1
|
Tsolias A, Medalla M. Muscarinic Acetylcholine Receptor Localization on Distinct Excitatory and Inhibitory Neurons Within the ACC and LPFC of the Rhesus Monkey. Front Neural Circuits 2022; 15:795325. [PMID: 35087381 PMCID: PMC8786743 DOI: 10.3389/fncir.2021.795325] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/09/2021] [Indexed: 12/14/2022] Open
Abstract
Acetylcholine (ACh) can act on pre- and post-synaptic muscarinic receptors (mAChR) in the cortex to influence a myriad of cognitive processes. Two functionally-distinct regions of the prefrontal cortex-the lateral prefrontal cortex (LPFC) and the anterior cingulate cortex (ACC)-are differentially innervated by ascending cholinergic pathways yet, the nature and organization of prefrontal-cholinergic circuitry in primates are not well understood. Using multi-channel immunohistochemical labeling and high-resolution microscopy, we found regional and laminar differences in the subcellular localization and the densities of excitatory and inhibitory subpopulations expressing m1 and m2 muscarinic receptors, the two predominant cortical mAChR subtypes, in the supragranular layers of LPFC and ACC in rhesus monkeys (Macaca mulatta). The subset of m1+/m2+ expressing SMI-32+ pyramidal neurons labeled in layer 3 (L3) was denser in LPFC than in ACC, while m1+/m2+ SMI-32+ neurons co-expressing the calcium-binding protein, calbindin (CB) was greater in ACC. Further, we found between-area differences in laminar m1+ dendritic expression, and m2+ presynaptic localization on cortico-cortical (VGLUT1+) and sub-cortical inputs (VGLUT2+), suggesting differential cholinergic modulation of top-down vs. bottom-up inputs in the two areas. While almost all inhibitory interneurons-identified by their expression of parvalbumin (PV+), CB+, and calretinin (CR+)-expressed m1+, the localization of m2+ differed by subtype and area. The ACC exhibited a greater proportion of m2+ inhibitory neurons compared to the LPFC and had a greater density of presynaptic m2+ localized on inhibitory (VGAT+) inputs targeting proximal somatodendritic compartments and axon initial segments of L3 pyramidal neurons. These data suggest a greater capacity for m2+-mediated cholinergic suppression of inhibition in the ACC compared to the LPFC. The anatomical localization of muscarinic receptors on ACC and LPFC micro-circuits shown here contributes to our understanding of diverse cholinergic neuromodulation of functionally-distinct prefrontal areas involved in goal-directed behavior, and how these interactions maybe disrupted in neuropsychiatric and neurological conditions.
Collapse
Affiliation(s)
- Alexandra Tsolias
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, United States
| | - Maria Medalla
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, United States
- Center for Systems Neuroscience, Boston University, Boston, MA, United States
| |
Collapse
|
2
|
Asahina T, Shimba K, Kotani K, Jimbo Y. Observing cell assemblies from spike train recordings based on the biological basis of synaptic connectivity. IEEE Trans Biomed Eng 2021; 69:1524-1532. [PMID: 34727019 DOI: 10.1109/tbme.2021.3123958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Cell assemblies are difficult to observe because they consist of many neurons. We aimed to observe cell assemblies based on biological statistics, such as synaptic connectivity. We developed an estimation method to estimate the activity and synaptic connectivity of cell assemblies from spike trains using mathematical models of individual neurons and cell assemblies. Synaptic transmissions were averaged to generate postsynaptic currents with the same timing and waveform but different amplitudes, as the number of presynaptic neurons was large. We estimated the average synaptic transmission and synaptic connectivity from active cell assemblies based on the stochastic prediction of membrane potentials and verified the estimation ability of the average synaptic transmission and synaptic connectivity using the proposed method on simulated neural activity. Different cell assembly activities evoked by electrical stimuli were correctly sorted into various clusters in experiments using rat cortical neurons cultured on microelectrode arrays. We observed multiple cell assemblies from the spontaneous activity of rat cortical networks on microelectrode arrays, based on the synaptic connectivity patterns estimated by the proposed method. The proposed method was superior to the conventional method for detecting the activity of multiple cell assemblies. Using the proposed method, it is possible to observe multiple cell assemblies based on the biological basis of synaptic connectivity. In summary, we report a novel method to observe cell assemblies from spike train recordings based on the biological basis of synaptic connectivity, rather than merely relying on a statistical method.
Collapse
|
3
|
Bandt SK, Besson P, Ridley B, Pizzo F, Carron R, Regis J, Bartolomei F, Ranjeva JP, Guye M. Connectivity strength, time lag structure and the epilepsy network in resting-state fMRI. NEUROIMAGE-CLINICAL 2019; 24:102035. [PMID: 31795065 PMCID: PMC6881607 DOI: 10.1016/j.nicl.2019.102035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/18/2019] [Accepted: 10/09/2019] [Indexed: 01/17/2023]
Abstract
Stereo-encephalography informed high-resolution functional connectome analysis on the nodal and whole brain levels identifies consistent patterns of altered correlation strength and altered time lag architecture in epilepsy patients compared to controls. Specific patterns of altered connectivity include:.broadly distributed increased strength of correlation between the seizure onset node and the remainder of the brain. decreased time lag within the seizure onset node. globally increased time lag throughout all regions of the brain not involved in seizure onset or propagation.
Comparing the topographic distribution of findings against a functional atlas, all resting state networks were involved to a variable degree. These local and whole brain findings presented here lead us to propose the network steal hypothesis as a possible mechanistic explanation for the non-seizure clinical manifestations of epilepsy.
