. de l'Université, Sherbrooke, Québec J1K 2R1, Canada
| | - Alex Daviau
- Cell-Biomaterial Biohybrid Systems, Department of Chemical and Biotechnological Engineering, Université de Sherbrooke, 2500 boul. de l'Université, Sherbrooke, Québec J1K 2R1, Canada
| | - Bernard Marcos
- Department of Chemical and Biotechnological Engineering, Université de Sherbrooke, 2500 boul. de l'Université, Sherbrooke, Québec J1K 2R1, Canada
| | - Nathalie Faucheux
- Cell-Biomaterial Biohybrid Systems, Department of Chemical and Biotechnological Engineering, Université de Sherbrooke, 2500 boul. de l'Université, Sherbrooke, Québec J1K 2R1, Canada.
| |
Collapse
|
29
|
Kim EA, Cho CH, Hahn HG, Choi SY, Cho SW. 2-Cyclopropylimino-3-methyl-1,3-thiazoline hydrochloride protects against beta-amyloid-induced activation of the apoptotic cascade in cultured cortical neurons. Cell Mol Neurobiol 2014; 34:963-72. [PMID: 25011606 PMCID: PMC11488864 DOI: 10.1007/s10571-014-0080-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 06/25/2014] [Indexed: 12/30/2022]
Abstract
Aggregated β-amyloid, implicated in the pathogenesis of Alzheimer's disease (AD), induces neurotoxicity by evoking a cascade of oxidative damage-dependent apoptosis in neurons. We investigated the molecular mechanisms underlying the protective effect of 2-cyclopropylimino-3-methyl-1,3-thiazoline hydrochloride (KHG26377) against the beta-amyloid (Aβ25-35)-induced primary cortical neuronal cell neurotoxicity. Treatment with KHG26377 attenuated the Aβ25-35-induced apoptosis by decreasing the Bax/Bcl-2 ratio and suppressing the activation of caspase-3. A marked increase in calcium influx and in the level of reactive oxygen species together with a decrease in glutathione levels was found after Aβ25-35 exposure; however, KHG26377 treatment reversed these changes in a concentration-dependent manner. In addition, KHG26377 significantly suppressed Aβ25-35-induced toxicity concomitant with a reduction in the activation of extracellular signal-regulated kinases 1 and 2 and nuclear factor kappa B. The KHG26377-induced protection of neuronal cells against Aβ toxicity was also mediated by suppressing the expression of glycogen synthase kinase-3β, increasing the levels of β-catenin, and reducing the levels of phosphorylated tau. Our findings suggest that KHG26377 may modulate the neurotoxic effects of β-amyloid and provide a rationale for treatment of AD.
Collapse
Affiliation(s)
- Eun-A Kim
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul, 138-736 Korea
| | - Chang Hun Cho
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul, 138-736 Korea
| | - Hoh-Gyu Hahn
- Chemical Kinomics Research Center, Korea Institute of Science and Technology, Seoul, 136-791 Korea
| | - Soo Young Choi
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, 200-702 Korea
| | - Sung-Woo Cho
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul, 138-736 Korea
| |
Collapse
|
30
|
Genetic, psychosocial and clinical factors associated with hippocampal volume in the general population. Transl Psychiatry 2014; 4:e465. [PMID: 25313508 PMCID: PMC4350511 DOI: 10.1038/tp.2014.102] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 08/13/2014] [Indexed: 01/14/2023] Open
Abstract
The hippocampus--crucial for memory formation, recall and mood regulation--is involved in the pathophysiology of dementia and depressive disorders. Recent genome-wide association studies (GWAS) have identified five genetic loci associated with hippocampal volume (HV). Previous studies have described psychosocial and clinical factors (for example, smoking, type 2 diabetes and hypertension) to have an impact on HV. However, the interplay between genetic, psychosocial and clinical factors on the HV remains unclear. Still, it is likely that genetic variants and clinical or psychosocial factors jointly act in modifying HV; it might be possible they even interact. Knowledge of these factors might help to quantify ones individual risk of or rather resilience against HV loss. We investigated subjects (N=2463; 55.7% women; mean age 53 years) from the Study of Health in Pomerania (SHIP-2; SHIP-TREND-0) who underwent whole-body magnetic resonance imaging (MRI) and genotyping. HVs were estimated with FreeSurfer. For optimal nonlinear model fitting, we used regression analyses with restricted cubic splines. Genetic variants and associated psychosocial or clinical factors were jointly assessed for potential two-way interactions. We observed associations between HV and gender (P<0.0001), age (P<0.0001), body height (P<0.0001), education (P=0.0053), smoking (P=0.0058), diastolic blood pressure (P=0.0211), rs7294919 (P=0.0065), rs17178006 (P=0.0002), rs6581612 (P=0.0036), rs6741949 (P=0.0112) and rs7852872 (P=0.0451). In addition, we found three significant interactions: between rs7294919 and smoking (P=0.0473), rs7294919 and diastolic blood pressure (P=0.0447) and between rs7852872 and rs6581612 (P=0.0114). We suggest that these factors might have a role in the individual susceptibility to hippocampus-associated disorders.
