1
|
Miles GP, Liu XF, Scheffler BE, Amiri E, Weaver MA, Grodowitz MJ, Chen J. Solenopsis richteri (Hymenoptera: Formicidae) alates infected with deformed wing virus display wing deformity with altered mobility. THE SCIENCE OF NATURE - NATURWISSENSCHAFTEN 2024; 111:47. [PMID: 39302452 DOI: 10.1007/s00114-024-01934-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 08/31/2024] [Accepted: 09/05/2024] [Indexed: 09/22/2024]
Abstract
Deformed wing virus (DWV) has long been identified as a critical pathogen affecting honeybees, contributing to colony losses through wing deformities, neurological impairments, and reduced lifespan. Since DWV also affects other pollinators, it poses a significant threat to global pollination networks. While honeybees have been the focal point of DWV studies, emerging research indicates that this RNA virus is not host-specific but rather a generalist pathogen capable of infecting a wide range of insect species, including other bee species such as bumblebees and solitary bees, as well as wasps and ants. This expands the potential impact of DWV beyond honeybees to broader ecological communities. The black imported fire ant, Solenopsis richteri, is an economically important invasive ant species. In this study, we describe deformed wing (DW) symptoms in S. richteri. DW alates were found in three of nine (33%) laboratory colonies. The symptoms ranged from severely twisted wings to a single crumpled wing tip. Additionally, numerous symptomatic alates also displayed altered mobility, ranging from an ataxic gait to an inability to walk. Viral replication of DWV was confirmed using a modified strand-specific RT-PCR. Our results suggest that S. richteri can be an alternative host for DWV, expanding our understanding of DWV as a generalist pathogen in insects. However, additional research is required to determine whether DWV is the etiological agent responsible for DW syndrome in S. richteri.
Collapse
Affiliation(s)
- Godfrey P Miles
- Biological Control of Pests Research Unit, USDA-ARS, Stoneville, MS, 38776, USA
| | - Xiaofen F Liu
- Biological Control of Pests Research Unit, USDA-ARS, Stoneville, MS, 38776, USA
| | - Brian E Scheffler
- Genomics and Bioinformatics Research Unit, 141 Experiment Station Road, Stoneville, MS, 38776, USA
| | - Esmaeil Amiri
- Delta Research and Extension Center, Mississippi State University, 82 Stoneville Road, Stoneville, MS, 38776, USA
| | - Mark A Weaver
- Biological Control of Pests Research Unit, USDA-ARS, Stoneville, MS, 38776, USA
| | - Michael J Grodowitz
- Biological Control of Pests Research Unit, USDA-ARS, Stoneville, MS, 38776, USA
| | - Jian Chen
- Biological Control of Pests Research Unit, USDA-ARS, Stoneville, MS, 38776, USA.
| |
Collapse
|
2
|
Suda Y, Murota K, Shirafuji H, Tanaka S, Yanase T. Replication of Akabane virus and related orthobunyaviruses in a fetal-bovine-brain-derived cell line. Arch Virol 2024; 169:133. [PMID: 38829449 DOI: 10.1007/s00705-024-06058-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 04/22/2024] [Indexed: 06/05/2024]
Abstract
Akabane virus (AKAV), Aino virus, Peaton virus, Sathuperi virus, and Shamonda virus are arthropod-borne viruses belonging to the order Elliovirales, family Peribunyaviridae, genus Orthobunyavirus. These viruses cause or may cause congenital malformations in ruminants, including hydranencephaly, poliomyelitis, and arthrogryposis, although their pathogenicity may vary among field cases. AKAV may cause relatively severe congenital lesions such as hydranencephaly in calves. Furthermore, strains of AKAV genogroups I and II exhibit different disease courses. Genogroup I strains predominantly cause postnatal viral encephalomyelitis, while genogroup II strains are primarily detected in cases of congenital malformation. However, the biological properties of AKAV and other orthobunyaviruses are insufficiently investigated in hosts in the field and in vitro. Here, we used an immortalized bovine brain cell line (FBBC-1) to investigate viral replication efficiency, cytopathogenicity, and host innate immune responses. AKAV genogroup II and Shamonda virus replicated to higher titers in FBBC-1 cells compared with the other viruses, and only AKAV caused cytopathic effects. These results may be associated with the severe congenital lesions in the brain caused by AKAV genogroup II. AKAV genogroup II strains replicated to higher titers in FBBC-1 cells than AKAV genogroup I strains, suggesting that genogroup II strains replicated more efficiently in fetal brain cells, accounting for the detection of the latter strains mainly in fetal infection cases. Therefore, FBBC-1 cells may serve as a valuable tool for investigating the virulence and tropism of the orthobunyaviruses for bovine neonatal brain tissues in vitro.
Collapse
Affiliation(s)
- Yuto Suda
- Kagoshima Research Station, National Institute of Animal Health (NIAH), National Agriculture and Food Research Organization (NARO), 2702 Chuzan, Kagoshima, Kagoshima, 891-0105, Japan.
- Division of Infectious Animal Disease Research, NIAH, NARO, 3-1-5 Kannondai, Tsukuba, Ibaraki, 305-0856, Japan.
| | - Katsunori Murota
- Kagoshima Research Station, National Institute of Animal Health (NIAH), National Agriculture and Food Research Organization (NARO), 2702 Chuzan, Kagoshima, Kagoshima, 891-0105, Japan
| | - Hiroaki Shirafuji
- Kagoshima Research Station, National Institute of Animal Health (NIAH), National Agriculture and Food Research Organization (NARO), 2702 Chuzan, Kagoshima, Kagoshima, 891-0105, Japan
- Exotic Disease Group, Division of Transboundary, Animal Disease Research, NIAH, NARO, 6‑20‑1 Josuihoncho, Kodaira, Tokyo, 187‑0022, Japan
| | - Shogo Tanaka
- Kagoshima Research Station, National Institute of Animal Health (NIAH), National Agriculture and Food Research Organization (NARO), 2702 Chuzan, Kagoshima, Kagoshima, 891-0105, Japan
| | - Tohru Yanase
- Kagoshima Research Station, National Institute of Animal Health (NIAH), National Agriculture and Food Research Organization (NARO), 2702 Chuzan, Kagoshima, Kagoshima, 891-0105, Japan
| |
Collapse
|
3
|
Shushan A, Luria N, Lachman O, Sela N, Laskar O, Belausov E, Smith E, Dombrovsky A. Characterization of a novel psyllid-transmitted waikavirus in carrots. Virus Res 2023; 335:199192. [PMID: 37558054 PMCID: PMC10448213 DOI: 10.1016/j.virusres.2023.199192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/19/2023] [Accepted: 08/06/2023] [Indexed: 08/11/2023]
Abstract
Carrots collected from the Western Negev region in Israel during the winter of 2019 showed disease symptoms of chlorosis, leaf curling, a loss of apical dominance, and multiple lateral roots that were not associated with known pathogens of the carrot yellows disease. Symptomatic carrots were studied for a possible involvement of plant viruses in disease manifestations using high throughput sequencing analyses. The results revealed the presence of a waikavirus, sharing a ∼70% nucleotide sequence identity with Waikavirus genus members. Virions purified from waikavirus-positive carrots were visualized by transmission electron microscopy, showing icosahedral particle diameter of ∼28 nm. The genome sequence was validated by overlapping amplicons by designed 12 primer sets. A complete genome sequence was achieved by rapid amplification of cDNA ends (RACE) for sequencing the 5' end, and RT-PCR with oligo dT for sequencing the 3' end. The genome encodes a single large ORF, characteristic of waikaviruses. Aligning the waikavirus-deduced amino-acid sequence with other waikavirus species at the Pro-Pol region, a conserved sequence between the putative proteinase and the RNA-dependent RNA polymerase, showed a ∼40% identity, indicating the identification of a new waikavirus species. The amino-acid sequence of the three coat proteins and cleavage sites were experimentally determined by liquid chromatography-mass spectrometry. A phylogenetic analysis based on the Pro-Pol region revealed that the new waikavirus clusters with persimmon waikavirus and actinidia yellowing virus 1. The new waikavirus genome was localized in the phloem of waikavirus-infected carrots. The virus was transmitted to carrot and coriander plants by the psyllid Bactericera trigonica Hodkinson (Hemiptera: Triozidae).
Collapse
Affiliation(s)
- Ariel Shushan
- Department of Plant Pathology and Weed Research, Agricultural Research Organization-The Volcani Center, 68 HaMaccabim Road, P.O.B 15159, Rishon LeTsiyon 7528809, Israel; The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of University of Jerusalem, Rehovot 761001, Israel
| | - Neta Luria
- Department of Plant Pathology and Weed Research, Agricultural Research Organization-The Volcani Center, 68 HaMaccabim Road, P.O.B 15159, Rishon LeTsiyon 7528809, Israel
| | - Oded Lachman
- Department of Plant Pathology and Weed Research, Agricultural Research Organization-The Volcani Center, 68 HaMaccabim Road, P.O.B 15159, Rishon LeTsiyon 7528809, Israel
| | - Noa Sela
- Bioinformatics Unit, Agricultural Research Organization-The Volcani Center, 68 HaMaccabim Road, P.O.B 15159, Rishon LeZion 7505101, Israel
| | - Orly Laskar
- Department of Infectious Diseases, Israel Institute for Biological Research, P.O.B 19, Ness Ziona 74100, Israel
| | - Eduard Belausov
- Department of Ornamental Plants and Agricultural Biotechnology, Agricultural Research Organization, The Volcani Center, 68 HaMaccabim Road, P.O.B 15159, Rishon LeZion 7505101, Israel
| | - Elisheva Smith
- Department of Plant Pathology and Weed Research, Agricultural Research Organization-The Volcani Center, 68 HaMaccabim Road, P.O.B 15159, Rishon LeTsiyon 7528809, Israel
| | - Aviv Dombrovsky
- Department of Plant Pathology and Weed Research, Agricultural Research Organization-The Volcani Center, 68 HaMaccabim Road, P.O.B 15159, Rishon LeTsiyon 7528809, Israel.
| |
Collapse
|
4
|
Miles GP, Liu XF, Amiri E, Grodowitz MJ, Allen ML, Chen J. Co-Occurrence of Wing Deformity and Impaired Mobility of Alates with Deformed Wing Virus in Solenopsis invicta Buren (Hymenoptera: Formicidae). INSECTS 2023; 14:788. [PMID: 37887800 PMCID: PMC10607916 DOI: 10.3390/insects14100788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 10/28/2023]
Abstract
Deformed wing virus (DWV), a major honey bee pathogen, is a generalist insect virus detected in diverse insect phyla, including numerous ant genera. Its clinical symptoms have only been reported in honey bees, bumble bees, and wasps. DWV is a quasispecies virus with three main variants, which, in association with the ectoparasitic mite, Varroa destructor, causes wing deformity, shortened abdomens, neurological impairments, and colony mortality in honey bees. The red imported fire ant, Solenopsis invicta Buren, is one of the most-invasive and detrimental pests in the world. In this study, we report the co-occurrence of DWV-like symptoms in S. invicta and DWV for the first time and provide molecular evidence of viral replication in S. invicta. Some alates in 17 of 23 (74%) lab colonies and 9 of 14 (64%) field colonies displayed deformed wings (DWs), ranging from a single crumpled wing tip to twisted, shriveled wings. Numerous symptomatic alates also exhibited altered locomotion ranging from an altered gait to the inability to walk. Deformed wings may prevent S. invicta alates from reproducing since mating only occurs during a nuptial flight. The results from conventional RT-PCR and Sanger sequencing confirmed the presence of DWV-A, and viral replication of DWV was confirmed using a modified strand-specific RT-PCR. Our results suggest that S. invicta can potentially be an alternative and reservoir host for DWV. However, further research is needed to determine whether DWV is the infectious agent that causes the DW syndrome in S. invicta.
Collapse
Affiliation(s)
- Godfrey P. Miles
- Biological Control of Pests Research Unit, United States Department of Agriculture-Agricultural Research Service, 59 Lee Road, Stoneville, MS 38776, USA; (G.P.M.)
| | - Xiaofen F. Liu
- Biological Control of Pests Research Unit, United States Department of Agriculture-Agricultural Research Service, 59 Lee Road, Stoneville, MS 38776, USA; (G.P.M.)
| | - Esmaeil Amiri
- Delta Research and Extension Center, Mississippi State University, 82 Stoneville Road, Stoneville, MS 38776, USA
| | - Michael J. Grodowitz
- Biological Control of Pests Research Unit, United States Department of Agriculture-Agricultural Research Service, 59 Lee Road, Stoneville, MS 38776, USA; (G.P.M.)
| | - Margaret L. Allen
- Biological Control of Pests Research Unit, United States Department of Agriculture-Agricultural Research Service, 59 Lee Road, Stoneville, MS 38776, USA; (G.P.M.)
| | - Jian Chen
- Biological Control of Pests Research Unit, United States Department of Agriculture-Agricultural Research Service, 59 Lee Road, Stoneville, MS 38776, USA; (G.P.M.)
| |
Collapse
|
5
|
Valles SM, Zhao C, Rivers AR, Iwata RL, Oi DH, Cha DH, Collignon RM, Cox NA, Morton GJ, Calcaterra LA. RNA virus discoveries in the electric ant, Wasmannia auropunctata. Virus Genes 2023; 59:276-289. [PMID: 36729322 PMCID: PMC10025213 DOI: 10.1007/s11262-023-01969-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/13/2023] [Indexed: 02/03/2023]
Abstract
Despite being one of the most destructive invasive species of ants, only two natural enemies are known currently for Wasmannia auropunctata, commonly known as the electric ant or little fire ant. Because viruses can be effective biological control agents against many insect pests, including ants, a metagenomics/next-generation sequencing approach was used to facilitate discovery of virus sequences from the transcriptomes of W. auropunctata. Five new and complete positive sense, single-stranded RNA virus genomes, and one new negative sense, single-stranded RNA virus genome were identified, sequenced, and characterized from W. auropunctata collected in Argentina by this approach, including a dicistrovirus (Electric ant dicistrovirus), two polycipiviruses (Electric ant polycipivirus 1; Electric ant polycipivirus 2), a solinvivirus (Electric ant solinvivirus), a divergent genome with similarity to an unclassified group in the Picornavirales (Electric ant virus 1), and a rhabdovirus (Electric ant rhabdovirus). An additional virus genome was detected that is likely Solenopsis invicta virus 10 (MH727527). The virus genome sequences were absent from the transcriptomes of W. auropunctata collected in the USA (Hawaii and Florida). Additional limited field surveys corroborated the absence of these viruses in regions where the electric ant is invasive (the USA and Australia). The replicative genome strand of four of the viruses (Electric ant polycipivirus 2, Electric ant solinvivirus, Electric ant virus 1, and Solenopsis invicta virus 10 (in the electric ant) was detected in Argentinean-collected W. auropunctata indicating that the ant is a host for these viruses. These are the first virus discoveries to be made from W. auropunctata.