The relationship between the epilepsy network, intrinsic brain networks and hypersynchrony in epilepsy remains incompletely understood. To converge upon a synthesized understanding of these features, we studied two elements of functional connectivity in epilepsy: correlation and time lag structure using resting state fMRI data from both SEEG-defined epileptic brain regions and whole-brain fMRI analysis. Functional connectivity (FC) was analyzed in 15 patients with epilepsy and 36 controls. Correlation strength and time lag were selected to investigate the magnitude of and temporal interdependency across brain regions. Zone-based analysis was carried out investigating directed correlation strength and time lag between both SEEG-defined nodes of the epilepsy network and between the epileptogenic zone and all other brain regions. Findings were compared between patients and controls and against a functional atlas. FC analysis on the nodal and whole brain levels identifies consistent patterns of altered correlation strength and altered time lag architecture in epilepsy patients compared to controls. These patterns include 1) broadly distributed increased strength of correlation between the seizure onset node and the remainder of the brain, 2) decreased time lag within the seizure onset node, and 3) globally increased time lag throughout all regions of the brain not involved in seizure onset or propagation. Comparing the topographic distribution of findings against a functional atlas, all resting state networks were involved to a variable degree. These local and whole brain findings presented here lead us to propose the network steal hypothesis as a possible mechanistic explanation for the non-seizure clinical manifestations of epilepsy.
Collapse
Affiliation(s)
- S Kathleen Bandt
- Department of Neurological Surgery, Northwestern University, Chicago, IL, USA; ANISE Lab, Northwestern University, Chicago, IL, USA.
| | - Pierre Besson
- Department of Neurological Surgery, Northwestern University, Chicago, IL, USA; ANISE Lab, Northwestern University, Chicago, IL, USA; Department of Radiology, Northwestern University, Chicago, IL, USA
| | - Ben Ridley
- CNRS, CRMBM, Aix Marseille Univ., France; AP-HM, CHU Timone, Pôle d'Imagerie Médicale, CEMEREM, Marseille, France
| | - Francesca Pizzo
- Institut de Neurosciences des Systèmes, Aix Marseille Univ., Inserm UMR 1106, INS, France; Clinical Neurophysiology, APHM, Hôpital de la Timone, Marseille, France
| | - Romain Carron
- Institut de Neurosciences des Systèmes, Aix Marseille Univ., Inserm UMR 1106, INS, France; Department of Functional and Stereotactic Neurosurgery, Timone University Hospital, Marseille, France
| | - Jean Regis
- Institut de Neurosciences des Systèmes, Aix Marseille Univ., Inserm UMR 1106, INS, France; Department of Functional and Stereotactic Neurosurgery, Timone University Hospital, Marseille, France
| | - Fabrice Bartolomei
- Institut de Neurosciences des Systèmes, Aix Marseille Univ., Inserm UMR 1106, INS, France; Clinical Neurophysiology, APHM, Hôpital de la Timone, Marseille, France
| | - Jean Philippe Ranjeva
- CNRS, CRMBM, Aix Marseille Univ., France; AP-HM, CHU Timone, Pôle d'Imagerie Médicale, CEMEREM, Marseille, France
| | - Maxime Guye
- CNRS, CRMBM, Aix Marseille Univ., France; AP-HM, CHU Timone, Pôle d'Imagerie Médicale, CEMEREM, Marseille, France; Institut de Neurosciences des Systèmes, Aix Marseille Univ., Inserm UMR 1106, INS, France; Clinical Neurophysiology, APHM, Hôpital de la Timone, Marseille, France
| |
Collapse
|
4
|
Li Q, Liu G, Yuan G, Wang G, Wu Z, Zhao X. DC Shifts-fMRI: A Supplement to Event-Related fMRI. Front Comput Neurosci 2019; 13:37. [PMID: 31244636 PMCID: PMC6581730 DOI: 10.3389/fncom.2019.00037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 05/21/2019] [Indexed: 11/13/2022] Open
Abstract
Event-related fMRI have been widely used in locating brain regions which respond to specific tasks. However, activities of brain regions which modulate or indirectly participate in the response to a specific task are not event-related. Event-related fMRI can't locate these regulatory regions, detrimental to the integrity of the result that event-related fMRI revealed. Direct-current EEG shifts (DC shifts) have been found linked to the inner brain activity, a fusion DC shifts-fMRI method may have the ability to reveal a more complete response of the brain. In this study, we used DC shifts-fMRI to verify that even when responding to a very simple task, (1) The response of the brain is more complicated than event-related fMRI generally revealed and (2) DC shifts-fMRI have the ability of revealing brain regions whose responses are not in event-related way. We used a classical and simple paradigm which is often used in auditory cortex tonotopic mapping. Data were recorded from 50 subjects (25 male, 25 female) who were presented with randomly presented pure tone sequences with six different frequencies (200, 400, 800, 1,600, 3,200, 6,400 Hz). Our traditional fMRI results are consistent with previous findings that the activations are concentrated on the auditory cortex. Our DC shifts-fMRI results showed that the cingulate-caudate-thalamus network which underpins sustained attention is positively activated while the dorsal attention network and the right middle frontal gyrus which underpin attention orientation are negatively activated. The regional-specific correlations between DC shifts and brain networks indicate the complexity of the response of the brain even to a simple task and that the DC shifts can effectively reflect these non-event-related inner brain activities.
