1
|
Yang Y, Yang D, Schluesener HJ, Zhang Z. Advances in SELEX and application of aptamers in the central nervous system. ACTA ACUST UNITED AC 2007; 24:583-92. [PMID: 17681489 DOI: 10.1016/j.bioeng.2007.06.003] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2007] [Revised: 06/12/2007] [Accepted: 06/13/2007] [Indexed: 11/22/2022]
Abstract
SELEX (Systematic Evolution of Ligands by Exponential Enrichment) is a screening technique that involves the progressive selection of highly specific ligands by repeated rounds of partition and amplification from a large combinatorial nucleic acid library. The products of the selection are called aptamers, which are short single stranded DNA or RNA molecules, binding with high affinity, attributed to their specific three-dimensional shapes, to a large variety of targets, ranging from small molecules to complex mixtures. Various improvement of the original SELEX method described in 1990 have been obtained recently, such as capillary electrophoresis SELEX, Toggle-SELEX, Tailored-SELEX, Photo-SELEX, and others. These new variants greatly shorten time of selection and improve aptamer affinity and specificity. Such aptamers have great potential as detecting and/or diagnostic reagents. Furthermore, some aptamers specifically inhibit biological functions of targeted proteins, and are considered as potent therapeutic lead structures evaluated in preclinical disease models. Recently, one aptamer has been approved by Food and Drug Administration of US for treating age-related macular degeneration. This review presents recent advances in the field of SELEX with special emphasis on applications of aptamers as analytical, diagnostic and therapeutic tools in the central nervous system.
Collapse
Affiliation(s)
- Yan Yang
- Experimental Medical Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | | | | | | |
Collapse
|
2
|
Winaver J, Abassi Z. Role of neuropeptide Y in the regulation of kidney function. EXS 2005:123-32. [PMID: 16383002 DOI: 10.1007/3-7643-7417-9_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The presence in the mammalian kidney of NPY and at least one of its receptor subtypes has been proven by several independent methodologies. Also, numerous studies using physiological and pharmacological approaches indicated that this peptide has the capacity to alter renal function. In particular, these studies suggest that NPY may exert renal vasoconstrictor and tubular actions that are species dependent, and may also influence renin secretion by the kidney. The question whether NPY plays an important role in the physiological regulation of renal hemodynamics and electrolyte excretion, remains largely unanswered at present. No major impairments in renal function have been reported in genetically models deficient in NPY or its Y1 receptor. Thus, additional studies are required to elucidate the role of NPY in the physiological and pathophysiological regulation of renal function.
Collapse
Affiliation(s)
- Joseph Winaver
- Department of Physiology & Biophysics, The B. Rappaport Faculty of Medicine, Technion, IIT, P.O. Box 9649, Haifa 31096, Israel.
| | | |
Collapse
|
3
|
Dordal A, Lipkin M, Macritchie J, Mas J, Port A, Rose S, Salgado L, Savic V, Schmidt W, Serafini MT, Spearing W, Torrens A, Yeste S. A preliminary study of the metabolic stability of a series of benzoxazinone derivatives as potent neuropeptide Y5 antagonists. Bioorg Med Chem Lett 2005; 15:3679-84. [PMID: 15982873 DOI: 10.1016/j.bmcl.2005.05.103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2005] [Revised: 05/09/2005] [Accepted: 05/26/2005] [Indexed: 11/25/2022]
Abstract
The metabolic stability of benzoxazinone derivatives, a potent series of NPY Y5 antagonists, has been investigated. This study resulted in the identification of the structural moieties prone to metabolic transformations and which strongly influenced the in vitro half-life. This provides opportunities to optimize the structure of this new class of NPY Y5 antagonists.
Collapse
Affiliation(s)
- Alberto Dordal
- Laboratorios Dr Esteve S.A. Av.Mare de Déu de Montserrat, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Torrens A, Mas J, Port A, Castrillo JA, Sanfeliu O, Guitart X, Dordal A, Romero G, Fisas MA, Sánchez E, Hernández E, Pérez P, Pérez R, Buschmann H. Synthesis of new benzoxazinone derivatives as neuropeptide Y5 antagonists for the treatment of obesity. J Med Chem 2005; 48:2080-92. [PMID: 15771450 DOI: 10.1021/jm049599u] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Screening of our internal chemical collection against the neuropeptide Y5 (NPY Y5) receptor allowed the identification of a benzoxazine derivative 5f as a hit that showed moderate affinity (IC(50) = 300 nM). With the aim of improving the in vitro potency, a series of 2-benzoxazinone derivatives have been synthesized and tested for NPY Y5 activity. Most of the compounds were found to be potent and selective NPY Y5 antagonists having nanomolar binding affinities for the NPY Y5 receptor and showing functional antagonism in the forskolin-induced cyclic AMP test. Prelimminary studies in order to understand the structure-activity relationship were undertaken. Selected compounds were further evaluated for in vivo efficacy, affording the lead compound 2-[4-(8-methyl-2-oxo-4H-benzo[d][1,3]oxazin-1-yl)piperidin-1-yl]-N-(9-oxo-9H-fluoren-3-yl)acetamide 5p, which displayed in vivo activity reducing food intake in rodents.