Collapse
|
31
|
Scuderi C, Stecca C, Valenza M, Ratano P, Bronzuoli MR, Bartoli S, Steardo L, Pompili E, Fumagalli L, Campolongo P, Steardo L. Palmitoylethanolamide controls reactive gliosis and exerts neuroprotective functions in a rat model of Alzheimer's disease. Cell Death Dis 2014; 5:e1419. [PMID: 25210802 PMCID: PMC4540191 DOI: 10.1038/cddis.2014.376] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 07/21/2014] [Indexed: 12/30/2022]
Abstract
Given the complex heterogeneity of pathological changes occurring in Alzheimer's disease (AD), any therapeutic effort absolutely requires a multi-targeted approach, because attempts addressing only a single event may result ineffective. Palmitoylethanolamide (PEA), a naturally occurring lipid amide between palmitic acid and ethanolamine, seems to be a compound able to fulfill the criteria of a multi-factorial therapeutic approach. Here, we describe the anti-inflammatory and neuroprotective activities of systemic administration of PEA in adult male rats given intrahippocampal injection of beta amyloid 1-42 (Aβ 1-42). Moreover, to investigate the molecular mechanisms responsible for the effects induced by PEA, we co-administered PEA with the GW6471, an antagonist of peroxisome proliferator-activated receptor-α (PPAR-α). We found that Aβ 1-42 infusion results in severe changes of biochemical markers related to reactive gliosis, amyloidogenesis, and tau protein hyperphosphorylation. Interestingly, PEA was able to restore the Aβ 1-42-induced alterations through PPAR-α involvement. In addition, results from the Morris water maze task highlighted a mild cognitive deficit during the reversal learning phase of the behavioral study. Similarly to the biochemical data, also mnestic deficits were reduced by PEA treatment. These data disclose novel findings about the therapeutic potential of PEA, and suggest novel strategies that hopefully could have the potential not just to alleviate the symptoms but also to modify disease progression.
Collapse
Affiliation(s)
- C Scuderi
- Department of Physiology and Pharmacology ‘Vittorio Erspamer'—SAPIENZA University of Rome, P.le A. Moro, Rome 5–00185, Italy
| | - C Stecca
- Department of Physiology and Pharmacology ‘Vittorio Erspamer'—SAPIENZA University of Rome, P.le A. Moro, Rome 5–00185, Italy
| | - M Valenza
- Laboratory of the Biology of Addictive Diseases—The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - P Ratano
- Department of Physiology and Pharmacology ‘Vittorio Erspamer'—SAPIENZA University of Rome, P.le A. Moro, Rome 5–00185, Italy
| | - M R Bronzuoli
- Department of Physiology and Pharmacology ‘Vittorio Erspamer'—SAPIENZA University of Rome, P.le A. Moro, Rome 5–00185, Italy
| | - S Bartoli
- Department of Physiology and Pharmacology ‘Vittorio Erspamer'—SAPIENZA University of Rome, P.le A. Moro, Rome 5–00185, Italy
| | - L Steardo
- Department of Psychiatry—University of Naples SUN, Largo Madonna delle Grazie, Naples 1—80138, Italy
| | - E Pompili
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics—SAPIENZA University of Rome, Via A. Borelli 50, Rome 00161, Italy
| | - L Fumagalli
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics—SAPIENZA University of Rome, Via A. Borelli 50, Rome 00161, Italy
| | - P Campolongo
- Department of Physiology and Pharmacology ‘Vittorio Erspamer'—SAPIENZA University of Rome, P.le A. Moro, Rome 5–00185, Italy
| | - L Steardo
- Department of Physiology and Pharmacology ‘Vittorio Erspamer'—SAPIENZA University of Rome, P.le A. Moro, Rome 5–00185, Italy
| |
Collapse
|
32
|
Kitagishi Y, Nakanishi A, Ogura Y, Matsuda S. Dietary regulation of PI3K/AKT/GSK-3β pathway in Alzheimer's disease. ALZHEIMERS RESEARCH & THERAPY 2014; 6:35. [PMID: 25031641 PMCID: PMC4075129 DOI: 10.1186/alzrt265] [Citation(s) in RCA: 162] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Alzheimer’s disease (AD) is characterized by the formation of senile plaques and neurofibrillary tangles composed of phosphorylated Tau. Several findings suggest that correcting signal dysregulation for Tau phosphorylation in AD may offer a potential therapeutic approach. The PI3K/AKT/GSK-3β pathway has been shown to play a pivotal role in neuroprotection, enhancing cell survival by stimulating cell proliferation and inhibiting apoptosis. This pathway appears to be crucial in AD because it promotes protein hyper-phosphorylation in Tau. Understanding those regulations may provide a better efficacy of new therapeutic approaches. In this review, we summarize advances in the involvement of the PI3K/AKT/GSK-3β pathways in cell signaling of neuronal cells. We also review recent studies on the features of several diets and the signaling pathway involved in AD.