Collapse
Affiliation(s)
- Qiang Li
- Education Science College, Guizhou Normal College, Guiyang, China
| | - Guangyuan Liu
- College of Electronic and Information Engineering, Southwest University, Chongqing, China.,Chongqing Collaborative Innovation Center for Brain Science, Southwest University, Chongqing, China
| | - Guangjie Yuan
- College of Electronic and Information Engineering, Southwest University, Chongqing, China
| | - Gaoyuan Wang
- College of Music, Southwest University, Chongqing, China
| | - Zonghui Wu
- Southwest University Hospital, Southwest University, Chongqing, China
| | - Xingcong Zhao
- College of Electronic and Information Engineering, Southwest University, Chongqing, China
| |
Collapse
|
5
|
Roland PE, Bonde LH, Forsberg LE, Harvey MA. Breaking the Excitation-Inhibition Balance Makes the Cortical Network's Space-Time Dynamics Distinguish Simple Visual Scenes. Front Syst Neurosci 2017; 11:14. [PMID: 28377701 PMCID: PMC5360108 DOI: 10.3389/fnsys.2017.00014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 03/03/2017] [Indexed: 11/21/2022] Open
Abstract
Brain dynamics are often taken to be temporal dynamics of spiking and membrane potentials in a balanced network. Almost all evidence for a balanced network comes from recordings of cell bodies of few single neurons, neglecting more than 99% of the cortical network. We examined the space-time dynamics of excitation and inhibition simultaneously in dendrites and axons over four visual areas of ferrets exposed to visual scenes with stationary and moving objects. The visual stimuli broke the tight balance between excitation and inhibition such that the network exhibited longer episodes of net excitation subsequently balanced by net inhibition, in contrast to a balanced network. Locally in all four areas the amount of net inhibition matched the amount of net excitation with a delay of 125 ms. The space-time dynamics of excitation-inhibition evolved to reduce the complexity of neuron interactions over the whole network to a flow on a low-(3)-dimensional manifold within 80 ms. In contrast to the pure temporal dynamics, the low dimensional flow evolved to distinguish the simple visual scenes.
Collapse
Affiliation(s)
- Per E Roland
- Faculty of Health Sciences, Center for Neuroscience, University of Copenhagen Copenhagen, Denmark
| | - Lars H Bonde
- Faculty of Health Sciences, Center for Neuroscience, University of Copenhagen Copenhagen, Denmark
| | - Lars E Forsberg
- Faculty of Health Sciences, Center for Neuroscience, University of Copenhagen Copenhagen, Denmark
| | - Michael A Harvey
- Department of Physiology, University of Fribourg Fribourg, Switzerland
| |
Collapse
|
6
|
Bekisz M, Bogdan W, Ghazaryan A, Waleszczyk WJ, Kublik E, Wróbel A. The Primary Visual Cortex Is Differentially Modulated by Stimulus-Driven and Top-Down Attention. PLoS One 2016; 11:e0145379. [PMID: 26730705 PMCID: PMC4701232 DOI: 10.1371/journal.pone.0145379] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 12/01/2015] [Indexed: 11/18/2022] Open
Abstract
Selective attention can be focused either volitionally, by top-down signals derived from task demands, or automatically, by bottom-up signals from salient stimuli. Because the brain mechanisms that underlie these two attention processes are poorly understood, we recorded local field potentials (LFPs) from primary visual cortical areas of cats as they performed stimulus-driven and anticipatory discrimination tasks. Consistent with our previous observations, in both tasks, we found enhanced beta activity, which we have postulated may serve as an attention carrier. We characterized the functional organization of task-related beta activity by (i) cortical responses (EPs) evoked by electrical stimulation of the optic chiasm and (ii) intracortical LFP correlations. During the anticipatory task, peripheral stimulation that was preceded by high-amplitude beta oscillations evoked large-amplitude EPs compared with EPs that followed low-amplitude beta. In contrast, during the stimulus-driven task, cortical EPs preceded by high-amplitude beta oscillations were, on average, smaller than those preceded by low-amplitude beta. Analysis of the correlations between the different recording sites revealed that beta activation maps were heterogeneous during the bottom-up task and homogeneous for the top-down task. We conclude that bottom-up attention activates cortical visual areas in a mosaic-like pattern, whereas top-down attentional modulation results in spatially homogeneous excitation.
Collapse
Affiliation(s)
- Marek Bekisz
- Department of Neurophysiology, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Wojciech Bogdan
- Department of Neurophysiology, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Anaida Ghazaryan
- Department of Neurophysiology, Nencki Institute of Experimental Biology, Warsaw, Poland
| | | | - Ewa Kublik
- Department of Neurophysiology, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Andrzej Wróbel
- Department of Neurophysiology, Nencki Institute of Experimental Biology, Warsaw, Poland
- * E-mail:
| |
Collapse
|
7
|
Negrón-Oyarzo I, Dagnino-Subiabre A, Muñoz Carvajal P. Synaptic Impairment in Layer 1 of the Prefrontal Cortex Induced by Repeated Stress During Adolescence is Reversed in Adulthood. Front Cell Neurosci 2015; 9:442. [PMID: 26617490 PMCID: PMC4641900 DOI: 10.3389/fncel.2015.00442] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 10/26/2015] [Indexed: 12/03/2022] Open
Abstract
Chronic stress is a risk factor for the development of psychiatric disorders, some of which involve dysfunction of the prefrontal cortex (PFC). There is a higher prevalence of these chronic stress-related psychiatric disorders during adolescence, when the PFC has not yet fully matured. In the present work we studied the effect of repeated stress during adolescence on synaptic function in the PFC in adolescence and adulthood. To this end, adolescent Sprague-Dawley rats were subjected to seven consecutive days of restraint stress. Afterward, both synaptic transmission and short- and long-term synaptic plasticity were evaluated in layer 1 of medial-PFC (mPFC) slices from adolescent and adult rats. We found that repeated stress significantly reduced the amplitude of evoked field excitatory post-synaptic potential (fEPSP) in the mPFC. Isolation of excitatory transmission reveled that lower-amplitude fEPSPs were associated with a reduction in α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor-mediated transmission. We also found that repeated stress significantly decreased long-term depression (LTD). Interestingly, AMPA/kainate receptor-mediated transmission and LTD were recovered in adult animals that experienced a three-week stress-free recovery period. The data indicates that the changes in synaptic transmission and plasticity in the mPFC induced by repeated stress during adolescence are reversed in adulthood after a stress-free period.