Collapse
Affiliation(s)
- Antoni Torrens
- Department of Discovery Chemistry and Discovery Biology, Laboratorios Dr. Esteve, S.A., Av. Mare de Déu de Montserrat 221, 08041 Barcelona, Spain.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Hastings JA, Morris MJ, Lambert G, Lambert E, Esler M. NPY and NPY Y1 receptor effects on noradrenaline overflow from the rat brain in vitro. ACTA ACUST UNITED AC 2005; 120:107-12. [PMID: 15177927 DOI: 10.1016/j.regpep.2004.02.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2003] [Revised: 02/18/2004] [Accepted: 02/25/2004] [Indexed: 11/24/2022]
Abstract
Neurotransmitters and neuropeptides play important roles in the regulation of various neuroendocrine functions particularly feeding. The aim of this study was to investigate whether a functional interaction occurs among neuropeptide Y (NPY) at NPY Y1 receptors and noradrenaline overflow, as this may contribute to the regulation of appetite. The release of endogenous noradrenaline and its metabolite 3,4-dihydroxyphenylglycol (DHPG) were examined from hypothalamic and medullary prisms using the technique of in vitro superfusion and high performance liquid chromatography (HPLC) with coulometric detection. Noradrenaline and DHPG overflow was investigated at rest, in response to NPY (0.1 microM) and in response to the NPY Y1 receptor agonist, [Leu31,Pro34]NPY (0.1 microM). Perfusion with NPY and [Leu31,Pro34]NPY significantly reduced noradrenaline overflow from the hypothalamus and medulla. Perfusion with NPY and [Leu31,Pro34]NPY was without significant effect on hypothalamic DHPG overflow, while medullary DHPG overflow was significantly reduced by NPY and [Leu31,Pro34]NPY. Results from this study provide evidence of NPY Y1 receptor-mediated inhibition of noradrenaline release in the hypothalamus and medulla, further illustrating a complex interaction between neurotransmitters and neuropeptides within the rat brain.
Collapse
Affiliation(s)
- Jacqueline A Hastings
- Baker Heart Research Institute, Human Neurotransmitter Laboratory, P.O. Box 6492, St. Kilda Rd. Central, Melbourne, Victoria 8008, Australia.
| | | | | | | | | |
Collapse
|
6
|
Shaw JL, Gackenheimer SL, Gehlert DR. Functional autoradiography of neuropeptide Y Y1 and Y2 receptor subtypes in rat brain using agonist stimulated [35S]GTPgammaS binding. J Chem Neuroanat 2004; 26:179-93. [PMID: 14615027 DOI: 10.1016/j.jchemneu.2003.07.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Neuropeptide Y, one of the most abundant brain peptides, has been found to modulate several important biological functions via a family of G-protein coupled receptors. To investigate the localization of functional NPY receptor subtypes in the rat brain, we performed agonist-induced [35S]GTPgammaS autoradiography. The Y1/Y4/Y5 agonist Leu(31), Pro(34)-NPY increased [35S]GTPgammaS binding in several brain areas with a regional distribution consistent with that produced when labeling adjacent sections with [125I]-Leu(31), Pro(34)-PYY. The Y1 selective antagonist BIBP3226 antagonized the Leu(31), Pro(34)-NPY stimulated increase in [35S]GTPgammaS binding in all areas examined. The Y2 agonist C2-NPY stimulated [35S]GTPgamma binding in numerous brain areas with a regional distribution similar to the binding observed with [125I]-PYY 3-36. No increase in [35S]GTPgammaS binding above basal was observed in any brain area evaluated using Y4 and Y5 selective agonists. This study demonstrates abundant Y1 and Y2 receptor activation in the rat brain, while evidence for functional Y4 and Y5 receptors was not observed.