Collapse
Affiliation(s)
- Yasuko Kitagishi
- Department of Food Science and Nutrition, Nara Women's University, Kita-Uoya Nishimachi, Nara, 630-8506, Japan
| | - Atsuko Nakanishi
- Department of Food Science and Nutrition, Nara Women's University, Kita-Uoya Nishimachi, Nara, 630-8506, Japan
| | - Yasunori Ogura
- Department of Food Science and Nutrition, Nara Women's University, Kita-Uoya Nishimachi, Nara, 630-8506, Japan
| | - Satoru Matsuda
- Department of Food Science and Nutrition, Nara Women's University, Kita-Uoya Nishimachi, Nara, 630-8506, Japan
| |
Collapse
|
33
|
Dysfunctional Wnt/β-catenin signaling contributes to blood-brain barrier breakdown in Alzheimer's disease. Neurochem Int 2014; 75:19-25. [PMID: 24859746 DOI: 10.1016/j.neuint.2014.05.004] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 04/17/2014] [Accepted: 05/08/2014] [Indexed: 01/04/2023]
Abstract
Increased Aβ clearance from brain is essential for restoring the pathological manifestation of Alzheimer's disease (AD) and attenuating the cognitive disorder. The blood-brain barrier (BBB) plays a critical role in maintaining homeostasis of the brain, and transporters e.g. P-glycoprotein (P-gp) are essential for Aβ clearance from the brain. In addition, the Wnt/β-catenin signaling pathway contributes to BBB formation, induction and maturation, and induces BBB function. Dysfunctional Wnt/β-catenin signaling in the BBB reveals the importance of this pathway, since this contributes to the neurodegeneration characteristic of AD. Based on the above evidence, we propose that targeting the canonical Wnt signaling pathway could be promising therapeutic approach for treatment of AD.
Collapse
|
34
|
Scuderi C, Stecca C, Bronzuoli MR, Rotili D, Valente S, Mai A, Steardo L. Sirtuin modulators control reactive gliosis in an in vitro model of Alzheimer's disease. Front Pharmacol 2014; 5:89. [PMID: 24860504 PMCID: PMC4027795 DOI: 10.3389/fphar.2014.00089] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 04/11/2014] [Indexed: 12/17/2022] Open
Abstract
Among neurodegenerative disorders, Alzheimer’s disease (AD) represents the most common cause of dementia in the elderly. Several genetic and environmental factors have been identified; however, aging represents the most important risk factor in the development of AD. To date, no effective treatments to prevent or slow this dementia are available. Sirtuins (SIRTs) are a family of NAD+-dependent enzymes, implicated in the control of a variety of biological processes that have the potential to modulate neurodegeneration. Here we tested the hypothesis that activation of SIRT1 or inhibition of SIRT2 would prevent reactive gliosis which is considered one of the most important hallmark of AD. Primary rat astrocytes were activated with beta amyloid 1-42 (Aβ 1-42) and treated with resveratrol (RSV) or AGK-2, a SIRT1 activator and a SIRT2-selective inhibitor, respectively. Results showed that both RSV and AGK-2 were able to reduce astrocyte activation as well as the production of pro-inflammatory mediators. These data disclose novel findings about the therapeutic potential of SIRT modulators, and suggest novel strategies for AD treatment.
Collapse
Affiliation(s)
- Caterina Scuderi
- Vittorio Erspamer School of Physiology and Pharmacology, SAPIENZA University of Rome Rome, Italy
| | - Claudia Stecca
- Vittorio Erspamer School of Physiology and Pharmacology, SAPIENZA University of Rome Rome, Italy
| | - Maria R Bronzuoli
- Vittorio Erspamer School of Physiology and Pharmacology, SAPIENZA University of Rome Rome, Italy
| | - Dante Rotili
- Department of Drug Chemistry and Technologies, SAPIENZA University of Rome Rome, Italy
| | - Sergio Valente
- Department of Drug Chemistry and Technologies, SAPIENZA University of Rome Rome, Italy
| | - Antonello Mai
- Department of Drug Chemistry and Technologies, SAPIENZA University of Rome Rome, Italy ; Institute Pasteur - Cenci Bolognetti Foundation, SAPIENZA University of Rome Rome, Italy
| | - Luca Steardo
- Vittorio Erspamer School of Physiology and Pharmacology, SAPIENZA University of Rome Rome, Italy
| |
Collapse
|
35
|
Godoy JA, Rios JA, Zolezzi JM, Braidy N, Inestrosa NC. Signaling pathway cross talk in Alzheimer's disease. Cell Commun Signal 2014; 12:23. [PMID: 24679124 PMCID: PMC3977891 DOI: 10.1186/1478-811x-12-23] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 03/11/2014] [Indexed: 01/11/2023] Open
Abstract
Numerous studies suggest energy failure and accumulative intracellular waste play a causal role in the pathogenesis of several neurodegenerative disorders and Alzheimer's disease (AD) in particular. AD is characterized by extracellular amyloid deposits, intracellular neurofibrillary tangles, cholinergic deficits, synaptic loss, inflammation and extensive oxidative stress. These pathobiological changes are accompanied by significant behavioral, motor, and cognitive impairment leading to accelerated mortality. Currently, the potential role of several metabolic pathways associated with AD, including Wnt signaling, 5' adenosine monophosphate-activated protein kinase (AMPK), mammalian target of rapamycin (mTOR), Sirtuin 1 (Sirt1, silent mating-type information regulator 2 homolog 1), and peroxisome proliferator-activated receptor gamma co-activator 1-α (PGC-1α) have widened, with recent discoveries that they are able to modulate several pathological events in AD. These include reduction of amyloid-β aggregation and inflammation, regulation of mitochondrial dynamics, and increased availability of neuronal energy. This review aims to highlight the involvement of these new set of signaling pathways, which we have collectively termed "anti-ageing pathways", for their potentiality in multi-target therapies against AD where cellular metabolic processes are severely impaired.
