1
|
Choi TW, Cho JH, Ahnn J, Song HO. Novel Findings of Anti-Filarial Drug Target and Structure-Based Virtual Screening for Drug Discovery. Int J Mol Sci 2018; 19:E3579. [PMID: 30428563 PMCID: PMC6274684 DOI: 10.3390/ijms19113579] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 11/01/2018] [Accepted: 11/10/2018] [Indexed: 12/22/2022] Open
Abstract
Lymphatic filariasis and onchocerciasis caused by filarial nematodes are important diseases leading to considerable morbidity throughout tropical countries. Diethylcarbamazine (DEC), albendazole (ALB), and ivermectin (IVM) used in massive drug administration are not highly effective in killing the long-lived adult worms, and there is demand for the development of novel macrofilaricidal drugs affecting new molecular targets. A Ca2+ binding protein, calumenin, was identified as a novel and nematode-specific drug target for filariasis, due to its involvement in fertility and cuticle development in nematodes. As sterilizing and killing effects of the adult worms are considered to be ideal profiles of new drugs, calumenin could be an eligible drug target. Indeed, the Caenorhabditis elegans mutant model of calumenin exhibited enhanced drug acceptability to both microfilaricidal drugs (ALB and IVM) even at the adult stage, proving the roles of the nematode cuticle in efficient drug entry. Molecular modeling revealed that structural features of calumenin were only conserved among nematodes (C. elegans, Brugia malayi, and Onchocerca volvulus). Structural conservation and the specificity of nematode calumenins enabled the development of drugs with good target selectivity between parasites and human hosts. Structure-based virtual screening resulted in the discovery of itraconazole (ITC), an inhibitor of sterol biosynthesis, as a nematode calumenin-targeting ligand. The inhibitory potential of ITC was tested using a nematode mutant model of calumenin.
Collapse
Affiliation(s)
- Tae-Woo Choi
- Department of Life Science, Hanyang University, Seoul 04763, Korea.
| | - Jeong Hoon Cho
- Department of Biology Education, College of Education, Chosun University, Gwangju 61452, Korea.
| | - Joohong Ahnn
- Department of Life Science, Hanyang University, Seoul 04763, Korea.
| | - Hyun-Ok Song
- Department of Infection Biology, Wonkwang University School of Medicine, Iksan 54538, Korea.
| |
Collapse
|
2
|
Targeting Human Onchocerciasis: Recent Advances Beyond Ivermectin. ANNUAL REPORTS IN MEDICINAL CHEMISTRY 2018. [DOI: 10.1016/bs.armc.2018.08.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
3
|
Shi J, Ma X, Gao Y, Fan D, Zhu C, Mi Y, Xue W. Hydroxylation of Human Type III Collagen Alpha Chain by Recombinant Coexpression with a Viral Prolyl 4-Hydroxylase in Escherichia coli. Protein J 2017; 36:322-331. [PMID: 28589291 DOI: 10.1007/s10930-017-9723-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
High-level expression of recombinant collagen by genetic engineering is urgently required. Recombinant collagen is different from natural collagen in its hydroxyproline (Hyp) content and thermal stability. To obtain hydroxylated collagen for applications in biomedicine and biomaterials, the human collagen α1(III) chain was co-expressed with the viral prolyl 4-hydroxylase A085R in Escherichia coli. Unlike previous reports using human prolyl 4-hydroxylase, this study examined the hydroxylation of full-length human collagen α1(III) chain (COL3A1) by viral prolyl 4-hydroxylase. The genes encoding these two proteins were controlled by different promoters, Ptac and PRPL, on a recombinant pKK223-3 plasmid. The sequencing results verified that the target genes were successfully inserted into the recombinant vector. Based on quantitative PCR, SDS-PAGE, and western blotting, successful expression by E. coli BL21(DE3) was detected at the mRNA and protein levels for both loci. Liquid chromatography-mass spectrometry (LC-MS/MS) results suggested that the highest Hyp yield was obtained when the two proteins were induced with 0.5 mM IPTG and heat-shock treatment at 50 °C, corresponding to high enzyme expression and low human collagen α1(III) chain expression levels. A biological activity analysis indicated that the recombinant collagen with the highest hydroxylation level supported the growth of baby hamster kidney cells, similar to observations for native collagen. The production of hydroxylated collagen in this study establishes a new method for collagen hydroxylation and provides a basis for the application of recombinant collagen expressed in E. coli.
