1
|
Dieu Nguyen HQ, Nam MH, Vigh J, Brzezinski J, Duncan L, Park D. Co-delivery of neurotrophic factors and a zinc chelator substantially promotes axon regeneration in the optic nerve crush model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.20.624564. [PMID: 39605527 PMCID: PMC11601601 DOI: 10.1101/2024.11.20.624564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Traumatic optic neuropathies cause the death of retinal ganglion cells (RGCs) and axon degeneration. This is a result of the blockage of neurotrophic factor (NTF) supply from the brain and a vicious cycle of neurotoxicity, possibly mediated by increased levels of retinal Zn 2+ . Ciliary neurotrophic factor (CNTF) and brain-derived neurotrophic factor (BDNF) are two NTFs that are known to support RGC survival and promote axon regeneration. Dipicolylamine (DPA) has a strong affinity to Zn 2+ and can selectively chelate this ion. To continuously supply NTFs and reduce elevated retinal Zn 2+ , we developed poly(serinol hexamethylene urea)-based sulfonated nanoparticles (S-PSHU NPs), that co-delivers CNTF, BDNF, and DPA. An in vitro release study was performed using the NTF-DPA-loaded S-PSHU NPs, demonstrating a sustained release of CNTF and BDNF for up to 8 weeks, while DPA was released for 4 weeks. In a rat optic nerve crush (ONC) model, DPA-loaded S-PSHU NPs exhibited dose-dependent elimination of retinal Zn 2+ . Similarly, in vitro primary RGC culture demonstrated that the activity of RGCs and axon growth were dependent on the dosage of CNTF and BDNF. In addition, the NTF-DPA-loaded S-PSHU NPs significantly improved RGC survival and axon regeneration following ONC in rats, with the regenerated axons extending to the distal segment of the brain, including the suprachiasmatic nucleus, lateral geniculate nucleus, and superior colliculus.
Collapse
|
2
|
Pewklang T, Thompson T, Sefiani A, Geoffroy CG, Kamkaew A, Burgess K. Selective, Intrinsically Fluorescent Trk Modulating Probes. ACS Chem Neurosci 2024; 15. [PMID: 39356215 PMCID: PMC11487604 DOI: 10.1021/acschemneuro.4c00290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 10/03/2024] Open
Abstract
Neurotrophins (NTs) elicit the growth, survival, and differentiation of neurons and other neuroectoderm tissues via activation of Trk receptors. Hot spots for NT·Trk interactions involve three neurotrophin loops. Mimicry of these using "cyclo-organopeptides" comprising loop sequences cyclized onto endocyclic organic fragments accounts for a few of the low molecular mass Trk agonists or modulators reported so far; the majority are nonpeptidic small molecules accessed without molecular design and identified in random screens. It has proven difficult to verify activities induced by low molecular mass substances are due to Trk activation (rather than via other receptors), enhanced Trk expression, enhanced NT expression, or other pathways. Consequently, identification of selective probes for the various Trk receptors (e.g., A, B, and C) has been very challenging. Further, a key feature of probes for early stage assays is that they should be easily detectable, and none of the compounds reported to date are. In this work, we designed novel cyclo-organopeptide derivatives where the organic fragment is a BODIPY fluor and found ones that selectively, though not specifically, activate TrkA, B, or C. One of the assays used to reach this conclusion (binding to live Trk-expressing cells) relied on intrinsic fluorescence in the tested materials. Consequently, this work established low molecular mass Trk-selective probes exhibiting neuroprotective effects.
Collapse
Affiliation(s)
- Thitima Pewklang
- Department
of Chemistry, Texas A & M University, Box 30012, College Station, Texas 77842-3012, United States
- School
of Chemistry, Institute of Science, Suranaree
University of Technology, Nakhon
Ratchasima 30000, Thailand
| | - Tye Thompson
- Department
of Chemistry, Texas A & M University, Box 30012, College Station, Texas 77842-3012, United States
| | - Arthur Sefiani
- Department
of Neuroscience and Experimental Therapeutics, Texas A & M University Health Science Center, Bryan, Texas 77807, United States
- NeuroCreis,
Inc., College Station, Texas 77840, United States
| | - Cédric G. Geoffroy
- Department
of Neuroscience and Experimental Therapeutics, Texas A & M University Health Science Center, Bryan, Texas 77807, United States
- NeuroCreis,
Inc., College Station, Texas 77840, United States
| | - Anyanee Kamkaew
- School
of Chemistry, Institute of Science, Suranaree
University of Technology, Nakhon
Ratchasima 30000, Thailand
| | - Kevin Burgess
- Department
of Chemistry, Texas A & M University, Box 30012, College Station, Texas 77842-3012, United States
| |
Collapse
|
3
|
Nguyen DD, Mansur S, Ciesla L, Gray NE, Zhao S, Bao Y. A Combined Computational and Experimental Approach to Studying Tropomyosin Kinase Receptor B Binders for Potential Treatment of Neurodegenerative Diseases. Molecules 2024; 29:3992. [PMID: 39274839 PMCID: PMC11396239 DOI: 10.3390/molecules29173992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/02/2024] [Accepted: 08/17/2024] [Indexed: 09/16/2024] Open
Abstract
Tropomyosin kinase receptor B (TrkB) has been explored as a therapeutic target for neurological and psychiatric disorders. However, the development of TrkB agonists was hindered by our poor understanding of the TrkB agonist binding location and affinity (both affect the regulation of disorder types). This motivated us to develop a combined computational and experimental approach to study TrkB binders. First, we developed a docking method to simulate the binding affinity of TrkB and binders identified by our magnetic drug screening platform from Gotu kola extracts. The Fred Docking scores from the docking computation showed strong agreement with the experimental results. Subsequently, using this screening platform, we identified a list of compounds from the NIH clinical collection library and applied the same docking studies. From the Fred Docking scores, we selected two compounds for TrkB activation tests. Interestingly, the ability of the compounds to increase dendritic arborization in hippocampal neurons matched well with the computational results. Finally, we performed a detailed binding analysis of the top candidates and compared them with the best-characterized TrkB agonist, 7,8-dyhydroxyflavon. The screening platform directly identifies TrkB binders, and the computational approach allows for the quick selection of top candidates with potential biological activities based on the docking scores.
Collapse
Affiliation(s)
- Duc D. Nguyen
- Department of Mathematics, The University of Tennessee, Knoxville, TN 37996, USA
| | - Shomit Mansur
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL 35487, USA;
| | - Lukasz Ciesla
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487, USA;
| | - Nora E. Gray
- Department of Neurology, Oregon Health and Science University, Portland, OR 97239, USA;
| | - Shan Zhao
- Department of Mathematics, The University of Alabama, Tuscaloosa, AL 35487, USA;
| | - Yuping Bao
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL 35487, USA;
| |
Collapse
|
4
|
Thompson T, Pewklang T, Piyanuch P, Wanichacheva N, Kamkaew A, Burgess K. A fluorescent electrophile for CLIPS: self indicating TrkB binders. Org Biomol Chem 2024; 22:506-512. [PMID: 38111346 PMCID: PMC10863675 DOI: 10.1039/d3ob01654d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Combination of cysteine-containing peptides with electrophiles provides efficient access to cyclo-organopeptides. However, there are no routes to intrinsically fluorescent cyclo-organopeptides containing robust, brilliant fluorophores emitting at wavelengths longer than cellular autofluorescence. We show such fluorescent cyclo-organopeptides can be made via SNAr reactions of cysteine-containing peptides with a BODIPY system. Seven compounds of this type were prepared to test as probes; six contained peptide sequences corresponding to loop regions in brain-derived neurotrophic factor and neurotrophic factor 4 (BDNF and NT-4) which bind tropomyocin receptor kinase B (TrkB). Cellular assays in serum-free media indicated two of the six key compounds induced survival of HEK293 cells stably transfected with TrkB whereas a control did not. The two compounds inducing cell survival bound TrkB on those cells (Kd ∼40 and 47 nM), illustrating how intrinsically fluorescent cyclo-organopeptides can be assayed for quantifiable binding to surface receptors in cell membrane environments.
Collapse
Affiliation(s)
- Tye Thompson
- Department of Chemistry, Texas A & M University, Box 30012, College Station, TX 77842-3012, USA.
| | - Thitima Pewklang
- Department of Chemistry, Texas A & M University, Box 30012, College Station, TX 77842-3012, USA.
- School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Pornthip Piyanuch
- Department of Chemistry, Faculty of Science, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Nantanit Wanichacheva
- Department of Chemistry, Faculty of Science, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Anyanee Kamkaew
- School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Kevin Burgess
- Department of Chemistry, Texas A & M University, Box 30012, College Station, TX 77842-3012, USA.
| |
Collapse
|
5
|
Xie W, Gao Q, Artigas Ramirez MD, Zhang H, Liu Y, Weng Q. Seasonal expressions of nerve growth factor (NGF), and its receptor TrkA and p75 in the scent glands of muskrats (Ondatra zibethicus). Comp Biochem Physiol B Biochem Mol Biol 2024; 269:110905. [PMID: 37769961 DOI: 10.1016/j.cbpb.2023.110905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/25/2023] [Accepted: 09/25/2023] [Indexed: 10/03/2023]
Abstract
NGF, also known as nerve growth factor, is crucial for the survival and differentiation of the nervous system, in addition to being involved in a number of non-neuronal systems. The aim of this work was to investigate the immunolocalization and expression patterns of NGF, its receptor, tyrosine kinase receptor A (TrkA), and p75 in the scent glands of muskrats (Ondatra zibethicus) throughout the breeding and non-breeding seasons. The scent gland mass showed considerable seasonal variations, with higher values during the breeding season and comparatively lower levels during the non-breeding season. While no immunostaining was observed in the interstitial cells, NGF, TrkA, and p75 were immunolocalized in the scent glandular cells and epithelial cells during both breeding and non-breeding seasons. NGF, TrkA, and p75 protein and mRNA expression levels were higher in the scent glands during breeding season compared to the non-breeding season. Circulating levels of follicle-stimulating hormone (FSH), luteinizing hormone (LH), testosterone (T), and T in the scent gland were all significantly higher throughout the breeding season. The relative levels of the hormones in the plasma and the scent glands as well as NGF, TrkA, and p75 were positively associated with each other. Additionally, transcriptome analysis of the scent glands revealed that differentially expressed genes may be linked to steroid biosynthesis, the estrogen signaling pathway, and neurotransmitter transmembrane transporter function. These results suggest a potential role for NGF, TrkA, and p75 in controlling seasonal variations in the muskrats' scent gland functioning.