Collapse
Affiliation(s)
- Juan A Godoy
- Centro de Envejecimiento y Regeneración (CARE); Departamento de Biología Celular y Molecular; Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Av. Alameda 340, Santiago, Chile
| | - Juvenal A Rios
- Centro de Envejecimiento y Regeneración (CARE); Departamento de Biología Celular y Molecular; Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Av. Alameda 340, Santiago, Chile
| | - Juan M Zolezzi
- Departamento de Biología, Facultad de Ciencias, Universidad de Tarapacá, Arica, Chile
| | - Nady Braidy
- Center for Healthy Brain Ageing, School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Nibaldo C Inestrosa
- Centro de Envejecimiento y Regeneración (CARE); Departamento de Biología Celular y Molecular; Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Av. Alameda 340, Santiago, Chile
- Center for Healthy Brain Ageing, School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, Australia
| |
Collapse
|
36
|
Pietersen CY, Mauney SA, Kim SS, Passeri E, Lim MP, Rooney RJ, Goldstein JM, Petreyshen TL, Seidman LJ, Shenton ME, Mccarley RW, Sonntag KC, Woo TUW. Molecular profiles of parvalbumin-immunoreactive neurons in the superior temporal cortex in schizophrenia. J Neurogenet 2014; 28:70-85. [PMID: 24628518 PMCID: PMC4633016 DOI: 10.3109/01677063.2013.878339] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Dysregulation of pyramidal cell network function by the soma- and axon-targeting inhibitory neurons that contain the calcium-binding protein parvalbumin (PV) represents a core pathophysiological feature of schizophrenia. In order to gain insight into the molecular basis of their functional impairment, we used laser capture microdissection (LCM) to isolate PV-immunolabeled neurons from layer 3 of Brodmann's area 42 of the superior temporal gyrus (STG) from postmortem schizophrenia and normal control brains. We then extracted ribonucleic acid (RNA) from these neurons and determined their messenger RNA (mRNA) expression profile using the Affymetrix platform of microarray technology. Seven hundred thirty-nine mRNA transcripts were found to be differentially expressed in PV neurons in subjects with schizophrenia, including genes associated with WNT (wingless-type), NOTCH, and PGE2 (prostaglandin E2) signaling, in addition to genes that regulate cell cycle and apoptosis. Of these 739 genes, only 89 (12%) were also differentially expressed in pyramidal neurons, as described in the accompanying paper, suggesting that the molecular pathophysiology of schizophrenia appears to be predominantly neuronal type specific. In addition, we identified 15 microRNAs (miRNAs) that were differentially expressed in schizophrenia; enrichment analysis of the predicted targets of these miRNAs included the signaling pathways found by microarray to be dysregulated in schizophrenia. Taken together, findings of this study provide a neurobiological framework within which hypotheses of the molecular mechanisms that underlie the dysfunction of PV neurons in schizophrenia can be generated and experimentally explored and, as such, may ultimately inform the conceptualization of rational targeted molecular intervention for this debilitating disorder.
Collapse
Affiliation(s)
- Charmaine Y. Pietersen
- Laboratory of Cellular Neuropathology, McLean Hospital, Belmont, Massachusetts, USA
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, USA
| | - Sarah A. Mauney
- Laboratory of Cellular Neuropathology, McLean Hospital, Belmont, Massachusetts, USA
| | - Susie S. Kim
- Laboratory of Cellular Neuropathology, McLean Hospital, Belmont, Massachusetts, USA
| | - Eleonora Passeri
- Laboratory of Cellular Neuropathology, McLean Hospital, Belmont, Massachusetts, USA
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, USA
| | - Maribel P. Lim
- Laboratory of Cellular Neuropathology, McLean Hospital, Belmont, Massachusetts, USA
| | | | - Jill M. Goldstein
- Department of Psychiatry, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Tracey L. Petreyshen
- Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Larry J. Seidman
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Martha E. Shenton
- Department of Psychiatry, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Robert W. Mccarley
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, USA
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
- Department of Psychiatry, Veterans Affairs Boston Healthcare System, Brockton, Massachusetts, USA
| | - Kai-C. Sonntag
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, USA
- Department of Psychiatry, McLean Hospital, Belmont, Massachusetts, USA
| | - Tsung-Ung W. Woo
- Laboratory of Cellular Neuropathology, McLean Hospital, Belmont, Massachusetts, USA
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, USA
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| |
Collapse
|
37
|
Ortiz-Matamoros A, Salcedo-Tello P, Avila-Muñoz E, Zepeda A, Arias C. Role of wnt signaling in the control of adult hippocampal functioning in health and disease: therapeutic implications. Curr Neuropharmacol 2014; 11:465-76. [PMID: 24403870 PMCID: PMC3763754 DOI: 10.2174/1570159x11311050001] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 03/16/2013] [Accepted: 03/16/2013] [Indexed: 12/12/2022] Open
Abstract
It is well recognized the role of the Wnt pathway in many developmental processes such as neuronal maturation, migration, neuronal connectivity and synaptic formation. Growing evidence is also demonstrating its function in the mature brain where is associated with modulation of axonal remodeling, dendrite outgrowth, synaptic activity, neurogenesis and behavioral plasticity. Proteins involved in Wnt signaling have been found expressed in the adult hippocampus suggesting that Wnt pathway plays a role in the hippocampal function through life. Indeed, Wnt ligands act locally to regulate neurogenesis, neuronal cell shape and pre- and postsynaptic assembly, events that are thought to underlie changes in synaptic function associated with long-term potentiation and with cognitive tasks such as learning and memory. Recent data have demonstrated the increased expression of the Wnt antagonist Dickkopf-1 (DKK1) in brains of Alzheimer´s disease (AD) patients suggesting that dysfunction of Wnt signaling could also contribute to AD pathology. We review here evidence of Wnt-associated molecules expression linked to physiological and pathological hippocampal functioning in the adult brain. The basic aspects of Wnt related mechanisms underlying hippocampal plasticity as well as evidence of how hippocampal dysfunction may rely on Wnt dysregulation is analyzed. This information would provide some clues about the possible therapeutic targets for developing treatments for neurodegenerative diseases associated with aberrant brain plasticity.
