1
|
Alvarez CA, Suvorova ES. Checkpoints of apicomplexan cell division identified in Toxoplasma gondii. PLoS Pathog 2017; 13:e1006483. [PMID: 28671988 PMCID: PMC5510908 DOI: 10.1371/journal.ppat.1006483] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 07/14/2017] [Accepted: 06/20/2017] [Indexed: 11/18/2022] Open
Abstract
The unusual cell cycles of Apicomplexa parasites are remarkably flexible with the ability to complete cytokinesis and karyokinesis coordinately or postpone cytokinesis for several rounds of chromosome replication, and are well recognized. Despite this surprising biology, the molecular machinery required to achieve this flexibility is largely unknown. In this study, we provide comprehensive experimental evidence that apicomplexan parasites utilize multiple Cdk-related kinases (Crks) to coordinate cell division. We determined that Toxoplasma gondii encodes seven atypical P-, H-, Y- and L- type cyclins and ten Crks to regulate cellular processes. We generated and analyzed conditional tet-OFF mutants for seven TgCrks and four TgCyclins that are expressed in the tachyzoite stage. These experiments demonstrated that TgCrk1, TgCrk2, TgCrk4 and TgCrk6, were required or essential for tachyzoite growth revealing a remarkable number of Crk factors that are necessary for parasite replication. G1 phase arrest resulted from the loss of cytoplasmic TgCrk2 that interacted with a P-type cyclin demonstrating that an atypical mechanism controls half the T. gondii cell cycle. We showed that T. gondii employs at least three TgCrks to complete mitosis. Novel kinases, TgCrk6 and TgCrk4 were required for spindle function and centrosome duplication, respectively, while TgCrk1 and its partner TgCycL were essential for daughter bud assembly. Intriguingly, mitotic kinases TgCrk4 and TgCrk6 did not interact with any cyclin tested and were instead dynamically expressed during mitosis indicating they may not require a cyclin timing mechanism. Altogether, our findings demonstrate that apicomplexan parasites utilize distinctive and complex mechanisms to coordinate their novel replicative cycles. Apicomplexan parasites are unicellular eukaryotes that replicate in unusual ways different from their multicellular hosts. From a single infection, different apicomplexans can produce as few as two or up to many hundreds of progeny. How these flexible division cycles are regulated is poorly understood. In the current study we have defined the major mechanisms controlling the growth of the Toxoplasma gondii acute pathogenic stage called the tachyzoite. We show that T. gondii tachyzoites require not only multiple protein kinases to coordinate chromosome replication and the assembly of new daughter parasites, but also each kinase has unique responsibilities. By contrast, the mammalian cell that T. gondii infects requires far fewer kinase regulators to complete cell division, which suggests that these parasites have unique vulnerabilities. The increased complexity in parasite cell cycle controls likely evolved from the need to adapt to different hosts and the need to construct the specialized invasion apparatus in order to invade those hosts.