Collapse
Affiliation(s)
- Jingjing Shi
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, 710069, Shaanxi, China
- Shanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, 710069, Shaanxi, China
| | - Xiaoxuan Ma
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, 710069, Shaanxi, China
- Shanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, 710069, Shaanxi, China
| | - Yuan Gao
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, 710069, Shaanxi, China
- Shanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, 710069, Shaanxi, China
| | - Daidi Fan
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, 710069, Shaanxi, China.
- Shanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, 710069, Shaanxi, China.
| | - Chenhui Zhu
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, 710069, Shaanxi, China
- Shanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, 710069, Shaanxi, China
| | - Yu Mi
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, 710069, Shaanxi, China
- Shanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, 710069, Shaanxi, China
| | - Wenjiao Xue
- Shaanxi Provincial Institute of Microbiology, Xi'an, 710043, China
| |
Collapse
|
4
|
Kant R, Bali A, Singh N, Jaggi AS. Prolyl 4 hydroxylase: a critical target in the pathophysiology of diseases. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2013; 17:111-20. [PMID: 23626472 PMCID: PMC3634087 DOI: 10.4196/kjpp.2013.17.2.111] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 03/01/2013] [Accepted: 03/06/2013] [Indexed: 01/19/2023]
Abstract
Prolyl 4 hydroxylases (P4H) are iron- and 2-oxoglutamate-dependent dioxygenase enzymes and hypoxia-inducible transcription factor (HIF)-P4Hs play a critical role in the regulating oxygen homeostasis in the local tissues as well in the systemic circulation. Over a period of time, a number of prolyl hydroxylase inhibitors and activators have been developed. By employing the pharmacological tools and transgenic knock out animals, the critical role of these enzymes has been established in the pathophysiology of number of diseases including myocardial infarction, congestive heart failure, stroke, neurodegeneration, inflammatory disease, respiratory diseases, retinopathy and others. The present review discusses the different aspects of these enzymes including their pathophysiological role in disease development.
Collapse
Affiliation(s)
- Ravi Kant
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala-147002, India
| | - Anjana Bali
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala-147002, India
| | - Nirmal Singh
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala-147002, India
| | - Amteshwar Singh Jaggi
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala-147002, India
| |
Collapse
|
5
|
Winter AD, McCormack G, Myllyharju J, Page AP. Prolyl 4-hydroxlase activity is essential for development and cuticle formation in the human infective parasitic nematode Brugia malayi. J Biol Chem 2012; 288:1750-61. [PMID: 23223450 PMCID: PMC3548485 DOI: 10.1074/jbc.m112.397604] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Collagen prolyl 4-hydroxylases (C-P4H) are required for formation of extracellular matrices in higher eukaryotes. These enzymes convert proline residues within the repeat regions of collagen polypeptides to 4-hydroxyproline, a modification essential for the stability of the final triple helix. C-P4H are most often oligomeric complexes, with enzymatic activity contributed by the α subunits, and the β subunits formed by protein disulfide isomerase (PDI). Here, we characterize this enzyme class in the important human parasitic nematode Brugia malayi. All potential C-P4H subunits were identified by detailed bioinformatic analysis of sequence databases, function was investigated both by RNAi in the parasite and heterologous expression in Caenorhabditis elegans, whereas biochemical activity and complex formation were examined via co-expression in insect cells. Simultaneous RNAi of two B. malayi C-P4H α subunit-like genes resulted in a striking, highly penetrant body morphology phenotype in parasite larvae. This was replicated by single RNAi of a B. malayi C-P4H β subunit-like PDI. Surprisingly, however, the B. malayi proteins were not capable of rescuing a C. elegans α subunit mutant, whereas the human enzymes could. In contrast, the B. malayi PDI did functionally complement the lethal phenotype of a C. elegans β subunit mutant. Comparison of recombinant and parasite derived material indicates that enzymatic activity may be dependent on a non-reducible covalent link, present only in the parasite. We therefore demonstrate that C-P4H activity is essential for development of B. malayi and uncover a novel parasite-specific feature of these collagen biosynthetic enzymes that may be exploited in future parasite control.