Collapse
Affiliation(s)
- Abril Ortiz-Matamoros
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México D.F
| | - Pamela Salcedo-Tello
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México D.F
| | - Evangelina Avila-Muñoz
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México D.F
| | - Angélica Zepeda
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México D.F
| | - Clorinda Arias
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México D.F
| |
Collapse
|
38
|
Abstract
As members of the basic helix-loop-helix (bHLH) family of transcription factors, E proteins function in the immune system by directing and maintaining a vast transcriptional network that regulates cell survival, proliferation, differentiation, and function. Proper activity of this network is essential to the functionality of the immune system. Aberrations in E protein expression or function can cause numerous defects, ranging from impaired lymphocyte development and immunodeficiency to aberrant function, cancer, and autoimmunity. Additionally, disruption of inhibitor of DNA-binding (Id) proteins, natural inhibitors of E proteins, can induce additional defects in development and function. Although E proteins have been investigated for several decades, their study continues to yield novel and exciting insights into the workings of the immune system. The goal of this chapter is to discuss the various classical roles of E proteins in lymphocyte development and highlight new and ongoing research into how these roles, if compromised, can lead to disease.
Collapse
Affiliation(s)
- Ian Belle
- Department of Immunology, Duke University Medical Center, Durham North Carolina, USA.
| | - Yuan Zhuang
- Department of Immunology, Duke University Medical Center, Durham North Carolina, USA
| |
Collapse
|
39
|
Alarcón MA, Medina MA, Hu Q, Avila ME, Bustos BI, Pérez-Palma E, Peralta A, Salazar P, Ugarte GD, Reyes AE, Martin GM, Opazo C, Moon RT, De Ferrari GV. A novel functional low-density lipoprotein receptor-related protein 6 gene alternative splice variant is associated with Alzheimer's disease. Neurobiol Aging 2013; 34:1709.e9-18. [DOI: 10.1016/j.neurobiolaging.2012.11.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Revised: 11/01/2012] [Accepted: 11/12/2012] [Indexed: 12/31/2022]
|
40
|
Acetyl-CoA the key factor for survival or death of cholinergic neurons in course of neurodegenerative diseases. Neurochem Res 2013; 38:1523-42. [PMID: 23677775 PMCID: PMC3691476 DOI: 10.1007/s11064-013-1060-x] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2013] [Revised: 04/19/2013] [Accepted: 04/22/2013] [Indexed: 12/24/2022]
Abstract
Glucose-derived pyruvate is a principal source of acetyl-CoA in all brain cells, through pyruvate dehydogenase complex (PDHC) reaction. Cholinergic neurons like neurons of other transmitter systems and glial cells, utilize acetyl-CoA for energy production in mitochondria and diverse synthetic pathways in their extramitochondrial compartments. However, cholinergic neurons require additional amounts of acetyl-CoA for acetylcholine synthesis in their cytoplasmic compartment to maintain their transmitter functions. Characteristic feature of several neurodegenerating diseases including Alzheimer’s disease and thiamine diphosphate deficiency encephalopathy is the decrease of PDHC activity correlating with cholinergic deficits and losses of cognitive functions. Such conditions generate acetyl-CoA deficits that are deeper in cholinergic neurons than in noncholinergic neuronal and glial cells, due to its additional consumption in the transmitter synthesis. Therefore, any neuropathologic conditions are likely to be more harmful for the cholinergic neurons than for noncholinergic ones. For this reason attempts preserving proper supply of acetyl-CoA in the diseased brain, should attenuate high susceptibility of cholinergic neurons to diverse neurodegenerative conditions. This review describes how common neurodegenerative signals could induce deficts in cholinergic neurotransmission through suppression of acetyl-CoA metabolism in the cholinergic neurons.
Collapse
|
41
|
Inestrosa NC, Montecinos-Oliva C, Fuenzalida M. Wnt signaling: role in Alzheimer disease and schizophrenia. J Neuroimmune Pharmacol 2012; 7:788-807. [PMID: 23160851 DOI: 10.1007/s11481-012-9417-5] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Accepted: 10/30/2012] [Indexed: 12/16/2022]
Abstract
Wnt signaling function starts during the development of the nervous system and is crucial for synaptic plasticity in the adult brain. Clearly Wnt effects in synaptic and plastic processes are relevant, however the implication of this pathway in the prevention of neurodegenerative diseases that produce synaptic impairment, is even more interesting. Several years ago our laboratory found a relationship between the loss of Wnt signaling and the neurotoxicity of the amyloid-β-peptide (Aβ), one of the main players in Alzheimer's disease (AD). Moreover, the activation of the Wnt signaling cascade prevents Aβ-dependent cytotoxic effects. In fact, disrupted Wnt signaling may be a direct link between Aβ-toxicity and tau hyperphosphorylation, ultimately leading to impaired synaptic plasticity and/or neuronal degeneration, indicating that a single pathway can account for both neuro-pathological lesions and altered synaptic function. These observations, suggest that a sustained loss of Wnt signaling function may be a key relevant factor in the pathology of AD. On the other hand, Schizophrenia remains one of the most debilitating and intractable illness in psychiatry. Since Wnt signaling is important in organizing the developing brain, it is reasonable to propose that defects in Wnt signaling could contribute to Schizophrenia, particularly since the neuro-developmental hypothesis of the disease implies subtle dys-regulation of brain development, including some core components of the Wnt signaling pathways such as GSK-3β or Disrupted in Schizophrenia-1 (DISC-1). This review focuses on the relationship between Wnt signaling and its potential relevance for the treatment of neurodegenerative and neuropsychiatric diseases including AD and Schizophrenia.