Collapse
Affiliation(s)
- Steven M Valles
- Center for Medical, Agricultural and Veterinary Entomology, USDA-ARS, 1600 SW 23rd Drive, Gainesville, FL, USA.
| | - Chaoyang Zhao
- Center for Medical, Agricultural and Veterinary Entomology, USDA-ARS, 1600 SW 23rd Drive, Gainesville, FL, USA
| | - Adam R Rivers
- Genomics and Bioinformatics Research Unit, USDA-ARS, 1600 SW 23rd Drive, Gainesville, FL, USA
| | - Ryo L Iwata
- Genomics and Bioinformatics Research Unit, USDA-ARS, 1600 SW 23rd Drive, Gainesville, FL, USA
| | - David H Oi
- Center for Medical, Agricultural and Veterinary Entomology, USDA-ARS, 1600 SW 23rd Drive, Gainesville, FL, USA
| | - Dong H Cha
- Daniel K. Inouye U.S. Pacific Basin Agricultural Research Center, USDA-ARS, 64 Nowelo St, Hilo, HI, USA
| | - R Max Collignon
- Daniel K. Inouye U.S. Pacific Basin Agricultural Research Center, USDA-ARS, 64 Nowelo St, Hilo, HI, USA
| | - Nastassja A Cox
- National Electric Ant Eradication Program, Department of Agriculture and Fisheries, Biosecurity Queensland, 21-23 Redden Street, Cairns, QLD, 4870, Australia
| | - Gary J Morton
- National Electric Ant Eradication Program, Department of Agriculture and Fisheries, Biosecurity Queensland, 21-23 Redden Street, Cairns, QLD, 4870, Australia
| | - Luis A Calcaterra
- Fundación para el Estudio de Especies Invasivas, Bolívar 1559, B1686EFA, Hurlingham, Buenos Aires, Argentina
| |
Collapse
|
6
|
Valles SM. Solenopsis invicta virus 3 infection alters foraging behavior in its host Solenopsisinvicta. Virology 2023; 581:81-88. [PMID: 36933306 DOI: 10.1016/j.virol.2023.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/02/2023] [Accepted: 03/08/2023] [Indexed: 03/13/2023]
Abstract
Solenopsis invicta is an invasive ant introduced into the United States in the early 1900s. Control efforts and damage caused by this ant exceed $8 billion annually. Solenopsis invicta virus 3 (SINV-3) is a positive-sense, single-stranded RNA virus (Solinviviridae) that is being used as a classical natural control agent for S. invicta. S. invicta colonies were exposed to purified preparations of SINV-3 to investigate the impact of the virus on the ant. Food retrieval behavior (i.e., foraging) by worker ants was significantly decreased, which led to mortality among all life stages. Queen fecundity and weight were also significantly decreased. The change in food retrieval was associated with the exhibition of an unusual behavior, whereby the remaining live ant workers wedged dead ant worker corpses into and on top of cricket carcasses (the laboratory colony food source). SINV-3 infection alters foraging behavior in S. invicta, which adversely impacts colony nutrition.
Collapse
Affiliation(s)
- Steven M Valles
- Center for Medical, Agricultural and Veterinary Entomology, USDA-ARS, 1600 SW 23rd Drive, Gainesville, FL, 32608, USA.
| |
Collapse
|
7
|
Niewiadomska-Cimicka A, Hache A, Le Gras S, Keime C, Ye T, Eisenmann A, Harichane I, Roux MJ, Messaddeq N, Clérin E, Léveillard T, Trottier Y. Polyglutamine-expanded ATXN7 alters a specific epigenetic signature underlying photoreceptor identity gene expression in SCA7 mouse retinopathy. J Biomed Sci 2022; 29:107. [PMID: 36539812 PMCID: PMC9768914 DOI: 10.1186/s12929-022-00892-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 12/11/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Spinocerebellar ataxia type 7 (SCA7) is a neurodegenerative disorder that primarily affects the cerebellum and retina. SCA7 is caused by a polyglutamine expansion in the ATXN7 protein, a subunit of the transcriptional coactivator SAGA that acetylates histone H3 to deposit narrow H3K9ac mark at DNA regulatory elements of active genes. Defective histone acetylation has been presented as a possible cause for gene deregulation in SCA7 mouse models. However, the topography of acetylation defects at the whole genome level and its relationship to changes in gene expression remain to be determined. METHODS We performed deep RNA-sequencing and chromatin immunoprecipitation coupled to high-throughput sequencing to examine the genome-wide correlation between gene deregulation and alteration of the active transcription marks, e.g. SAGA-related H3K9ac, CBP-related H3K27ac and RNA polymerase II (RNAPII), in a SCA7 mouse retinopathy model. RESULTS Our analyses revealed that active transcription marks are reduced at most gene promoters in SCA7 retina, while a limited number of genes show changes in expression. We found that SCA7 retinopathy is caused by preferential downregulation of hundreds of highly expressed genes that define morphological and physiological identities of mature photoreceptors. We further uncovered that these photoreceptor genes harbor unusually broad H3K9ac profiles spanning the entire gene bodies and have a low RNAPII pausing. This broad H3K9ac signature co-occurs with other features that delineate superenhancers, including broad H3K27ac, binding sites for photoreceptor specific transcription factors and expression of enhancer-related non-coding RNAs (eRNAs). In SCA7 retina, downregulated photoreceptor genes show decreased H3K9 and H3K27 acetylation and eRNA expression as well as increased RNAPII pausing, suggesting that superenhancer-related features are altered. CONCLUSIONS Our study thus provides evidence that distinctive epigenetic configurations underlying high expression of cell-type specific genes are preferentially impaired in SCA7, resulting in a defect in the maintenance of identity features of mature photoreceptors. Our results also suggest that continuous SAGA-driven acetylation plays a role in preserving post-mitotic neuronal identity.
Collapse
Affiliation(s)
- Anna Niewiadomska-Cimicka
- grid.11843.3f0000 0001 2157 9291Institute of Genetics and Molecular and Cellular Biology (IGBMC), INSERM U1258, CNRS UMR7104, University of Strasbourg, 67404 Illkirch, France
| | - Antoine Hache
- grid.11843.3f0000 0001 2157 9291Institute of Genetics and Molecular and Cellular Biology (IGBMC), INSERM U1258, CNRS UMR7104, University of Strasbourg, 67404 Illkirch, France
| | - Stéphanie Le Gras
- grid.11843.3f0000 0001 2157 9291Institute of Genetics and Molecular and Cellular Biology (IGBMC), INSERM U1258, CNRS UMR7104, University of Strasbourg, 67404 Illkirch, France
| | - Céline Keime
- grid.11843.3f0000 0001 2157 9291Institute of Genetics and Molecular and Cellular Biology (IGBMC), INSERM U1258, CNRS UMR7104, University of Strasbourg, 67404 Illkirch, France
| | - Tao Ye
- grid.11843.3f0000 0001 2157 9291Institute of Genetics and Molecular and Cellular Biology (IGBMC), INSERM U1258, CNRS UMR7104, University of Strasbourg, 67404 Illkirch, France
| | - Aurelie Eisenmann
- grid.11843.3f0000 0001 2157 9291Institute of Genetics and Molecular and Cellular Biology (IGBMC), INSERM U1258, CNRS UMR7104, University of Strasbourg, 67404 Illkirch, France
| | - Imen Harichane
- grid.462844.80000 0001 2308 1657Department of Genetics, INSERM, CNRS, Institut de la Vision, Sorbonne University, 75012 Paris, France
| | - Michel J. Roux
- grid.11843.3f0000 0001 2157 9291Institute of Genetics and Molecular and Cellular Biology (IGBMC), INSERM U1258, CNRS UMR7104, University of Strasbourg, 67404 Illkirch, France
| | - Nadia Messaddeq
- grid.11843.3f0000 0001 2157 9291Institute of Genetics and Molecular and Cellular Biology (IGBMC), INSERM U1258, CNRS UMR7104, University of Strasbourg, 67404 Illkirch, France
| | - Emmanuelle Clérin
- grid.462844.80000 0001 2308 1657Department of Genetics, INSERM, CNRS, Institut de la Vision, Sorbonne University, 75012 Paris, France
| | - Thierry Léveillard
- grid.462844.80000 0001 2308 1657Department of Genetics, INSERM, CNRS, Institut de la Vision, Sorbonne University, 75012 Paris, France
| | - Yvon Trottier
- grid.11843.3f0000 0001 2157 9291Institute of Genetics and Molecular and Cellular Biology (IGBMC), INSERM U1258, CNRS UMR7104, University of Strasbourg, 67404 Illkirch, France
| |
Collapse
|
8
|
Characterization of Solenopsis invicta virus 4, a polycipivirus infecting the red imported fire ant Solenopsis invicta. Arch Virol 2022; 167:2591-2600. [PMID: 36098800 DOI: 10.1007/s00705-022-05587-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 07/22/2022] [Indexed: 12/14/2022]
Abstract
Solenopsis invicta virus 4 (SINV-4), a new polycipivirus, was characterized in the host in which it was discovered, Solenopsis invicta. SINV-4 was detected in the worker and larval stages of S. invicta, but not in pupae, male or female alates, or queens. The SINV-4 titer was highest in worker ants, with a mean of 1.14 × 107 ± 5.84 ×107 SINV-4 genome equivalents/ng RNA. Electron microscopic examination of negatively stained samples from particles purified from SINV-4-infected fire ant workers revealed isometric particles with a mean diameter of 47.3 ± 1.4 nm. The mean inter-colony SINV-4 infection rate among S. invicta worker ants was 45.8 ± 38.6 in Alachua County, Florida. In S. invicta collected in Argentina, SINV-4 was detected in 22% of 54 colonies surveyed from across the Formosa region. There did not appear to be any seasonality associated with the SINV-4 infection rate among S. invicta nests. SINV-4 was successfully transmitted to uninfected S. invicta colonies by feeding. Among three colonies of S. invicta inoculated with SINV-4, two retained the infection for up to 72 days. The replicative genome strand of SINV-4 was detected in 18% (n = 11) of SINV-4-infected S. invicta colonies. Among 33 ant species examined, the plus genome strand of SINV-4 was detected in undetermined species of Dorymyrmex and Pheidole, Cyphomyrmex rimosus, Monomorium pharaonis, Pheidole obscurithorax, Solenopsis geminata, Solenopsis richteri, Solenopsis xyloni, and Solenopsis invicta. However, the replicative (minus) genome strand was only detected in S. invicta. SINV-4 infection did not impact brood production or queen fecundity in S. invicta. The mean brood rating (63.3% ± 8.8) after 31 days for SINV-4-infected colonies was not statistically different from that of uninfected colonies (48.3 ± 25.5). At the end of the 31-day test period, mean egg production was not significantly different between SINV-4-infected S. invicta colonies (287.7 ± 45.2 eggs laid/24 hours) and uninfected control colonies (193.0 ± 43.6 eggs laid/24 hours).
Collapse
|
9
|
Galectin-9 and Interferon-Gamma Are Released by Natural Killer Cells upon Activation with Interferon-Alpha and Orchestrate the Suppression of Hepatitis C Virus Infection. Viruses 2022; 14:v14071538. [PMID: 35891518 PMCID: PMC9317111 DOI: 10.3390/v14071538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/30/2022] [Accepted: 07/11/2022] [Indexed: 02/04/2023] Open
Abstract
Natural killer (NK) cells mount an immune response against hepatitis C virus (HCV) infection and can be activated by several cytokines, including interleukin-2 (IL-2), IL-15, and interferon-alpha (IFN-α). By exploiting the Huh7.5 hepatoma cell line infected with the HCV JFH1 genome, we provide novel insights into the antiviral effector functions of human primary NK cells after cytokine stimulation. NK cells activated with IFN-α (IFNα-NKs) had enhanced contact-dependent and -independent responses as compared with NK cells activated with IL-2/IL-15 (IL2/IL15-NKs) and could inhibit HCV replication both in vitro and in vivo. Importantly, IFN-α, but not IL-2/IL-15, protected NK cells from the functional inhibition exerted by HCV. By performing flow cytometry, multiplex cytokine profiling, and mass-spectrometry-based proteomics, we discovered that IFNα-NKs secreted high levels of galectin-9 and interferon-gamma (IFN-γ), and by conducting neutralization assays, we confirmed the major role of these molecules in HCV suppression. We speculated that galectin-9 might act extracellularly to inhibit HCV binding to host cells and downstream infection. In silico approaches predicted the binding of HCV envelope protein E2 to galectin-9 carbohydrate-recognition domains, and co-immunoprecipitation assays confirmed physical interaction. IFN-γ, on the other hand, triggered the intracellular expressions of two antiviral gate-keepers in target cells, namely, myxovirus-1 (MX1) and interferon-induced protein with tetratricopeptide repeats 1 (IFIT1). Collectively, our data add more complexity to the antiviral innate response mediated by NK cells and highlight galectin-9 as a key molecule that might be exploited to neutralize productive viral infection.