Collapse
Affiliation(s)
- Ignacio Negrón-Oyarzo
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso Valparaíso, Chile ; Laboratorio de Neurobiología y Conducta, Centro de Neurobiología y Plasticidad Cerebral, Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso Valparaíso, Chile ; Departamento de Psiquiatría, Facultad de Medicina, Centro Interdisciplinario de Neurociencia, Pontificia Universidad Católica de Chile Santiago, Chile
| | - Alexies Dagnino-Subiabre
- Laboratorio de Neurobiología y Conducta, Centro de Neurobiología y Plasticidad Cerebral, Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso Valparaíso, Chile
| | - Pablo Muñoz Carvajal
- Centro Interdisciplinario de Innovación en Salud, Escuela de Medicina, Facultad de Medicina, Universidad de Valparaíso Valparaíso, Chile
| |
Collapse
|
8
|
Klineburger PC, Harrison DW. The dynamic functional capacity theory: A neuropsychological model of intense emotions. COGENT PSYCHOLOGY 2015. [DOI: 10.1080/23311908.2015.1029691] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Affiliation(s)
- Philip C. Klineburger
- Clinical Psychology, Virginia Polytechnic Institute and State University, Blacksburg 24060, VA, USA
| | - David W. Harrison
- Clinical Psychology, Virginia Polytechnic Institute and State University, Blacksburg 24060, VA, USA
| |
Collapse
|
9
|
Kawabe M, Yoshimura H. Influences of multiple tooth-loss on signal travel in the insular cortex of rats. Eur J Oral Sci 2014; 122:175-80. [PMID: 24666099 DOI: 10.1111/eos.12123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2014] [Indexed: 11/27/2022]
Abstract
The insular cortex (IC) processes various kinds of sensory and emotional information. Multiple tooth-loss induces impairment of oral sensory and motor functions, which might result in the up- or down-regulation of signal processing in the IC. In the present study, we investigated how multiple tooth-loss affects neural activities in the IC. Slices of the IC were prepared from control (untreated) rats and rats raised following the loss of their upper molar teeth, and optical recordings with voltage-sensitive dye were made. Electrical stimulation was delivered to the agranular IC (AIC). The velocity of optical signal from the AIC to the granular IC (GIC) decreased in multiple tooth-loss rats compared with control rats. Field potentials from the GIC were recorded. Onset times of evoked response at the GIC recorded from multiple tooth-loss rats were prolonged compared with those recorded from control rats, suggesting that signal velocity in multiple tooth-loss rats had decreased. A reduced signal velocity was accompanied by neuronal loss in the GIC, which was confirmed by counting the cell numbers on Nissl-stained sections. Thus, multiple tooth-loss may have influences on the GIC where signal processing speed decreases.
Collapse
Affiliation(s)
- Mamichi Kawabe
- Department of Oral and Maxillofacial Surgery, Kanazawa Medical University, Uchinada-cho, Japan
| | | |
Collapse
|
10
|
Kolev OI, Lafon M, Zanelli G, Berthoz A. Asymmetrical loading during non-visual navigation. Neurosci Lett 2013. [DOI: 10.1016/j.neulet.2013.10.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
11
|
Suzuki M, Wasaka T, Inui K, Kakigi R. Reappraisal of field dynamics of motor cortex during self-paced finger movements. Brain Behav 2013; 3:747-62. [PMID: 24363977 PMCID: PMC3868179 DOI: 10.1002/brb3.186] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 09/13/2013] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND The exact origin of neuronal responses in the human sensorimotor cortex subserving the generation of voluntary movements remains unclear, despite the presence of characteristic but robust waveforms in the records of electroencephalography or magnetoencephalography (MEG). AIMS To clarify this fundamental and important problem, we analyzed MEG in more detail using a multidipole model during pulsatile extension of the index finger, and made some important new findings. RESULTS Movement-related cerebral fields (MRCFs) were confirmed over the sensorimotor region contralateral to the movement, consisting of a temporal succession of the first premovement component termed motor field, followed by two or three postmovement components termed movement evoked fields. A source analysis was applied to separately model each of these field components. Equivalent current diploes of all components of MRCFs were estimated to be located in the same precentral motor region, and did not differ with respect to their locations and orientations. The somatosensory evoked fields following median nerve stimulation were used to validate these findings through comparisons of the location and orientation of composite sources with those specified in MRCFs. The sources for the earliest components were evoked in Brodmann's area 3b located lateral to the sources of MRCFs, and those for subsequent components in area 5 and the secondary somatosensory area were located posterior to and inferior to the sources of MRCFs, respectively. Another component peaking at a comparable latency with the area 3b source was identified in the precentral motor region where all sources of MRCFs were located. CONCLUSION These results suggest that the MRCF waveform reflects a series of responses originating in the precentral motor area.