Collapse
Affiliation(s)
- Carmelo A. Alvarez
- Department of Global Health and the Florida Center for Drug Discovery and Innovation, University of South Florida, Tampa, Florida, United States of America
| | - Elena S. Suvorova
- Department of Global Health and the Florida Center for Drug Discovery and Innovation, University of South Florida, Tampa, Florida, United States of America
- * E-mail:
| |
Collapse
|
2
|
The Malaria Parasite Cyclin H Homolog PfCyc1 Is Required for Efficient Cytokinesis in Blood-Stage Plasmodium falciparum. mBio 2017; 8:mBio.00605-17. [PMID: 28611247 PMCID: PMC5472185 DOI: 10.1128/mbio.00605-17] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
All well-studied eukaryotic cell cycles are driven by cyclins, which activate cyclin-dependent kinases (CDKs), and these protein kinase complexes are viable drug targets. The regulatory control of the Plasmodium falciparum cell division cycle remains poorly understood, and the roles of the various CDKs and cyclins remain unclear. The P. falciparum genome contains multiple CDKs, but surprisingly, it does not contain any sequence-identifiable G1-, S-, or M-phase cyclins. We demonstrate that P. falciparum Cyc1 (PfCyc1) complements a G1 cyclin-depleted Saccharomyces cerevisiae strain and confirm that other identified malaria parasite cyclins do not complement this strain. PfCyc1, which has the highest sequence similarity to the conserved cyclin H, cannot complement a temperature-sensitive yeast cyclin H mutant. Coimmunoprecipitation of PfCyc1 from P. falciparum parasites identifies PfMAT1 and PfMRK as specific interaction partners and does not identify PfPK5 or other CDKs. We then generate an endogenous conditional allele of PfCyc1 in blood-stage P. falciparum using a destabilization domain (DD) approach and find that PfCyc1 is essential for blood-stage proliferation. PfCyc1 knockdown does not impede nuclear division, but it prevents proper cytokinesis. Thus, we demonstrate that PfCyc1 has a functional divergence from bioinformatic predictions, suggesting that the malaria parasite cell division cycle has evolved to use evolutionarily conserved proteins in functionally novel ways. Human infection by the eukaryotic parasite Plasmodium falciparum causes malaria. Most well-studied eukaryotic cell cycles are driven by cyclins, which activate cyclin-dependent kinases (CDKs) to promote essential cell division processes. Remarkably, there are no identifiable cyclins that are predicted to control the cell cycle in the malaria parasite genome. Thus, our knowledge regarding the basic mechanisms of the malaria parasite cell cycle remains unsatisfactory. We demonstrate that P. falciparum Cyc1 (PfCyc1), a transcriptional cyclin homolog, complements a cell cycle cyclin-deficient yeast strain but not a transcriptional cyclin-deficient strain. We show that PfCyc1 forms a complex in the parasite with PfMRK and the P. falciparum MAT1 homolog. PfCyc1 is essential and nonredundant in blood-stage P. falciparum. PfCyc1 knockdown causes a stage-specific arrest after nuclear division, demonstrating morphologically aberrant cytokinesis. This work demonstrates a conserved PfCyc1/PfMAT1/PfMRK complex in malaria and suggests that it functions as a schizont stage-specific regulator of the P. falciparum life cycle.
Collapse
|
3
|
Andrabi SBA, Tahara M, Matsubara R, Toyama T, Aonuma H, Sakakibara H, Suematsu M, Tanabe K, Nozaki T, Nagamune K. Plant hormone cytokinins control cell cycle progression and plastid replication in apicomplexan parasites. Parasitol Int 2017; 67:47-58. [PMID: 28344153 DOI: 10.1016/j.parint.2017.03.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Accepted: 03/21/2017] [Indexed: 01/12/2023]
Abstract
Cytokinins are plant hormones that are involved in regulation of cell proliferation, cell cycle progression, and cell and plastid development. Here, we show that the apicomplexan parasites Toxoplasma gondii and Plasmodium berghei, an opportunistic human pathogen and a rodent malaria agent, respectively, produce cytokinins via a biosynthetic pathway similar to that in plants. Cytokinins regulate the growth and cell cycle progression of T. gondii by mediating expression of the cyclin gene TgCYC4. A natural form of cytokinin, trans-zeatin (t-zeatin), upregulated expression of this cyclin, while a synthetic cytokinin, thidiazuron, downregulated its expression. Immunofluorescence microscopy and quantitative PCR analysis showed that t-zeatin increased the genome-copy number of apicoplast, which are non-photosynthetic plastid, in the parasite, while thidiazuron led to their disappearance. Thidiazuron inhibited growth of T. gondii and Plasmodium falciparum, a human malaria parasite, suggesting that thidiazuron has therapeutic potential as an inhibitor of apicomplexan parasites.