Collapse
|
10
|
Urrutia CD, Romay G, Shaw BD, Verchot J. Advancing the Rose Rosette Virus Minireplicon and Encapsidation System by Incorporating GFP, Mutations, and the CMV 2b Silencing Suppressor. Viruses 2022; 14:836. [PMID: 35458566 PMCID: PMC9031449 DOI: 10.3390/v14040836] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/01/2022] [Accepted: 04/13/2022] [Indexed: 11/26/2022] Open
Abstract
Plant infecting emaraviruses have segmented negative strand RNA genomes and little is known about their infection cycles due to the lack of molecular tools for reverse genetic studies. Therefore, we innovated a rose rosette virus (RRV) minireplicon containing the green fluorescent protein (GFP) gene to study the molecular requirements for virus replication and encapsidation. Sequence comparisons among RRV isolates and structural modeling of the RNA dependent RNA polymerase (RdRp) and nucleocapsid (N) revealed three natural mutations of the type species isolate that we reverted to the common species sequences: (a) twenty-one amino acid truncations near the endonuclease domain (named delA), (b) five amino acid substitutions near the putative viral RNA binding loop (subT), and (c) four amino acid substitutions in N (NISE). The delA and subT in the RdRp influenced the levels of GFP, gRNA, and agRNA at 3 but not 5 days post inoculation (dpi), suggesting these sequences are essential for initiating RNA synthesis and replication. The NISE mutation led to sustained GFP, gRNA, and agRNA at 3 and 5 dpi indicating that the N supports continuous replication and GFP expression. Next, we showed that the cucumber mosaic virus (CMV strain FNY) 2b singularly enhanced GFP expression and RRV replication. Including agRNA2 with the RRV replicon produced observable virions. In this study we developed a robust reverse genetic system for investigations into RRV replication and virion assembly that could be a model for other emaravirus species.
Collapse
Affiliation(s)
| | | | | | - Jeanmarie Verchot
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77845, USA; (C.D.U.); (G.R.); (B.D.S.)
| |
Collapse
|
11
|
Virome Analysis Reveals Diverse and Divergent RNA Viruses in Wild Insect Pollinators in Beijing, China. Viruses 2022; 14:v14020227. [PMID: 35215821 PMCID: PMC8877953 DOI: 10.3390/v14020227] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/16/2022] [Accepted: 01/19/2022] [Indexed: 12/04/2022] Open
Abstract
Insect pollinators provide major pollination services for wild plants and crops. Honeybee viruses can cause serious damage to honeybee colonies. However, viruses of other wild pollinating insects have yet to be fully explored. In the present study, we used RNA sequencing to investigate the viral diversity of 50 species of wild pollinating insects. A total of 3 pathogenic honeybee viruses, 8 previously reported viruses, and 26 novel viruses were identified in sequenced samples. Among these, 7 novel viruses were shown to be closely related to honeybee pathogenic viruses, and 4 were determined to have potential pathogenicity for their hosts. The viruses detected in wild insect pollinators were mainly from the order Picornavirales and the families Orthomyxoviridae, Sinhaliviridae, Rhabdoviridae, and Flaviviridae. Our study expanded the species range of known insect pollinator viruses, contributing to future efforts to protect economic honeybees and wild pollinating insects.
Collapse
|
12
|
Ravn Warncke S, Rohde Knudsen C. Detection methods targeting the positive- and negative-sense RNA transcripts from plus-stranded RNA viruses. APMIS 2021; 130:284-292. [PMID: 34939239 PMCID: PMC9306919 DOI: 10.1111/apm.13202] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 12/16/2021] [Indexed: 11/27/2022]
Abstract
The largest group of viruses in the Baltimore classification system comprises viruses with a positive-sense, single-stranded RNA genome. Once the viral genome is released into the cytoplasm of a specific host cell following virus entry, it functions directly as a mRNA and the virus-encoded proteins that are essential for genome replication, are produced by the translation apparatus of the host cell. The positive-sense genome is replicated in two stages, initially the positive strand is copied to make a negative-sense RNA, which then functions as the template for transcription of many new positive-sense genomes. Virus infections can be detected at different stages throughout the infection cycle for diagnostic and scientific purposes. Here, the advantages and disadvantages of some of the relevant methods for genome detection will be briefly reviewed with special emphasis on techniques allowing strand-specific RNA detection. Furthermore, tools of the future are considered.
Collapse
Affiliation(s)
- Signe Ravn Warncke
- Department of Molecular Biology & Genetics, University of Aarhus, Gustav Wieds Vej 10 C, DK-8000, Aarhus C, Denmark
| | - Charlotte Rohde Knudsen
- Department of Molecular Biology & Genetics, University of Aarhus, Gustav Wieds Vej 10 C, DK-8000, Aarhus C, Denmark
| |
Collapse
|
13
|
Nething DB, Sukul A, Mishler‐Elmore JW, Held MA. Posttranscriptional regulation of cellulose synthase genes by small RNAs derived from cellulose synthase antisense transcripts. PLANT DIRECT 2021; 5:e347. [PMID: 34557619 PMCID: PMC8447916 DOI: 10.1002/pld3.347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/14/2021] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Abstract
Transcriptional regulatory mechanisms governing plant cell wall biosynthesis are incomplete. Expression programs that activate wall biosynthesis are well understood, but mechanisms that control the attenuation of gene expression networks remain elusive. Previous work has shown that small RNAs (sRNAs) derived from the HvCESA6 (Hordeum vulgare, Hv) antisense transcripts are naturally produced and are capable of regulating aspects of wall biosynthesis. Here, we further test the hypothesis that CESA-derived sRNAs generated from CESA antisense transcripts are involved in the regulation of cellulose and broader cell wall biosynthesis. Antisense transcripts were detected for some but not all members of the CESA gene family in both barley and Brachypodium distachyon. Phylogenetic analysis indicates that antisense transcripts are detected for most primary cell wall CESA genes, suggesting a possible role in the transition from primary to secondary cell wall biosynthesis. Focusing on one antisense transcript, HvCESA1 shows dynamic expression throughout development, is correlated with corresponding sRNAs over the same period and is anticorrelated with HvCESA1 mRNA expression. To assess the broader impacts of CESA-derived sRNAs on the regulation of cell wall biosynthesis, transcript profiling was performed on barley tissues overexpressing CESA-derived sRNAs. Together, the data support the hypothesis that CESA antisense transcripts function through an RNA-induced silencing mechanism, to degrade cis transcripts, and may also trigger trans-acting silencing on related genes to alter the expression of cell wall gene networks.
Collapse
Affiliation(s)
| | - Abhijit Sukul
- Department of Chemistry and BiochemistryOhio UniversityAthensOHUSA
| | | | - Michael A. Held
- Department of Chemistry and BiochemistryOhio UniversityAthensOHUSA
- Molecular and Cellular Biology ProgramOhio UniversityAthensOHUSA
| |
Collapse
|
14
|
Andoh K, Akagami M, Nishimori A, Matsuura Y, Kumagai A, Hatama S. Novel single nucleotide polymorphisms in the bovine leukemia virus genome are associated with proviral load and affect the expression profile of viral non-coding transcripts. Vet Microbiol 2021; 261:109200. [PMID: 34371437 DOI: 10.1016/j.vetmic.2021.109200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 08/03/2021] [Indexed: 10/20/2022]
Abstract
Bovine leukemia virus (BLV) infects bovine B-cells and causes malignant lymphoma, resulting in severe economic losses in the livestock industry. To control the spread of BLV, several studies have attempted to clarify the molecular mechanisms of BLV pathogenesis, but the details of the mechanism are still enigmatic. Currently, viral non-coding RNAs are attracting attention as a novel player for BLV pathogenesis because these transcripts can evade the host immune response and are persistently expressed in latent infection. One of the viral non-coding RNA, AS1, is encoded in the antisense strand of the BLV genome and consists of two isoforms, AS1-L and AS1-S. Although the function of the AS1 is still unknown, the AS1 RNA might also have some roles because it keeps expressing in tumor tissues. In the present study, we identified novel single nucleotide polymorphisms (SNPs) located in the AS1 coding region and indicated that individuals infected with BLV with minor SNPs showed low proviral load. To evaluate the effect of identified SNPs, we constructed infectious clones with these SNPs and found that their introduction affected the expression profile of AS1 RNA; the amount of AS1-L isoform increased compared with the wild type, although the total amount of AS1 RNA remained unchanged. Prediction analysis also suggested that the introduction of SNPs changed the secondary structure of AS1 RNA. These results explain part of the relationship between BLV expansion in vivo and the expression profile of AS1, although further analysis is required.
Collapse
Affiliation(s)
- Kiyohiko Andoh
- National Institute of Animal Health, National Agriculture and Food Research Organization, 3-1-5 Kannondai, Tsukuba, Ibaraki, 305-0856, Japan.
| | - Masataka Akagami
- Kenhoku Livestock Hygiene Service Center, Ibaraki Prefecture, 966-1 Nakagachi, Mito, Ibaraki, 310-0002, Japan.
| | - Asami Nishimori
- National Institute of Animal Health, National Agriculture and Food Research Organization, 3-1-5 Kannondai, Tsukuba, Ibaraki, 305-0856, Japan.
| | - Yuichi Matsuura
- National Institute of Animal Health, National Agriculture and Food Research Organization, 3-1-5 Kannondai, Tsukuba, Ibaraki, 305-0856, Japan.
| | - Asuka Kumagai
- National Institute of Animal Health, National Agriculture and Food Research Organization, 3-1-5 Kannondai, Tsukuba, Ibaraki, 305-0856, Japan.
| | - Shinichi Hatama
- National Institute of Animal Health, National Agriculture and Food Research Organization, 3-1-5 Kannondai, Tsukuba, Ibaraki, 305-0856, Japan.
| |
Collapse
|
15
|
Highfield A, Kevill J, Mordecai G, Hunt J, Henderson S, Sauvard D, Feltwell J, Martin SJ, Sumner S, Schroeder DC. Detection and Replication of Moku Virus in Honey Bees and Social Wasps. Viruses 2020; 12:v12060607. [PMID: 32498304 PMCID: PMC7354477 DOI: 10.3390/v12060607] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 05/26/2020] [Accepted: 05/26/2020] [Indexed: 12/12/2022] Open
Abstract
Transmission of honey bee viruses to other insects, and vice versa, has previously been reported and the true ecological importance of this phenomenon is still being realized. Members of the family Vespidae interact with honey bees via predation or through the robbing of brood or honey from colonies, and these activities could result in virus transfer. In this study we screened Vespa velutina and Vespa crabro collected from Europe and China and also honey bees and Vespula vulgaris from the UK for Moku virus (MV), an Iflavirus first discovered in the predatory social wasp Vespula pensylvanica in Hawaii. MV was found in 71% of Vespulavulgaris screened and was also detected in UK Vespa crabro. Only seven percent of Vespa velutina individuals screened were MV-positive and these were exclusively samples from Jersey. Of 69 honey bee colonies screened, 43% tested positive for MV. MV replication was confirmed in Apis mellifera and Vespidae species, being most frequently detected in Vespulavulgaris. MV sequences from the UK were most similar to MV from Vespulapensylvanica compared to MV from Vespa velutina in Belgium. The implications of the transfer of viruses between the Vespidae and honey bees are discussed.
Collapse
Affiliation(s)
- Andrea Highfield
- The Marine Biological Association of the United Kingdom, Citadel Hill, Plymouth PL1 2PB, UK; (G.M.); (J.H.); (S.H.)
- Correspondence: (A.H.); (D.C.S.); Tel.: +1-612-413-0030 (D.C.S.)
| | - Jessica Kevill
- School of Environmental and Life Sciences, The University of Salford, Manchester M5 4WT, UK; (J.K.); (S.J.M.)
- Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St Paul, MN 55108, USA
| | - Gideon Mordecai
- The Marine Biological Association of the United Kingdom, Citadel Hill, Plymouth PL1 2PB, UK; (G.M.); (J.H.); (S.H.)
- Department of Medicine, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | - Jade Hunt
- The Marine Biological Association of the United Kingdom, Citadel Hill, Plymouth PL1 2PB, UK; (G.M.); (J.H.); (S.H.)
| | - Summer Henderson
- The Marine Biological Association of the United Kingdom, Citadel Hill, Plymouth PL1 2PB, UK; (G.M.); (J.H.); (S.H.)
| | | | - John Feltwell
- Wildlife Matters Consultancy Unit, Battle, East Sussex TN33 9BN, UK;
| | - Stephen J. Martin
- School of Environmental and Life Sciences, The University of Salford, Manchester M5 4WT, UK; (J.K.); (S.J.M.)
| | - Seirian Sumner
- Centre for Biodiversity and Environment Research, University College London, Gower Street, London WC1E 6BT, UK;
| | - Declan C. Schroeder
- The Marine Biological Association of the United Kingdom, Citadel Hill, Plymouth PL1 2PB, UK; (G.M.); (J.H.); (S.H.)
- Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St Paul, MN 55108, USA
- School of Biological Sciences, University of Reading, Reading RG6 6LA, UK
- Correspondence: (A.H.); (D.C.S.); Tel.: +1-612-413-0030 (D.C.S.)
| |
Collapse
|
16
|
Dobelmann J, Felden A, Lester PJ. Genetic Strain Diversity of Multi-Host RNA Viruses that Infect a Wide Range of Pollinators and Associates is Shaped by Geographic Origins. Viruses 2020; 12:E358. [PMID: 32213950 PMCID: PMC7150836 DOI: 10.3390/v12030358] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 03/16/2020] [Accepted: 03/21/2020] [Indexed: 01/29/2023] Open
Abstract
Emerging viruses have caused concerns about pollinator population declines, as multi-host RNA viruses may pose a health threat to pollinators and associated arthropods. In order to understand the ecology and impact these viruses have, we studied their host range and determined to what extent host and spatial variation affect strain diversity. Firstly, we used RT-PCR to screen pollinators and associates, including honey bees (Apis mellifera) and invasive Argentine ants (Linepithema humile), for virus presence and replication. We tested for the black queen cell virus (BQCV), deformed wing virus (DWV), and Kashmir bee virus (KBV) that were initially detected in bees, and the two recently discovered Linepithema humile bunya-like virus 1 (LhuBLV1) and Moku virus (MKV). DWV, KBV, and MKV were detected and replicated in a wide range of hosts and commonly co-infected hymenopterans. Secondly, we placed KBV and DWV in a global phylogeny with sequences from various countries and hosts to determine the association of geographic origin and host with shared ancestry. Both phylogenies showed strong geographic rather than host-specific clustering, suggesting frequent inter-species virus transmission. Transmission routes between hosts are largely unknown. Nonetheless, avoiding the introduction of non-native species and diseased pollinators appears important to limit spill overs and disease emergence.