Collapse
Affiliation(s)
- Wenqian Xie
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Qingjing Gao
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Maria Daniela Artigas Ramirez
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Haolin Zhang
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Yuning Liu
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China.
| | - Qiang Weng
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China.
| |
Collapse
|
6
|
Hannan MA, Dash R, Haque MN, Choi SM, Moon IS. Integrated System Pharmacology and In Silico Analysis Elucidating Neuropharmacological Actions of Withania somnifera in the Treatment of Alzheimer's Disease. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2020; 19:541-556. [PMID: 32748763 DOI: 10.2174/1871527319999200730214807] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND Withania somnifera (WS), also referred to as Medhya Rasayana (nootropic or rejuvenating), has traditionally been prescribed for various neurological ailments, including dementia. Despite substantial evidence, pharmacological roles of WS, neither as nootropic nor as an antidementia agent, are well-understood at the cellular and molecular levels. OBJECTIVES We aimed at elucidating the pharmacological action mechanisms of WS root constituents against Alzheimer's Disease (AD) pathology. METHODS Various bioinformatics tools and resources, including DAVID, Cytoscape, NetworkAnalyst and KEGG pathway database were employed to analyze the interaction of WS root bioactive molecules with the protein targets of AD-associated cellular processes. We also used a molecular simulation approach to validate the interaction of compounds with selected protein targets. RESULTS Network analysis revealed that β-sitosterol, withaferin A, stigmasterol, withanolide A, and withanolide D are the major constituents of WS root that primarily target the cellular pathways such as PI3K/Akt signaling, neurotrophin signaling and toll-like receptor signaling and proteins such as Tropomyosin receptor Kinase B (TrkB), Glycogen Synthase Kinase-3β (GSK-3β), Toll-Like Receptor 2/4 (TLR2/4), and β-secretase (BACE-1). Also, the in silico analysis further validated the interaction patterns and binding affinity of the major WS compounds, particularly stigmasterol, withanolide A, withanolide D and β-sitosterol with TrkB, GSK-3β, TLR2/4, and BACE-1. CONCLUSION The present findings demonstrate that stigmasterol, withanolide A, withanolide D and β-sitosterol are the major metabolites that are responsible for the neuropharmacological action of WS root against AD-associated pathobiology, and TrkB, GSK-3β, TLR2/4, and BACE-1 could be the potential druggable targets.
Collapse
Affiliation(s)
- Md Abdul Hannan
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Korea,Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh-2202, Bangladesh
| | - Raju Dash
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Korea
| | - Md Nazmul Haque
- Departement of Fisheries Biology and Genetics, Patuakhali Science and Technology University Patuakhali-8602, Bangladesh
| | - Sung Min Choi
- Department of Pediatrics, Dongguk University College of Medicine, Gyeongju 38066, Republic of Korea
| | - Il Soo Moon
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Korea
| |
Collapse
|
7
|
Chang HM, Wu HC, Sun ZG, Lian F, Leung PCK. Neurotrophins and glial cell line-derived neurotrophic factor in the ovary: physiological and pathophysiological implications. Hum Reprod Update 2020; 25:224-242. [PMID: 30608586 PMCID: PMC6390169 DOI: 10.1093/humupd/dmy047] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 11/22/2018] [Accepted: 12/27/2018] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Neurotrophins [nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), and neurotrophin-4 (NT-4)] and glial cell line-derived neurotrophic factor (GDNF) are soluble polypeptide growth factors that are widely recognized for their roles in promoting cell growth, survival and differentiation in several classes of neurons. Outside the nervous system, neurotrophin (NT) and GDNF signaling events have substantial roles in various non-neural tissues, including the ovary. OBJECTIVE AND RATIONALE The molecular mechanisms that promote and regulate follicular development and oocyte maturation have been extensively investigated. However, most information has been obtained from animal models. Even though the fundamental process is highly similar across species, the paracrine regulation of ovarian function in humans remains poorly characterized. Therefore, this review aims to summarize the expression and functional roles of NTs and GDNF in human ovarian biology and disorders, and to describe and propose the development of novel strategies for diagnosing, treating and preventing related abnormalities. SEARCH METHODS Relevant literature in the English language from 1990 to 2018 describing the role of NTs and GDNF in mammalian ovarian biology and phenotypes was comprehensively selected using PubMed, MEDLINE and Google Scholar. OUTCOMES Studies have shown that the neurotrophins NGF, BDNF, NT-3 and NT-4 as well as GDNF and their functional receptors are expressed in the human ovary. Recently, gathered experimental data suggest putative roles for NT and GDNF signaling in the direct control of ovarian function, including follicle assembly, activation of the primordial follicles, follicular growth and development, oocyte maturation, steroidogenesis, ovulation and corpus luteum formation. Additionally, crosstalk occurs between these ovarian regulators and the endocrine signaling system. Dysregulation of the NT system may negatively affect ovarian function, leading to reproductive pathology (decreased ovarian reserve, polycystic ovary syndrome and endometriosis), female infertility and even epithelial ovarian cancers. WIDER IMPLICATIONS A comprehensive understanding of the expression, actions and underlying molecular mechanisms of the NT/GDNF system in the human ovary is essential for novel approaches to therapeutic and diagnostic interventions in ovarian diseases and to develop more safe, effective methods of inducing ovulation in ART in the treatment of female infertility.
Collapse
Affiliation(s)
- Hsun-Ming Chang
- Integrative Medicine Research Centre of Reproduction and Heredity, the Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.,Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Hai-Cui Wu
- Integrative Medicine Research Centre of Reproduction and Heredity, the Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.,Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Zhen-Gao Sun
- Integrative Medicine Research Centre of Reproduction and Heredity, the Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.,Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Fang Lian
- Integrative Medicine Research Centre of Reproduction and Heredity, the Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Peter C K Leung
- Integrative Medicine Research Centre of Reproduction and Heredity, the Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.,Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
8
|
3β, 6β-dichloro-5-hydroxy-5α-cholestane facilitates neuronal development through modulating TrkA signaling regulated proteins in primary hippocampal neuron. Sci Rep 2019; 9:18919. [PMID: 31831796 PMCID: PMC6908615 DOI: 10.1038/s41598-019-55364-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 11/27/2019] [Indexed: 12/11/2022] Open
Abstract
Potentiating neuritogenesis through pharmacological intervention might hold therapeutic promise in neurodegenerative disorders and acute brain injury. Here, we investigated the novel neuritogenic potentials of a steroidal chlorohydrin, 3β, 6β-dichloro-5-hydroxy-5α-cholestane (hereafter, SCH) and the change in cellular proteome to gain insight into the underlying mechanism of its neurotrophic activity in hippocampal neurons. Morphometric analysis showed that SCH promoted early neuronal differentiation, dendritic arborization and axonal maturation. Proteomic and bioinformatic analysis revealed that SCH induced upregulation of several proteins, including those associated with neuronal differentiation and development. Immunocytochemical data further indicates that SCH-treated neurons showed upregulation of Hnrnpa2b1 and Map1b, validating their proteomic profiles. In addition, a protein-protein interaction network analysis identified TrkA as a potential target connecting most of the upregulated proteins. The neurite outgrowth effect of SCH was suppressed by TrkA inhibitor, GW441756, verifying TrkA-dependent activity of SCH, which further supports the connection of TrkA with the upregulated proteins. Also, the computational analysis revealed that SCH interacts with the NGF-binding domain of TrkA through Phe327 and Asn355. Collectively, our findings provide evidence that SCH promotes neuronal development via upregulating TrkA-signaling proteins and suggest that SCH could be a promising therapeutic agent in the prevention and treatment of neurodegenerative disorders.
Collapse
|
9
|
Deciphering Molecular Mechanism of the Neuropharmacological Action of Fucosterol through Integrated System Pharmacology and In Silico Analysis. Mar Drugs 2019; 17:md17110639. [PMID: 31766220 PMCID: PMC6891791 DOI: 10.3390/md17110639] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/07/2019] [Accepted: 11/08/2019] [Indexed: 12/12/2022] Open
Abstract
Fucosterol is an algae-derived unique phytosterol having several medicinal properties, including antioxidant, anti-inflammatory, anticholinesterase, neuroprotective, and so on. Accumulated evidence suggests a therapeutic promise of fucosterol in neurodegeneration; however, the in-depth pharmacological mechanism of its neuroprotection is poorly understood. Here, we employed system pharmacology and in silico analysis to elucidate the underlying mechanism of neuropharmacological action of fucosterol against neurodegenerative disorders (NDD). Network pharmacology revealed that fucosterol targets signaling molecules, receptors, enzymes, transporters, transcription factors, cytoskeletal, and various other proteins of cellular pathways, including tumor necrosis factor (TNF), mitogen-activated protein kinase (MAPK), phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt), neurotrophin, and toll-like receptor (TLR) signaling, which are intimately associated with neuronal survival, immune response, and inflammation. Moreover, the molecular simulation study further verified that fucosterol exhibited a significant binding affinity to some of the vital targets, including liver X-receptor-beta (LXR-β), glucocorticoid receptor (GR), tropomyosin receptor kinase B (TrkB), toll-like receptor 2/4 (TLR2/4), and β-secretase (BACE1), which are the crucial regulators of molecular and cellular processes associated with NDD. Together, the present system pharmacology and in silico findings demonstrate that fucosterol might play a significant role in modulating NDD-pathobiology, supporting its therapeutic application for the prevention and treatment of NDD.
Collapse
|
10
|
TrkB agonistic antibodies superior to BDNF: Utility in treating motoneuron degeneration. Neurobiol Dis 2019; 132:104590. [PMID: 31470106 DOI: 10.1016/j.nbd.2019.104590] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 08/18/2019] [Accepted: 08/26/2019] [Indexed: 12/13/2022] Open
Abstract
While Brain-derived Neurotrophic Factor (BDNF) has long been implicated in treating neurological diseases, recombinant BDNF protein has failed in multiple clinical trials. In addition to its unstable and adhesive nature, BDNF can activate p75NTR, a receptor mediating cellular functions opposite to those of TrkB. We have now identified TrkB agonistic antibodies (TrkB-agoAbs) with several properties superior to BDNF: They exhibit blood half-life of days instead of hours, diffuse centimeters in neural tissues instead millimeters, and bind and activate TrkB, but not p75NTR. In addition, TrkB-agoAbs elicit much longer TrkB activation, reduced TrkB internalization and less intracellular degradation, compared with BDNF. More importantly, some of these TrkB-agoAbs bind TrkB epitopes distinct from that by BDNF, and work cooperatively with endogenous BDNF. Unlike BDNF, the TrkB-agoAbs exhibit a half-life of days/weeks and diffused readily in nerve tissues. We tested one of TrkB-agoAbs further and showed that it enhanced motoneuron survival in the spinal-root avulsion model for motoneuron degeneration in vivo. Thus, TrkB-agoAbs are promising drug candidates for the treatment of neural injury.