Collapse
Affiliation(s)
- Alan D Winter
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Garscube Estate, Bearsden Road, Glasgow G61 1QH, Scotland, United Kingdom.
| | | | | | | |
Collapse
|
6
|
Rao RU, Huang Y, Abubucker S, Heinz M, Crosby SD, Mitreva M, Weil GJ. Effects of doxycycline on gene expression in Wolbachia and Brugia malayi adult female worms in vivo. J Biomed Sci 2012; 19:21. [PMID: 22321609 PMCID: PMC3352068 DOI: 10.1186/1423-0127-19-21] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Accepted: 02/09/2012] [Indexed: 12/28/2022] Open
Abstract
Background Most filarial nematodes contain Wolbachia symbionts. The purpose of this study was to examine the effects of doxycycline on gene expression in Wolbachia and adult female Brugia malayi. Methods Brugia malayi infected gerbils were treated with doxycycline for 6-weeks. This treatment largely cleared Wolbachia and arrested worm reproduction. RNA recovered from treated and control female worms was labeled by random priming and hybridized to the Version 2- filarial microarray to obtain expression profiles. Results and discussion Results showed significant changes in expression for 200 Wolbachia (29% of Wolbachia genes with expression signals in untreated worms) and 546 B. malayi array elements after treatment. These elements correspond to known genes and also to novel genes with unknown biological functions. Most differentially expressed Wolbachia genes were down-regulated after treatment (98.5%). In contrast, doxycycline had a mixed effect on B. malayi gene expression with many more genes being significantly up-regulated after treatment (85% of differentially expressed genes). Genes and processes involved in reproduction (gender-regulated genes, collagen, amino acid metabolism, ribosomal processes, and cytoskeleton) were down-regulated after doxycycline while up-regulated genes and pathways suggest adaptations for survival in response to stress (energy metabolism, electron transport, anti-oxidants, nutrient transport, bacterial signaling pathways, and immune evasion). Conclusions Doxycycline reduced Wolbachia and significantly decreased bacterial gene expression. Wolbachia ribosomes are believed to be the primary biological target for doxycycline in filarial worms. B. malayi genes essential for reproduction, growth and development were also down-regulated; these changes are consistent with doxycycline effects on embryo development and reproduction. On the other hand, many B. malayi genes involved in energy production, electron-transport, metabolism, anti-oxidants, and others with unknown functions had increased expression signals after doxycycline treatment. These results suggest that female worms are able to compensate in part for the loss of Wolbachia so that they can survive, albeit without reproductive capacity. This study of doxycycline induced changes in gene expression has provided new clues regarding the symbiotic relationship between Wolbachia and B. malayi.