Collapse
Affiliation(s)
- Janice L Shaw
- Neuroscience Research, Lilly Research Laboratories, Eli Lilly and Company, Mail Code 0510, Indianapolis, IN 46285, USA
| | | | | |
Collapse
|
7
|
Karl T, Hoffmann T, Pabst R, von Hörsten S. Behavioral effects of neuropeptide Y in F344 rat substrains with a reduced dipeptidyl-peptidase IV activity. Pharmacol Biochem Behav 2003; 75:869-79. [PMID: 12957230 DOI: 10.1016/s0091-3057(03)00154-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Dipeptidyl-peptidase IV (DPPIV/CD26) is involved in several physiological functions by cleavage of dipeptides with a Xaa-Pro or Xaa-Ala sequence of regulatory peptides such as neuropeptide Y (NPY). Cleavage of NPY by DPPIV results in NPY(3-36), which lacks affinity for the Y(1) but not for other NPY receptor subtypes. Among other effects, the NPY Y(1) receptor mediates anxiolytic-like effects of NPY. In previous studies with F344 rat substrains lacking endogenous DPPIV-like activity we found a reduced behavioral stress response, which might be due to a differential degradation of NPY. Here we tested this hypothesis and administered intracerebroventricularly two different doses of NPY (0.0, 0.2, 1.0 nmol) in mutant and wildtype-like F344 substrains. NPY dose-dependently stimulated food intake and feeding motivation, decreased motor activity in the plus maze and social interaction test, and exerted anxiolytic-like effects. More important for the present hypothesis, NPY administration was found to be more potent in the DPPIV-negative substrains in exerting anxiolytic-like effects (increased social interaction time in the social interaction test) and sedative-like effects (decreased motor activity in the elevated plus maze). These data demonstrate for the first time a differential potency of NPY in DPPIV-deficient rats and suggest a changed receptor-specificity of NPY, which may result from a differential degradation of NPY in this genetic model of DPPIV deficiency. Overall, these results provide direct evidence that NPY-mediated effects in the central nervous system are modulated by DPPIV-like enzymatic activity.
Collapse
Affiliation(s)
- Tim Karl
- Department of Functional and Applied Anatomy, Hannover Medical School, Germany
| | | | | | | |
Collapse
|
8
|
Abstract
Fear is an adaptive component of the acute "stress" response to potentially-dangerous (external and internal) stimuli which threaten to perturb homeostasis. However, when disproportional in intensity, chronic and/or irreversible, or not associated with any genuine risk, it may be symptomatic of a debilitating anxious state: for example, social phobia, panic attacks or generalized anxiety disorder. In view of the importance of guaranteeing an appropriate emotional response to aversive events, it is not surprising that a diversity of mechanisms are involved in the induction and inhibition of anxious states. Apart from conventional neurotransmitters, such as monoamines, gamma-amino-butyric acid (GABA) and glutamate, many other modulators have been implicated, including: adenosine, cannabinoids, numerous neuropeptides, hormones, neurotrophins, cytokines and several cellular mediators. Accordingly, though benzodiazepines (which reinforce transmission at GABA(A) receptors), serotonin (5-HT)(1A) receptor agonists and 5-HT reuptake inhibitors are currently the principle drugs employed in the management of anxiety disorders, there is considerable scope for the development of alternative therapies. In addition to cellular, anatomical and neurochemical strategies, behavioral models are indispensable for the characterization of anxious states and their modulation. Amongst diverse paradigms, conflict procedures--in which subjects experience opposing impulses of desire and fear--are of especial conceptual and therapeutic pertinence. For example, in the Vogel Conflict Test (VCT), the ability of drugs to release punishment-suppressed drinking behavior is evaluated. In reviewing the neurobiology of anxious states, the present article focuses in particular upon: the multifarious and complex roles of individual modulators, often as a function of the specific receptor type and neuronal substrate involved in their actions; novel targets for the management of anxiety disorders; the influence of neurotransmitters and other agents upon performance in the VCT; data acquired from complementary pharmacological and genetic strategies and, finally, several open questions likely to orientate future experimental- and clinical-research. In view of the recent proliferation of mechanisms implicated in the pathogenesis, modulation and, potentially, treatment of anxiety disorders, this is an opportune moment to survey their functional and pathophysiological significance, and to assess their influence upon performance in the VCT and other models of potential anxiolytic properties.
Collapse
Affiliation(s)
- Mark J Millan
- Psychopharmacology Department, Centre de Rescherches de Croissy, Institut de Recherches (IDR) Servier, 125 Chemin de Ronde, 78290 Croissy-sur-Seine, Paris, France.