Collapse
|
11
|
Subbiah R, Guldberg RE. Materials Science and Design Principles of Growth Factor Delivery Systems in Tissue Engineering and Regenerative Medicine. Adv Healthc Mater 2019; 8:e1801000. [PMID: 30398700 DOI: 10.1002/adhm.201801000] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 09/13/2018] [Indexed: 01/22/2023]
Abstract
Growth factors (GFs) are signaling molecules that direct cell development by providing biochemical cues for stem cell proliferation, migration, and differentiation. GFs play a key role in tissue regeneration, but one major limitation of GF-based therapies is dosage-related adverse effects. Additionally, the clinical applications and efficacy of GFs are significantly affected by the efficiency of delivery systems and other pharmacokinetic factors. Hence, it is crucial to design delivery systems that provide optimal activity, stability, and tunable delivery for GFs. Understanding the physicochemical properties of the GFs and the biomaterials utilized for the development of biomimetic GF delivery systems is critical for GF-based regeneration. Many different delivery systems have been developed to achieve tunable delivery kinetics for single or multiple GFs. The identification of ideal biomaterials with tunable properties for spatiotemporal delivery of GFs is still challenging. This review characterizes the types, properties, and functions of GFs, the materials science of widely used biomaterials, and various GF loading strategies to comprehensively summarize the current delivery systems for tunable spatiotemporal delivery of GFs aimed for tissue regeneration applications. This review concludes by discussing fundamental design principles for GF delivery vehicles based on the interactive physicochemical properties of the proteins and biomaterials.
Collapse
Affiliation(s)
- Ramesh Subbiah
- Parker H. Petit Institute for Bioengineering and Bioscience; George W. Woodruff School of Mechanical Engineering; Georgia Institute of Technology; Atlanta GA 30332 USA
| | - Robert E. Guldberg
- Parker H. Petit Institute for Bioengineering and Bioscience; George W. Woodruff School of Mechanical Engineering; Georgia Institute of Technology; Atlanta GA 30332 USA
- Phil and Penny Knight Campus for Accelerating Scientific Impact; 6231 University of Oregon; Eugene OR 97403 USA
| |
Collapse
|
12
|
Laughter MR, Bardill JR, Ammar DA, Pena B, Calkins DJ, Park D. Injectable Neurotrophic Factor Delivery System Supporting Retinal Ganglion Cell Survival and Regeneration Following Optic Nerve Crush. ACS Biomater Sci Eng 2018; 4:3374-3383. [PMID: 31431919 PMCID: PMC6701853 DOI: 10.1021/acsbiomaterials.8b00803] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
In general, neurons belonging to the central nervous system (CNS), such as retinal ganglion cells (RGCs), do not regenerate. Due to this, strategies have emerged aimed at protecting and regenerating these cells. Neurotrophic factor (NTF) supplementation has been a promising approach but is limited by length of delivery and delivery vehicle. For this study, we tested a polymeric delivery system (sulfonated reverse thermal gel or SRTG) engineered to deliver cilliary neurotrophic factor (CNTF), while also being injectable. A rat optic nerve crush (ONC) model was used to determine the neuroprotective and regenerative capacity of our system. The results demonstrate that one single intravitreal injection of SRTG-CNTF following ONC showed significant protection of RGC survival at both 1 and 2 week time points, when compared to the control groups. Furthermore, there was no significant difference in the RGC count between the eyes that received the SRTG-CNTF following ONC and a healthy control eye. Intravitreal injection of the polymer system also induced noticeable axon regeneration 500 μm downstream from the lesion site compared to all other control groups. There was a significant increase in Müller cell response in groups that received the SRTG-CNTF injection following optic nerve crush also indicative of a regenerative response. Finally, higher concentrations of CNTF released from SRTG-CNTF showed a protective effect on RGCs and Müller cell response at a longer time point (4 weeks). In conclusion, we were able to show a neuroprotective and regenerative effect of this polymer SRTG-CNTF delivery system and the viability for treatment of neurodegenerations.
Collapse
Affiliation(s)
- Melissa R. Laughter
- Department of Bioengineering, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - James R. Bardill
- Department of Bioengineering, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - David A. Ammar
- Department of Ophthalmology, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Brisa Pena
- Department of Bioengineering, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - David J. Calkins
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | - Daewon Park
- Department of Bioengineering, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado 80045, United States
| |
Collapse
|
13
|
Aarão TLDS, de Sousa JR, Falcão ASC, Falcão LFM, Quaresma JAS. Nerve Growth Factor and Pathogenesis of Leprosy: Review and Update. Front Immunol 2018; 9:939. [PMID: 29867937 PMCID: PMC5949531 DOI: 10.3389/fimmu.2018.00939] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 04/16/2018] [Indexed: 12/11/2022] Open
Abstract
Neurotrophins are a family of proteins that regulate different aspects of biological development and neural function and are of great importance in neuroplasticity. This group of proteins has multiple functions in neuronal cells, as well as in other cellular populations. Nerve growth factor (NGF) is a neurotrophin that is endogenously produced during development and maturation by multiple cell types, including neurons, Schwann cells, oligodendrocytes, lymphocytes, mast cells, macrophages, keratinocytes, and fibroblasts. These cells produce proNGF, which is transformed by proteolytic cleavage into the biologically active NGF in the endoplasmic reticulum. The present review describes the role of NGF in the pathogenesis of leprosy and its correlations with different clinical forms of the disease and with the phenomena of regeneration and neural injury observed during infection. We discuss the involvement of NGF in the induction of neural damage and the pathophysiology of pain associated with peripheral neuropathy in leprosy. We also discuss the roles of immune factors in the evolution of this pathological process. Finally, we highlight avenues of investigation for future research to broaden our understanding of the role of NGF in the pathogenesis of leprosy. Our analysis of the literature indicates that NGF plays an important role in the evolution and outcome of Mycobacterium leprae infection. The findings described here highlight an important area of investigation, as leprosy is one of the main causes of infection in the peripheral nervous system.
Collapse
Affiliation(s)
| | | | | | | | - Juarez Antônio Simões Quaresma
- Center of Health and Biological Sciences, State University of Para, Belem, Brazil.,Tropical Medicine Center, Federal University of Para, Belem, Brazil.,Evandro Chagas Institute, Ministry of Health, Ananindeua, Brazil
| |
Collapse
|
14
|
Peng X, Varendi K, Maimets M, Andressoo JO, Coppes RP. Role of glial-cell-derived neurotrophic factor in salivary gland stem cell response to irradiation. Radiother Oncol 2017; 124:448-454. [PMID: 28784438 DOI: 10.1016/j.radonc.2017.07.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 07/06/2017] [Accepted: 07/06/2017] [Indexed: 12/17/2022]
Abstract
BACKGROUND AND PURPOSE Recently, stem cell therapy has been proposed to allow regeneration of radiation damaged salivary glands. It has been suggested that glial-cell-derived neurotrophic factor (GDNF) promotes survival of mice salivary gland stem cells (mSGSCs). The purpose of this study was to investigate the role of GDNF in the modulation of mSGSC response to irradiation and subsequent salivary gland regeneration. METHODS Salivary gland sphere derived cells of Gdnf hypermorphic (Gdnfwt/hyper) and wild type mice (Gdnfwt/wt) were irradiated (IR) with γ-rays at 0, 1, 2, 4 and 8Gy. mSGSC survival and stemness were assessed by calculating surviving fraction measured as post-IR sphere forming potential and population doublings. Flow cytometry was used to determine the CD24hi/CD29hi stem cell (SC) population. QPCR and immunofluorescence was used to detect GDNF expression. RESULTS The IR survival responses of mSGSCs were similar albeit resulted in larger spheres and an increased cell number in the Gdnfwt/hyper compared to Gdnfwt/wt group. Indeed, mSGSC of Gdnfwt/hyper mice showed high sphere forming efficiency upon replating. Interestingly, GDNF expression co-localized with receptor tyrosine kinase (RET) and was upregulated after IR in vitro and in vivo, but normalized in vivo after mSGSC transplantation. CONCLUSION GDNF does not protect mSGSCs against irradiation but seems to promote mSGSCs proliferation through the GDNF-RET signaling pathway. Post-transplantation stimulation of GDNF/RET pathway may enhance the regenerative potential of mSGSCs.
Collapse
Affiliation(s)
- Xiaohong Peng
- Departments of Cell Biology and Radiation Oncology, University Medical Centrum Groningen, University of Groningen, The Netherlands
| | - Kärt Varendi
- Institute of Biotechnology, University of Helsinki, Finland
| | - Martti Maimets
- Departments of Cell Biology and Radiation Oncology, University Medical Centrum Groningen, University of Groningen, The Netherlands; BRIC-Biotech Research and Innovation Centre, Copenhagen, Denmark
| | - Jaan-Olle Andressoo
- Institute of Biotechnology, University of Helsinki, Finland; Institute of Biosciences and Medical Technology - BioMediTech, University of Tampere, Finland
| | - Rob P Coppes
- Departments of Cell Biology and Radiation Oncology, University Medical Centrum Groningen, University of Groningen, The Netherlands.
| |
Collapse
|
15
|
Uegaki K, Kumanogoh H, Mizui T, Hirokawa T, Ishikawa Y, Kojima M. BDNF Binds Its Pro-Peptide with High Affinity and the Common Val66Met Polymorphism Attenuates the Interaction. Int J Mol Sci 2017; 18:ijms18051042. [PMID: 28498321 PMCID: PMC5454954 DOI: 10.3390/ijms18051042] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 05/06/2017] [Accepted: 05/08/2017] [Indexed: 02/03/2023] Open
Abstract
Most growth factors are initially synthesized as precursors then cleaved into bioactive mature domains and pro-domains, but the biological roles of pro-domains are poorly understood. In the present study, we investigated the pro-domain (or pro-peptide) of brain-derived neurotrophic factor (BDNF), which promotes neuronal survival, differentiation and synaptic plasticity. The BDNF pro-peptide is a post-processing product of the precursor BDNF. Using surface plasmon resonance and biochemical experiments, we first demonstrated that the BDNF pro-peptide binds to mature BDNF with high affinity, but not other neurotrophins. This interaction was more enhanced at acidic pH than at neutral pH, suggesting that the binding is significant in intracellular compartments such as trafficking vesicles rather than the extracellular space. The common Val66Met BDNF polymorphism results in a valine instead of a methionine in the pro-domain, which affects human brain functions and the activity-dependent secretion of BDNF. We investigated the influence of this variation on the interaction between BDNF and the pro-peptide. Interestingly, the Val66Met polymorphism stabilized the heterodimeric complex of BDNF and its pro-peptide. Furthermore, compared with the Val-containing pro-peptide, the complex with the Met-type pro-peptide was more stable at both acidic and neutral pH, suggesting that the Val66Met BDNF polymorphism forms a more stable complex. A computational modeling provided an interpretation to the role of the Val66Met mutation in the interaction of BDNF and its pro-peptide. Lastly, we performed electrophysiological experiments, which indicated that the BDNF pro-peptide, when pre-incubated with BDNF, attenuated the ability of BDNF to inhibit hippocampal long-term depression (LTD), suggesting a possibility that the BDNF pro-peptide may interact directly with BDNF and thereby inhibit its availability. It was previously reported that the BDNF pro-domain exerts a chaperone-like function and assists the folding of the BDNF protein. However, our results suggest a new role for the BDNF pro-domain (or pro-peptide) following proteolytic cleave of precursor BDNF, and provide insight into the Val66Met polymorphism.