Collapse
Affiliation(s)
- Syed Bilal Ahmad Andrabi
- Department of Parasitology, National Institute of Infectious Diseases, Tokyo, Japan; School of Medicine, Keio University, Tokyo, Japan
| | - Michiru Tahara
- Department of Parasitology, National Institute of Infectious Diseases, Tokyo, Japan; Graduate School of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan
| | - Ryuma Matsubara
- Department of Parasitology, National Institute of Infectious Diseases, Tokyo, Japan; Graduate School of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan
| | - Tomoko Toyama
- Research Institute for Microbial Diseases, Osaka University, Osaka, Japan; Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Hiroka Aonuma
- Department of Parasitology, National Institute of Infectious Diseases, Tokyo, Japan; Department of Tropical Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | | | | | - Kazuyuki Tanabe
- Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Tomoyoshi Nozaki
- Department of Parasitology, National Institute of Infectious Diseases, Tokyo, Japan; Faculty of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan
| | - Kisaburo Nagamune
- Department of Parasitology, National Institute of Infectious Diseases, Tokyo, Japan; Faculty of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan.
| |
Collapse
|
4
|
Deshmukh AS, Mitra P, Maruthi M. Cdk7 mediates RPB1-driven mRNA synthesis in Toxoplasma gondii. Sci Rep 2016; 6:35288. [PMID: 27759017 PMCID: PMC5069487 DOI: 10.1038/srep35288] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 09/28/2016] [Indexed: 11/16/2022] Open
Abstract
Cyclin-dependent kinase 7 in conjunction with CyclinH and Mat1 activates cell cycle CDKs and is a part of the general transcription factor TFIIH. Role of Cdk7 is well characterized in model eukaryotes however its relevance in protozoan parasites has not been investigated. This important regulator of key processes warrants closer examination particularly in this parasite given its unique cell cycle progression and flexible mode of replication. We report functional characterization of TgCdk7 and its partners TgCyclinH and TgMat1. Recombinant Cdk7 displays kinase activity upon binding its cyclin partner and this activity is further enhanced in presence of Mat1. The activated kinase phosphorylates C-terminal domain of TgRPB1 suggesting its role in parasite transcription. Therefore, the function of Cdk7 in CTD phosphorylation and RPB1 mediated transcription was investigated using Cdk7 inhibitor. Unphosphorylated CTD binds promoter DNA while phosphorylation by Cdk7 triggers its dissociation from DNA with implications for transcription initiation. Inhibition of Cdk7 in the parasite led to strong reduction in Serine 5 phosphorylation of TgRPB1-CTD at the promoters of constitutively expressed actin1 and sag1 genes with concomitant reduction of both nascent RNA synthesis and 5′-capped transcripts. Therefore, we provide compelling evidence for crucial role of TgCdk7 kinase activity in mRNA synthesis.
Collapse
Affiliation(s)
| | - Pallabi Mitra
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Mulaka Maruthi
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, India
| |
Collapse
|
5
|
Deshmukh AS, Agarwal M, Dhar SK. Regulation of DNA replication proteins in parasitic protozoans: possible role of CDK-like kinases. Curr Genet 2016; 62:481-6. [PMID: 26780367 DOI: 10.1007/s00294-015-0562-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 12/26/2015] [Accepted: 12/28/2015] [Indexed: 12/30/2022]
Abstract
Regulatory roles of CDKs in fundamental processes including cell cycle progression and transcription are well conserved in metazoans. This family of proteins has undergone significant evolutionary divergence and specialization. Several CDK-like kinases have been identified and characterized in parasitic protozoans. However, clear functional role and physiological relevance of these proteins in protozoans still remain elusive. In continuation with the recent finding that CDK-like protein PfPK5 regulates important DNA replication protein like origin recognition complex subunit 1 in Plasmodium falciparum, here we have discussed the emerging significance of CDK1/2 homologs in DNA replication of parasitic protozoans. In fact, involvement of these proteins in crucial cellular processes projects them as potential drug targets. The possibilities that CDKs offer as potential therapeutic targets in controlling parasite progression have also been explored.