Collapse
Affiliation(s)
- Masataka Suzuki
- Department of Integrative Physiology, National Institute for Physiological Sciences Okazaki, 444-8585, Japan ; Department of Psychology, Kinjo Gakuin University Omori 2-1723 Moriyama, Nagoya, 463-8521, Japan
| | - Toshiaki Wasaka
- Department of Integrative Physiology, National Institute for Physiological Sciences Okazaki, 444-8585, Japan
| | - Koji Inui
- Department of Integrative Physiology, National Institute for Physiological Sciences Okazaki, 444-8585, Japan
| | - Ryusuke Kakigi
- Department of Integrative Physiology, National Institute for Physiological Sciences Okazaki, 444-8585, Japan
| |
Collapse
|
12
|
Kaneko T. Local connections of excitatory neurons in motor-associated cortical areas of the rat. Front Neural Circuits 2013; 7:75. [PMID: 23754982 PMCID: PMC3664775 DOI: 10.3389/fncir.2013.00075] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 04/03/2013] [Indexed: 11/30/2022] Open
Abstract
In spite of recent progress in brain sciences, the local circuit of the cerebral neocortex, including motor areas, still remains elusive. Morphological works on excitatory cortical circuitry from thalamocortical (TC) afferents to corticospinal neurons (CSNs) in motor-associated areas are reviewed here. First, TC axons of motor thalamic nuclei have been re-examined by the single-neuron labeling method. There are middle layer (ML)-targeting and layer (L) 1-preferring TC axon types in motor-associated areas, being analogous to core and matrix types, respectively, of Jones (1998) in sensory areas. However, the arborization of core-like motor TC axons spreads widely and disregards the columnar structure that is the basis of information processing in sensory areas, suggesting that motor areas adopt a different information-processing framework such as area-wide laminar organization. Second, L5 CSNs receive local excitatory inputs not only from L2/3 pyramidal neurons but also from ML spiny neurons, the latter directly processing cerebellar information of core-like TC neurons (TCNs). In contrast, basal ganglia information is targeted to apical dendrites of L2/3 and L5 pyramidal neurons through matrix TCNs. Third, L6 corticothalamic neurons (CTNs) are most densely innervated by ML spiny neurons located just above CTNs. Since CTNs receive only weak connections from L2/3 and L5 pyramidal neurons, the TC recurrent circuit composed of TCNs, ML spiny neurons and CTNs appears relatively independent of the results of processing in L2/3 and L5. It is proposed that two circuits sharing the same TC projection and ML neurons are embedded in the neocortex: one includes L2/3 and L5 neurons, processes afferent information in a feedforward way and sends the processed information to other cortical areas and subcortical regions; and the other circuit participates in a dynamical system of the TC recurrent circuit and may serve as the basis of autonomous activity of the neocortex.
Collapse
Affiliation(s)
- Takeshi Kaneko
- Department of Morphological Brain Science, Graduate School of Medicine, Kyoto University Kyoto, Japan
| |
Collapse
|
13
|
Frégnac Y. Reading Out the Synaptic Echoes of Low-Level Perception in V1. COMPUTER VISION – ECCV 2012. WORKSHOPS AND DEMONSTRATIONS 2012. [DOI: 10.1007/978-3-642-33863-2_50] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
14
|
Abstract
A fundamental goal in vision science is to determine how many neurons in how many areas are required to compute a coherent interpretation of the visual scene. Here I propose six principles of cortical dynamics of visual processing in the first 150 ms following the appearance of a visual stimulus. Fast synaptic communication between neurons depends on the driving neurons and the biophysical history and driving forces of the target neurons. Under these constraints, the retina communicates changes in the field of view driving large populations of neurons in visual areas into a dynamic sequence of feed-forward communication and integration of the inward current of the change signal into the dendrites of higher order area neurons (30-70 ms). Simultaneously an even larger number of neurons within each area receiving feed-forward input are pre-excited to sub-threshold levels. The higher order area neurons communicate the results of their computations as feedback adding inward current to the excited and pre-excited neurons in lower areas. This feedback reconciles computational differences between higher and lower areas (75-120 ms). This brings the lower area neurons into a new dynamic regime characterized by reduced driving forces and sparse firing reflecting the visual areas interpretation of the current scene (140 ms). The population membrane potentials and net-inward/outward currents and firing are well behaved at the mesoscopic scale, such that the decoding in retinotopic cortical space shows the visual areas' interpretation of the current scene. These dynamics have plausible biophysical explanations. The principles are theoretical, predictive, supported by recent experiments and easily lend themselves to experimental tests or computational modeling.
Collapse
Affiliation(s)
- Per E. Roland
- Department of Neuroscience, Division of Brain Research, Karolinska Institutet, StockholmSweden
| |
Collapse
|
15
|
Abstract
In this review, we present the voltage-sensitive dye imaging (VSDI) method. The possibility offered for in vivo (and in vitro) brain imaging is unprecedented in terms of spatial and temporal resolution. However, the unresolved multi-component origin of the optical signal encourages us to perform a detailed analysis of the method limitation and the existing models. We propose a biophysical model at a mesoscopic scale in order to understand and interpret this signal.
Collapse
Affiliation(s)
- S Chemla
- NeuroMathComp Team, INRIA Sophia-Antipolis, France.
| | | |
Collapse
|
16
|
He BJ, Raichle ME. The fMRI signal, slow cortical potential and consciousness. Trends Cogn Sci 2009; 13:302-9. [PMID: 19535283 DOI: 10.1016/j.tics.2009.04.004] [Citation(s) in RCA: 230] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2009] [Revised: 04/17/2009] [Accepted: 04/17/2009] [Indexed: 11/18/2022]
Abstract
As functional magnetic resonance imaging (fMRI) has become a driving force in cognitive neuroscience, it is crucial to understand the neural basis of the fMRI signal. Here, we discuss a novel neurophysiological correlate of the fMRI signal, the slow cortical potential (SCP), which also seems to modulate the power of higher-frequency activity, the more established neurophysiological correlate of the fMRI signal. We further propose a hypothesis for the involvement of the SCP in the emergence of consciousness, and review existing data that lend support to our proposal. This hypothesis, unlike several previous theories of consciousness, is firmly rooted in physiology and as such is entirely amenable to empirical testing.