Collapse
Affiliation(s)
- Ramakrishna U Rao
- Infectious Diseases Division, Department of Internal Medicine, St, Louis, Missouri, USA.
| | | | | | | | | | | | | |
Collapse
|
7
|
Molecular cloning and characterization of a novel immunoreactive ATPase/RNA helicase in human filarial parasite Brugia malayi. Parasitol Res 2008; 104:753-61. [DOI: 10.1007/s00436-008-1251-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2008] [Accepted: 10/21/2008] [Indexed: 10/21/2022]
|
8
|
Scott AL, Ghedin E. The genome of Brugia malayi - all worms are not created equal. Parasitol Int 2008; 58:6-11. [PMID: 18952001 DOI: 10.1016/j.parint.2008.09.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2008] [Revised: 09/09/2008] [Accepted: 09/10/2008] [Indexed: 11/28/2022]
Abstract
Filarial nematode parasites, the causative agents of elephantiasis and river blindness, undermine the livelihoods of over one hundred million people in the developing world. Recently, the Filarial Genome Project reported the draft sequence of the ~95 Mb genome of the human filarial parasite Brugia malayi - the first parasitic nematode genome to be sequenced. Comparative genome analysis with the prevailing model nematode Caenorhabditis elegans revealed similarities and differences in genome structure and organization that will prove useful as additional nematode genomes are completed. The Brugia genome provides the first opportunity to comprehensively compare the full gene repertoire of a free-living nematode species and one that has evolved as a human pathogen. The Brugia genome also provides an opportunity to gain insight into genetic basis for mutualism, as Brugia, like a majority of filarial species, harbors an endosybiotic bacterium (Wolbachia). The goal of this review is to provide an overview of the results of genomic analysis and how these observations provide new insights into the biology of filarial species.
Collapse
Affiliation(s)
- Alan L Scott
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA.
| | | |
Collapse
|
9
|
Winter AD, Keskiaho K, Kukkola L, McCormack G, Felix MA, Myllyharju J, Page AP. Differences in collagen prolyl 4-hydroxylase assembly between two Caenorhabditis nematode species despite high amino acid sequence identity of the enzyme subunits. Matrix Biol 2007; 26:382-95. [PMID: 17321733 DOI: 10.1016/j.matbio.2007.01.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2006] [Accepted: 01/23/2007] [Indexed: 11/24/2022]
Abstract
The collagen prolyl 4-hydroxylases (P4Hs) are essential for proper extracellular matrix formation in multicellular organisms. The vertebrate enzymes are alpha(2)beta(2) tetramers, in which the beta subunits are identical to protein disulfide isomerase (PDI). Unique P4H forms have been shown to assemble from the Caenorhabditis elegans catalytic alpha subunit isoforms PHY-1 and PHY-2 and the beta subunit PDI-2. A mixed PHY-1/PHY-2/(PDI-2)(2) tetramer is the major form, while PHY-1/PDI-2 and PHY-2/PDI-2 dimers are also assembled but less efficiently. Cloning and characterization of the orthologous subunits from the closely related nematode Caenorhabditis briggsae revealed distinct differences in the assembly of active P4H forms in spite of the extremely high amino acid sequence identity (92-97%) between the C. briggsae and C. elegans subunits. In addition to a PHY-1/PHY-2(PDI-2)(2) tetramer and a PHY-1/PDI-2 dimer, an active (PHY-2)(2)(PDI-2)(2) tetramer was formed in C. briggsae instead of a PHY-2/PDI-2 dimer. Site-directed mutagenesis studies and generation of inter-species hybrid polypeptides showed that the N-terminal halves of the Caenorhabditis PHY-2 polypeptides determine their assembly properties. Genetic disruption of C. briggsae phy-1 (Cb-dpy-18) via a Mos1 insertion resulted in a small (short) phenotype that is less severe than the dumpy (short and fat) phenotype of the corresponding C. elegans mutants (Ce-dpy-18). C. briggsae phy-2 RNA interference produced no visible phenotype in the wild type nematodes but produced a severe dumpy phenotype and larval arrest in phy-1 mutants. Genetic complementation of the C. briggsae and C. elegans phy-1 mutants was achieved by injection of a wild type phy-1 gene from either species.