Collapse
Affiliation(s)
| | - Meetu Agarwal
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Suman Kumar Dhar
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India.
| |
Collapse
|
6
|
Abstract
Toxoplasmosis is the clinical and pathological consequence of acute infection with the obligate intracellular apicomplexan parasite Toxoplasma gondii. Symptoms result from tissue destruction that accompanies lytic parasite growth. This review updates current understanding of the host cell invasion, parasite replication, and eventual egress that constitute the lytic cycle, as well as the ways T. gondii manipulates host cells to ensure its survival. Since the publication of a previous iteration of this review 15 years ago, important advances have been made in our molecular understanding of parasite growth and mechanisms of host cell egress, and knowledge of the parasite's manipulation of the host has rapidly progressed. Here we cover molecular advances and current conceptual frameworks that include each of these topics, with an eye to what may be known 15 years from now.
Collapse
Affiliation(s)
- Ira J Blader
- Department of Microbiology and Immunology, University at Buffalo, Buffalo, New York 14127;
| | - Bradley I Coleman
- Department of Biology, Boston College, Chestnut Hill, Massachusetts 02467; , ,
| | - Chun-Ti Chen
- Department of Biology, Boston College, Chestnut Hill, Massachusetts 02467; , ,
| | - Marc-Jan Gubbels
- Department of Biology, Boston College, Chestnut Hill, Massachusetts 02467; , ,
| |
Collapse
|
7
|
Abstract
Toxoplasma gondii and Plasmodium falciparum are important human pathogens. These parasites and many of their apicomplexan relatives undergo a complex developmental process in the cells of their hosts, which includes genome replication, cell division and the assembly of new invasive stages. Apicomplexan cell cycle progression is both globally and locally regulated. Global regulation is carried out throughout the cytoplasm by diffusible factors that include cell cycle-specific kinases, cyclins and transcription factors. Local regulation acts on individual nuclei and daughter cells that are developing inside the mother cell. We propose that the centrosome is a master regulator that physically tethers cellular components and that provides spatial and temporal control of apicomplexan cell division.
Collapse
Affiliation(s)
- Maria E Francia
- Department of Cellular Biology, University of Georgia, Athens, Georgia 30602, USA
| | - Boris Striepen
- 1] Department of Cellular Biology, University of Georgia, Athens, Georgia 30602, USA. [2] Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia 30602, USA
| |
Collapse
|
8
|
Ali NOM, Ibrahim ME, Grant KM, Mottram JC. Molecular cloning, characterization and overexpression of a novel cyclin from Leishmania mexicana. Pak J Biol Sci 2010; 13:775-84. [PMID: 21850927 DOI: 10.3923/pjbs.2010.775.784] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
We are reporting here, the cloning and characterization of the first cyclin from Leishmania mexicana. We have identified a cyclin-like motif from the L. major genome sequencing project. A cyclin homologue was cloned and sequenced from L. mexicana genome and it showed 96.1% amino acid identity with the putative L. major cyclin. It has also sequence identity to mitotic cyclins from other organisms. Southern analysis showed that it is present as a single copy gene. CYCa has been over-expressed in E. coli as a histidine fusion and western blot has confirmed the immunoreactive property of the recombinant cyclin, which then used to reconstitute active recombinant L. mexicana CRK3. No phosphorylation of histone HI was detected by both wild type and mutated CRK3 on the activation assays suggesting that phosphorylation status and cyclin binding are important for reconstituting protein kinase activity. The results confirm that we have isolated a cyclin molecule from L. mexicana (LmCYCa) which may play an important role in the regulation of the parasite cell cycle.