Collapse
Affiliation(s)
- Jana Dobelmann
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand; (A.F.); (P.J.L.)
| | | | | |
Collapse
|
17
|
Schläppi D, Chejanovsky N, Yañez O, Neumann P. Foodborne Transmission and Clinical Symptoms of Honey Bee Viruses in Ants Lasius spp. Viruses 2020; 12:E321. [PMID: 32192027 PMCID: PMC7150850 DOI: 10.3390/v12030321] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/11/2020] [Accepted: 03/12/2020] [Indexed: 01/10/2023] Open
Abstract
Emerging infectious diseases are often the products of host shifts, where a pathogen jumps from its original host to a novel species. Viruses in particular cross species barriers frequently. Acute bee paralysis virus (ABPV) and deformed wing virus (DWV) are viruses described in honey bees (Apis mellifera) with broad host ranges. Ants scavenging on dead honey bees may get infected with these viruses via foodborne transmission. However, the role of black garden ants, Lasius niger and Lasius platythorax, as alternative hosts of ABPV and DWV is not known and potential impacts of these viruses have not been addressed yet. In a laboratory feeding experiment, we show that L. niger can carry DWV and ABPV. However, negative-sense strand RNA, a token of virus replication, was only detected for ABPV. Therefore, additional L. niger colonies were tested for clinical symptoms of ABPV infections. Symptoms were detected at colony (fewer emerging workers) and individual level (impaired locomotion and movement speed). In a field survey, all L. platythorax samples carried ABPV, DWV-A and -B, as well as the negative-sense strand RNA of ABPV. These results show that L. niger and L. platythorax are alternative hosts of ABPV, possibly acting as a biological vector of ABPV and as a mechanical one for DWV. This is the first study showing the impact of honey bee viruses on ants. The common virus infections of ants in the field support possible negative consequences for ecosystem functioning due to host shifts.
Collapse
Affiliation(s)
- Daniel Schläppi
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, 3097 Bern, Switzerland; (N.C.); (O.Y.); (P.N.)
| | - Nor Chejanovsky
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, 3097 Bern, Switzerland; (N.C.); (O.Y.); (P.N.)
- Department of Entomology, Agricultural Research Organization, Volcani Center, 50250 Bet Dagan, Israel
| | - Orlando Yañez
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, 3097 Bern, Switzerland; (N.C.); (O.Y.); (P.N.)
- Swiss Bee Research Centre, Agroscope, 3097 Bern, Switzerland
| | - Peter Neumann
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, 3097 Bern, Switzerland; (N.C.); (O.Y.); (P.N.)
- Swiss Bee Research Centre, Agroscope, 3097 Bern, Switzerland
| |
Collapse
|
18
|
Payne AN, Shepherd TF, Rangel J. The detection of honey bee (Apis mellifera)-associated viruses in ants. Sci Rep 2020; 10:2923. [PMID: 32076028 PMCID: PMC7031503 DOI: 10.1038/s41598-020-59712-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 02/03/2020] [Indexed: 11/26/2022] Open
Abstract
Interspecies virus transmission involving economically important pollinators, including honey bees (Apis mellifera), has recently sparked research interests regarding pollinator health. Given that ants are common pests within apiaries in the southern U.S., the goals of this study were to (1) survey ants found within or near managed honey bee colonies, (2) document what interactions are occurring between ant pests and managed honey bees, and 3) determine if any of six commonly occurring honey bee-associated viruses were present in ants collected from within or far from apiaries. Ants belonging to 14 genera were observed interacting with managed honey bee colonies in multiple ways, most commonly by robbing sugar resources from within hives. We detected at least one virus in 89% of the ant samples collected from apiary sites (n = 57) and in 15% of ant samples collected at non-apiary sites (n = 20). We found that none of these ant samples tested positive for the replication of Deformed wing virus, Black queen cell virus, or Israeli acute paralysis virus, however. Future studies looking at possible virus transmission between ants and bees could determine whether ants can be considered mechanical vectors of honey bee-associated viruses, making them a potential threat to pollinator health.
Collapse
Affiliation(s)
- Alexandria N Payne
- Department of Entomology, Texas A&M University, 2475 TAMU, College Station, TX, 77843-2475, USA
| | - Tonya F Shepherd
- Department of Entomology, Texas A&M University, 2475 TAMU, College Station, TX, 77843-2475, USA
| | - Juliana Rangel
- Department of Entomology, Texas A&M University, 2475 TAMU, College Station, TX, 77843-2475, USA.
| |
Collapse
|
19
|
Schläppi D, Lattrell P, Yañez O, Chejanovsky N, Neumann P. Foodborne Transmission of Deformed Wing Virus to Ants ( Myrmica rubra). INSECTS 2019; 10:E394. [PMID: 31703426 PMCID: PMC6920936 DOI: 10.3390/insects10110394] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/28/2019] [Accepted: 11/05/2019] [Indexed: 11/17/2022]
Abstract
Virus host shifts occur frequently, but the whole range of host species and the actual transmission pathways are often poorly understood. Deformed wing virus (DWV), an RNA virus described from honeybees (Apis mellifera), has been shown to have a broad host range. Since ants are often scavenging on dead honeybees, foodborne transmission of these viruses may occur. However, the role of the ant Myrmica rubra as an alternative host is not known and foodborne transmission to ants has not been experimentally addressed yet. Here, we show with a 16-week feeding experiment that foodborne transmission enables DWV type-A and -B to infect M. rubra and that these ants may serve as a virus reservoir. However, the titers of both plus- and minus-sense viral RNA strands decreased over time. Since the ants were fed with highly virus-saturated honeybee pupae, this probably resulted in initial viral peaks, then approaching lower equilibrium titers in infected individuals later. Since DWV infections were also found in untreated field-collected M. rubra colonies, our results support the wide host range of DWV and further suggest foodborne transmission as a so far underestimated spread mechanism.
Collapse
Affiliation(s)
- Daniel Schläppi
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, 3097 Bern, Switzerland; (P.L.); (O.Y.); (N.C.); (P.N.)
| | - Patrick Lattrell
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, 3097 Bern, Switzerland; (P.L.); (O.Y.); (N.C.); (P.N.)
| | - Orlando Yañez
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, 3097 Bern, Switzerland; (P.L.); (O.Y.); (N.C.); (P.N.)
| | - Nor Chejanovsky
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, 3097 Bern, Switzerland; (P.L.); (O.Y.); (N.C.); (P.N.)
- Department of Entomology, Agricultural Research Organization, the Volcani Center, Bet Dagan 50250, Israel
| | - Peter Neumann
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, 3097 Bern, Switzerland; (P.L.); (O.Y.); (N.C.); (P.N.)
- Swiss Bee Research Centre, Agroscope, 3097 Bern, Switzerland
| |
Collapse
|
20
|
Valles SM, Porter SD. Influence of temperature on the pathogenicity of Solenopsis invicta virus 3. J Invertebr Pathol 2019; 166:107217. [PMID: 31325419 DOI: 10.1016/j.jip.2019.107217] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 07/05/2019] [Accepted: 07/16/2019] [Indexed: 10/26/2022]
Abstract
Field evaluations assessing the prevalence of Solenopsis invicta virus 3 (SINV-3) have shown that the virus exhibits a distinct seasonal phenology in the host, Solenopsis invicta, that is negatively correlated with warmer temperatures. Active SINV-3 infections were established in Solenopsis invicta colonies, which were subsequently maintained at 19.1, 22.2, 25.5, 27.7, and 29.3 °C. The quantity of brood declined in all SINV-3-treated colonies regardless of temperature over the initial 30 days. However, the quantity of brood in colonies held at 29.3 °C began increasing (recovering) in the next 40 days until they were statistically equivalent to untreated control colonies. Meanwhile, the quantity of brood continued to decline in colonies held at 19.1, 22.2, 25.5, and 27.7 °C for the duration of the test (81days). By the end of the test, these colonies were in poor health as indicated by decreased brood. Conversely, the amount of brood for colonies held at 29.3 °C increased to above 3, indicating healthy vigorous growth. Worker ants from SINV-3-treated colonies maintained at 19.1, 22.2, and 25.5 °C showed strong production of the VP2 capsid protein by Western blotting; 100% of the colonies sampled (n = 3) showed production of VP2. However, VP2 was detected in only 33% of colonies maintained at 27.7 °C, and the VP2 response was nearly undetectable in all colonies maintained at 29.3 °C. These results indicate that virus assembly does not appear to be occurring efficiently at the higher temperatures. Also, the quantity of SINV-3 detected in queens was significantly lower in those maintained at 29.3 °C compared with the lower temperature treatments. These results indicate that warm summer temperatures combined with fire ant thermoregulatory behavior and perhaps behavioral fevers may explain the low prevalence of SINV-3 in fire ant colonies during the summer.
Collapse
Affiliation(s)
- Steven M Valles
- Center for Medical, Agricultural and Veterinary Entomology, USDA-ARS, 1600 SW 23rd Drive, Gainesville, FL 32608, USA.
| | - Sanford D Porter
- Center for Medical, Agricultural and Veterinary Entomology, USDA-ARS, 1600 SW 23rd Drive, Gainesville, FL 32608, USA
| |
Collapse
|
21
|
A strand-specific real-time quantitative RT-PCR assay for distinguishing the genomic and antigenomic RNAs of Rift Valley fever phlebovirus. J Virol Methods 2019; 272:113701. [PMID: 31315022 DOI: 10.1016/j.jviromet.2019.113701] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 07/13/2019] [Indexed: 11/21/2022]
Abstract
Rift Valley Fever phlebovirus (RVFV), genus Phlebovirus, family Phenuiviridae, order Bunyavirales, has a single-stranded, negative-sense RNA genome, consisting of L, M and S segments. Here, we report the establishment of a strand-specific, quantitative reverse transcription (RT)-PCR assay system that can selectively distinguish between the genomic and antigenomic RNAs of each of the three viral RNA segments produced in RVFV-infected cells. To circumvent the obstacle of primer-independent cDNA synthesis during RT, we used a tagged, strand-specific RT primer, carrying a non-viral 'tag' sequence at the 5' end, which ensured the strand-specificity through the selective amplification of only the tagged cDNA in the real-time PCR assay. We used this assay system to examine the kinetics of intracellular accumulation of genomic and antigenomic viral RNAs in mammalian cells infected with the MP-12 strain of RVFV. The genomic RNA copy numbers, for all three viral RNA segments, were higher than that of their corresponding antigenomic RNAs throughout the time-course of infection, with a notable exception, wherein the M segment genomic and antigenomic RNAs exhibited similar copy numbers at specific times post-infection. Overall, this assay system could be a useful tool to gain an insight into the mechanisms of RNA replication and packaging in RVFV.
Collapse
|
22
|
Lin Q, Zhao Y, Fu X, Liu L, Liang H, Niu Y, Chen X, Huang Z, Lin L, Li N. Development of strand-specific real-time RT-PCR for the analysis of SCRV transcription and replication dynamics. Microb Pathog 2019; 129:146-151. [DOI: 10.1016/j.micpath.2019.02.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 02/01/2019] [Accepted: 02/01/2019] [Indexed: 12/24/2022]
|
23
|
Strydom E, Pietersen G. Development of a strand-specific RT-PCR to detect the positive sense replicative strand of Soybean blotchy mosaic virus. J Virol Methods 2018; 259:39-44. [PMID: 29859967 DOI: 10.1016/j.jviromet.2018.05.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 04/20/2018] [Accepted: 05/30/2018] [Indexed: 01/17/2023]
Abstract
Soybean blotchy mosaic virus (SbBMV), a plant virus of the genus Cytorhabdovirus is an economically important virus of soybean reported only from the warmer, lower-lying soybean production areas in South Africa. The virus consistently appears in soybean crops annually in spite of the absence of soybean plants in winter. One possible reason for this may be that the virus replicates and hence persists in the SbBMV vector, a leafhopper, Peragallia caboverdensis. RNA viruses with antisense genomes as inferred for SbBMV produce positive sense RNAs as intermediate replicative forms during replication in their hosts, and detection of the positive strand in the plant host or vector is evidence of virus replication. In this study, a positive-strand specific RT-PCR (pss-RT-PCR) was developed to detect the positive RNA strand of SbBMV and validated on nine SbBMV isolates from soybean. The effect of tagged reverse transcription (RT) primers for cDNA synthesis, coupled with PCR using a tag-specific primer, as well as removal of unincorporated RT primers following cDNA synthesis was assessed. The positive RNA strand of SbBMV in infected plants was successfully detected following this protocol. Reverse transcription with forward and unmodified reverse primers confirmed that the assay was not able to detect the genomic sense RNA or self-primed cDNAs, lacking the non-viral tag, respectively. However, Exonuclease I (ExoI) treatment of cDNA was required to eliminate false-positive results during PCR amplification.