| |
Collapse
|
9
|
Kopp J, Xu ZQ, Zhang X, Pedrazzini T, Herzog H, Kresse A, Wong H, Walsh JH, Hökfelt T. Expression of the neuropeptide Y Y1 receptor in the CNS of rat and of wild-type and Y1 receptor knock-out mice. Focus on immunohistochemical localization. Neuroscience 2002; 111:443-532. [PMID: 12031341 DOI: 10.1016/s0306-4522(01)00463-8] [Citation(s) in RCA: 163] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The distribution of neuropeptide Y (NPY) Y1 receptor-like immunoreactivity (Y1R-LI) has been studied in detail in the CNS of rat using a rabbit polyclonal antibody against the C-terminal 13 amino acids of the rat receptor protein. The indirect immunofluorescence technique with tyramide signal amplification has been employed. For specificity and comparative reasons Y1 knock-out mice and wild-type controls were analyzed. The distribution of Y1R mRNA was also studied using in situ hybridization. A limited comparison between Y1R-LI and NPY-LI was carried out.A widespread and abundant distribution of Y1R-LI, predominantly in processes but also in cell bodies, was observed. In fact, Y1R-LI was found in most regions of the CNS with a similar distribution pattern between rat and wild-type mouse. This staining was specific in the sense that it was absent in adjacent sections following preadsorption of the antibody with 10(-5) M of the antigenic peptide, and that it could not be observed in sections of the Y1 KO mouse. In contrast, the staining obtained with an N-terminally directed Y1R antiserum did not disappear, strongly suggesting unspecificity. In brief, very high levels of Y1R-LI were seen in the islands of Calleja, the anterior olfactory nucleus, the molecular layer of the dentate gyrus, parts of the habenula, the interpeduncular nucleus, the mammillary body, the spinal nucleus of the trigeminal, caudal part, the paratrigeminal nucleus, and superficial layers of the dorsal horn. High levels were found in most cortical areas, many thalamic nuclei, some subnuclei of the amygdaloid complex, the hypothalamus and the nucleus of the stria terminalis, the nucleus of the solitary tract, the parabrachial nucleus, and the inferior olive. Moderate levels of Y1R-LI were detected in the cornu Ammonis and the subicular complex, many septal, some thalamic and many brainstem regions. Y1R staining of processes, often fiber and/or dot-like, and occasional cell bodies was also seen in tracts, such as the lateral lemniscus, the rubrospinal tract and the spinal tract of the trigeminal. There was in general a good overlap between Y1R-LI and NPY-LI, but some exceptions were found. Thus, some areas had NPY innervation but apparently lacked Y1Rs, whereas in other regions Y1R-LI, but no or only few NPY-positive nerve endings could be detected. Our results demonstrate that NPY signalling through the Y1R is common in the rat (and mouse) CNS. Mostly the Y1R is postsynaptic but there are also presynaptic Y1Rs. Mostly there is a good match between NPY-releasing nerve endings and Y1Rs, but 'volume transmission' may be 'needed' in some regions. Finally, the importance of using proper control experiments for immunohistochemical studies on seven-transmembrane receptors is stressed.
Collapse
Affiliation(s)
- J Kopp
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Parker E, Van Heek M, Stamford A. Neuropeptide Y receptors as targets for anti-obesity drug development: perspective and current status. Eur J Pharmacol 2002; 440:173-87. [PMID: 12007534 DOI: 10.1016/s0014-2999(02)01427-9] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Neuropeptide Y is a widely distributed neuropeptide that elicits a plethora of physiological effects via interaction with six different receptors (Y(1)-y(6)). Recent attention has focused on the role of neuropeptide Y in the regulation of energy homeostasis. Neuropeptide Y stimulates food intake, inhibits energy expenditure, increases body weight and increases anabolic hormone levels by activating the neuropeptide Y Y(1) and Y(5) receptors in the hypothalamus. Based on these findings, several neuropeptide Y Y(1) and Y(5) receptor antagonists have been developed recently as potential anti-obesity agents. In addition, mice lacking neuropeptide Y, the neuropeptide Y Y(1) receptor or the neuropeptide Y Y(5) receptor have been generated. The data obtained to date with these newly developed tools suggests that neuropeptide Y receptor antagonists, particularly neuropeptide Y Y(1) receptor antagonists, may be useful anti-obesity agents. However, the redundancy of the neurochemical systems regulating energy homeostasis may limit the effect of ablating a single pathway. In addition, patients in whom the starvation response is activated, such as formerly obese patients who have lost weight or patients with complete or partial leptin deficiency, may be the best candidates for treatment with a neuropeptide Y receptor antagonist.