Collapse
Affiliation(s)
- Nibaldo C Inestrosa
- Centro de Envejecimiento y Regeneración (CARE), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, 8331150, Santiago, Chile.
| | | | | |
Collapse
|
42
|
Mizuno S, Iijima R, Ogishima S, Kikuchi M, Matsuoka Y, Ghosh S, Miyamoto T, Miyashita A, Kuwano R, Tanaka H. AlzPathway: a comprehensive map of signaling pathways of Alzheimer's disease. BMC SYSTEMS BIOLOGY 2012; 6:52. [PMID: 22647208 PMCID: PMC3411424 DOI: 10.1186/1752-0509-6-52] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Accepted: 05/30/2012] [Indexed: 01/19/2023]
Abstract
Background Alzheimer’s disease (AD) is the most common cause of dementia among the elderly. To clarify pathogenesis of AD, thousands of reports have been accumulating. However, knowledge of signaling pathways in the field of AD has not been compiled as a database before. Description Here, we have constructed a publicly available pathway map called “AlzPathway” that comprehensively catalogs signaling pathways in the field of AD. We have collected and manually curated over 100 review articles related to AD, and have built an AD pathway map using CellDesigner. AlzPathway is currently composed of 1347 molecules and 1070 reactions in neuron, brain blood barrier, presynaptic, postsynaptic, astrocyte, and microglial cells and their cellular localizations. AlzPathway is available as both the SBML (Systems Biology Markup Language) map for CellDesigner and the high resolution image map. AlzPathway is also available as a web service (online map) based on Payao system, a community-based, collaborative web service platform for pathway model curation, enabling continuous updates by AD researchers. Conclusions AlzPathway is the first comprehensive map of intra, inter and extra cellular AD signaling pathways which can enable mechanistic deciphering of AD pathogenesis. The AlzPathway map is accessible at http://alzpathway.org/.
Collapse
Affiliation(s)
- Satoshi Mizuno
- Department of Bioinformatics, Tokyo Medical and Dental University, Yushima 1-5-45, Tokyo, 113-8510, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Lee HR, Park SY, Kim HY, Shin HK, Lee WS, Rhim BY, Hong KW, Kim CD. Protection by cilostazol against amyloid-β1-40-induced suppression of viability and neurite elongation through activation of CK2α in HT22 mouse hippocampal cells. J Neurosci Res 2012; 90:1566-76. [DOI: 10.1002/jnr.23037] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Revised: 01/06/2012] [Accepted: 01/11/2012] [Indexed: 11/06/2022]
|
44
|
Expression of the Newly Identified Gene CAC1 in the Hippocampus of Alzheimer’s Disease Patients. J Mol Neurosci 2012; 47:207-18. [DOI: 10.1007/s12031-012-9717-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Accepted: 01/31/2012] [Indexed: 12/23/2022]
|
45
|
Sharma A, Hu XT, Napier TC, Al-Harthi L. Methamphetamine and HIV-1 Tat down regulate β-catenin signaling: implications for methampetamine abuse and HIV-1 co-morbidity. J Neuroimmune Pharmacol 2011; 6:597-607. [PMID: 21744004 PMCID: PMC3714216 DOI: 10.1007/s11481-011-9295-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Accepted: 06/30/2011] [Indexed: 12/13/2022]
Abstract
Methamphetamine (Meth) abuse exacerbates HIV-1-associated neurocognitive disorders (HAND). The underlying mechanism for this effect is not entirely clear but likely involves cooperation between Meth and HIV-1 virotoxins, such as the transactivator of transcription, Tat. HIV-1 Tat mediates damage in the CNS by inducing inflammatory processes including astrogliosis. Wnt/β-catenin signaling regulates survival processes for both neurons and astrocytes. Here, we evaluated the impact of Meth on the Wnt/β-catenin pathway in astrocytes transfected with Tat. Meth and Tat downregulated Wnt/β-catenin signaling by >50%, as measured by TOPflash reporter activity in both an astrocytoma cell line and primary human fetal astrocytes. Meth and Tat also downregulated LEF-1 transcript by >30%. LEF-1 is a key partner of β-catenin to regulate cognate gene expression. Interestingly, estrogen, which induces β-catenin signaling in a cell-type specific manner, at physiological concentrations of 1.5 and 3 nM normalized individual Meth and Tat effects on β-catenin signaling but not their combined effects. These findings suggest that Meth and Tat likely exert different mechanisms to mediate down regulation of β-catenin signaling. The consequences of which may contribute to the pathophysiologic effects of HIV-1 and Meth co-morbidity in the CNS.