Collapse
Affiliation(s)
- Elrea Strydom
- Department of Microbiology and Plant Pathology, University of Pretoria, Pretoria, 0002, South Africa; Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, 0002, South Africa.
| | - Gerhard Pietersen
- Department of Microbiology and Plant Pathology, University of Pretoria, Pretoria, 0002, South Africa; Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, 0002, South Africa; Genetics Department, University of Stellenbosch, Stellenbosch, 7600, South Africa.
| |
Collapse
|
24
|
Quintela BDM, Conway JM, Hyman JM, Guedj J, Dos Santos RW, Lobosco M, Perelson AS. A New Age-Structured Multiscale Model of the Hepatitis C Virus Life-Cycle During Infection and Therapy With Direct-Acting Antiviral Agents. Front Microbiol 2018; 9:601. [PMID: 29670586 PMCID: PMC5893852 DOI: 10.3389/fmicb.2018.00601] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 03/15/2018] [Indexed: 12/12/2022] Open
Abstract
The dynamics of hepatitis C virus (HCV) RNA during translation and replication within infected cells were added to a previous age-structured multiscale mathematical model of HCV infection and treatment. The model allows the study of the dynamics of HCV RNA inside infected cells as well as the release of virus from infected cells and the dynamics of subsequent new cell infections. The model was used to fit in vitro data and estimate parameters characterizing HCV replication. This is the first model to our knowledge to consider both positive and negative strands of HCV RNA with an age-structured multiscale modeling approach. Using this model we also studied the effects of direct-acting antiviral agents (DAAs) in blocking HCV RNA intracellular replication and the release of new virions and fit the model to in vivo data obtained from HCV-infected subjects under therapy.
Collapse
Affiliation(s)
- Barbara de M Quintela
- FISIOCOMP Laboratory, PPGMC, Universidade Federal de Juiz de Fora, Juiz de Fora, Brazil
| | - Jessica M Conway
- Department of Mathematics and Center for Infectious Disease Dynamics, The Pennsylvania State University, State College, PA, United States
| | - James M Hyman
- Mathematics Department, Tulane University, New Orleans, LA, United States
| | - Jeremie Guedj
- IAME, UMR 1137, Institut National de la Santé et de la Recherche Médicale, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Rodrigo W Dos Santos
- FISIOCOMP Laboratory, PPGMC, Universidade Federal de Juiz de Fora, Juiz de Fora, Brazil
| | - Marcelo Lobosco
- FISIOCOMP Laboratory, PPGMC, Universidade Federal de Juiz de Fora, Juiz de Fora, Brazil
| | - Alan S Perelson
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM, United States
| |
Collapse
|
25
|
McMenamin AJ, Flenniken ML. Recently identified bee viruses and their impact on bee pollinators. CURRENT OPINION IN INSECT SCIENCE 2018; 26:120-129. [PMID: 29764651 DOI: 10.1016/j.cois.2018.02.009] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 12/22/2017] [Accepted: 02/02/2018] [Indexed: 06/08/2023]
Abstract
Bees are agriculturally and ecologically important plant pollinators. Recent high annual losses of honey bee colonies, and reduced populations of native and wild bees in some geographic locations, may impact the availability of affordable food crops and the diversity and abundance of native and wild plant species. Multiple factors including viral infections affect pollinator health. The majority of well-characterized bee viruses are picorna-like RNA viruses, which may be maintained as covert infections or cause symptomatic infections or death. Next generation sequencing technologies have been utilized to identify additional bee-infecting viruses including the Lake Sinai viruses and Rhabdoviruses. In addition, sequence data is instrumental for defining specific viral strains and characterizing associated pathogenicity, such as the recent characterization of Deformed wing virus master variants (DWV-A, DWV-B, and DWV-C) and their impact on bee health.
Collapse
Affiliation(s)
- Alexander J McMenamin
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, USA; Pollinator Health Center, Montana State University, Bozeman, MT, USA; Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA
| | - Michelle L Flenniken
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, USA; Pollinator Health Center, Montana State University, Bozeman, MT, USA.
| |
Collapse
|
26
|
Valles SM, Porter SD, Calcaterra LA. Prospecting for viral natural enemies of the fire ant Solenopsis invicta in Argentina. PLoS One 2018; 13:e0192377. [PMID: 29466388 PMCID: PMC5821328 DOI: 10.1371/journal.pone.0192377] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 01/20/2018] [Indexed: 11/18/2022] Open
Abstract
Metagenomics and next generation sequencing were employed to discover new virus natural enemies of the fire ant, Solenopsis invicta Buren in its native range (i.e., Formosa, Argentina) with the ultimate goal of testing and releasing new viral pathogens into U.S. S. invicta populations to provide natural, sustainable control of this ant. RNA was purified from worker ants from 182 S. invicta colonies, which was pooled into 4 groups according to location. A library was created from each group and sequenced using Illumina Miseq technology. After a series of winnowing methods to remove S. invicta genes, known S. invicta virus genes, and all other non-virus gene sequences, 61,944 unique singletons were identified with virus identity. These were assembled de novo yielding 171 contiguous sequences with significant identity to non-plant virus genes. Fifteen contiguous sequences exhibited very high expression rates and were detected in all four gene libraries. One contig (Contig_29) exhibited the highest expression level overall and across all four gene libraries. Random amplification of cDNA ends analyses expanded this contiguous sequence yielding a complete virus genome, which we have provisionally named Solenopsis invicta virus 5 (SINV-5). SINV-5 is a positive-sense, single-stranded RNA virus with genome characteristics consistent with insect-infecting viruses from the family Dicistroviridae. Moreover, the replicative genome strand of SINV-5 was detected in worker ants indicating that S. invicta serves as host for the virus. Many additional sequences were identified that are likely of viral origin. These sequences await further investigation to determine their origins and relationship with S. invicta. This study expands knowledge of the RNA virome diversity found within S. invicta populations.
Collapse
Affiliation(s)
- Steven M. Valles
- Center for Medical, Agricultural and Veterinary Entomology, USDA-ARS, Gainesville, Florida, United States of America
- * E-mail:
| | - Sanford D. Porter
- Center for Medical, Agricultural and Veterinary Entomology, USDA-ARS, Gainesville, Florida, United States of America
| | - Luis A. Calcaterra
- Fundación para el Estudio de Especies Invasivas, Bolívar, B1686EFA Hurlingham, Buenos Aires, Argentina
| |
Collapse
|
27
|
de Miranda JR, Hedman H, Onorati P, Stephan J, Karlberg O, Bylund H, Terenius O. Characterization of a Novel RNA Virus Discovered in the Autumnal Moth Epirrita autumnata in Sweden. Viruses 2017. [PMCID: PMC5580471 DOI: 10.3390/v9080214] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
A novel, 10 kb RNA virus—tentatively named ‘Abisko virus’—was discovered in the transcriptome data of a diseased autumnal moth (Epirrita autumnata) larva, as part of a search for the possible causes of the cyclical nature and mortality associated with geometrid moth dynamics and outbreaks in northern Fennoscandia. Abisko virus has a genome organization similar to that of the insect-infecting negeviruses, but phylogenetic and compositional bias analyses also reveal strong affiliations with plant-infecting viruses, such that both the primary host origin and taxonomic identity of the virus remain in doubt. In an extensive set of larval, pupal, and adult autumnal moth and winter moth (Operophtera brumata) outbreak samples, the virus was only detected in a few adult E. autumnata moths as well as the single larval transcriptome. The Abisko virus is therefore unlikely to be a factor in the Fennoscandia geometrid population dynamics.
Collapse
Affiliation(s)
- Joachim R. de Miranda
- Department of Ecology, Swedish University of Agricultural Sciences, 750-07 Uppsala, Sweden; (H.H.); (P.O.); (J.S.); (H.B.); (O.T.)
- Correspondence: ; Tel.: +46-18-67-2437
| | - Harald Hedman
- Department of Ecology, Swedish University of Agricultural Sciences, 750-07 Uppsala, Sweden; (H.H.); (P.O.); (J.S.); (H.B.); (O.T.)
| | - Piero Onorati
- Department of Ecology, Swedish University of Agricultural Sciences, 750-07 Uppsala, Sweden; (H.H.); (P.O.); (J.S.); (H.B.); (O.T.)
| | - Jörg Stephan
- Department of Ecology, Swedish University of Agricultural Sciences, 750-07 Uppsala, Sweden; (H.H.); (P.O.); (J.S.); (H.B.); (O.T.)
| | - Olof Karlberg
- Department of Medical Sciences, Uppsala University, 751-85 Uppsala, Sweden;
| | - Helena Bylund
- Department of Ecology, Swedish University of Agricultural Sciences, 750-07 Uppsala, Sweden; (H.H.); (P.O.); (J.S.); (H.B.); (O.T.)
| | - Olle Terenius
- Department of Ecology, Swedish University of Agricultural Sciences, 750-07 Uppsala, Sweden; (H.H.); (P.O.); (J.S.); (H.B.); (O.T.)
| |
Collapse
|
28
|
Russelli G, Pizzillo P, Iannolo G, Barbera F, Tuzzolino F, Liotta R, Traina M, Vizzini G, Gridelli B, Badami E, Conaldi PG. HCV replication in gastrointestinal mucosa: Potential extra-hepatic viral reservoir and possible role in HCV infection recurrence after liver transplantation. PLoS One 2017; 12:e0181683. [PMID: 28750044 PMCID: PMC5531480 DOI: 10.1371/journal.pone.0181683] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 07/04/2017] [Indexed: 12/12/2022] Open
Abstract
PURPOSE Hepatitis C virus (HCV) predominantly infects hepatocytes, although it is known that receptors for viral entry are distributed on a wide array of target cells. Chronic HCV infection is indeed characterized by multiple non-liver manifestations, suggesting a more complex HCV tropism extended to extrahepatic tissues and remains to be fully elucidated. In this study, we investigated the gastrointestinal mucosa (GIM) as a potential extrahepatic viral replication site and its contribution to HCV recurrence. METHODS We analyzed GIM biopsies from a cohort of 76 patients, 11 of which were HCV-negative and 65 HCV-positive. Of these, 54 biopsies were from liver-transplanted patients. In 29 cases, we were able to investigate gastrointestinal biopsies from the same patient before and after transplant. To evaluate the presence of HCV, we looked for viral antigens and genome RNA, whilst to assess viral replicative activity, we searched for the replicative intermediate minus-strand RNA. We studied the genetic diversity and the phylogenetic relationship of HCV quasispecies from plasma, liver and gastrointestinal mucosa of HCV-liver-transplanted patients in order to assess HCV compartmentalization and possible contribution of gastrointestinal variants to liver re-infection after transplantation. RESULTS Here we show that HCV infects and replicates in the cells of the GIM and that the favorite hosts were mostly enteroendocrine cells. Interestingly, we observed compartmentalization of the HCV quasispecies present in the gastrointestinal mucosa compared to other tissues of the same patient. Moreover, the phylogenetic analysis revealed a high similarity between HCV variants detected in gastrointestinal mucosa and those present in the re-infected graft. CONCLUSIONS Our results demonstrated that the gastrointestinal mucosa might be considered as an extrahepatic reservoir of HCV and that could contribute to viral recurrence. Moreover, the finding that HCV infects and replicates in neuroendocrine cells opens new perspectives on the role of these cells in the natural history of HCV infection.
Collapse
Affiliation(s)
- Giovanna Russelli
- Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta specializzazione), Palermo, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Paola Pizzillo
- Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta specializzazione), Palermo, Italy
| | - Gioacchin Iannolo
- Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta specializzazione), Palermo, Italy
| | - Floriana Barbera
- Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta specializzazione), Palermo, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | | | - Rosa Liotta
- Pathology Service, Department of Diagnostic and Therapeutic Services, IRCCS-ISMETT, Palermo, Italy
| | - Mario Traina
- Endoscopy Service, Department of Diagnostic and Therapeutic Services, IRCCS-ISMETT, Palermo, Italy
| | - Giovanni Vizzini
- Department for the Treatment and Study of Abdominal Diseases and Abdominal Transplantation, IRCCS-ISMETT, Palermo, Italy
| | - Bruno Gridelli
- Department for the Treatment and Study of Abdominal Diseases and Abdominal Transplantation, IRCCS-ISMETT, Palermo, Italy
| | | | - Pier Giulio Conaldi
- Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta specializzazione), Palermo, Italy
- Fondazione Ri.MED, Palermo, Italy
| |
Collapse
|
29
|
Fikatas A, Dimitriou TG, Kyriakopoulou Z, Moschonas GD, Amoutzias GD, Mossialos D, Gartzonika C, Levidiotou-Stefanou S, Markoulatos P. Detection of negative and positive RNA strand of poliovirus Sabin 1 and echovirus E19 by a stem-loop reverse transcription PCR. Lett Appl Microbiol 2017. [PMID: 28631392 DOI: 10.1111/lam.12766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this report a strand specific RT-PCR was established for the detection of the replicative negative RNA strand of poliovirus sabin 1 (Sabin1) and Echovirus 19 (E19) strains. The key for the successful conduction of the assay was the use of a specific reverse transcription primer targeting the 5'-UTR of enteroviruses that consisted of a stem-loop structure at the 5'-end and an enteroviral-specific sequence at the 3'-end. The stem loop RT-PCR was found to be an accurate and sensitive method, detecting even 10-2 CCID50 of poliovirus sabin 1 (Sabin1) and E19 strains 6 h postinfection (p.i.), while CPE appeared 3 days later. This assay was also validated in SiHa and Caski cell lines that are not used for the detection of enteroviruses. The negative RNA strand was detected 6 h and 12 h p.i. in SiHa and Caski cells, when these cell lines were inoculated with 105 and 1 CCID50 respectively, whereas CPE was observed 5 days p.i for SiHa cells and 8 days p.i for Caski cells and that only at 105 CCID50 . The results show that this approach may be used for replacing the time-consuming cell cultures in order to detect the active replication of enteroviruses. SIGNIFICANCE AND IMPACT OF THE STUDY Enteroviruses are positive stranded RNA viruses that may cause severe diseases. The conventional method for detection of active viral replication involves virus isolation in sensitive cell cultures followed by titration and seroneutralization. In this report, we describe the use of a stem-loop secondary structured oligonucleotide in RT-PCR assay for the detection of the replicative negative strand of the positive-stranded RNA of poliovirus sabin 1 and E19 strains. This approach proved to be a useful tool that may be used for replacing the time-consuming cell culture assays in order to detect the active replication of enteroviruses.