Collapse
Affiliation(s)
- Eric Parker
- Department of CNS and Cardiovascular Research, Schering-Plough Research Institute, Mail Stop K-15-2-2760, 2015 Galloping Hill Road, Kenilworth, NJ 07033, USA.
| | | | | |
Collapse
|
11
|
Proske D, Höfliger M, Söll RM, Beck-Sickinger AG, Famulok M. A Y2 receptor mimetic aptamer directed against neuropeptide Y. J Biol Chem 2002; 277:11416-22. [PMID: 11756401 DOI: 10.1074/jbc.m109752200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Neuropeptide Y (NPY) is a 36-amino acid neuropeptide that exerts its activity by at least five different receptor subtypes that belong to the family of G-protein-coupled receptors. We isolated an aptamer directed against NPY from a nuclease-resistant RNA library. Mapping experiments with N-terminally, C-terminally, and centrally truncated analogues of NPY revealed that the aptamer recognizes the C terminus of NPY. Individual replacement of the four arginine residues at positions 19, 25, 33, and 35 by l-alanine showed that arginine 33 is essential for binding. The aptamer does not recognize pancreatic polypeptide, a highly homologous Y4 receptor-specific peptide of the gut. Furthermore, the affinity of the aptamer to the Y5 receptor-selective agonist [Ala(31),Aib(32)]NPY and the Y1/Y5 receptor-binding peptide [Leu(31),Pro(34)]NPY was considerably reduced, whereas Y2 receptor-specific NPY mutants were bound well by the aptamer. Accordingly, the NPY epitope was recognized by the Y2 receptor, and the aptamer was highly similar. This Y2 receptor mimicking effect was further confirmed by competition binding studies. Whereas the aptamer competed with the Y2 receptor for binding of [(3)H]NPY with high affinity, a low affinity displacement of [(3)H]NPY was observed at the Y1 and the Y5 receptors. Consequently, competition at the Y2 receptor occurred with a considerably lower K(i) value compared with the Y1 and Y5 receptors. These results indicate that the aptamer mimics the binding of NPY to the Y2 receptor more closely than to the Y1 and Y5 receptors.
Collapse
Affiliation(s)
- Daniela Proske
- Kekulé Institut für Organische Chemie und Biochemie, Universität Bonn, Germany
| | | | | | | | | |
Collapse
|
12
|
Abstract
Differences in the structure of PYY and two important analogs, PYY [3-36] and [Pro34]PYY, are evaluated. Y-receptor subtype ligand binding data are used in conjunction with structural data to develop a model for receptor subtype selective agonists. For PYY it is proposed that potent binding to Y1, Y4 and Y5 receptors requires the juxtaposition of the two termini while Y2 binding only requires the C-terminal helix. Further experiments that delineate between primary and tertiary structure contributions for receptor binding and activation are required to support the hypothesis that tertiary structure is stable enough to influence the expression of PYY's bioactivity.
Collapse
Affiliation(s)
- D A Keire
- CURE Digestive Diseases Research Center, Greater Los Angeles Veterans Health Care System, Los Angeles, CA 90073, USA.
| | | | | | | |
Collapse
|
13
|
Margareto J, Rivero I, Monge A, Aldana I, Marti A, Martínez JA. Changes in UCP2, PPARgamma2, and c/EBPalpha gene expression induced by a neuropeptide Y (NPY) related receptor antagonist in overweight rats. Nutr Neurosci 2002; 5:13-7. [PMID: 11929193 DOI: 10.1080/10284150290007065] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Neuropeptide Y (NPY), a peptide released by nervous cells, appears to contribute to adiposity regulation by increasing food intake and inhibiting lipolysis. New NPY receptor related antagonists such as S.A.0204 are being developed as potential anti-obesity drugs affecting adipocyte lipid metabolism and thermogenesis. In this sense, those animals fed on a high-energy yielding (cafeteria) diet decreased body fat weight as compared to overweight controls, when they were administered with S.A.0204, and increased body temperature, which statistically correlated with high UCP2 mRNA expression levels in white adipose tissue. In addition, the in vivo NPY-antagonist administration was able to prevent white adipose tissue growth in animals fed the cafeteria (high-fat) diet by impairing PPARy and CIEBPalpha mRNA expression in white fat cells. In summary, this novel NPY related-antagonist S.A.0204 may regulate body fat deposition by affecting both energy dissipation and white adipose tissue deposition, representing a potential new pharmacological strategy for obesity management.
Collapse
Affiliation(s)
- J Margareto
- Department of Physiology and Nutrition, University of Navarra, Pamplona, Spain
| | | | | | | | | | | |
Collapse
|
14
|
Bischoff A, Püttmann K, Kötting A, Moser C, Buschauer A, Michel MC. Limited signal transduction repertoire of human Y(5) neuropeptide Y receptors expressed in HEC-1B cells. Peptides 2001; 22:387-94. [PMID: 11287093 DOI: 10.1016/s0196-9781(01)00346-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In HEC-1B cells transfected with human Y(5) neuropeptide Y (NPY) receptors (but not in non-transfected cells) NPY inhibited forskolin-stimulated cAMP accumulation in a pertussis toxin-sensitive manner (-log EC(50) 8.88 +/- 0.25). Elevations of intracellular Ca(2+) were largely restricted to very high NPY concentrations and similar in transfected and nontransfected cells. NPY did not increase inositol phosphate accumulation and did not activate a variety of isoforms of protein kinase C or mitogen-activated protein kinases. We conclude that at least upon expression in HEC-1B cells the signal transduction of Y(5) NPY receptors is limited to inhibition of cAMP accumulation.