Collapse
Affiliation(s)
- Biyu J He
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, 4525 Scott Avenue, St. Louis, MO 63110, USA.
| | | |
Collapse
|
17
|
Kuramoto E, Furuta T, Nakamura KC, Unzai T, Hioki H, Kaneko T. Two Types of Thalamocortical Projections from the Motor Thalamic Nuclei of the Rat: A Single Neuron-Tracing Study Using Viral Vectors. Cereb Cortex 2009; 19:2065-77. [DOI: 10.1093/cercor/bhn231] [Citation(s) in RCA: 207] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
18
|
Ghashghaei HT, Hilgetag CC, Barbas H. Sequence of information processing for emotions based on the anatomic dialogue between prefrontal cortex and amygdala. Neuroimage 2006; 34:905-23. [PMID: 17126037 PMCID: PMC2045074 DOI: 10.1016/j.neuroimage.2006.09.046] [Citation(s) in RCA: 632] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2006] [Revised: 09/03/2006] [Accepted: 09/27/2006] [Indexed: 11/24/2022] Open
Abstract
The prefrontal cortex and the amygdala have synergistic roles in regulating purposive behavior, effected through bidirectional pathways. Here we investigated the largely unknown extent and laminar relationship of prefrontal input-output zones linked with the amygdala using neural tracers injected in the amygdala in rhesus monkeys. Prefrontal areas varied vastly in their connections with the amygdala, with the densest connections found in posterior orbitofrontal and posterior medial cortices, and the sparsest in anterior lateral prefrontal areas, especially area 10. Prefrontal projection neurons directed to the amygdala originated in layer 5, but significant numbers were also found in layers 2 and 3 in posterior medial and orbitofrontal cortices. Amygdalar axonal terminations in prefrontal cortex were most frequently distributed in bilaminar bands in the superficial and deep layers, by columns spanning the entire cortical depth, and less frequently as small patches centered in the superficial or deep layers. Heavy terminations in layers 1-2 overlapped with calbindin-positive inhibitory neurons. A comparison of the relationship of input to output projections revealed that among the most heavily connected cortices, cingulate areas 25 and 24 issued comparatively more projections to the amygdala than they received, whereas caudal orbitofrontal areas were more receivers than senders. Further, there was a significant relationship between the proportion of 'feedforward' cortical projections from layers 2-3 to 'feedback' terminations innervating the superficial layers of prefrontal cortices. These findings indicate that the connections between prefrontal cortices and the amygdala follow similar patterns as corticocortical connections, and by analogy suggest pathways underlying the sequence of information processing for emotions.
Collapse
Affiliation(s)
- H T Ghashghaei
- Boston University, Boston University School of Medicine, Boston, MA 02215, USA
| | | | | |
Collapse
|
19
|
Eriksson D, Roland P. Feed-forward, feedback and lateral interactions in membrane potentials and spike trains from the visual cortex in vivo. ACTA ACUST UNITED AC 2006; 100:100-9. [PMID: 17098401 DOI: 10.1016/j.jphysparis.2006.09.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2006] [Revised: 09/13/2006] [Accepted: 09/13/2006] [Indexed: 10/23/2022]
Abstract
Neurons in the visual cortex receive input from the lateral geniculate nucleus (feed-forward), higher order visual areas (feedback) and local neurons in the surroundings (lateral interactions). Here we first briefly review the approximate timing and proportion of these three types of influences on the membrane potentials in visual areas 17, 18 and 19. Then we present original results from an independent component analysis of multiunit spike trains in the same visual areas to resolve the contribution from these three sources. We stimulated the visual cortex of the ferret with a small transient contrast square stimulus and recorded the multiunit activity in areas 17, 18 and 19 with single or multiple electrodes. The spike trains had three reproducible components having their maxima at 40, 55 and 105ms after the start of the presentation of the stimulus. The time course of the third component was significantly correlated with the population membrane potential in the supragranular layers of areas 17, 18 and 19. The first spike train component was interpreted as a feed-forward response, the second spike train component as driving the laterally spreading depolarization and the third spike train component as the firing caused by the lateral spreading- and the feedback depolarization.
Collapse
Affiliation(s)
- David Eriksson
- Brain Research, Department of Neuroscience, Karolinska Institute, Retzius vaeg 8, S17177 Solna, Sweden.
| | | |
Collapse
|
20
|
Eytan D, Marom S. Dynamics and effective topology underlying synchronization in networks of cortical neurons. J Neurosci 2006; 26:8465-76. [PMID: 16914671 PMCID: PMC6674346 DOI: 10.1523/jneurosci.1627-06.2006] [Citation(s) in RCA: 250] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Cognitive processes depend on synchronization and propagation of electrical activity within and between neuronal assemblies. In vivo measurements show that the size of individual assemblies depends on their function and varies considerably, but the timescale of assembly activation is in the range of 0.1-0.2 s and is primarily independent of assembly size. Here we use an in vitro experimental model of cortical assemblies to characterize the process underlying the timescale of synchronization, its relationship to the effective topology of connectivity within an assembly, and its impact on propagation of activity within and between assemblies. We show that the basic mode of assembly activation, "network spike," is a threshold-governed, synchronized population event of 0.1-0.2 s duration and follows the logistics of neuronal recruitment in an effectively scale-free connected network. Accordingly, the sequence of neuronal activation within a network spike is nonrandom and hierarchical; a small subset of neurons is consistently recruited tens of milliseconds before others. Theory predicts that scale-free topology allows for synchronization time that does not increase markedly with network size; our experiments with networks of different densities support this prediction. The activity of early-to-fire neurons reliably forecasts an upcoming network spike and provides means for expedited propagation between assemblies. We demonstrate this capacity by observing the dynamics of two artificially coupled assemblies in vitro, using neuronal activity of one as a trigger for electrical stimulation of the other.