Collapse
Affiliation(s)
- A Fikatas
- Microbiology - Virology Laboratory, Department of Biochemistry & Biotechnology, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - T G Dimitriou
- Microbiology - Virology Laboratory, Department of Biochemistry & Biotechnology, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Z Kyriakopoulou
- Microbiology - Virology Laboratory, Department of Biochemistry & Biotechnology, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - G D Moschonas
- Microbiology - Virology Laboratory, Department of Biochemistry & Biotechnology, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - G D Amoutzias
- Bioinformatics Laboratory, Department of Biochemistry & Biotechnology, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - D Mossialos
- Microbiology - Virology Laboratory, Department of Biochemistry & Biotechnology, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - C Gartzonika
- Department of Microbiology, Medical School, University of Ioannina, Ioannina, Greece
| | - S Levidiotou-Stefanou
- Department of Microbiology, Medical School, University of Ioannina, Ioannina, Greece
| | - P Markoulatos
- Microbiology - Virology Laboratory, Department of Biochemistry & Biotechnology, School of Health Sciences, University of Thessaly, Larissa, Greece
| |
Collapse
|
30
|
Gruber MAM, Cooling M, Baty JW, Buckley K, Friedlander A, Quinn O, Russell JFEJ, Sébastien A, Lester PJ. Single-stranded RNA viruses infecting the invasive Argentine ant, Linepithema humile. Sci Rep 2017; 7:3304. [PMID: 28607437 PMCID: PMC5468335 DOI: 10.1038/s41598-017-03508-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 04/28/2017] [Indexed: 11/17/2022] Open
Abstract
Social insects host a diversity of viruses. We examined New Zealand populations of the globally widely distributed invasive Argentine ant (Linepithema humile) for RNA viruses. We used metatranscriptomic analysis, which identified six potential novel viruses in the Dicistroviridae family. Of these, three contigs were confirmed by Sanger sequencing as Linepithema humile virus-1 (LHUV-1), a novel strain of Kashmir bee virus (KBV) and Black queen cell virus (BQCV), while the others were chimeric or misassembled sequences. We extended the known sequence of LHUV-1 to confirm its placement in the Dicistroviridae and categorised its relationship to closest relatives, which were all viruses infecting Hymenoptera. We examined further for known viruses by mapping our metatranscriptomic sequences to all viral genomes, and confirmed KBV, BQCV, LHUV-1 and Deformed wing virus (DWV) presence using qRT-PCR. Viral replication was confirmed for DWV, KBV and LHUV-1. Viral titers in ants were higher in the presence of honey bee hives. Argentine ants appear to host a range of' honey bee' pathogens in addition to a virus currently described only from this invasive ant. The role of these viruses in the population dynamics of the ant remain to be determined, but offer potential targets for biocontrol approaches.
Collapse
Affiliation(s)
- Monica A M Gruber
- Centre for Biodiversity and Restoration Ecology, School of Biological Sciences, Victoria University of Wellington, PO Box 600, Wellington, New Zealand.
- Pacific Biosecurity, Victoria Link Limited, Victoria University of Wellington, PO Box 1762, Wellington, New Zealand.
| | - Meghan Cooling
- Centre for Biodiversity and Restoration Ecology, School of Biological Sciences, Victoria University of Wellington, PO Box 600, Wellington, New Zealand
- Pacific Biosecurity, Victoria Link Limited, Victoria University of Wellington, PO Box 1762, Wellington, New Zealand
| | - James W Baty
- Centre for Biodiversity and Restoration Ecology, School of Biological Sciences, Victoria University of Wellington, PO Box 600, Wellington, New Zealand
- Malaghan Institute of Medical Research, PO Box 7060, Wellington, New Zealand
| | - Kevin Buckley
- School of Engineering and Computer Science, Victoria University of Wellington, PO Box 600, Wellington, New Zealand
| | - Anna Friedlander
- School of Engineering and Computer Science, Victoria University of Wellington, PO Box 600, Wellington, New Zealand
| | - Oliver Quinn
- Centre for Biodiversity and Restoration Ecology, School of Biological Sciences, Victoria University of Wellington, PO Box 600, Wellington, New Zealand
| | - Jessica F E J Russell
- Centre for Biodiversity and Restoration Ecology, School of Biological Sciences, Victoria University of Wellington, PO Box 600, Wellington, New Zealand
| | - Alexandra Sébastien
- Centre for Biodiversity and Restoration Ecology, School of Biological Sciences, Victoria University of Wellington, PO Box 600, Wellington, New Zealand
| | - Philip J Lester
- Centre for Biodiversity and Restoration Ecology, School of Biological Sciences, Victoria University of Wellington, PO Box 600, Wellington, New Zealand
- Pacific Biosecurity, Victoria Link Limited, Victoria University of Wellington, PO Box 1762, Wellington, New Zealand
| |
Collapse
|
31
|
Quintela BM, Conway JM, Hyman JM, Reis RF, dos Santos RW, Lobosco M, Perelson AS. An Age-based Multiscale Mathematical Model of the Hepatitis C Virus Life-cycle During Infection and Therapy: Including Translation and Replication. VII LATIN AMERICAN CONGRESS ON BIOMEDICAL ENGINEERING CLAIB 2016, BUCARAMANGA, SANTANDER, COLOMBIA, OCTOBER 26TH -28TH, 2016 2017. [DOI: 10.1007/978-981-10-4086-3_128] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
32
|
Valles SM, Oi DH, Becnel JJ, Wetterer JK, LaPolla JS, Firth AE. Isolation and characterization of Nylanderia fulva virus 1, a positive-sense, single-stranded RNA virus infecting the tawny crazy ant, Nylanderia fulva. Virology 2016; 496:244-254. [PMID: 27372180 PMCID: PMC4980443 DOI: 10.1016/j.virol.2016.06.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 06/15/2016] [Accepted: 06/16/2016] [Indexed: 12/18/2022]
Abstract
We report the discovery of Nylanderia fulva virus 1 (NfV-1), the first virus identified and characterized from the ant, Nylanderia fulva. The NfV-1 genome (GenBank accession KX024775) is 10,881 nucleotides in length, encoding one large open reading frame (ORF). Helicase, protease, RNA-dependent RNA polymerase, and jelly-roll capsid protein domains were recognized within the polyprotein. Phylogenetic analysis placed NfV-1 in an unclassified clade of viruses. Electron microscopic examination of negatively stained samples revealed particles with icosahedral symmetry with a diameter of 28.7±1.1nm. The virus was detected by RT-PCR in larval, pupal, worker and queen developmental stages. However, the replicative strand of NfV-1 was only detected in larvae. Vertical transmission did not appear to occur, but horizontal transmission was facile. The inter-colonial field prevalence of NfV-1 was 52±35% with some local infections reaching 100%. NfV-1 was not detected in limited samples of other Nylanderia species or closely related ant species.
Collapse
Affiliation(s)
- Steven M Valles
- Center for Medical, Agricultural and Veterinary Entomology, USDA-ARS, 1600 SW 23rd Drive, Gainesville, FL 32608, USA.
| | - David H Oi
- Center for Medical, Agricultural and Veterinary Entomology, USDA-ARS, 1600 SW 23rd Drive, Gainesville, FL 32608, USA
| | - James J Becnel
- Center for Medical, Agricultural and Veterinary Entomology, USDA-ARS, 1600 SW 23rd Drive, Gainesville, FL 32608, USA
| | - James K Wetterer
- Wilkes Honors College, Florida Atlantic University, 5353 Parkside Drive, Jupiter, FL 33458, USA
| | - John S LaPolla
- Department of Biological Sciences, Towson University, 8000 York Road, Towson, MD 21252, USA
| | - Andrew E Firth
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, United Kingdom
| |
Collapse
|
33
|
Evidence of Apis cerana Sacbrood virus Infection in Apis mellifera. Appl Environ Microbiol 2016; 82:2256-62. [PMID: 26801569 DOI: 10.1128/aem.03292-15] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 01/14/2016] [Indexed: 11/20/2022] Open
Abstract
Sacbrood virus(SBV) is one of the most destructive viruses in the Asian honeybee Apis cerana but is much less destructive in Apis mellifera In previous studies, SBV isolates infecting A. cerana(AcSBV) and SBV isolates infecting A. mellifera(AmSBV) were identified as different serotypes, suggesting a species barrier in SBV infection. In order to investigate this species isolation, we examined the presence of SBV infection in 318A. mellifera colonies and 64A. cerana colonies, and we identified the genotypes of SBV isolates. We also performed artificial infection experiments under both laboratory and field conditions. The results showed that 38A. mellifera colonies and 37A. cerana colonies were positive for SBV infection. Phylogenetic analysis based on RNA-dependent RNA polymerase (RdRp) gene sequences indicated that A. cerana isolates and most A. mellifera isolates formed two distinct clades but two strains isolated fromA. mellifera were clustered with theA. cerana isolates. In the artificial-infection experiments, AcSBV negative-strand RNA could be detected in both adult bees and larvae ofA. mellifera, although there were no obvious signs of the disease, demonstrating the replication of AcSBV inA. mellifera Our results suggest that AcSBV is able to infectA. melliferacolonies with low prevalence (0.63% in this study) and pathogenicity. This work will help explain the different susceptibilities ofA. cerana and A. melliferato sacbrood disease and is potentially useful for guiding beekeeping practices.
Collapse
|
34
|
Liu B, Zhao X, Shen W, Kong X. Evidence for the antisense transcription in the proviral R29-127 strain of bovine immunodeficiency virus. Virol Sin 2016; 30:224-7. [PMID: 25912963 DOI: 10.1007/s12250-015-3559-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Affiliation(s)
- Bin Liu
- Laboratory of Medical Molecular Virology, School of Medicine, Nankai University, Tianjin, 300071, China
| | | | | | | |
Collapse
|
35
|
Kawakami K, Kurnia YW, Fujita R, Ito T, Isawa H, Asano SI, Binh ND, Bando H. Characterization of a novel negevirus isolated from Aedes larvae collected in a subarctic region of Japan. Arch Virol 2015; 161:801-9. [PMID: 26687585 DOI: 10.1007/s00705-015-2711-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 11/30/2015] [Indexed: 10/22/2022]
Abstract
We isolated and characterized a novel positive-sense, single-stranded RNA virus from Aedes larvae collected on Okushiri Island, Hokkaido, Japan. This virus, designated Okushiri virus (OKV), replicated in the Aedes albopictus cell line C6/36 with severe cytopathic effects and produced a large number of spherical viral particles that were 50-70 nm in diameter and released into the cell culture medium. The OKV genome consisted of 9,704 nucleotides, excluding the poly(A) tail at the 3'-terminus, and contained three major open reading frames (ORF1, ORF2, and ORF3). ORF1 encoded a putative protein of approximately 268 kDa that included a methyltransferase domain, FtsJ-like methyltransferase domain, helicase domain, and RNA-dependent RNA polymerase domain. The genome organization and results of a phylogenetic analysis based on the amino acid sequence predicted from the nucleotide sequence indicated that OKV is a member of a new insect virus group of negeviruses with a possible evolutionary relationship to some plant viruses. ORF2 and ORF3 were suggested to encode hypothetical membrane-associated proteins of approximately 45 kDa and 22 kDa, respectively. This is the first study on a novel negevirus isolated from mosquito larvae in Japan.
Collapse
Affiliation(s)
- Kota Kawakami
- Laboratory of Applied Molecular Entomology, Division of Applied Bioscience, Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
| | - Yudistira Wahyu Kurnia
- Laboratory of Applied Molecular Entomology, Division of Applied Bioscience, Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
| | - Ryosuke Fujita
- Laboratory of Applied Molecular Entomology, Division of Applied Bioscience, Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
| | - Toshiaki Ito
- Electron microscope Laboratory, Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Haruhiko Isawa
- Department of Medical Entomology, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan
| | - Shin-Ichiro Asano
- Laboratory of Applied Molecular Entomology, Division of Applied Bioscience, Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
| | - Ngo Dinh Binh
- Institute of Biotechnology, Vietnamese Academy of Science and Technology, Hanoi, Vietnam
| | - Hisanori Bando
- Laboratory of Applied Molecular Entomology, Division of Applied Bioscience, Graduate School of Agriculture, Hokkaido University, Sapporo, Japan.
| |
Collapse
|
36
|
Valles SM, Porter SD. Dose response of red imported fire ant colonies to Solenopsis invicta virus 3. Arch Virol 2015; 160:2407-13. [PMID: 26162304 DOI: 10.1007/s00705-015-2520-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 06/29/2015] [Indexed: 10/23/2022]
Abstract
Baiting tests were conducted to evaluate the effect of increasing Solenopsis invicta virus 3 (SINV-3) dose on fire ant colonies. Actively growing early-stage fire ant (Solenopsis invicta Buren) laboratory colonies were pulse-exposed for 24 hours to six concentrations of SINV-3 (10(1), 10(3), 10(5), 10(7), 10(9) genome equivalents/μl) in 1 ml of a 10 % sucrose bait and monitored regularly for two months. SINV-3 concentration had a significant effect on colony health. Brood rating (proportion of brood to worker ants) began to depart from the control group at 19 days for the 10(9) concentration and 26 days for the 10(7) concentration. At 60 days, brood rating was significantly lower among colonies treated with 10(9), 10(7), and 10(5) SINV-3 concentrations. The intermediate concentration, 10(5), appeared to cause a chronic, low-level infection with one colony (n = 9) supporting virus replication. Newly synthesized virus was not detected in any fire ant colonies treated at the 10(1) concentration, indicating that active infections failed to be established at this level of exposure. The highest bait concentration chosen, 10(9), appeared most effective from a control aspect; mean colony brood rating at this concentration (1.1 ± 0.9 at the 60 day time point) indicated poor colony health with minimal brood production. No clear relationship was observed between the quantity of plus genome strand detected and brood rating. Conversely, there was a strong relationship between the presence of the replicative genome strand and declining brood rating, which may serve as a predictor of disease severity. Recommendations for field treatment levels to control fire ants with SINV-3 are discussed.