Collapse
Affiliation(s)
- A Bischoff
- Department of Medicine, University of Essen, 45122, Essen, Germany
| | | | | | | | | | | |
Collapse
|
15
|
Cabrele C, Wieland HA, Langer M, Stidsen CE, Beck-Sickinger AG. Y-receptor affinity modulation by the design of pancreatic polypeptide/neuropeptide Y chimera led to Y(5)-receptor ligands with picomolar affinity. Peptides 2001; 22:365-78. [PMID: 11287091 DOI: 10.1016/s0196-9781(01)00339-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Neuropeptide Y (NPY) and pancreatic polypeptide (PP) bind to the Y-receptors with very different affinities: NPY has high affinity for the receptors Y(1), Y(2) and Y(5), while PP binds only to Y(4)-receptor with picomolar affinity. By exchanging of specific amino acid positions between the two peptides, we developed 38 full-length PP/NPY chimeras with binding properties that are completely different from those of the two native ligands. Pig NPY (pNPY) analogs containing the segment 19-23 from human PP (hPP) bound to the Y-receptors with much lower affinity than NPY itself. The affinity of the hPP analog containing the pNPY segments 1-7 and 19-23 was comparable to that of pNPY at the Y(1)- and Y(5)-receptor subtypes, and to that of hPP at the Y(4)-receptor. Furthermore, the presence of the segments 1-7 from chicken PP (cPP) and 19-23 from pNPY within the hPP sequence led to a ligand with IC(50) of 40 pM at the Y(5)-receptor. This is the most potent Y(5)-receptor ligand known so far, with 15-fold higher affinity than NPY.
Collapse
Affiliation(s)
- C Cabrele
- Department of Applied Bioscience, ETH Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | | | | | | | | |
Collapse
|
16
|
Della Zuana O, Sadlo M, Germain M, Félétou M, Chamorro S, Tisserand F, de Montrion C, Boivin JF, Duhault J, Boutin JA, Levens N. Reduced food intake in response to CGP 71683A may be due to mechanisms other than NPY Y5 receptor blockade. Int J Obes (Lond) 2001; 25:84-94. [PMID: 11244462 DOI: 10.1038/sj.ijo.0801472] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
INTRODUCTION The purpose of this study was to test the continuing validity of the hypothesis that neuropeptide Y (NPY) produced in the brain controls food intake through an interaction with the NPY Y(5) receptor subtype. METHODS The hypothesis was tested using CGP 71683A a potent and highly selective non-peptide antagonist of the NPY Y(5) receptor which was administered into the right lateral ventricle of obese Zucker fa/fa rats. RESULTS Intraventricular injection of 3.4 nmol/kg NPY increased food intake during a 2 h test period. Doses of CGP 71683A in excess of 15 nmol/kg (i.cv.) resulted in blockade of the increase in food intake produced by NPY. Repeated daily injection of CGP 71683A (30--300 nmol/kg, i.cv.) immediately before the dark phase produced a dose-dependent and slowly developing decrease in food intake. CGP 71683A has a low affinity for NPY Y(1), Y(2) and Y(4) receptors but a very high affinity for the NPY Y(5) receptor (Ki, 1.4 nM). Surprisingly, CGP 71683A had similarly high affinity for muscarinic receptors (Ki, 2.7 nM) and for the serotonin uptake recognition site (Ki, 6.2 nM) in rat brain. Anatomic analysis of the brain after treatment with CGP 71683A demonstrated an inflammatory response associated with the fall in food intake. CONCLUSIONS While the fall in food intake in response to CGP 71683A may have a Y(5) component, interactions with other receptors or inflammatory mediators may also play a role. It is concluded that CGP 71683A is an imprecise tool for investigating the role of the NPY Y(5) receptor in the control of physiological processes including food intake. International Journal of Obesity (2001) 25, 84-94
Collapse
Affiliation(s)
- O Della Zuana
- Metabolic Diseases, Institut de Recherches Servier, Suresnes, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Cabrele C, Langer M, Bader R, Wieland HA, Doods HN, Zerbe O, Beck-Sickinger AG. The first selective agonist for the neuropeptide YY5 receptor increases food intake in rats. J Biol Chem 2000; 275:36043-8. [PMID: 10944518 DOI: 10.1074/jbc.m000626200] [Citation(s) in RCA: 150] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The first Y(5) receptor-selective analog of neuropeptide Y (NPY), [Ala(31),Aib(32)]NPY, has been developed and biologically characterized. Using competition binding assays on cell lines that express different Y receptors, we determined the affinity of this analog to be 6 nm at the human Y(5) receptor, >500 nm at the Y(1) and Y(2) receptors, and >1000 nm at the Y(4) receptor. Activity studies performed in vitro using a cAMP enzyme immunoassay, and in vivo using food intake studies in rats, showed that the peptide acted as an agonist. Further peptides obtained by the combination of the Ala(31)-Aib(32) motif with chimeric peptides containing segments of NPY and pancreatic polypeptide displayed the same selectivity and even higher affinity (up to 0.2 nm) for the Y(5) receptor. In vivo administration of the new Y(5) receptor-selective agonists significantly stimulated feeding in rats. The NMR solution structures of NPY and [Ala(31),Aib(32)]NPY showed a different conformation in the C-terminal region, where the alpha-helix of NPY was substituted by a more flexible, 3(10)-helical turn structure.