Collapse
Affiliation(s)
- Koichi Uegaki
- Biomedical Research Institute (BMD), National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorioka, Ikeda, Osaka 563-8577, Japan.
- Core Research for Evolutional Science and Technology (CREST), Science and Technology Agency (JST), Kawaguchi, Saitama 332-0012, Japan.
| | - Haruko Kumanogoh
- Biomedical Research Institute (BMD), National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorioka, Ikeda, Osaka 563-8577, Japan.
- Core Research for Evolutional Science and Technology (CREST), Science and Technology Agency (JST), Kawaguchi, Saitama 332-0012, Japan.
| | - Toshiyuki Mizui
- Biomedical Research Institute (BMD), National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorioka, Ikeda, Osaka 563-8577, Japan.
- Core Research for Evolutional Science and Technology (CREST), Science and Technology Agency (JST), Kawaguchi, Saitama 332-0012, Japan.
| | - Takatsugu Hirokawa
- Core Research for Evolutional Science and Technology (CREST), Science and Technology Agency (JST), Kawaguchi, Saitama 332-0012, Japan.
- Molecular Profiling Research Center for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tokyo 135-0064, Japan.
- Division of Biomedical Science, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba-shi, Ibaraki 305-8575, Japan.
| | - Yasuyuki Ishikawa
- Core Research for Evolutional Science and Technology (CREST), Science and Technology Agency (JST), Kawaguchi, Saitama 332-0012, Japan.
- Department of Systems Life Engineering, Maebashi Institute of Technology 460-1, Kamisadori, Maebashi 370-0816, Japan.
| | - Masami Kojima
- Biomedical Research Institute (BMD), National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorioka, Ikeda, Osaka 563-8577, Japan.
- Core Research for Evolutional Science and Technology (CREST), Science and Technology Agency (JST), Kawaguchi, Saitama 332-0012, Japan.
- Graduate School of Frontier Bioscience, Osaka University, Suita 565-0871, Japan.
| |
Collapse
|
16
|
Affiliation(s)
- Ahmed Z. El-Hashim
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Kuwait University, Kuwait City, Kuwait
| | - Sahar M. Jaffal
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Kuwait University, Kuwait City, Kuwait
| |
Collapse
|
17
|
Zinc Interactions With Brain-Derived Neurotrophic Factor and Related Peptide Fragments. VITAMINS AND HORMONES 2017; 104:29-56. [DOI: 10.1016/bs.vh.2016.10.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
18
|
Travaglia A, Pietropaolo A, Di Martino R, Nicoletti VG, La Mendola D, Calissano P, Rizzarelli E. A small linear peptide encompassing the NGF N-terminus partly mimics the biological activities of the entire neurotrophin in PC12 cells. ACS Chem Neurosci 2015; 6:1379-92. [PMID: 25939060 DOI: 10.1021/acschemneuro.5b00069] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Ever since the discovery of its neurite growth promoting activity in sympathetic and sensory ganglia, nerve growth factor (NGF) became the prototype of the large family of neurotrophins. The use of primary cultures and clonal cell lines has revealed several distinct actions of NGF and other neurotrophins. Among several models of NGF activity, the clonal cell line PC12 is the most widely employed. Thus, in the presence of NGF, through the activation of the transmembrane protein TrkA, these cells undergo a progressive mitotic arrest and start to grow electrically excitable neuritis. A vast number of studies opened intriguing aspects of NGF mechanisms of action, its biological properties, and potential use as therapeutic agents. In this context, identifying and utilizing small portions of NGF is of great interest and involves several human diseases including Alzheimer's disease. Here we report the specific action of the peptide encompassing the 1-14 sequence of the human NGF (NGF(1-14)), identified on the basis of scattered indications present in literature. The biological activity of NGF(1-14) was tested on PC12 cells, and its binding with TrkA was predicted by means of a computational approach. NGF(1-14) does not elicit the neurite outgrowth promoting activity, typical of the whole protein, and it only has a moderate action on PC12 proliferation. However, this peptide exerts, in a dose and time dependent fashion, an effective and specific NGF-like action on some highly conserved and biologically crucial intermediates of its intracellular targets such as Akt and CREB. These findings indicate that not all TrkA pathways must be at all times operative, and open the possibility of testing each of them in relation with specific NGF needs, biological actions, and potential therapeutic use.
Collapse
Affiliation(s)
- Alessio Travaglia
- Center for Neural Science, New York University, 4 Washington Place, New York, New York 10003, United States
| | - Adriana Pietropaolo
- Dipartimento di Scienze della Salute, Università di Catanzaro, Viale Europa, 88100 Catanzaro, Italy
| | - Rossana Di Martino
- Istituto di Bioimmagini e Fisiologia Molecolare (IBFM)-CNR, C.da Pietrapollastra-Pisciotto, Cefalù, Palermo 90015, Italy
| | - Vincenzo G. Nicoletti
- Dipartimento di Scienze Biomediche e Biotecnologiche - Sezione di Biochimica Medica, Università degli Studi di Catania, Viale Andrea Doria 6, 95125 Catania, Italy
- Istituto Nazionale Biostrutture e Biosistemi (INBB) − Sezione Biomolecole, Consorzio Interuniversitario, Viale Medaglie d’Oro 305, 00136 Roma, Italy
| | - Diego La Mendola
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano 6, 56126 Pisa, Italy
| | - Pietro Calissano
- European Brain Research Institute (EBRI), Via del Fosso di Fiorano, 64-65, 00143 Rome, Italy
| | | |
Collapse
|
19
|
Domanskyi A, Saarma M, Airavaara M. Prospects of Neurotrophic Factors for Parkinson's Disease: Comparison of Protein and Gene Therapy. Hum Gene Ther 2015; 26:550-9. [DOI: 10.1089/hum.2015.065] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Affiliation(s)
- Andrii Domanskyi
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Mart Saarma
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Mikko Airavaara
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| |
Collapse
|
20
|
Stiles TL, Kapiloff MS, Goldberg JL. The role of soluble adenylyl cyclase in neurite outgrowth. BIOCHIMICA ET BIOPHYSICA ACTA 2014; 1842:2561-8. [PMID: 25064589 PMCID: PMC4262618 DOI: 10.1016/j.bbadis.2014.07.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 07/11/2014] [Accepted: 07/15/2014] [Indexed: 12/25/2022]
Abstract
Axon regeneration in the mature central nervous system is limited by extrinsic inhibitory signals and a postnatal decline in neurons' intrinsic growth capacity. Neuronal levels of the second messenger cAMP are important in regulating both intrinsic growth capacity and neurons' responses to extrinsic factors. Approaches which increase intracellular cAMP in neurons enhance neurite outgrowth and facilitate regeneration after injury. Thus, understanding the factors which affect cAMP in neurons is of potential therapeutic importance. Recently, soluble adenylyl cyclase (sAC, ADCY10), the ubiquitous, non-transmembrane adenylyl cyclase, was found to play a key role in neuronal survival and axon growth. sAC is activated by bicarbonate and cations and may translate physiologic signals from metabolism and electrical activity into a neuron's decision to survive or regenerate. Here we critically review the literature surrounding sAC and cAMP signaling in neurons to further elucidate the potential role of sAC signaling in neurite outgrowth and regeneration. This article is part of a Special Issue entitled: The role of soluble adenylyl cyclase in health and disease.
Collapse
Affiliation(s)
- Travis L Stiles
- Shiley Eye Center, University of California, San Diego, CA 92093, USA
| | - Michael S Kapiloff
- Departments of Pediatrics and Medicine, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | | |
Collapse
|
21
|
Noori-Zadeh A, Mesbah-Namin SA, Tiraihi T, Rajabibazl M, Taheri T. Non-viral human proGDNF gene delivery to rat bone marrow stromal cells under ex vivo conditions. J Neurol Sci 2014; 339:81-6. [DOI: 10.1016/j.jns.2014.01.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 01/15/2014] [Accepted: 01/23/2014] [Indexed: 11/29/2022]
|
22
|
Seasonal changes in expression of nerve growth factor and its receptors TrkA and p75 in the ovary of wild ground squirrel (Citellus dauricus Brandt). J Ovarian Res 2014; 7:3. [PMID: 24405743 PMCID: PMC3898233 DOI: 10.1186/1757-2215-7-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 12/21/2013] [Indexed: 01/31/2023] Open
Abstract
The aim of this study was to investigate the presence of nerve growth factor (NGF) and its receptors tyrosine kinase A (TrkA) and p75 in the ovaries of the wild ground squirrels during the breeding and nonbreeding seasons. In the breeding period, NGF, TrkA and p75 were immunolocalized in granulosa cells, thecal cells, interstitial cells and luteal cells whereas in the nonbreeding period, both of them were detected only in granulosa cells, thecal cells and interstitial cells. Stronger immunostaining of NGF, TrkA and p75 were observed in granulosa cells, thecal cells and interstitial cells in the breeding season compared to the nonbreeding season. Corresponding for the immunohistochemical results, immunoreactivities of NGF and its two receptors were greater in the ovaries of the breeding season then decreased to a relatively low level in the nonbreeding season. The mean mRNA levels of NGF, TrkA and p75 were significantly higher in the breeding season than in the nonbreeding season. In addition, plasma gonadotropins, estradiol-17β and progesterone concentrations were significantly higher in the breeding season than in the nonbreeding season, suggesting that the expression patterns of NGF, and TrkA and p75 were correlated with changes in plasma gonadotropins, estradiol-17β and progesterone concentrations. These results indicated that NGF and its receptors, TrkA and p75 may be involved in the regulation of seasonal changes in the ovarian functions of the wild ground squirrel.