Collapse
Affiliation(s)
- Steven M Valles
- Center for Medical, Agricultural and Veterinary Entomology, USDA-ARS, 1600 SW 23rd Drive, Gainesville, FL, 32608, USA.
| | - Sanford D Porter
- Center for Medical, Agricultural and Veterinary Entomology, USDA-ARS, 1600 SW 23rd Drive, Gainesville, FL, 32608, USA
| |
Collapse
|
37
|
Haist K, Ziegler C, Botten J. Strand-Specific Quantitative Reverse Transcription-Polymerase Chain Reaction Assay for Measurement of Arenavirus Genomic and Antigenomic RNAs. PLoS One 2015; 10:e0120043. [PMID: 25978311 PMCID: PMC4433285 DOI: 10.1371/journal.pone.0120043] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 02/02/2015] [Indexed: 02/03/2023] Open
Abstract
Arenaviruses are bi-segmented, single-stranded RNA viruses that cause significant human disease. The manner in which they regulate the replication of their genome is not well-understood. This is partly due to the absence of a highly sensitive assay to measure individual species of arenavirus replicative RNAs. To overcome this obstacle, we designed a quantitative reverse transcription (RT)-PCR assay for selective quantitation of each of the lymphocytic choriomeningitis virus (LCMV) genomic or antigenomic RNAs. During the course of assay design, we identified a nonspecific priming phenomenon whereby, in the absence of an RT primer, cDNAs complementary to each of the LCMV replicative RNA species are generated during RT. We successfully circumvented this nonspecific priming event through the use of biotinylated primers in the RT reaction, which permitted affinity purification of primer-specific cDNAs using streptavidin-coated magnetic beads. As proof of principle, we used the assay to map the dynamics of LCMV replication at acute and persistent time points and to determine the quantities of genomic and antigenomic RNAs that are incorporated into LCMV particles. This assay can be adapted to measure total S or L segment-derived viral RNAs and therefore represents a highly sensitive diagnostic platform to screen for LCMV infection in rodent and human tissue samples and can also be used to quantify virus-cell attachment.
Collapse
Affiliation(s)
- Kelsey Haist
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont, United States of America
- Department of Medicine, Division of Immunobiology, University of Vermont, Burlington, Vermont, United States of America
| | - Christopher Ziegler
- Department of Medicine, Division of Immunobiology, University of Vermont, Burlington, Vermont, United States of America
| | - Jason Botten
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont, United States of America
- Department of Medicine, Division of Immunobiology, University of Vermont, Burlington, Vermont, United States of America
- * E-mail:
| |
Collapse
|
38
|
Kweon CH, Yoo MS, Noh JH, Reddy KE, Yang DK, Cha SH, Kang SW. Derivation of cell-adapted Sacbrood virus (SBV) from the native Korean honeybee. Virus Res 2015; 198:15-21. [PMID: 25527463 DOI: 10.1016/j.virusres.2014.12.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 11/14/2014] [Accepted: 12/09/2014] [Indexed: 11/17/2022]
Abstract
Sacbrood virus (SBV), a causative agent of larval death in honeybees, is one of the most devastating diseases in bee industry throughout the world. Lately the Korean Sacbrood virus (KSBV) induced great losses in Korean honeybee (Apis cerana) colonies. However, there is no culture system available for honeybee viruses, including SBV, therefore, the research on honeybee viruses is practically limited until present. In this study, we investigated the growth and replication of SBV in cell cultures. The replication signs of KSBV after passages from mammalian cells was identified and confirmed by using combined approaches with nested, quantitative, negative-strand PCR and electron microscopy along with in vivo experiment. The results revealed that mammalian cell lines, including Vero cells could support the replication KSBV. Although there were no signs of cytopathic effect (CPE) in cells, it was for the first time demonstrated that SBV could be replicated in cells through the sequential passages linked with cell adaptation. KSBV from the present study would be a valuable source to understand the mechanism of pathogenicity of sacbrood virus in the future.
Collapse
Affiliation(s)
- Chang-Hee Kweon
- Animal and Plant Quarantine Agency, 480 Anyang-ro, Manan-gu, Anyang-si, Gyeonggi-do, Republic of Korea
| | - Mi-Sun Yoo
- Animal and Plant Quarantine Agency, 480 Anyang-ro, Manan-gu, Anyang-si, Gyeonggi-do, Republic of Korea
| | - Jin-Hyeong Noh
- Animal and Plant Quarantine Agency, 480 Anyang-ro, Manan-gu, Anyang-si, Gyeonggi-do, Republic of Korea
| | - Kondreddy Eswar Reddy
- Animal and Plant Quarantine Agency, 480 Anyang-ro, Manan-gu, Anyang-si, Gyeonggi-do, Republic of Korea
| | - Dong-Kun Yang
- Animal and Plant Quarantine Agency, 480 Anyang-ro, Manan-gu, Anyang-si, Gyeonggi-do, Republic of Korea
| | - Sang-Ho Cha
- Animal and Plant Quarantine Agency, 480 Anyang-ro, Manan-gu, Anyang-si, Gyeonggi-do, Republic of Korea
| | - Seung-Won Kang
- Animal and Plant Quarantine Agency, 480 Anyang-ro, Manan-gu, Anyang-si, Gyeonggi-do, Republic of Korea.
| |
Collapse
|
39
|
Coleman JW, Wright KJ, Wallace OL, Sharma P, Arendt H, Martinez J, DeStefano J, Zamb TP, Zhang X, Parks CL. Development of a duplex real-time RT-qPCR assay to monitor genome replication, gene expression and gene insert stability during in vivo replication of a prototype live attenuated canine distemper virus vector encoding SIV gag. J Virol Methods 2014; 213:26-37. [PMID: 25486083 PMCID: PMC7111484 DOI: 10.1016/j.jviromet.2014.11.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 11/10/2014] [Accepted: 11/18/2014] [Indexed: 11/16/2022]
Abstract
The duplex assay monitored replication, tissue distribution, and mRNA expression. The duplex assay monitored insert genetic stability during in vivo replication. Primary site of CDV replication in ferrets was abdominal cavity lymphoid tissue. CDV gRNA or mRNA was undetectable in brain tissue. Specific primers were used in the RT step to distinguish gRNA from mRNA.
Advancement of new vaccines based on live viral vectors requires sensitive assays to analyze in vivo replication, gene expression and genetic stability. In this study, attenuated canine distemper virus (CDV) was used as a vaccine delivery vector and duplex 2-step quantitative real-time RT-PCR (RT-qPCR) assays specific for genomic RNA (gRNA) or mRNA have been developed that concurrently quantify coding sequences for the CDV nucleocapsid protein (N) and a foreign vaccine antigen (SIV Gag). These amplicons, which had detection limits of about 10 copies per PCR reaction, were used to show that abdominal cavity lymphoid tissues were a primary site of CDV vector replication in infected ferrets, and importantly, CDV gRNA or mRNA was undetectable in brain tissue. In addition, the gRNA duplex assay was adapted for monitoring foreign gene insert genetic stability during in vivo replication by analyzing the ratio of CDV N and SIV gag genomic RNA copies over the course of vector infection. This measurement was found to be a sensitive probe for assessing the in vivo genetic stability of the foreign gene insert.
Collapse
Affiliation(s)
- John W Coleman
- The International AIDS Vaccine Initiative, The AIDS Vaccine Design & Development Laboratory, Brooklyn, NY 11220, United States.
| | - Kevin J Wright
- The International AIDS Vaccine Initiative, The AIDS Vaccine Design & Development Laboratory, Brooklyn, NY 11220, United States
| | - Olivia L Wallace
- The International AIDS Vaccine Initiative, The AIDS Vaccine Design & Development Laboratory, Brooklyn, NY 11220, United States
| | - Palka Sharma
- The International AIDS Vaccine Initiative, The AIDS Vaccine Design & Development Laboratory, Brooklyn, NY 11220, United States
| | - Heather Arendt
- The International AIDS Vaccine Initiative, The AIDS Vaccine Design & Development Laboratory, Brooklyn, NY 11220, United States
| | - Jennifer Martinez
- The International AIDS Vaccine Initiative, The AIDS Vaccine Design & Development Laboratory, Brooklyn, NY 11220, United States
| | - Joanne DeStefano
- The International AIDS Vaccine Initiative, The AIDS Vaccine Design & Development Laboratory, Brooklyn, NY 11220, United States
| | - Timothy P Zamb
- The International AIDS Vaccine Initiative, The AIDS Vaccine Design & Development Laboratory, Brooklyn, NY 11220, United States
| | - Xinsheng Zhang
- The International AIDS Vaccine Initiative, The AIDS Vaccine Design & Development Laboratory, Brooklyn, NY 11220, United States; Program in Molecular and Cellular Biology, School of Graduate Studies, The State University of New York Downstate Medical Center, Brooklyn, NY 11203, United States
| | - Christopher L Parks
- The International AIDS Vaccine Initiative, The AIDS Vaccine Design & Development Laboratory, Brooklyn, NY 11220, United States; Program in Molecular and Cellular Biology, School of Graduate Studies, The State University of New York Downstate Medical Center, Brooklyn, NY 11203, United States
| |
Collapse
|
40
|
Small molecule inhibitors of HCV replication from pomegranate. Sci Rep 2014; 4:5411. [PMID: 24958333 PMCID: PMC4067622 DOI: 10.1038/srep05411] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 05/30/2014] [Indexed: 01/07/2023] Open
Abstract
Hepatitis C virus (HCV) is the causative agent of end-stage liver disease. Recent advances in the last decade in anti HCV treatment strategies have dramatically increased the viral clearance rate. However, several limitations are still associated, which warrant a great need of novel, safe and selective drugs against HCV infection. Towards this objective, we explored highly potent and selective small molecule inhibitors, the ellagitannins, from the crude extract of Pomegranate (Punica granatum) fruit peel. The pure compounds, punicalagin, punicalin, and ellagic acid isolated from the extract specifically blocked the HCV NS3/4A protease activity in vitro. Structural analysis using computational approach also showed that ligand molecules interact with the catalytic and substrate binding residues of NS3/4A protease, leading to inhibition of the enzyme activity. Further, punicalagin and punicalin significantly reduced the HCV replication in cell culture system. More importantly, these compounds are well tolerated ex vivo and‘no observed adverse effect level' (NOAEL) was established upto an acute dose of 5000 mg/kg in BALB/c mice. Additionally, pharmacokinetics study showed that the compounds are bioavailable. Taken together, our study provides a proof-of-concept approach for the potential use of antiviral and non-toxic principle ellagitannins from pomegranate in prevention and control of HCV induced complications.
Collapse
|
41
|
Valles SM, Porter SD, Firth AE. Solenopsis invicta virus 3: pathogenesis and stage specificity in red imported fire ants. Virology 2014; 460-461:66-71. [PMID: 25010271 DOI: 10.1016/j.virol.2014.04.026] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 04/16/2014] [Accepted: 04/22/2014] [Indexed: 11/18/2022]
Abstract
Solenopsis invicta colonies were exposed to purified preparations of Solenopsis invicta virus 3 (SINV-3) to investigate virus pathogenesis at the colony level. Time course experiments revealed an infection exhibiting specificity for the adult stage (workers). SINV-3 genome and a capsid protein were increasingly present in worker ants with time. Northern blot analysis revealed two bands in RNA preparations from worker ants infected with SINV-3 corresponding to the genomic and sub-genomic species. Conversely, larval RNA preparations from SINV-3-infected colonies showed a near-complete absence of SINV-3 genome or sub-genome. The data confirm that SINV-3 is the etiological agent causing mortality among S. invicta colonies in the laboratory. We propose that SINV-3 infection somehow alters worker ant behavior, which may prevent them from acquiring and/or distributing solid food to the larvae. Consequently, larval mortality and impaired queen health occur as a result of starvation or neglect by the worker caste.
Collapse
Affiliation(s)
- Steven M Valles
- Center for Medical, Agricultural and Veterinary Entomology, USDA-ARS, 1600 SW 23rd Drive, Gainesville, FL 32608, USA.
| | - Sanford D Porter
- Center for Medical, Agricultural and Veterinary Entomology, USDA-ARS, 1600 SW 23rd Drive, Gainesville, FL 32608, USA
| | - Andrew E Firth
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, United Kingdom
| |
Collapse
|
42
|
Fürst MA, McMahon DP, Osborne JL, Paxton RJ, Brown MJF. Disease associations between honeybees and bumblebees as a threat to wild pollinators. Nature 2014; 506:364-6. [PMID: 24553241 PMCID: PMC3985068 DOI: 10.1038/nature12977] [Citation(s) in RCA: 392] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 12/30/2013] [Indexed: 12/30/2022]
Abstract
Emerging infectious diseases (EIDs) pose a risk to human welfare, both directly and indirectly, by affecting managed livestock and wildlife that provide valuable resources and ecosystem services, such as the pollination of crops. Honeybees (Apis mellifera), the prevailing managed insect crop pollinator, suffer from a range of emerging and exotic high-impact pathogens, and population maintenance requires active management by beekeepers to control them. Wild pollinators such as bumblebees (Bombus spp.) are in global decline, one cause of which may be pathogen spillover from managed pollinators like honeybees or commercial colonies of bumblebees. Here we use a combination of infection experiments and landscape-scale field data to show that honeybee EIDs are indeed widespread infectious agents within the pollinator assemblage. The prevalence of deformed wing virus (DWV) and the exotic parasite Nosema ceranae in honeybees and bumblebees is linked; as honeybees have higher DWV prevalence, and sympatric bumblebees and honeybees are infected by the same DWV strains, Apis is the likely source of at least one major EID in wild pollinators. Lessons learned from vertebrates highlight the need for increased pathogen control in managed bee species to maintain wild pollinators, as declines in native pollinators may be caused by interspecies pathogen transmission originating from managed pollinators.