Collapse
Affiliation(s)
- C Cabrele
- Department of Applied Biosciences, Federal Institute of Technology of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | | | | | | | | | | | | |
Collapse
|
18
|
Durkin MM, Walker MW, Smith KE, Gustafson EL, Gerald C, Branchek TA. Expression of a novel neuropeptide Y receptor subtype involved in food intake: an in situ hybridization study of Y5 mRNA distribution in rat brain. Exp Neurol 2000; 165:90-100. [PMID: 10964488 DOI: 10.1006/exnr.2000.7446] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Our group has reported on the cloning of a novel rat neuropeptide Y (NPY) receptor involved in NPY-induced food intake, the Y5 receptor. The distribution in rat brain of the mRNA encoding this receptor has been determined by in situ hybridization histochemistry, using radiolabeled oligonucleotide probes. Control experiments were carried out in cell lines transfected with either rat Y1 or rat Y5 cDNAs. With the exception of the cerebellum, only the antisense probes yielded hybridization signal in rat brain tissue sections. A number of brain regions contained hybridization signals indicative of Y5 mRNA localization. Chief among these were various hypothalamic nuclei, including the medial preoptic nucleus, the supraoptic nucleus, the paraventricular nucleus, and the lateral hypothalamus. Other regions with substantial hybridization signals included the midline thalamus, parts of the amygdala and hippocampus, and some midbrain and brain-stem nuclei. In general a low density of Y5 mRNA was observed in most cortical structures, with the exception of the cingulate and retrosplenial cortices, each of which contained a moderate abundance of Y5 hybridization signal. The distribution of this receptor mRNA is consistent with a role for the Y5 receptor in food intake and also suggests involvement in other processes mediated by NPY.
Collapse
Affiliation(s)
- M M Durkin
- Synaptic Pharmaceutical Corporation, 215 College Road, Paramus, New Jersey 07652, USA
| | | | | | | | | | | |
Collapse
|
19
|
Abstract
Neuropeptide Y (NPY), peptide YY (PYY) and pancreatic polypeptide (PP) belong to the NPY hormone family and activate a class of receptors called the Y-receptors, and also belong to the large superfamily of the G-protein coupled receptors. Structure-affinity and structure-activity relationship studies of peptide analogs, combined with studies based on site-directed mutagenesis and anti-receptor antibodies, have given insight into the individual characterization of each receptor subtype relative to its interaction with the ligand, as well as to its biological function. A number of selective antagonists at the Y1-receptor are available whose structures resemble that of the C-terminus of NPY. Some of these compounds, like BIBP3226, BIBO3304 and GW1229, have recently been used for in vivo investigations of the NPY-induced increase in food intake. Y2-receptor selective agonists are the analog cyclo-(28/32)-Ac-[Lys28-Glu32]-(25-36)-pNPY and the TASP molecule containing two units of the NPY segment 21-36. Now the first antagonist with nanomolar affinity for the Y2-receptor is also known, BIIE0246. So far, the native peptide PP has been shown to be the most potent ligand at the Y4-receptor. However, by the design of PP/NPY chimera, some analogs have been found that bind not only to the Y4-, but also to the Y5-receptor with subnanomolar affinities, and are as potent as NPY at the Y1-receptor. For the characterization of the Y5-receptor in vitro and in vivo, a new class of highly selective agonists is now available. This consists of analogs of NPY and of PP/NPY chimera which all contain the motif Ala31-Aib32. This motif has been shown to induce a 3(10)-helical turn in the region 28-31 of NPY and is suggested to be the key motif for high Y5-receptor selectivity. The results of feeding experiments in rats treated with the first highly specific Y5-receptor agonists support the hypothesis that this receptor plays a role in the NPY-induced stimulation of food intake. In conclusion, the selective compounds for the different Y receptor subtypes known so far are promising tools for a better understanding of the physiological properties of the hormones of the NPY family and related receptors.