Collapse
|
21
|
Roland PE, Hanazawa A, Undeman C, Eriksson D, Tompa T, Nakamura H, Valentiniene S, Ahmed B. Cortical feedback depolarization waves: a mechanism of top-down influence on early visual areas. Proc Natl Acad Sci U S A 2006; 103:12586-91. [PMID: 16891418 PMCID: PMC1531644 DOI: 10.1073/pnas.0604925103] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Despite the lack of direct evidence, it is generally believed that top-down signals are mediated by the abundant feedback connections from higher- to lower-order sensory areas. Here we provide direct evidence for a top-down mechanism. We stained the visual cortex of the ferret with a voltage-sensitive dye and presented a short-duration contrast square. This elicited an initial feedforward and lateral spreading depolarization at the square representation in areas 17 and 18. After a delay, a broad feedback wave (FBW) of neuron peak depolarization traveled from areas 21 and 19 toward areas 18 and 17. In areas 18 and 17, the FBW contributed the peak depolarization of dendrites of the neurons representing the square, after which the neurons decreased their depolarization and firing. Thereafter, the peak depolarization surrounded the figure representation over most of areas 17 and 18 representing the background. Thus, the FBW is an example of a well behaved long-range communication from higher-order visual areas to areas 18 and 17, collectively addressing very large populations of neurons representing the visual scene. Through local interaction with feedforward and lateral spreading depolarization, the FBW differentially activates neurons representing the object and neurons representing the background.
Collapse
Affiliation(s)
- Per E Roland
- Divisions of Brain Research, Department of Neuroscience, Karolinska Institute, S171 77 Solna, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Marshall L, Mölle M, Hallschmid M, Born J. Transcranial direct current stimulation during sleep improves declarative memory. J Neurosci 2004; 24:9985-92. [PMID: 15525784 PMCID: PMC6730231 DOI: 10.1523/jneurosci.2725-04.2004] [Citation(s) in RCA: 427] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2004] [Accepted: 09/21/2004] [Indexed: 11/21/2022] Open
Abstract
In humans, weak transcranial direct current stimulation (tDCS) modulates excitability in the motor, visual, and prefrontal cortex. Periods rich in slow-wave sleep (SWS) not only facilitate the consolidation of declarative memories, but in humans, SWS is also accompanied by a pronounced endogenous transcortical DC potential shift of negative polarity over frontocortical areas. To experimentally induce widespread extracellular negative DC potentials, we applied anodal tDCS (0.26 mA) [correction] repeatedly (over 30 min) bilaterally at frontocortical electrode sites during a retention period rich in SWS. Retention of declarative memories (word pairs) and also nondeclarative memories (mirror tracing skills) learned previously was tested after this period and compared with retention performance after placebo stimulation as well as after retention intervals of wakefulness. Compared with placebo stimulation, anodal tDCS during SWS-rich sleep distinctly increased the retention of word pairs (p < 0.005). When applied during the wake retention interval, tDCS did not affect declarative memory. Procedural memory was also not affected by tDCS. Mood was improved both after tDCS during sleep and during wake intervals. tDCS increased sleep depth toward the end of the stimulation period, whereas the average power in the faster frequency bands (,alpha, and beta) was reduced. Acutely, anodal tDCS increased slow oscillatory activity <3 Hz. We conclude that effects of tDCS involve enhanced generation of slow oscillatory EEG activity considered to facilitate processes of neuronal plasticity. Shifts in extracellular ionic concentration in frontocortical tissue (expressed as negative DC potentials during SWS) may facilitate sleep-dependent consolidation of declarative memories.
Collapse
Affiliation(s)
- Lisa Marshall
- Institute of Neuroendocrinology H23a, University of Lübeck, 23538 Lübeck, Germany.
| | | | | | | |
Collapse
|
23
|
Naito E, Roland PE, Grefkes C, Choi HJ, Eickhoff S, Geyer S, Zilles K, Ehrsson HH. Dominance of the right hemisphere and role of area 2 in human kinesthesia. J Neurophysiol 2004; 93:1020-34. [PMID: 15385595 DOI: 10.1152/jn.00637.2004] [Citation(s) in RCA: 183] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We have previously shown that motor areas are engaged when subjects experience illusory limb movements elicited by tendon vibration. However, traditionally cytoarchitectonic area 2 is held responsible for kinesthesia. Here we use functional magnetic resonance imaging and cytoarchitectural mapping to examine whether area 2 is engaged in kinesthesia, whether it is engaged bilaterally because area 2 in non-human primates has strong callosal connections, which other areas are active members of the network for kinesthesia, and if there is a dominance for the right hemisphere in kinesthesia as has been suggested. Ten right-handed blindfolded healthy subjects participated. The tendon of the extensor carpi ulnaris muscles of the right or left hand was vibrated at 80 Hz, which elicited illusory palmar flexion in an immobile hand (illusion). As control we applied identical stimuli to the skin over the processus styloideus ulnae, which did not elicit any illusions (vibration). We found robust activations in cortical motor areas [areas 4a, 4p, 6; dorsal premotor cortex (PMD) and bilateral supplementary motor area (SMA)] and ipsilateral cerebellum during kinesthetic illusions (illusion-vibration). The illusions also activated contralateral area 2 and right area 2 was active in common irrespective of illusions of right or left hand. Right areas 44, 45, anterior part of intraparietal region (IP1) and caudo-lateral part of parietal opercular region (OP1), cortex rostral to PMD, anterior insula and superior temporal gyrus were also activated in common during illusions of right or left hand. These right-sided areas were significantly more activated than the corresponding areas in the left hemisphere. The present data, together with our previous results, suggest that human kinesthesia is associated with a network of active brain areas that consists of motor areas, cerebellum, and the right fronto-parietal areas including high-order somatosensory areas. Furthermore, our results provide evidence for a right hemisphere dominance for perception of limb movement.