Collapse
Affiliation(s)
- M A Fürst
- 1] Royal Holloway University of London, School of Biological Sciences, Bourne Building, Egham TW20 0EX, UK [2] IST Austria (Institute of Science and Technology Austria), 3400 Klosterneuburg, Austria
| | - D P McMahon
- Queen's University Belfast, School of Biological Sciences, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - J L Osborne
- 1] Rothamsted Research, Department of Agro-Ecology, Harpenden AL5 2JQ, UK [2] University of Exeter, Environment & Sustainability Institute, Penryn TR10 9EZ, UK
| | - R J Paxton
- 1] Queen's University Belfast, School of Biological Sciences, 97 Lisburn Road, Belfast BT9 7BL, UK [2] Martin-Luther-Universität Halle-Wittenberg, Institute for Biology/General Zoology, Hoher Weg 8, 06120 Halle (Saale), Germany [3] German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany
| | - M J F Brown
- Royal Holloway University of London, School of Biological Sciences, Bourne Building, Egham TW20 0EX, UK
| |
Collapse
|
43
|
Specific sequence of a Beta turn in human la protein may contribute to species specificity of hepatitis C virus. J Virol 2014; 88:4319-27. [PMID: 24478427 DOI: 10.1128/jvi.00049-14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
UNLABELLED Human La protein is known to be an essential host factor for translation and replication of hepatitis C virus (HCV) RNA. Previously, we have demonstrated that residues responsible for interaction of human La protein with the HCV internal ribosomal entry site (IRES) around the initiator AUG within stem-loop IV form a β-turn in the RNA recognition motif (RRM) structure. In this study, sequence alignment and mutagenesis suggest that the HCV RNA-interacting β-turn is conserved only in humans and chimpanzees, the species primarily known to be infected by HCV. A 7-mer peptide corresponding to the HCV RNA-interacting region of human La inhibits HCV translation, whereas another peptide corresponding to the mouse La sequence was unable to do so. Furthermore, IRES-mediated translation was found to be significantly high in the presence of recombinant human La protein in vitro in rabbit reticulocyte lysate. We observed enhanced replication with HCV subgenomic and full-length replicons upon overexpression of either human La protein or a chimeric mouse La protein harboring a human La β-turn sequence in mouse cells. Taken together, our results raise the possibility of creating an immunocompetent HCV mouse model using human-specific cell entry factors and a humanized form of La protein. IMPORTANCE Hepatitis C virus is known to infect only humans and chimpanzees under natural conditions. This has prevented the development of a small-animal model, which is important for development of new antiviral drugs. Although a number of human-specific proteins are responsible for this species selectivity and some of these proteins--mostly entry factors--have been identified, full multiplication of the virus in mouse cells is still not possible. In this study, we show that a turn in the human La protein that is responsible for the interaction with the viral RNA is highly specific for the human sequence. Replacement of the corresponding mouse sequence with the human sequence allows the mouse La to behave like its human counterpart and support viral growth in the mouse cell efficiently. This observation, in combination with previously identified cell entry factors, should open up the possibility of creating a mouse model of hepatitis C.
Collapse
|
44
|
Lim SM, Koraka P, Osterhaus ADME, Martina BEE. Development of a strand-specific real-time qRT-PCR for the accurate detection and quantitation of West Nile virus RNA. J Virol Methods 2013; 194:146-53. [PMID: 23965252 DOI: 10.1016/j.jviromet.2013.07.050] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 07/17/2013] [Accepted: 07/22/2013] [Indexed: 01/12/2023]
Abstract
Studying the tropism and replication kinetics of West Nile virus (WNV) in different cell types in vitro and in tissues in animal models is important for understanding its pathogenesis. As detection of the negative strand viral RNA is a more reliable indicator of active replication for single-stranded positive-sense RNA viruses, the specificity of qRT-PCR assays currently used for the detection of WNV positive and negative strand RNA was reassessed. It was shown that self- and falsely-primed cDNA was generated during the reverse transcription step in an assay employing unmodified primers and several reverse transcriptases. As a result, a qRT-PCR assay using the thermostable rTth in combination with tagged primers was developed, which greatly improved strand specificity by circumventing the events of self- and false-priming. The reliability of the assay was then addressed in vitro using BV-2 microglia cells as well as in C57/BL6 mice. It was possible to follow the kinetics of positive and negative-strand RNA synthesis both in vitro and in vivo; however, the sensitivity of the assay will need to be optimized in order to detect and quantify negative-strand RNA synthesis in the very early stages of infection. Overall, the strand-specific qRT-PCR assay developed in this study is an effective tool to quantify WNV RNA, reassess viral replication, and study tropism of WNV in the context of WNV pathogenesis.
Collapse
Affiliation(s)
- Stephanie M Lim
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | | | | |
Collapse
|
45
|
Valles SM, Oi DH, Plowes RM, Sanchez-Arroyo H, Varone L, Conant P, Webb G. Geographic distribution suggests that Solenopsis invicta is the host of predilection for Solenopsis invicta virus 1. J Invertebr Pathol 2013; 113:232-6. [PMID: 23623900 DOI: 10.1016/j.jip.2013.04.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 04/15/2013] [Accepted: 04/16/2013] [Indexed: 11/28/2022]
Abstract
Solenopsis invicta virus 1 (SINV-1) was found regularly and prevalently in S. invicta. In sampled locations where S. invicta and S. geminata are sympatric (specifically, Gainesville, FL and Travis, TX), SINV-1 was detected in S. geminata. Conversely, in areas in which S. geminata and S. invicta are allopatric, SINV-1 was not detected in S. geminata; these locations included north Australia (n=12), southern Mexico (n=107), Hawaii (n=48), Taiwan (n=12), and the Johnston Atoll (n=6). A similar relationship was observed for S. richteri. In areas in which S. invicta and S. richteri were sympatric, SINV-1 was detected in the S. richteri population, but in areas in which S. invicta and S. richteri were allopatric, SINV-1 was not detected. These occurrences suggest that S. invicta is the host of predilection, or preferred host for SINV-1, and that the congenerics, S. geminata and S. richteri serve as either accidental, reservoir, or transfer hosts. The minus genome strand of SINV-1 was detected in S. geminata and S. richteri indicating that these species may serve as functional hosts capable of supporting SINV-1 replication. SINV-1 was not detected in S. xyloni regardless of its proximity to S. invicta. These results suggest that SINV-1 may be an example of pathogen spillover or pollution.
Collapse
Affiliation(s)
- Steven M Valles
- USDA - ARS, Imported Fire Ant and Household Insects Research Unit, 1600 SW 23rd Drive, Gainesville, FL 32608, USA.
| | | | | | | | | | | | | |
Collapse
|
46
|
Host specificity and colony impacts of the fire ant pathogen, Solenopsis invicta virus 3. J Invertebr Pathol 2013; 114:1-6. [PMID: 23665158 DOI: 10.1016/j.jip.2013.04.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 04/26/2013] [Accepted: 04/30/2013] [Indexed: 11/23/2022]
Abstract
An understanding of host specificity is essential before pathogens can be used as biopesticides or self-sustaining biocontrol agents. In order to define the host range of the recently discovered Solenopsis invicta virus 3 (SINV-3), we exposed laboratory colonies of 19 species of ants in 14 genera and 4 subfamilies to this virus. Despite extreme exposure during these tests, active, replicating infections only occurred in Solenopsis invicta Buren and hybrid (S. invicta×S. richteri) fire ant colonies. The lack of infections in test Solenopsis geminata fire ants from the United States indicates that SINV-3 is restricted to the saevissima complex of South American fire ants, especially since replicating virus was also found in several field-collected samples of the black imported fire ant, Solenopsis richteri Forel. S. invicta colonies infected with SINV-3 declined dramatically with average brood reductions of 85% or more while colonies of other species exposed to virus remained uninfected and healthy. The combination of high virulence and high host specificity suggest that SINV-3 has the potential for use as either a biopesticide or a self-sustaining biocontrol agent.
Collapse
|
47
|
Valles SM, Porter SD, Choi MY, Oi DH. Successful transmission of Solenopsis invicta virus 3 to Solenopsis invicta fire ant colonies in oil, sugar, and cricket bait formulations. J Invertebr Pathol 2013; 113:198-204. [PMID: 23602901 DOI: 10.1016/j.jip.2013.04.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 04/04/2013] [Accepted: 04/09/2013] [Indexed: 10/26/2022]
Abstract
Tests were conducted to evaluate whether Solenopsis invicta virus 3 (SINV-3) could be delivered in various bait formulations to fire ant colonies and measure the corresponding colony health changes associated with virus infection in Solenopsis invicta. Three bait formulations (10% sugar solution, cricket paste, and soybean oil adsorbed to defatted corn grit) effectively transmitted SINV-3 infections to S. invicta colonies. Correspondingly, viral infection was shown to be detrimental to colony health and productivity. By day 32, all ant colonies exposed to a single 24h pulse treatment of SINV-3 became infected with the virus regardless of the bait formulation. However, the SINV-3 sugar and cricket bait-treated colonies became infected more rapidly than the oil-treated colonies. Sugar and cricket-treated colonies exhibited significant declines in their brood ratings compared with the untreated control and oil bait-treated colonies. Measures of colony health and productivity evaluated at the end of the study (day 47) showed a number of differences among the bait treatments and the control group. Statistically significant and similar patterns were exhibited among treatments for the quantity of live workers (lower), live brood (lower), total colony weight (lower), worker mortality (higher), proportion larvae (lower), and queen weight (lower). Significant changes were also observed in the number of eggs laid by queens (lower) and the corresponding ovary rating in SINV-3-treated colonies. The study provides the first successful demonstration of SINV-3 as a potential biopesticide against fire ants.
Collapse
Affiliation(s)
- Steven M Valles
- Center for Medical, Agricultural and Veterinary Entomology, USDA-ARS, 1600 SW 23rd Drive, Gainesville, FL 32608, USA.
| | | | | | | |
Collapse
|
48
|
Human La protein interaction with GCAC near the initiator AUG enhances hepatitis C Virus RNA replication by promoting linkage between 5' and 3' untranslated regions. J Virol 2013; 87:6713-26. [PMID: 23552417 DOI: 10.1128/jvi.00525-13] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Human La protein has been implicated in facilitating the internal initiation of translation as well as replication of hepatitis C virus (HCV) RNA. Previously, we demonstrated that La interacts with the HCV internal ribosome entry site (IRES) around the GCAC motif near the initiator AUG within stem-loop IV by its RNA recognition motif (RRM) (residues 112 to 184) and influences HCV translation. In this study, we have deciphered the role of this interaction in HCV replication in a hepatocellular carcinoma cell culture system. We incorporated mutation of the GCAC motif in an HCV monocistronic subgenomic replicon and a pJFH1 construct which altered the binding of La and checked HCV RNA replication by reverse transcriptase PCR (RT-PCR). The mutation drastically affected HCV replication. Furthermore, to address whether the decrease in replication is a consequence of translation inhibition or not, we incorporated the same mutation into a bicistronic replicon and observed a substantial decrease in HCV RNA levels. Interestingly, La overexpression rescued this inhibition of replication. More importantly, we observed that the mutation reduced the association between La and NS5B. The effect of the GCAC mutation on the translation-to-replication switch, which is regulated by the interplay between NS3 and La, was further investigated. Additionally, our analyses of point mutations in the GCAC motif revealed distinct roles of each nucleotide in HCV replication and translation. Finally, we showed that a specific interaction of the GCAC motif with human La protein is crucial for linking 5' and 3' ends of the HCV genome. Taken together, our results demonstrate the mechanism of regulation of HCV replication by interaction of the cis-acting element GCAC within the HCV IRES with human La protein.
Collapse
|
49
|
Hepatitis C virus replication is modulated by the interaction of nonstructural protein NS5B and fatty acid synthase. J Virol 2013; 87:4994-5004. [PMID: 23427160 DOI: 10.1128/jvi.02526-12] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Hepatitis C virus (HCV) nonstructural protein 5B (NS5B) is an RNA-dependent RNA polymerase (RdRp) that acts as a key player in the HCV replication complex. Understanding the interplay between the viral and cellular components of the HCV replication complex could provide new insight for prevention of the progression of HCV-associated hepatocellular carcinoma (HCC). In this study, the NS5B protein was used as the bait in a pulldown assay to screen for NS5B-interacting proteins that are present in Huh7 hepatoma cell lysates. After mass spectrophotometric analysis, fatty acid synthase (FASN) was found to interact with NS5B. Coimmunoprecipitation and double staining assays further confirmed the direct binding between NS5B and FASN. The domain of NS5B that interacts with FASN was also determined. Moreover, FASN was associated with detergent-resistant lipid rafts and colocalized with NS5B in active HCV replication complexes. In addition, overexpression of FASN enhanced HCV expression in Huh7/Rep-Feo cells, while transfection of FASN small interfering RNA (siRNA) or treatment with FASN-specific inhibitors decreased HCV replication and viral production. Notably, FASN directly increased HCV NS5B RdRp activity in vitro. These results together indicate that FASN interacts with NS5B and modulates HCV replication through a direct increase of NS5B RdRp activity. FASN may thereby serve as a target for the treatment of HCV infection and the prevention of HCV-associated HCC progression.
Collapse
|
50
|
McBeath A, Bain N, Fourrier M, Collet B, Snow M. A strand specific real-time RT-PCR method for the targeted detection of the three species (vRNA, cRNA and mRNA) of infectious salmon anaemia virus (ISAV) replicative RNA. J Virol Methods 2013; 187:65-71. [DOI: 10.1016/j.jviromet.2012.09.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 08/31/2012] [Accepted: 09/05/2012] [Indexed: 12/16/2022]
|