Collapse
|
23
|
Small-molecule modulation of neurotrophin receptors: a strategy for the treatment of neurological disease. Nat Rev Drug Discov 2013; 12:507-25. [PMID: 23977697 DOI: 10.1038/nrd4024] [Citation(s) in RCA: 219] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Neurotrophins and their receptors modulate multiple signalling pathways to regulate neuronal survival and to maintain axonal and dendritic networks and synaptic plasticity. Neurotrophins have potential for the treatment of neurological diseases. However, their therapeutic application has been limited owing to their poor plasma stability, restricted nervous system penetration and, importantly, the pleiotropic actions that derive from their concomitant binding to multiple receptors. One strategy to overcome these limitations is to target individual neurotrophin receptors — such as tropomyosin receptor kinase A (TRKA), TRKB, TRKC, the p75 neurotrophin receptor or sortilin — with small-molecule ligands. Such small molecules might also modulate various aspects of these signalling pathways in ways that are distinct from the programmes triggered by native neurotrophins. By departing from conventional neurotrophin signalling, these ligands might provide novel therapeutic options for a broad range of neurological indications.
Collapse
|
24
|
Travaglia A, La Mendola D, Magrì A, Nicoletti VG, Pietropaolo A, Rizzarelli E. Copper, BDNF and Its N-terminal Domain: Inorganic Features and Biological Perspectives. Chemistry 2012; 18:15618-31. [DOI: 10.1002/chem.201202775] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Indexed: 11/11/2022]
|
25
|
Kawas LH, Benoist CC, Harding JW, Wayman GA, Abu-Lail NI. Nanoscale mapping of the Met receptor on hippocampal neurons by AFM and confocal microscopy. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2012; 9:428-38. [PMID: 22960190 DOI: 10.1016/j.nano.2012.08.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Revised: 08/10/2012] [Accepted: 08/13/2012] [Indexed: 10/27/2022]
Abstract
UNLABELLED Hepatocyte growth factor (HGF), a neurotrophic protein, acting through its tyrosine kinase receptor, Met, facilitates learning and synaptic plasticity. In concert with the role of the HGF/Met system in synaptic plasticity, we demonstrate that Met is localized to brain regions which undergo extensive synaptic remodeling. We demonstrate that Met activation results in an increase in dendritic spine density and functional synapses. Based on these observations, we hypothesized that Met should be associated with post-synaptic elements found on dendritic spines. Thus, the goal of this study was to determine the sub-cellular localization of Met on hippocampal neurons. Using an atomic force microscopy tip decorated with a specific Met antibody, the location of Met was mapped to different cellular compartments of hippocampal pyramidal neurons. Our results indicated that multimeric activated Met was found to be concentrated in the dendritic compartment while the inactivated monomeric form of Met was prominent on the soma. FROM THE CLINICAL EDITOR The goal of this study was to determine the sub-cellular localization of Met on hippocampal neurons using nanotechnology-based techniques, using an atomic force microscopy tip decorated with a specific Met antibody. The authors demonstrate that multimeric activated Met was found to be concentrated in the dendritic compartment while the inactivated monomeric form of Met was prominent in the soma of hippocampal pyramidal neurons.
Collapse
Affiliation(s)
- Leen H Kawas
- Department of Veterinary and Comparative Anatomy, Pharmacology, and Physiology, Washington State University, Pullman, Washington, USA
| | | | | | | | | |
Collapse
|
26
|
Abstract
Summary Nerve growth factor (NGF) is a prototype member of the neurotrophins family and has important functions in the maintenance of viability and proliferation of neuronal and non-neuronal cells, such as certain ovarian cells. The present review highlights the role of NGF and its receptors on ovarian follicle development. NGF initiates its multiple actions through binding to two classes of receptors: the high affinity receptor tyrosine kinase A (TrkA) and the low-affinity receptor p75. Different intracytoplasmic signalling pathways may be activated through binding to NGF due to variation in the receptors. The TrkA receptor activates predominantly phosphatidylinositol-3-kinase (PI3K) and mitogenic activated protein kinase (MAPK) to promote cell survival and proliferation. The activation of the phospholipase type Cγ (PLCγ) pathway, which results in the production of diacylglycerol (DAG) and inositol triphosphate (IP3), culminates in the release of calcium from the intracytoplasmic cellular stocks. However, the details of activation through p75 receptor are less well known. Expression of NGF and its receptors is localized in ovarian cells (oocyte, granulosa, theca and interstitial cells) from several species, which suggests that NGF and its receptors may regulate some ovarian functions such as follicular survival or development. Thus, the use of NGF in culture medium for ovarian follicles may be of critical importance for researchers who want to promote follicular development in vitro in the future.
Collapse
|
27
|
Markham A, Cameron I, Bains R, Franklin P, Kiss JP, Schwendimann L, Gressens P, Spedding M. Brain-derived neurotrophic factor-mediated effects on mitochondrial respiratory coupling and neuroprotection share the same molecular signalling pathways. Eur J Neurosci 2012; 35:366-74. [DOI: 10.1111/j.1460-9568.2011.07965.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
28
|
Gerin CG, Madueke IC, Perkins T, Hill S, Smith K, Haley B, Allen SA, Garcia RP, Paunesku T, Woloschak G. Combination strategies for repair, plasticity, and regeneration using regulation of gene expression during the chronic phase after spinal cord injury. Synapse 2011; 65:1255-81. [DOI: 10.1002/syn.20903] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
29
|
Lee J, Ladd A, Hagert E. Immunofluorescent triple-staining technique to identify sensory nerve endings in human thumb ligaments. Cells Tissues Organs 2011; 195:456-64. [PMID: 21832813 DOI: 10.1159/000327725] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/24/2011] [Indexed: 12/19/2022] Open
Abstract
Ligament innervation purportedly plays a critical role in stability, proprioception and pathology of joints with minimal bony constraints. The human thumb carpometacarpal (CMC) joint is such a joint: with a complex saddle configuration and wide circumduction, its constraint is primarily ligamentous and it is prone to osteoarthritis. CMC reconstruction is the most commonly performed arthritis surgery in the upper extremity. Little, however, is known about CMC ligament innervation. We describe a novel triple-staining immunofluorescence technique using the markers for low-affinity neurotrophin receptor p75, the pan-neuronal marker protein gene product (PGP) 9.5 and 4',6'-diamidino-2-phenylindole (DAPI) to simultaneously detect and differentiate between specific sensory nerve endings: the Pacini corpuscles, the Ruffini endings and nerve fascicles. Five primary CMC ligaments (dorsal radial, dorsal central, posterior oblique, anterior oblique and ulnar collateral ligaments) were harvested from 10 fresh-frozen human cadaver hands. Following paraffin sectioning, each ligament was stained using a triple-stain technique and imaged with fluorescence microscopy. Multidimensional acquisition permitted simultaneous capture of images at different wavelengths. Pacini corpuscles were distinguished by their distinct p75 immunoreactive capsules, and Ruffini endings by their overlapping p75 and PGP9.5 immunoreactive dendritic nerve endings. Simultaneous use of PGP9.5, p75 and DAPI immunofluorescence to analyze innervation patterns in human ligaments provides descriptive analysis of staining patterns and receptor structure as well as clues as to the proprioceptive function of CMC ligaments and the joint as a whole. Our novel findings of CMC ligament innervation augment the study of normal and pathological joint mechanics in this joint so prone to osteoarthritis.
Collapse
Affiliation(s)
- Julia Lee
- Department of Orthopaedic Surgery, Chase Hand Center, Stanford University, Stanford, CA, USA
| | | | | |
Collapse
|
30
|
Cazorla M, Prémont J, Mann A, Girard N, Kellendonk C, Rognan D. Identification of a low-molecular weight TrkB antagonist with anxiolytic and antidepressant activity in mice. J Clin Invest 2011; 121:1846-57. [PMID: 21505263 DOI: 10.1172/jci43992] [Citation(s) in RCA: 317] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2010] [Accepted: 02/23/2011] [Indexed: 01/08/2023] Open
Abstract
The neurotrophin brain-derived neurotrophic factor (BDNF) and its receptor tropomyosin-related kinase B (TrkB) have emerged as key mediators in the pathophysiology of several mood disorders, including anxiety and depression. However, therapeutic compounds that interact with TrkB receptors have been difficult to develop. Using a combination of structure-based in silico screening and high-capacity functional assays in recombinant and neuronal cells, we identified a low-molecular weight TrkB ligand (ANA-12) that prevented activation of the receptor by BDNF with a high potency. ANA-12 showed direct and selective binding to TrkB and inhibited processes downstream of TrkB without altering TrkA and TrkC functions. KIRA-ELISA analysis demonstrated that systemic administration of ANA-12 to adult mice decreased TrkB activity in the brain without affecting neuronal survival. Mice administered ANA-12 demonstrated reduced anxiety- and depression-related behaviors on a variety of tests predictive of anxiolytic and antidepressant properties in humans. This study demonstrates that structure-based virtual screening strategy can be an efficient method for discovering potent TrkB-selective ligands that are active in vivo. We further propose that ANA-12 may be a valuable tool for studying BDNF/TrkB signaling and may constitute a lead compound for developing the next generation of therapeutic agents for the treatment of mood disorders.