Collapse
Affiliation(s)
- Nahla O M Ali
- Wellcome Centre for Molecular Parasitology, Anderson College, University of Glasgow, Scotland, UK
| | | | | | | |
Collapse
|
9
|
The cell cycle and Toxoplasma gondii cell division: tightly knit or loosely stitched? Int J Parasitol 2008; 38:1343-58. [PMID: 18703066 DOI: 10.1016/j.ijpara.2008.06.004] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2008] [Revised: 06/10/2008] [Accepted: 06/13/2008] [Indexed: 01/20/2023]
Abstract
The flexibility displayed by apicomplexan parasites to vary their mode of replication has intrigued biologists since their discovery by electron microscopy in the 1960s and 1970s. Starting in the 1990s we began to understand the cell biology of the cytoskeleton elements driving cytokinesis. By contrast, the molecular mechanisms that regulate the various division modes and how they translate into the budding process that uniquely characterizes this parasite family are much less understood. Although growth mechanisms are a neglected area of study, it is an important pathogenic parameter as fast division rounds are associated with fulminant infection whereas slower growth attenuates virulence, as is exploited in some vaccine strains. In this review we summarize a recent body of cell biological experiments that are rapidly leading to an understanding of the events that yield successful mitosis and cytokinesis in Toxoplasma. We place these observations within a cell cycle context with comments on how these events may be regulated by known eukaryotic checkpoints active in fission and budding yeasts as well as mammalian cells. The presence of cell cycle control mechanisms in the Apicomplexa is supported by our findings that identify several cell cycle checkpoints in Toxoplasma. The progress of the cell cycle is ultimately controlled by cyclin-Cdk pair activities, which are present throughout the Apicomplexa. Although many of the known controllers of cyclin-Cdk activity are present, several key controls cannot readily be identified, suggesting that apicomplexan parasites deviate at these points from the higher eukaryotic models. Altogether, new insights in Toxoplasma replication are reciprocally applied to hypothesize how other division modes in the Toxoplasma life cycle and in other Apicomplexa species could be controlled in terms of cell cycle checkpoint regulation.
Collapse
|
10
|
Gubbels MJ, Lehmann M, Muthalagi M, Jerome ME, Brooks CF, Szatanek T, Flynn J, Parrot B, Radke J, Striepen B, White MW. Forward genetic analysis of the apicomplexan cell division cycle in Toxoplasma gondii. PLoS Pathog 2008; 4:e36. [PMID: 18282098 PMCID: PMC2242837 DOI: 10.1371/journal.ppat.0040036] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2007] [Accepted: 01/07/2008] [Indexed: 11/18/2022] Open
Abstract
Apicomplexa are obligate intracellular pathogens that have fine-tuned their proliferative strategies to match a large variety of host cells. A critical aspect of this adaptation is a flexible cell cycle that remains poorly understood at the mechanistic level. Here we describe a forward genetic dissection of the apicomplexan cell cycle using the Toxoplasma model. By high-throughput screening, we have isolated 165 temperature sensitive parasite growth mutants. Phenotypic analysis of these mutants suggests regulated progression through the parasite cell cycle with defined phases and checkpoints. These analyses also highlight the critical importance of the peculiar intranuclear spindle as the physical hub of cell cycle regulation. To link these phenotypes to parasite genes, we have developed a robust complementation system based on a genomic cosmid library. Using this approach, we have so far complemented 22 temperature sensitive mutants and identified 18 candidate loci, eight of which were independently confirmed using a set of sequenced and arrayed cosmids. For three of these loci we have identified the mutant allele. The genes identified include regulators of spindle formation, nuclear trafficking, and protein degradation. The genetic approach described here should be widely applicable to numerous essential aspects of parasite biology.