Collapse
Affiliation(s)
- Amit Sharma
- Department of Immunology/Microbiology, Rush University Medical Center, 1735 W. Harrison Street, 614 Cohn, Chicago, IL 60612, USA
- Center for Compulsive Behavior and Addiction, Rush University Medical Center, Chicago, IL, USA
| | - Xiu-Ti Hu
- Department of Pharmacology, Rush University Medical Center, Chicago, IL, USA
- Chicago Center for AIDS Research, Rush University Medical Center, Chicago, IL, USA
- Center for Compulsive Behavior and Addiction, Rush University Medical Center, Chicago, IL, USA
| | - T. Celeste Napier
- Department of Pharmacology, Rush University Medical Center, Chicago, IL, USA
- Chicago Center for AIDS Research, Rush University Medical Center, Chicago, IL, USA
- Center for Compulsive Behavior and Addiction, Rush University Medical Center, Chicago, IL, USA
| | - Lena Al-Harthi
- Department of Immunology/Microbiology, Rush University Medical Center, 1735 W. Harrison Street, 614 Cohn, Chicago, IL 60612, USA
- Chicago Center for AIDS Research, Rush University Medical Center, Chicago, IL, USA
- Center for Compulsive Behavior and Addiction, Rush University Medical Center, Chicago, IL, USA
| |
Collapse
|
46
|
Abstract
Progranulin mutations result in frontotemporal dementia, but the underlying pathophysiology has remained largely unexplained. New data by Geschwind and colleagues in this issue of Neuron uncovered that the Wnt/FZD2 signaling pathway is an early and critical contributor to disease pathology.
Collapse
Affiliation(s)
- Zeljka Korade
- Department of Psychiatry and Vanderbilt Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN 37232, USA.
| | | |
Collapse
|
47
|
Li W, Henderson LJ, Major EO, Al-Harthi L. IFN-gamma mediates enhancement of HIV replication in astrocytes by inducing an antagonist of the beta-catenin pathway (DKK1) in a STAT 3-dependent manner. THE JOURNAL OF IMMUNOLOGY 2011; 186:6771-8. [PMID: 21562161 DOI: 10.4049/jimmunol.1100099] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Typically, IFN-γ is an antiviral cytokine that inhibits the replication of many viruses, including HIV. However, in the CNS, IFN-γ induces HIV-productive replication in astrocytes. Although astrocytes in vitro are refractory to HIV replication, recent in vivo evidence demonstrated that astrocytes are infected by HIV, and their degree of infection is correlated with proximity to activated macrophages/microglia. The ability of IFN-γ to induce HIV replication in astrocytes suggests that the environmental milieu is critical in regulating the permissiveness of astrocytes to HIV infection. We evaluated the mechanism by which IFN-γ relieves restricted HIV replication in astrocytes. We demonstrate that although astrocytes have robust endogenous β-catenin signaling, a pathway that is a potent inhibitor of HIV replication, IFN-γ diminished β-catenin signaling in astrocytes by 40%, as evaluated by both active β-catenin protein expression and β-catenin-mediated T cell factor/lymphoid enhancer reporter (TOPflash) activity. Further, IFN-γ-mediated inhibition of β-catenin signaling was dependent on its ability to induce an antagonist of the β-catenin signaling pathway, Dickkopf-related protein 1, in a STAT 3-dependent manner. Inhibition of STAT3 and Dickkopf-related protein 1 abrogated the ability of IFN-γ to enhance HIV replication in astrocytes. These data demonstrated that IFN-γ induces HIV replication in astrocytes by antagonizing the β-catenin pathway. To our knowledge, this is the first report to point to an intricate cross-talk between IFN-γ signaling and β-catenin signaling that may have biologic and virologic effects on HIV outcome in the CNS, as well as on broader processes where the two pathways interface.
Collapse
Affiliation(s)
- Wei Li
- Department of Immunology/Microbiology, Rush University Medical Center, Chicago, IL 60612, USA
| | | | | | | |
Collapse
|
48
|
Matrisciano F, Busceti CL, Bucci D, Orlando R, Caruso A, Molinaro G, Cappuccio I, Riozzi B, Gradini R, Motolese M, Caraci F, Copani A, Scaccianoce S, Melchiorri D, Bruno V, Battaglia G, Nicoletti F. Induction of the Wnt antagonist Dickkopf-1 is involved in stress-induced hippocampal damage. PLoS One 2011; 6:e16447. [PMID: 21304589 PMCID: PMC3029367 DOI: 10.1371/journal.pone.0016447] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2010] [Accepted: 12/29/2010] [Indexed: 11/19/2022] Open
Abstract
The identification of mechanisms that mediate stress-induced hippocampal damage may shed new light into the pathophysiology of depressive disorders and provide new targets for therapeutic intervention. We focused on the secreted glycoprotein Dickkopf-1 (Dkk-1), an inhibitor of the canonical Wnt pathway, involved in neurodegeneration. Mice exposed to mild restraint stress showed increased hippocampal levels of Dkk-1 and reduced expression of β-catenin, an intracellular protein positively regulated by the canonical Wnt signalling pathway. In adrenalectomized mice, Dkk-1 was induced by corticosterone injection, but not by exposure to stress. Corticosterone also induced Dkk-1 in mouse organotypic hippocampal cultures and primary cultures of hippocampal neurons and, at least in the latter model, the action of corticosterone was reversed by the type-2 glucocorticoid receptor antagonist mifepristone. To examine whether induction of Dkk-1 was causally related to stress-induced hippocampal damage, we used doubleridge mice, which are characterized by a defective induction of Dkk-1. As compared to control mice, doubleridge mice showed a paradoxical increase in basal hippocampal Dkk-1 levels, but no Dkk-1 induction in response to stress. In contrast, stress reduced Dkk-1 levels in doubleridge mice. In control mice, chronic stress induced a reduction in hippocampal volume associated with neuronal loss and dendritic atrophy in the CA1 region, and a reduced neurogenesis in the dentate gyrus. Doubleridge mice were resistant to the detrimental effect of chronic stress and, instead, responded to stress with increases in dendritic arborisation and neurogenesis. Thus, the outcome of chronic stress was tightly related to changes in Dkk-1 expression in the hippocampus. These data indicate that induction of Dkk-1 is causally related to stress-induced hippocampal damage and provide the first evidence that Dkk-1 expression is regulated by corticosteroids in the central nervous system. Drugs that rescue the canonical Wnt pathway may attenuate hippocampal damage in major depression and other stress-related disorders.