Collapse
Affiliation(s)
- Maxime Cazorla
- Neurobiology and Molecular Pharmacology, Centre de Psychiatrie et Neurosciences, UMR-894 INSERM/Université Paris Descartes, Paris, France.
| | | | | | | | | | | |
Collapse
|
31
|
Wang L, Wang N, Li M, Wang K. To investigate the role of the nervous system of bone in steroid-induced osteonecrosis in rabbits. Osteoporos Int 2010; 21:2057-66. [PMID: 20204605 DOI: 10.1007/s00198-009-1159-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Accepted: 12/07/2009] [Indexed: 10/19/2022]
Abstract
SUMMARY Glucocorticoid treatment frequently causes osteonecrosis of the femoral head. The precise mechanism in the pathogenesis of osteonecrosis remains highly controversial. Normal bone metabolism requires a coordinated interaction between the sensory/sympathetic nervous system and cells within the bone tissue. So we speculated that neural lesions may be involved in osteonecrosis. OBJECTIVE using a rabbit model, we investigated the relationship between neural factors and steroid-induced osteonecrosis of the femoral head. METHODS Japanese white rabbits weighing about 3.5 kg each were injected with a single intramuscular dose of methylprednisolone 4 mg/kg and then divided into three groups (groups A, B and C) consisting of 15 rabbits each. The rabbits of group A were killed after 3 days, those of group B after 1 week, and those of group C after 2 weeks. As a control group, 10 rabbits (group N) were fed under the same conditions but did not receive a steroid injection. An immunohistochemical study of the femoral heads was conducted using the monoclonal antibodies CGRP, SP, VIP, NPY and NGF. Also, using the software Image Pro Plus, the areas showing positive immunoreactivity in each group were calculated and the four groups were compared. RESULTS significant changes were seen in the expression of CGRP, SP, VIP and NPY nerve fibres and of NGF immunoreactivity in the subchondral bone of the femoral head and these changes were associated with the process of osteonecrosis. Furthermore, CGRP, SP, NPY and NGF (but not VIP) showed marked changes in expression 1 week after steroid administration, and this is the time when osteonecrosis is thought to occur in this model. CONCLUSION This study showed that osteonecrosis in rabbits is chronologically associated with changes in neural factors.
Collapse
Affiliation(s)
- L Wang
- Department of Orthopedic Surgery, Second Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China
| | | | | | | |
Collapse
|
32
|
Cazorla M, Jouvenceau A, Rose C, Guilloux JP, Pilon C, Dranovsky A, Prémont J. Cyclotraxin-B, the first highly potent and selective TrkB inhibitor, has anxiolytic properties in mice. PLoS One 2010; 5:e9777. [PMID: 20333308 PMCID: PMC2841647 DOI: 10.1371/journal.pone.0009777] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Accepted: 02/19/2010] [Indexed: 11/19/2022] Open
Abstract
In the last decades, few mechanistically novel therapeutic agents have been developed to treat mental and neurodegenerative disorders. Numerous studies suggest that targeting BDNF and its TrkB receptor could be a promising therapeutic strategy for the treatment of brain disorders. However, the development of potent small ligands for the TrkB receptor has proven to be difficult. By using a peptidomimetic approach, we developed a highly potent and selective TrkB inhibitor, cyclotraxin-B, capable of altering TrkB-dependent molecular and physiological processes such as synaptic plasticity, neuronal differentiation and BDNF-induced neurotoxicity. Cyclotraxin-B allosterically alters the conformation of TrkB, which leads to the inhibition of both BDNF-dependent and -independent (basal) activities. Finally, systemic administration of cyclotraxin-B to mice results in TrkB inhibition in the brain with specific anxiolytic-like behavioral effects and no antidepressant-like activity. This study demonstrates that cyclotraxin-B might not only be a powerful tool to investigate the role of BDNF and TrkB in physiology and pathology, but also represents a lead compound for the development of new therapeutic strategies to treat brain disorders.
Collapse
Affiliation(s)
- Maxime Cazorla
- Neurobiology & Molecular Pharmacology, Centre de Psychiatrie et de Neurosciences, UMR-894 INSERM/Université Paris Descartes, Paris, France.
| | | | | | | | | | | | | |
Collapse
|
33
|
Bradley LH, Fuqua J, Richardson A, Turchan-Cholewo J, Ai Y, Kelps KA, Glass JD, He X, Zhang Z, Grondin R, Littrell OM, Huettl P, Pomerleau F, Gash DM, Gerhardt GA. Dopamine neuron stimulating actions of a GDNF propeptide. PLoS One 2010; 5:e9752. [PMID: 20305789 PMCID: PMC2841203 DOI: 10.1371/journal.pone.0009752] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2009] [Accepted: 02/20/2010] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Neurotrophic factors, such as glial cell line-derived neurotrophic factor (GDNF), have shown great promise for protection and restoration of damaged or dying dopamine neurons in animal models and in some Parkinson's disease (PD) clinical trials. However, the delivery of neurotrophic factors to the brain is difficult due to their large size and poor bio-distribution. In addition, developing more efficacious trophic factors is hampered by the difficulty of synthesis and structural modification. Small molecules with neurotrophic actions that are easy to synthesize and modify to improve bioavailability are needed. METHODS AND FINDINGS Here we present the neurobiological actions of dopamine neuron stimulating peptide-11 (DNSP-11), an 11-mer peptide from the proGDNF domain. In vitro, DNSP-11 supports the survival of fetal mesencephalic neurons, increasing both the number of surviving cells and neuritic outgrowth. In MN9D cells, DNSP-11 protects against dopaminergic neurotoxin 6-hydroxydopamine (6-OHDA)-induced cell death, significantly decreasing TUNEL-positive cells and levels of caspase-3 activity. In vivo, a single injection of DNSP-11 into the normal adult rat substantia nigra is taken up rapidly into neurons and increases resting levels of dopamine and its metabolites for up to 28 days. Of particular note, DNSP-11 significantly improves apomorphine-induced rotational behavior, and increases dopamine and dopamine metabolite tissue levels in the substantia nigra in a rat model of PD. Unlike GDNF, DNSP-11 was found to block staurosporine- and gramicidin-induced cytotoxicity in nutrient-deprived dopaminergic B65 cells, and its neuroprotective effects included preventing the release of cytochrome c from mitochondria. CONCLUSIONS Collectively, these data support that DNSP-11 exhibits potent neurotrophic actions analogous to GDNF, making it a viable candidate for a PD therapeutic. However, it likely signals through pathways that do not directly involve the GFRalpha1 receptor.
Collapse
Affiliation(s)
- Luke H Bradley
- Department of Anatomy & Neurobiology and the Morris K. Udall Parkinson's Disease Research Center of Excellence, University of Kentucky College of Medicine, Lexington, Kentucky, United States of America.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Pandey V, Qian PX, Kang J, Perry JK, Mitchell MD, Yin Z, Wu ZS, Liu DX, Zhu T, Lobie PE. Artemin stimulates oncogenicity and invasiveness of human endometrial carcinoma cells. Endocrinology 2010; 151:909-20. [PMID: 20118197 DOI: 10.1210/en.2009-0979] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Here, we provide evidence for a functional role of artemin (ARTN) in progression of endometrial carcinoma (EC). Increased ARTN protein expression was observed in EC compared with normal endometrial tissue, and ARTN protein expression in EC was significantly associated with higher tumor grade and invasiveness. Forced expression of ARTN in EC cells significantly increased total cell number as a result of enhanced cell cycle progression and cell survival. In addition, forced expression of ARTN significantly enhanced anchorage-independent growth and invasiveness of EC cells. Moreover, forced expression of ARTN increased tumor size in xenograft models and produced highly proliferative, poorly differentiated, and invasive tumors. The ARTN-stimulated increases in oncogenicity and invasion were mediated by increased expression and activity of AKT1. Small interfering RNA-mediated depletion or antibody inhibition of ARTN significantly reduced oncogenicity and invasion of EC cells. Thus, inhibition of ARTN may be considered as a potential therapeutic strategy to retard progression of EC.
Collapse
Affiliation(s)
- Vijay Pandey
- The Liggins Institute, University of Auckland, 2-6 Park Avenue, Private Bag 92019 Auckland, New Zealand
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Angelucci F, Colantoni L. Facioscapulohumeral muscular dystrophy: do neurotrophins play a role? Muscle Nerve 2010; 41:120-7. [PMID: 19813193 DOI: 10.1002/mus.21505] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Although the molecular defect of facioscapulohumeral muscular dystrophy (FSHD) is well established and involves the contraction of the polymorphic 3.3 kb D4Z4 repeat on the subtelomeric region of chromosome 4q35, the pathologic effects of this deletion remain largely unknown. As a consequence, no specific treatment for FSHD is at present available. Thus, there is the need to explore new areas in an attempt to better characterize pathophysiological alterations in FSHD that might be useful for managing the disease. Neurotrophins (nerve growth factor, brain-derived neurotrophic factor, neurotrophin-3, and neurotrophin-4/5) are a class of proteins involved in the development, maintenance, and function of neurons of the peripheral and central nervous systems. In addition, neurotrophins and their RNAs are expressed in muscle, where they have a role in development and regeneration. In this article we put together the experimental evidence that indicates neurotrophins might be involved in the pathophysiology of FSHD and discuss the possible implications of this assumption.
Collapse
Affiliation(s)
- Francesco Angelucci
- IRCCS Santa Lucia Foundation, Department of Clinical and Behavioural Neurology, 00179, Rome, Italy.
| | | |
Collapse
|
36
|
Abstract
Parkinson's disease (PD) is a chronic, progressive neurodegenerative movement disorder for which there is currently no effective therapy. Over the past several decades, there has been a considerable interest in neuroprotective therapies using trophic factors to alleviate the symptoms of PD. Neurotrophic factors (NTFs) are a class of molecules that influence a number of neuronal functions, including cell survival and axonal growth. Experimental studies in animal models suggest that members of neurotrophin family and GDNF family of ligands (GFLs) have the potent ability to protect degenerating dopamine neurons as well as promote regeneration of the nigrostriatal dopamine system. In clinical trials, although no serious adverse events related to the NTF therapy has been reported in patients, they remain inconclusive. In this chapter, we attempt to give a brief overview on several different growth factors that have been explored for use in animal models of PD and those already used in PD patients.
Collapse
|
37
|
Parkash V, Lindholm P, Peränen J, Kalkkinen N, Oksanen E, Saarma M, Leppänen VM, Goldman A. The structure of the conserved neurotrophic factors MANF and CDNF explains why they are bifunctional. Protein Eng Des Sel 2009; 22:233-41. [PMID: 19258449 DOI: 10.1093/protein/gzn080] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
We have solved the structures of mammalian mesencephalic astrocyte-derived neurotrophic factor (MANF) and conserved dopamine neurotrophic factor (CDNF). CDNF protects and repairs midbrain dopaminergic neurons in vivo; MANF supports their survival in culture and is also cytoprotective against endoplasmic reticulum (ER) stress. Neither protein structure resembles any known growth factor but the N-terminal domain is a saposin-like lipid-binding domain. MANF and CDNF may thus bind lipids or membranes. Consistent with this, there are two patches of conserved lysines and arginines. The natively unfolded MANF C-terminus contains a CKGC disulphide bridge, such as reductases and disulphide isomerases, consistent with a role in ER stress response. The structure thus explains why MANF and CDNF are bifunctional; neurotrophic activity may reside in the N-terminal domain and ER stress response in the C-terminal domain. Finally, we identified three changes, (MANF)I10-->K(CDNF), (MANF)E79-->M(CDNF) and (MANF)K88-->L(CDNF), that may account for the biological differences between the proteins.