Collapse
Affiliation(s)
- Alan D Winter
- Institute of Comparative Medicine, Faculty of Veterinary Medicine, University of Glasgow, Bearsden Road Glasgow, G61 1QH, Scotland, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
10
|
Keskiaho K, Hieta R, Sormunen R, Myllyharju J. Chlamydomonas reinhardtii has multiple prolyl 4-hydroxylases, one of which is essential for proper cell wall assembly. THE PLANT CELL 2007; 19:256-69. [PMID: 17220203 PMCID: PMC1820956 DOI: 10.1105/tpc.106.042739] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2006] [Revised: 11/14/2006] [Accepted: 12/05/2006] [Indexed: 05/13/2023]
Abstract
Prolyl 4-hydroxylases (P4Hs) catalyze formation of 4-hydroxyproline (4Hyp), which is found in many plant glycoproteins. We cloned and characterized Cr-P4H-1, one of 10 P4H-like Chlamydomonas reinhardtii polypeptides. Recombinant Cr-P4H-1 is a soluble 29-kD monomer that effectively hydroxylated in vitro both poly(l-Pro) and synthetic peptides representing Pro-rich motifs found in the Chlamydomonas cell wall Hyp-rich glycoprotein (HRGP) GP1. Similar Pro-rich repeats that are likely to be Cr-P4H-1 substrates are also present in the cell wall HRGP GP2 and probably GP3. Suppression of the gene encoding Cr-P4H-1 by RNA interference led to a defective cell wall consisting of a loose network of fibrils resembling the inner and outer W1 and W7 layers of the wild-type wall, while the layers forming the dense central triplet were absent. The lack of Cr-P4H-1 most probably affected 4Hyp content of the major HRPGs of the central triplet, GP1, GP2, and GP3. The reduced 4Hyp levels in these HRGPs can also be expected to affect their glycosylation and, thus, the interactive properties and stabilities of their fibrous shafts. Interestingly, our RNA interference data indicate that the nine other Chlamydomonas P4H-like polypeptides could not fully compensate for the lack of Cr-P4H-1 activity and are therefore likely to have different substrate specificities and functions.
Collapse
Affiliation(s)
- Katriina Keskiaho
- Collagen Research Unit, Biocenter Oulu and Department of Medical Biochemistry and Molecular Biology, University of Oulu, FIN-90014 Oulu, Finland
| | | | | | | |
Collapse
|
11
|
Adachi T, Tomita M, Yoshizato K. Synthesis of prolyl 4-hydroxylase alpha subunit and type IV collagen in hemocytic granular cells of silkworm, Bombyx mori: Involvement of type IV collagen in self-defense reaction and metamorphosis. Matrix Biol 2005; 24:136-54. [PMID: 15890264 DOI: 10.1016/j.matbio.2005.01.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2004] [Revised: 12/13/2004] [Accepted: 01/24/2005] [Indexed: 11/28/2022]
Abstract
The present study shows that hemocytic granular cells synthesize and secrete type IV collagen (ColIV) in the silkworm Bombyx mori (B. mori) and suggests that these cells play roles in the formation of basement membrane, the encapsulation of foreign bodies, and the metamorphic remodeling of the gut. The full- and partial-length cDNA of B. mori prolyl 4-hydroxylase alpha subunit (BmP4Halpha) and B. mori ColIV (BmColIV) were cloned, respectively. In situ hybridization and immunocytochemistry on larval tissues and cells identified hemocytic granular cells as the cells that express mRNAs and proteins of both BmP4Halpha and BmColIV. Immunohistochemistry and immunocytochemistry demonstrated that BmColIV was present in the basement membrane and in the secretory granules of granular cells, respectively. Granular cells in culture secreted BmColIV without accompanying the degranulation and discharged it from the granules when the cells were degranulated. Nylon threads were inserted into the hemocoel of larvae. Granular cells concentrated around the nylon threads and encapsulated them as a self-defense reaction. BmColIV was found to be a component of the capsules. Furthermore, the present study showed that actively BmColIV-expressing granular cells accumulated around the midgut epithelium and formed BmColIV-rich thick basal lamina-like structures there in larval to pupal metamorphosis.