Collapse
Affiliation(s)
| | | | - Domenico Bucci
- Istituto Neurologico Mediterraneo Neuromed, Pozzilli, Italy
| | - Rosamaria Orlando
- Department of Physiology and Pharmacology, University “Sapienza”, Roma, Italy
| | - Alessandra Caruso
- Department of Physiology and Pharmacology, University “Sapienza”, Roma, Italy
| | - Gemma Molinaro
- Istituto Neurologico Mediterraneo Neuromed, Pozzilli, Italy
| | | | - Barbara Riozzi
- Istituto Neurologico Mediterraneo Neuromed, Pozzilli, Italy
| | - Roberto Gradini
- Department of Experimental Medicine, University “Sapienza”, Roma, Italy
| | - Marta Motolese
- Istituto Neurologico Mediterraneo Neuromed, Pozzilli, Italy
| | - Filippo Caraci
- Department of Pharmaceutical Sciences, University of Catania, Catania, Italy
| | - Agata Copani
- Department of Pharmaceutical Sciences, University of Catania, Catania, Italy
| | - Sergio Scaccianoce
- Department of Physiology and Pharmacology, University “Sapienza”, Roma, Italy
| | - Daniela Melchiorri
- Department of Physiology and Pharmacology, University “Sapienza”, Roma, Italy
- Istituto San Raffaele Pisana, Roma, Italy
| | - Valeria Bruno
- Department of Physiology and Pharmacology, University “Sapienza”, Roma, Italy
- Istituto Neurologico Mediterraneo Neuromed, Pozzilli, Italy
| | | | - Ferdinando Nicoletti
- Department of Physiology and Pharmacology, University “Sapienza”, Roma, Italy
- Istituto Neurologico Mediterraneo Neuromed, Pozzilli, Italy
- * E-mail:
| |
Collapse
|
49
|
Zhang L, Yang X, Yang S, Zhang J. The Wnt /β-catenin signaling pathway in the adult neurogenesis. Eur J Neurosci 2010; 33:1-8. [PMID: 21073552 DOI: 10.1111/j.1460-9568.2010.7483.x] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The Wnt/β-catenin signaling pathway plays an important role in neural development, β-catenin is a central component of the Wnt/β-catenin signaling pathway, which not only performs the function of transmitting information in the cytoplasm, but also translocates to the nucleus-activating target gene transcription. The target genes in neural tissues have not been fully revealed, but the effects of the Wnt/β-catenin signaling pathway in adult neurogenesis have been demonstrated by ongoing research, which are significative to the basic research and treatment of neuronal degeneration diseases. Here, we review key findings to show the characteristics of β-catenin and its pivotal nature in the Wnt/β-catenin signaling pathway in a number of molecular studies. We also review current literature on the role of β-catenin in adult neurogenesis, which consists of an active process encompassing the proliferation, migration, differentiation and final synaptogenesis.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin Key Laboratory of Injuries,Variations and Regeneration of Nervous System, Tianjin, China
| | | | | | | |
Collapse
|
50
|
Okamoto H, Voleti B, Banasr M, Sarhan M, Duric V, Girgenti MJ, Dileone RJ, Newton SS, Duman RS. Wnt2 expression and signaling is increased by different classes of antidepressant treatments. Biol Psychiatry 2010; 68:521-7. [PMID: 20570247 PMCID: PMC2929274 DOI: 10.1016/j.biopsych.2010.04.023] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Revised: 04/09/2010] [Accepted: 04/15/2010] [Indexed: 12/19/2022]
Abstract
BACKGROUND Despite recent interest in glycogen synthase kinase-3beta (GSK-3beta) as a target for the treatment of mood disorders, there has been very little work related to these illnesses on the upstream signaling molecules that regulate this kinase as well as downstream targets. METHODS With a focused microarray approach we examined the influence of different classes of antidepressants on Wnt signaling that controls GSK-3beta activity as well as the transcription factors that contribute to the actions of GSK-3beta. RESULTS The results demonstrate that Wnt2 is a common target of different classes of antidepressants and also show differential regulation of Wnt-GSK-3beta signaling genes. Increased expression and function of Wnt2 was confirmed by secondary measures. Moreover, with a viral vector approach we demonstrate that increased expression of Wnt2 in the hippocampus is sufficient to produce antidepressant-like behavioral actions in well-established models of depression and treatment response. CONCLUSIONS These findings demonstrate that Wnt2 expression and signaling is a common target of antidepressants and that increased Wnt2 is sufficient to produce antidepressant effects.
Collapse
Affiliation(s)
- Hideki Okamoto
- Connecticut Mental Health Center, Yale University School of Medicine, New Haven, USA
| | | | | | | | | | | | | | | | | |
Collapse
|