Collapse
Affiliation(s)
- Vimal Parkash
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Kaang BK. Genes and Neurons. Mol Pain 2009. [DOI: 10.1007/978-0-387-75269-3_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
39
|
Infusion Therapy for Movement Disorders. Neuromodulation 2009. [DOI: 10.1016/b978-0-12-374248-3.00045-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
40
|
Angelucci F, Ricci V, Spalletta G, Caltagirone C, Mathé AA, Bria P. Effects of psychostimulants on neurotrophins implications for psychostimulant-induced neurotoxicity. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2009; 88:1-24. [PMID: 19897072 DOI: 10.1016/s0074-7742(09)88001-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
It is well documented that psychostimulants may alter neuronal function and neurotransmission in the brain. Although the mechanism of psychostimulants is still unknown, it is known that these substances increase extracellular level of several neurotransmitters including dopamine (DA), serotonin, and norepinephrine by competing with monoamine transporters and can induce physical tolerance and dependence. In addition to this, recent findings also suggest that psychostimulants may damage brain neurons through mechanisms that are still under investigation. In the recent years, it has been demonstrated that almost all psychostimulants are able to affect a class of proteins, called neurotrophins, in the peripheral and central nervous system (CNS). Neurotrophins, such as nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF), have relevant action on neurons involved in psychostimulant action, such as DA and serotonergic neurons, and can play dual roles: first, in neuronal survival and death, and, second, in activity-dependent plasticity. In this review, we will focalize on the effects of psychostimulants on this class of proteins, which may be implicated, at least in part, in the mechanism of the psychostimulant-induced neurotoxicity. Moreover, since altered neurotrophins may participate in the pathogenesis of psychiatric disorders and psychiatric disorders are common in drug users, one plausible hypothesis is that psychostimulants can cause psychosis through interfering with neurotrophins synthesis and utilization by CNS neurons.
Collapse
Affiliation(s)
- Francesco Angelucci
- Department of Clinical and Behavioural Neurology, IRCCS Santa Lucia Foundation, Rome, Italy
| | | | | | | | | | | |
Collapse
|
41
|
Puglielli L. Aging of the brain, neurotrophin signaling, and Alzheimer's disease: is IGF1-R the common culprit? Neurobiol Aging 2008; 29:795-811. [PMID: 17313996 PMCID: PMC2387053 DOI: 10.1016/j.neurobiolaging.2007.01.010] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2006] [Revised: 09/21/2006] [Accepted: 01/13/2007] [Indexed: 12/26/2022]
Abstract
The last decade has revealed that the lifespan of an organism can be modulated by the signaling pathway that acts downstream of the insulin/insulin-like growth factor 1 receptors (IR/IGF1-R), indicating that there is a "program" that drives the process of aging. New results have now linked the same pathway to the neurogenic capacities of the aging brain, to neurotrophin signaling, and to the molecular pathogenesis of Alzheimer's disease. Therefore, a common signaling cascade now seems to link aging to age-associated pathologies of the brain, suggesting that pharmacologic approaches aimed at the modulation of this pathway can serve to delay the onset of age-associated disorders and improve the quality of life. Work from a wide range of fields performed with different approaches has already identified some of the signaling molecules that act downstream of IGF1-R, and has revealed that a delicate checkpoint exists to balance excessive growth/"immortality" and reduced growth/"senescence" of a cell. Future research will determine how far the connection goes and how much of it we can influence.
Collapse
Affiliation(s)
- Luigi Puglielli
- Department of Medicine, University of Wisconsin-Madison, and Geriatric Research Education Clinical Center, VA Medical Center, VAH-GRECC 11G, 2500 Overlook Terrace, Madison, WI 53705, USA.
| |
Collapse
|
42
|
Al-Bishri A, Forsgren S, Al-Thobaiti Y, Sunzel B, Rosenquist J. Effect of betamethasone on the degree of macrophage recruitment and nerve growth factor receptor p75 immunoreaction during recovery of the sciatic nerve after injury: an experimental study in rats. Br J Oral Maxillofac Surg 2008; 46:455-9. [PMID: 18499314 DOI: 10.1016/j.bjoms.2008.01.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/31/2008] [Indexed: 10/22/2022]
Abstract
PURPOSE This study was designed to explain our previous findings of beneficial effects of betamethasone given perioperatively on decreasing the incidence of neurosensory disturbance after sagittal split osteotomy and improving functional recovery after crush injury to rat sciatic nerves. We analysed the pattern of macrophage recruitment and expression of nerve growth factor p75. MATERIAL AND METHODS The sciatic nerve was crushed in each of 42 animals by tying the nerve against a glass rod for 30s. Half the rats were given betamethasone and half were not. The effect of betamethasone was evaluated immunohistochemically in a double blind manner after 2, 7 and 17 days using antibodies against macrophage marker (ED1) and p75. RESULTS We found an initial and significant decrease in the number of macrophages recruited after two days in the group treated with betamethasone compared with controls (p=0.001). By 7 days there were significantly more macrophages in the steroid group than in the control group (p=0.001). There was however, a tendency for the number of p75R to be higher in the in the steroid group but the difference was not significant. At 17 days, there were significantly fewer macrophages in the steroid group (p=0.008) than in the control. CONCLUSION We conclude that the beneficial effect of a moderate perioperative dose of betamethasone on recovery of a nerve is reflected in the recruitment of macrophages but to only a small extent in expression of p75.
Collapse
Affiliation(s)
- Awwad Al-Bishri
- Department of Oral and Maxillofacial Surgery, Al-Noor Specialist Hospital, Makkah, Saudi Arabia.
| | | | | | | | | |
Collapse
|
43
|
FUJINO TADAHIRO, WU ZHEN, LIN WALTERC, PHILLIPS MARNIEA, NEDIVI ELLY. cpg15 and cpg15-2 constitute a family of activity-regulated ligands expressed differentially in the nervous system to promote neurite growth and neuronal survival. J Comp Neurol 2008; 507:1831-45. [PMID: 18265009 PMCID: PMC2828060 DOI: 10.1002/cne.21649] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Many ligands that affect nervous system development are members of gene families that function together to coordinate the assembly of complex neural circuits. cpg15/neuritin encodes an extracellular ligand that promotes neurite growth, neuronal survival, and synaptic maturation. Here we identify cpg15-2 as the only paralogue of cpg15 in the mouse and human genome. Both genes are expressed predominantly in the nervous system, where their expression is regulated by activity. cpg15-2 expression increases by more than twofold in response to kainate-induced seizures and nearly fourfold in the visual cortex in response to 24 hours of light exposure following dark adaptation. cpg15 and cpg15-2 diverge in their spatial and temporal expression profiles. cpg15-2 mRNA is most abundant in the retina and the olfactory bulb, as opposed to the cerebral cortex and the hippocampus for cpg15. In the retina, they differ in their cell-type specificity. cpg15 is expressed in retinal ganglion cells, whereas cpg15-2 is predominantly in bipolar cells. Developmentally, onset of cpg15-2 expression is delayed compared with cpg15 expression. CPG15-2 is glycosylphosphatidylinositol (GPI) anchored to the cell membrane and, like CPG15, can be released in a soluble-secreted form, but with lower efficiency. CPG15 and CPG15-2 were found to form homodimers and heterodimers with each other. In hippocampal explants and dissociated cultures, CPG15 and CPG15-2 promote neurite growth and neuronal survival with similar efficacy. Our findings suggest that CPG15 and CPG15-2 perform similar cellular functions but may play distinct roles in vivo through their cell-type- and tissue-specific transcriptional regulation.
Collapse
Affiliation(s)
- TADAHIRO FUJINO
- The Picower Institute for Learning and Memory, Departments of Brain and Cognitive Sciences and Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - ZHEN WU
- The Picower Institute for Learning and Memory, Departments of Brain and Cognitive Sciences and Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - WALTER C. LIN
- The Picower Institute for Learning and Memory, Departments of Brain and Cognitive Sciences and Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - MARNIE A. PHILLIPS
- The Picower Institute for Learning and Memory, Departments of Brain and Cognitive Sciences and Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - ELLY NEDIVI
- The Picower Institute for Learning and Memory, Departments of Brain and Cognitive Sciences and Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| |
Collapse
|
44
|
Tatarewicz SM, Wei X, Gupta S, Masterman D, Swanson SJ, Moxness MS. Development of a Maturing T-Cell-Mediated Immune Response in Patients with Idiopathic Parkinson’s Disease Receiving r-metHuGDNF Via Continuous Intraputaminal Infusion. J Clin Immunol 2007; 27:620-7. [PMID: 17629719 DOI: 10.1007/s10875-007-9117-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2007] [Accepted: 06/19/2007] [Indexed: 11/30/2022]
Abstract
The development of a maturing T-cell-mediated immune response was characterized in Parkinson's disease subjects receiving recombinant human glial-derived neurotrophic factor (r-metHuGDNF) via continuous bilateral intraputaminal infusion. Eighteen of 34 subjects tested positive for anti-r-metHuGDNF-binding antibodies. Four subjects developed neutralizing activity, three of which demonstrated classic immunoglobulin class switching from IgM to IgG. An increase of anti-r-metHuGDNF IgG-binding antibodies correlated with the development of neutralizing activity. All serum samples from two subjects with neutralizing activity were characterized for IgG subclasses. These data revealed an initial anti-r-metHuGDNF IgG population where IgG1 >> IgG2 >> IgG4, and IgG3 concentrations were negligible. However, continued antigenic stimulation resulted in concentration changes where IgG4 > IgG1> IgG2, indicating a mature immune response. In addition, using in silico techniques, two immunodominant MHC class II T-cell epitopes were predicted for the native GDNF sequence. These data demonstrate development of a mature T-cell-mediated immune response in these subjects.