Collapse
Affiliation(s)
- Takahiro Adachi
- Yoshizato Project, Cooperative Link of Unique Science and Technology for Economy Revitalization, Hiroshima Prefectural Institute of Industrial Science and Technology, 3-10-32, Kagamiyama, Higashihiroshima, Hiroshima, 739-0046, Japan
| | | | | |
Collapse
|
12
|
Page AP, Winter AD. Enzymes involved in the biogenesis of the nematode cuticle. ADVANCES IN PARASITOLOGY 2003; 53:85-148. [PMID: 14587697 DOI: 10.1016/s0065-308x(03)53003-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Nematodes include species that are significant parasites of man, his domestic animals and crops, and cause chronic debilitating diseases in the developing world; such as lymphatic filariasis and river blindness caused by filarial species. Around one third of the World's population harbour parasitic nematodes; no vaccines exist for prevention of infection, limited effective drugs are available and drug resistance is an ever-increasing problem. A critical structure of the nematode is the protective cuticle, a collagen-rich extracellular matrix (ECM) that forms the exoskeleton, and is critical for viability. This resilient structure is synthesized sequentially five times during nematode development and offers protection from the environment, including the hosts' immune response. The detailed characterization of this complex structure; it's components, and the means by which they are synthesized, modified, processed and assembled will identify targets that may be exploited in the future control of parasitic nematodes. This review will focus on the nematode cuticle. This structure is predominantly composed of collagens, a class of proteins that are modified by a range of co- and post-translational modifications prior to assembly into higher order complexes or ECMs. The collagens and their associated enzymes have been comprehensively characterized in vertebrate systems and some of these studies will be addressed in this review. Conversely, the biosynthesis of this class of essential structural proteins has not been studied in such detail in the nematodes. As with all morphogenetic, functional and developmental studies in the Nematoda phylum, the free-living species Caenorhabditis elegans has proven to be invaluable in the characterization of the cuticle and the cuticle collagen gene family, and is now proving to be an excellent model in the study of cuticle collagen biosynthetic enzymes. This model system will be the main focus of this review.
Collapse
Affiliation(s)
- Antony P Page
- Wellcome Centre for Molecular Parasitology, The Anderson College, The University of Glasgow, Glasgow G11 6NU, UK
| | | |
Collapse
|
13
|
Abstract
The collagen prolyl 4-hydroxylases (P4Hs), enzymes residing within the endoplasmic reticulum, have a central role in the biosynthesis of collagens. In addition, cytoplasmic P4Hs play a critical role in the regulation of the hypoxia-inducible transcription factor HIFalpha. Collagen and HIF P4Hs constitute enzyme families as several isoenzymes have been identified. Two catalytic alpha subunit isoforms have been cloned and characterized for collagen P4Hs from vertebrates, both of them assembling into alpha(2)beta(2) P4H tetramers in which protein disulfide isomerase (PDI) acts as the beta subunit. The catalytic properties of the two isoenzymes are very similar, but distinct differences are found in the binding properties of peptide substrates and inhibitors, and major differences are seen in the expression patterns of the isoenzymes. The nematode Caenorhabditis elegans has five P4H alpha subunit isoforms, PHY1-PHY5. The C. elegans PHY1 and PHY2, together with PDI, are expressed in the collagen synthesizing hypodermal cells and three P4H forms are assembled from them, a PHY-1/PHY-2/PDI(2) mixed tetramer and PHY-1/PDI and PHY-2/PDI dimers. The mixed tetramer is the main P4H form in wild-type C. elegans. PHY-3 is much shorter than PHY-1 and PHY-2, has a unique expression pattern, and is most likely involved in the synthesis of collagens in early embryos. The genome of Drosophila melanogaster contains approximately 20 P4H alpha subunit-related genes, and that of Arabidopsis thaliana six. One A. thaliana P4H has been cloned and shown to be a soluble monomer with several unexpected properties. It effectively hydroxylates poly(L-proline), (Pro-Pro-Gly)(10) and many other proline-containing peptides.