Collapse
Affiliation(s)
- Eiichi Naito
- Division of Human Brain Research, Department of Neuroscience, Karolinska Institute, Stockholm, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Young JP, Geyer S, Grefkes C, Amunts K, Morosan P, Zilles K, Roland PE. Regional cerebral blood flow correlations of somatosensory areas 3a, 3b, 1, and 2 in humans during rest: a PET and cytoarchitectural study. Hum Brain Mapp 2003; 19:183-96. [PMID: 12811734 PMCID: PMC6872010 DOI: 10.1002/hbm.10114] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2002] [Accepted: 02/14/2003] [Indexed: 11/09/2022] Open
Abstract
The concept of functional connectivity relies on the assumption that cortical areas that are directly anatomically connected will show correlations in regional blood flow (rCBF) or regional metabolism. We studied correlations of rCBF of cytoarchitectural areas 3a, 3b, 1, and 2 in the brains of 37 subjects scanned with PET during a rest condition. The cytoarchitectural areas, delineated from 10 postmortem brains with statistical methods, were transformed into the same standard anatomical format as the resting PET images. In areas 3a, 3b, and 1, somatotopically corresponding regions were intercorrelated. Area 2 was correlated with the dorsal pre-motor area. These results were in accordance with the somatosensory connectivity in macaque monkeys. In contrast, we also found correlations between areas 3b and 1 with area 4a, and SMA, and among the left and right hand sector of areas 3a, 3b, and 1. Furthermore, there were no correlations between areas 3b, 1, and 2 with SII or other areas in the parietal operculum, nor of other areas known to be directly connected with areas 3a, 3b, 1, and 2 in macaques. This indicates that rCBF correlations between cortical areas during the rest state only partly reflect their connectivity and that this approach lacks sensitivity and is prone to reveal spurious or indirect connectivity.
Collapse
Affiliation(s)
- Jeremy P Young
- Division of Human Brain Research, Department of Neuroscience, Karolinska Institute, Stockholm, Sweden.
| | | | | | | | | | | | | |
Collapse
|
25
|
Kéri S, Gulyás B. Four facets of a single brain: behaviour, cerebral blood flow/metabolism, neuronal activity and neurotransmitter dynamics. Neuroreport 2003; 14:1097-106. [PMID: 12821790 DOI: 10.1097/00001756-200306110-00001] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Is functional neuroimaging a royal way to understand brain function or is it a new phrenology without an exact understanding what we measure? After two decades of imaging revolution, more and more authors ask this question. Brain functions are multidimensional, which can be approached from the point of (1) behavioural measures, (2) brain activation as reflected by blood flow and metabolic changes, (3) electrical activity of cells and cell-populations, and (4) neurotransmitter dynamics (release, receptor binding and reuptake). Using imaging techniques, we must take into consideration that even during the simplest task all of these processes operate in a closely interacting manner. Therefore, before drawing final conclusions about brain functions on the basis of a single aspect of these mechanisms, we must clarify the exact relationship among them. In this paper, we address this issue in order to draw attention to a number of uncertainties and controversies in the relationship of the four facets of brain functions.
Collapse
Affiliation(s)
- Szabolcs Kéri
- Department of Clinical Neuroscience, Psychiatry Section, Karolinska Institute, Stockholm, Sweden
| | | |
Collapse
|
26
|
Voipio J, Tallgren P, Heinonen E, Vanhatalo S, Kaila K. Millivolt-scale DC shifts in the human scalp EEG: evidence for a nonneuronal generator. J Neurophysiol 2003; 89:2208-14. [PMID: 12612037 DOI: 10.1152/jn.00915.2002] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Slow shifts in the human scalp-recorded EEG, including those related to changes in brain CO(2) levels, have been generally assumed to result from changes in the level of tonic excitation of apical dendrites of cortical pyramidal neurons. We readdressed this issue using DC-EEG shifts elicited in healthy adult subjects by hypo- or hypercapnia. A 3-min period of hyperventilation resulted in a prompt negative shift with a rate of up to 10 microV/s at the vertex (Cz) and an extremely steep dependence (up to 100 microV/mmHg) on the end-tidal Pco(2). This shift had a maximum of up to -2 mV at Cz versus the temporal derivations (T3/T4). Hyperventilation-like breathing of 5% CO(2)-95% O(2), which does not lead to a significant hypocapnia, resulted in a near-complete block of the negative DC shift at Cz. Hypoventilation, or breathing 5% CO(2) in air at normal respiratory rate, induced a positive shift. The high amplitude of the voltage gradients on the scalp induced by hyperventilation is not consistent with a neuronal origin. Instead, the present data suggest that they are generated by extracortical volume currents driven by a Pco(2)-dependent potential difference across epithelia separating the cerebrospinal fluid and blood. Since changes in respiratory patterns and, hence, in the level of brain Pco(2), are likely to occur under a number of experimental conditions in which slow EEG responses have been reported (e.g., attention shifts, preparatory states, epileptic seizures, and hypoxic episodes), the present results call for a thorough reexamination of the mechanisms underlying scalp-recorded DC-EEG responses.
Collapse
Affiliation(s)
- Juha Voipio
- Department of Biosciences, University of Helsinki, 00014, Finland.
| | | | | | | | | |
Collapse
|
27
|
Naito E, Roland PE, Ehrsson HH. I feel my hand moving: a new role of the primary motor cortex in somatic perception of limb movement. Neuron 2002; 36:979-88. [PMID: 12467600 DOI: 10.1016/s0896-6273(02)00980-7] [Citation(s) in RCA: 151] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The primary motor cortex (MI) is regarded as the site for motor control. Occasional reports that MI neurons react to sensory stimuli have either been ignored or attributed to guidance of voluntary movements. Here, we show that MI activation is necessary for the somatic perception of movement of our limbs. We made use of an illusion: when the wrist tendon of one hand is vibrated, it is perceived as the hand moving. If the vibrated hand has skin contact with the other hand, it is perceived as both hands bending. Using fMRI and TMS, we show that the activation in MI controlling the nonvibrated hand is compulsory for the somatic perception of the hand movement. This novel function of MI contrasts with its traditional role as the executive locus of voluntary limb movement.
Collapse
Affiliation(s)
- Eiichi Naito
- Division of Human Brain Research, Department of Neuroscience, Karolinska Institute, Stockholm S171 77, Sweden.
| | | | | |
Collapse
|