Collapse
Affiliation(s)
- C Cabrele
- Department of Pharmacy, ETH Zurich, Switzerland
| | | |
Collapse
|
20
|
Moser C, Bernhardt G, Michel J, Schwarz H, Buschauer A. Cloning and functional expression of the hNPY Y5 receptor in human endometrial cancer (HEC-1B) cells. Can J Physiol Pharmacol 2000. [DOI: 10.1139/y99-125] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Aiming to develop a functional assay for the human NPY Y5 receptor based on adenylyl cyclase activity, HEC-1B cells, in which cAMP synthesis can be efficiently stimulated with forskolin, were selected for the transfection with the pcDNA3-Y5-FLAG and the pcDEF3-Y5 vectors. After optimization of the transfection procedure, the binding of [3H]propionyl-NPY to transiently and stably expressed Y5 receptors was determined. The affinities of NPY, NPY derivatives, and rPP (pNPY >= p(Leu31Pro34)NPY = p(2-36)NPY >= p(D-Trp32)NPY > p(13-36)NPY > rPP) were in accordance with the NPY Y5 receptor subtype. For [3H]propionyl-pNPY approximately 1.7 × 105 and 1 × 106 binding sites per transiently and stably transfected cell, respectively, were determined. The KD values were 2.4 ± 0.4 and 1.7 ± 0.2 nM, respectively. Due to the high expression of the receptor protein, both stably and transiently transfected cells can be conveniently used in routine radioligand binding studies. By contrast, functional assays were only feasible with HEC-1B cells stably expressing the Y5 receptor. In these cells, 10 nM pNPY inhibited the forskolin-stimulated cAMP synthesis by 75%. This effect was partially antagonized by the Y5 antagonist N-{trans-[4-(2-naphthylmethylamino)- methyl]cyclohexylmethyl}naphthalene-2-sulfonamide. Although the genetic variability of cancer cells is in principle incompatible with a stable phenotype, both ligand binding characteristics and functionality of the Y5 receptor remained unchanged for more than 30 passages.Key words: human NPY Y5 receptor, HEC-1B cells, stable expression, radioligand binding, cAMP assay.
Collapse
|
21
|
Dumont Y, Jacques D, St-Pierre JA, Tong Y, Parker R, Herzog H, Quirion R. Chapter IX Neuropeptide Y, peptide YY and pancreatic polypeptide receptor proteins and mRNAs in mammalian brains. HANDBOOK OF CHEMICAL NEUROANATOMY 2000. [DOI: 10.1016/s0924-8196(00)80011-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
22
|
Redrobe JP, Dumont Y, St-Pierre JA, Quirion R. Multiple receptors for neuropeptide Y in the hippocampus: putative roles in seizures and cognition. Brain Res 1999; 848:153-66. [PMID: 10612707 DOI: 10.1016/s0006-8993(99)02119-8] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Neuropeptide Y (NPY) is widely distributed throughout the central nervous system (CNS) and is one of the most conserved peptides in evolution, suggesting an important role in the regulation of basic physiological functions, including learning and memory. In addition, experimental studies have suggested that NPY, together with its receptors, may have a direct implication in several pathological disorders, including epilepsy/seizure. NPY-like immunoreactivity and NPY receptors have been shown to be present throughout the brain, but is concentrated in the hippocampus. The hippocampal formation has been repeatedly implicated in the modulation of cognition, as well as the pathogenesis of seizure. This review will concentrate on the hippocampal distribution of NPY, its receptors and the putative role played by this peptide in seizure, together with the regulation of cognitive function associated with learning and memory.
Collapse
Affiliation(s)
- J P Redrobe
- Douglas Hospital Research Centre, Department of Psychiatry and Neurology, McGill University, 6875 Blvd. LaSalle, Verdun, QC, Canada
| | | | | | | |
Collapse
|
23
|
Siegel MG, Chaney MO, Bruns RF, Clay MP, Schober DA, Van Abbema AM, Johnson DW, Cantrell BE, Hahn PJ, Hunden DC, Gehlert DR, Zarrinmayeh H, Ornstein PL, Zimmerman DM, Koppel GA. Rapid parallel synthesis applied to the optimization of a series of potent nonpeptide neuropeptide Y-1 receptor antagonists. Tetrahedron 1999. [DOI: 10.1016/s0040-4020(99)00683-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|