Collapse
Affiliation(s)
- Johanna Myllyharju
- Collagen Research Unit, Biocenter Oulu and Department of Medical Biochemistry and Molecular Biology, University of Oulu, Finland.
| |
Collapse
|
14
|
de Moraes Neto AHA, Lanfredi RM, Gadelha C, Cunha-e-Silva NL, Simão RA, Achete C, de Souza W. Further studies on the structural analysis of the cuticle of Litomosoides chagasfilhoi (Nematoda: Filarioidea). Parasitol Res 2003; 89:397-406. [PMID: 12632155 DOI: 10.1007/s00436-002-0783-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2002] [Accepted: 08/15/2002] [Indexed: 11/24/2022]
Abstract
In order to obtain further information on the structural organization of the cuticle of nematodes, this structure was isolated from adult forms of the filariid Litomosoides chagasfilhoi. The purity of the fraction was determined by light and transmission electron microscopy, deep-etching, high resolution scanning electron microscopy, atomic force microscopy, immunocytochemistry, gel electrophoresis (SDS-PAGE) and Western blot. The epicuticle presented a rugous surface with parallel rows and several globular particles that could be involved in the absorption of nutrients and secretion of products. Analysis by SDS-PAGE of purified cuticles revealed five major polypeptides corresponding to 151, 41, 28, 13 and 11 kDa. A polyclonal antibody against a synthetic 18 amino-acid peptide that corresponds to the sequence of domain E of the Haemonchus contortus3A3 collagen gene recognized several protein bands on the Western blot of purified cuticle, and labeled all cuticular layers, as shown by immunocytochemistry.
Collapse
Affiliation(s)
- A H A de Moraes Neto
- Laboratório de Helmintologia Programa de Biologia Celular e Parasitologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, 21949-900, Rio de Janeiro, RJ, Brazil
| | | | | | | | | | | | | |
Collapse
|
15
|
Winter AD, Myllyharju J, Page AP. A hypodermally expressed prolyl 4-hydroxylase from the filarial nematode Brugia malayi is soluble and active in the absence of protein disulfide isomerase. J Biol Chem 2003; 278:2554-62. [PMID: 12417582 DOI: 10.1074/jbc.m210381200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The collagen prolyl 4-hydroxylase (P4H) class of enzymes catalyze the hydroxylation of prolines in the X-Pro-Gly repeats of collagen chains. This modification is central to the synthesis of all collagens. Most P4Hs are alpha(2)beta(2) tetramers with the catalytic activity residing in the alpha subunits. The beta subunits are identical to the enzyme protein disulfide isomerase. The nematode cuticle is a collagenous extracellular matrix required for maintenance of the worm body shape. Examination of the model nematode Caenorhabditis elegans has demonstrated that its unique P4Hs are essential for viability and body morphology. The filarial parasite Brugia malayi is a causative agent of lymphatic filariasis in humans. We report here on the cloning and characterization of a B. malayi P4H with unusual properties. The recombinant B. malayi alpha subunit, PHY-1, is a soluble and active P4H by itself, and it does not become associated with protein disulfide isomerase. The active enzyme form is a homotetramer with catalytic and inhibition properties similar to those of the C. elegans P4Hs. High levels of B. malayi phy-1 transcript expression were observed in all developmental stages examined, and its expression was localized to the cuticle-synthesizing hypodermal tissue in the heterologous host C. elegans. Although active by itself, the B. malayi PHY-1 was not able to replace enzyme function in a C. elegans P4H mutant.
Collapse
Affiliation(s)
- Alan D Winter
- Wellcome Centre for Molecular Parasitology, Anderson College, University of Glasgow, Scotland, United Kingdom
| | | | | |
Collapse
|