Collapse
Affiliation(s)
- Suzanna M Tatarewicz
- Clinical Immunology, Medical Sciences, Amgen Inc, Thousand Oaks, CA 91320-1799, USA.
| | | | | | | | | | | |
Collapse
|
45
|
Consales C, Volpicelli F, Greco D, Leone L, Colucci-D'Amato L, Perrone-Capano C, di Porzio U. GDNF signaling in embryonic midbrain neurons in vitro. Brain Res 2007; 1159:28-39. [PMID: 17574220 DOI: 10.1016/j.brainres.2007.04.071] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2006] [Revised: 04/24/2007] [Accepted: 04/25/2007] [Indexed: 01/11/2023]
Abstract
The glial cell line-derived neurotrophic factor (GDNF) exerts trophic actions on a number of cell types, including mesencephalic dopaminergic (mDA) neurons. Using rat mesencephalic primary cultures enriched in mDA neurons, we show that protracted GDNF stimulation increases their survival and neurite outgrowth. It modulates the expression of genes essential for DA function (tyrosine hydroxylase, TH and dopamine transporter, dat) and of DA high affinity uptake. To identify genes involved in GDNF signaling pathways, we have used DNA microarray on mDA cultures stimulated with GDNF for 3 h. Here we show that GDNF signaling sequentially activates the genes encoding for the transcription factors EGR1 and TIEG. In addition, it increases the expression of cav1, which encodes for the major component of caveolae. GDNF also modulates the expression of the genes encoding for the Calcineurin subunits ppp3R1 and ppp3CB, and inhibits calcium-calmodulin-dependent protein kinase II beta isoform (CaMKIIbeta) gene expression. These proteins are involved in neuronal differentiation and synaptic plasticity. Moreover, GDNF stimulation down regulates the expression of the glycogen synthase kinase 3beta (gsk3beta) gene, involved in neuronal apoptosis. Using inhibitors of specific intracellular signal transduction pathways we show that changes of egr1, tieg, cav1, CaMkIIbeta and gsk3beta genes expression are extracellular-signal regulated kinases 1/2 (ERK)-dependent, while the cAMP-dependent protein kinase (PKA) pathway influences the up-regulation of ppp3R1 and ppp3CB gene expression. These results demonstrate that GDNF stimulation results in the transcriptional modulation of genes involved in neuronal plasticity and survival and in mDA function, mediated in part by ERK and PKA signaling.
Collapse
Affiliation(s)
- Claudia Consales
- Institute of Genetics and Biophysics A. Buzzati-Traverso, CNR, via P. Castellino 111, 80131 Naples, Italy
| | | | | | | | | | | | | |
Collapse
|
46
|
de Vries A, Engels F, Henricks PAJ, Leusink-Muis T, McGregor GP, Braun A, Groneberg DA, Dessing MC, Nijkamp FP, Fischer A. Airway hyper-responsiveness in allergic asthma in guinea-pigs is mediated by nerve growth factor via the induction of substance P: a potential role for trkA. Clin Exp Allergy 2007; 36:1192-200. [PMID: 16961720 DOI: 10.1111/j.1365-2222.2006.02549.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND The neurotrophin nerve growth factor (NGF) has been implicated as a mediator in allergic asthma. Direct evidence that inhibition of NGF-induced activation of neurotrophin receptors leads to improvement of airway symptoms is lacking. We therefore studied the effects of inhibitors of NGF signal transduction on the development of airway hyper-responsiveness (AHR) and pulmonary inflammation in a guinea-pig model for allergic asthma. METHODS Airway responsiveness to the contractile agonist histamine was measured in vivo in guinea-pigs that were sensitized and challenged with ovalbumin (OVA). Inflammatory cell influx and NGF levels were determined in bronchoalveolar lavage fluid (BALF). Substance P, a key mediator of inflammation, was measured in lung tissue by radioimmunoassay, while substance P immunoreactive neurons in nodose ganglia were measured by immunohistochemistry. RESULTS OVA challenge induced an AHR after 24 h in OVA-sensitized guinea-pigs. This coincided with an increase in the amount of NGF in BALF. Simultaneously, an increase in the percentage of substance P immunoreactive neurons in the nodose ganglia and an increase in the amount of substance P in lung tissue were found. We used tyrosine kinase inhibitors to block the signal transduction of the high-affinity NGF receptor, tyrosine kinase A (trkA). Treatment with the tyrosine kinase inhibitors (K252a or tyrphostin AG879) both inhibited the development of AHR, and prevented the increase in substance P in the nodose ganglia and lung tissue completely whereas both inhibitors had no effect on baseline airway resistance. Neither treatment with K252a or tyrphostin AG879 changed the influx of inflammatory cells in the BALF due to allergen challenge. CONCLUSIONS We conclude that substance P plays a role in the induction of AHR in our model for allergic asthma which is most likely mediated by NGF. As both tyrosine kinase inhibitors AG879 and K252a show a similar inhibitory effect on airway function after allergen challenge, although both tyrosine kinase inhibitors exhibit different non-specific inhibitory effects on targets other than trkA tyrosine kinases, it is likely that the induction of substance P derived from sensory nerves is mediated by NGF via its high-affinity receptor trkA.
Collapse
Affiliation(s)
- A de Vries
- Immunobiology Group, Centre for Inflammation Research & Endocrinology Unit, Centre for Cardiovascular Science, The Queen's Medical Research Institute, Edinburgh, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Hallböök F, Wilson K, Thorndyke M, Olinski RP. Formation and evolution of the chordate neurotrophin and Trk receptor genes. BRAIN, BEHAVIOR AND EVOLUTION 2006; 68:133-44. [PMID: 16912467 DOI: 10.1159/000094083] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Neurotrophins are structurally related neurotrophic polypeptide factors that regulate neuronal differentiation and are essential for neuronal survival, neurite growth and plasticity. It has until very recently been thought that the neurotrophin system appeared with the vertebrate species, but identification of a cephalochordate neurotrophin receptor (Trk), and more recently neurotrophin sequences in several genomes of deuterostome invertebrates, show that the system already existed at the stem of the deuterostome group. Comparative genomics supports the hypothesis that two whole genome duplications produced many of the vertebrate gene families, among those the neurotrophin and Trk families. It remains to be proven to what extent the whole genome duplications have driven macroevolutionary change, but it appears certain that the formation of the multi-gene copy neurotrophin and Trk receptor families at the stem of vertebrates has provided a foundation from which the various functions and pleiotropic effects produced by each of the four extant neurotrophins have evolved.
Collapse
Affiliation(s)
- Finn Hallböök
- Department of Neuroscience, Unit for Developmental Neuroscience, Uppsala University, Uppsala, Sweden.
| | | | | | | |
Collapse
|
48
|
Pitts EV, Potluri S, Hess DM, Balice-Gordon RJ. Neurotrophin and Trk-mediated signaling in the neuromuscular system. Int Anesthesiol Clin 2006; 44:21-76. [PMID: 16849956 DOI: 10.1097/00004311-200604420-00004] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
49
|
Costantini C, Weindruch R, Della Valle G, Puglielli L. A TrkA-to-p75NTR molecular switch activates amyloid beta-peptide generation during aging. Biochem J 2006; 391:59-67. [PMID: 15966860 PMCID: PMC1237139 DOI: 10.1042/bj20050700] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Aging is the single most important risk factor for AD (Alzheimer's disease). However, the molecular events that connect normal aging to AD are mostly unknown. The abnormal accumulation of Abeta (amyloid beta-peptide) in the form of senile plaques is one of the main characteristics of AD. In the present study, we show that two members of the neurotrophin receptor superfamily, TrkA (tyrosine kinase receptor A) and p75NTR (p75 neurotrophin receptor), differentially regulate the processing of APP (amyloid precursor protein): TrkA reduces, whereas p75NTR activates, beta-cleavage of APP. The p75NTR-dependent effect requires NGF (nerve growth factor) binding and activation of the second messenger ceramide. We also show that normal aging activates Abeta generation in the brain by 'switching' from the TrkA to the p75NTR receptor system. Such an effect is abolished in p75NTR 'knockout' animals, and can be blocked by both caloric restriction and inhibitors of nSMase (neutral sphingomyelinase). In contrast with caloric restriction, which prevents the age-associated up-regulation of p75NTR expression, nSMase inhibitors block the activation of ceramide. When taken together, these results indicate that the p75NTR-ceramide signalling pathway activates the rate of Abeta generation in an age-dependent fashion, and provide a new target for both the understanding and the prevention of late-onset AD.
Collapse
Affiliation(s)
- Claudio Costantini
- *Department of Medicine, University of Wisconsin-Madison, Wm. S. Middleton Memorial Veteran's Hospital, Madison, WI 53705, U.S.A
| | - Richard Weindruch
- *Department of Medicine, University of Wisconsin-Madison, Wm. S. Middleton Memorial Veteran's Hospital, Madison, WI 53705, U.S.A
| | | | - Luigi Puglielli
- *Department of Medicine, University of Wisconsin-Madison, Wm. S. Middleton Memorial Veteran's Hospital, Madison, WI 53705, U.S.A
- To whom correspondence should be addressed (email )
| |
Collapse
|
50
|
Levy YS, Gilgun-Sherki Y, Melamed E, Offen D. Therapeutic potential of neurotrophic factors in neurodegenerative diseases. BioDrugs 2005; 19:97-127. [PMID: 15807629 DOI: 10.2165/00063030-200519020-00003] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
There is a vast amount of evidence indicating that neurotrophic factors play a major role in the development, maintenance, and survival of neurons and neuron-supporting cells such as glia and oligodendrocytes. In addition, it is well known that alterations in levels of neurotrophic factors or their receptors can lead to neuronal death and contribute to the pathogenesis of neurodegenerative diseases such as Parkinson disease, Alzheimer disease, Huntington disease, amyotrophic lateral sclerosis, and also aging. Although various treatments alleviate the symptoms of neurodegenerative diseases, none of them prevent or halt the neurodegenerative process. The high potency of neurotrophic factors, as shown by many experimental studies, makes them a rational candidate co-therapeutic agent in neurodegenerative disease. However, in practice, their clinical use is limited because of difficulties in protein delivery and pharmacokinetics in the central nervous system. To overcome these disadvantages and to facilitate the development of drugs with improved pharmacotherapeutic profiles, research is underway on neurotrophic factors and their receptors, and the molecular mechanisms by which they work, together with the development of new technologies for their delivery into the brain.
Collapse
Affiliation(s)
- Yossef S Levy
- Laboratory of Neuroscineces, Felsenstein Medical Research Center, Israel
| | | | | | | |
Collapse
|