Collapse
Affiliation(s)
- Marc-Jan Gubbels
- Center for Tropical and Emerging Global Diseases and Department of Cellular Biology, University of Georgia, Athens, Georgia, United States of America
- Department of Biology, Boston College, Chestnut Hill, Massachusetts, United States of America
| | - Margaret Lehmann
- Department of Veterinary Molecular Biology, Montana State University, Bozeman, Montana, United States of America
| | - Mani Muthalagi
- Center for Tropical and Emerging Global Diseases and Department of Cellular Biology, University of Georgia, Athens, Georgia, United States of America
| | - Maria E Jerome
- Department of Veterinary Molecular Biology, Montana State University, Bozeman, Montana, United States of America
| | - Carrie F Brooks
- Department of Veterinary Molecular Biology, Montana State University, Bozeman, Montana, United States of America
| | - Tomasz Szatanek
- Department of Biology, Boston College, Chestnut Hill, Massachusetts, United States of America
| | - Jayme Flynn
- Department of Biology, Boston College, Chestnut Hill, Massachusetts, United States of America
| | - Ben Parrot
- Center for Tropical and Emerging Global Diseases and Department of Cellular Biology, University of Georgia, Athens, Georgia, United States of America
| | - Josh Radke
- Department of Veterinary Molecular Biology, Montana State University, Bozeman, Montana, United States of America
| | - Boris Striepen
- Center for Tropical and Emerging Global Diseases and Department of Cellular Biology, University of Georgia, Athens, Georgia, United States of America
- * To whom correspondence should be addressed. E-mail: (BS); (MWW)
| | - Michael W White
- Department of Veterinary Molecular Biology, Montana State University, Bozeman, Montana, United States of America
- * To whom correspondence should be addressed. E-mail: (BS); (MWW)
| |
Collapse
|
11
|
Abstract
Apicomplexans are pathogens responsible for malaria, toxoplasmosis, and crytposporidiosis in humans, and a wide range of livestock diseases. These unicellular eukaryotes are stealthy invaders, sheltering from the immune response in the cells of their hosts, while at the same time tapping into these cells as source of nutrients. The complexity and beauty of the structures formed during their intracellular development have made apicomplexans the darling of electron microscopists. Dramatic technological progress over the last decade has transformed apicomplexans into respectable genetic model organisms. Extensive genomic resources are now available for many apicomplexan species. At the same time, parasite transfection has enabled researchers to test the function of specific genes through reverse and forward genetic approaches with increasing sophistication. Transfection also introduced the use of fluorescent reporters, opening the field to dynamic real time microscopic observation. Parasite cell biologists have used these tools to take a fresh look at a classic problem: how do apicomplexans build the perfect invasion machine, the zoite, and how is this process fine-tuned to fit the specific niche of each pathogen in this ancient and very diverse group? This work has unearthed a treasure trove of novel structures and mechanisms that are the focus of this review.
Collapse
Affiliation(s)
- Boris Striepen
- Center for Tropical and Emerging Global Diseases and the Department of Cellular Biology, University of Georgia, Athens, Georgia, United States of America.
| | | | | | | |
Collapse
|
12
|
White MW, Jerome ME, Vaishnava S, Guerini M, Behnke M, Striepen B. Genetic rescue of a Toxoplasma gondii conditional cell cycle mutant. Mol Microbiol 2005; 55:1060-71. [PMID: 15686554 DOI: 10.1111/j.1365-2958.2004.04471.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Growth rate is a major pathogenesis factor in the parasite Toxoplasma gondii; however, how cell division is controlled in this protozoan is poorly understood. Herein, we show that centrosomal duplication is an indicator of S phase entry while centrosome migration marks mitotic entry. Using the pattern of centrosomal replication, we confirmed that mutant ts11C9 undergoes a bimodal cell cycle arrest that is characterized by two subpopulations containing either single or duplicated centrosomes which correlate with the bipartite genome distribution observed at the non-permissive temperature. Genetic rescue of ts11C9 was performed using a parental RH strain cDNA library, and the cDNA responsible for conferring temperature resistance (growth at 40 degrees C) was recovered by recombination cloning. A single T. gondii gene encoding the protein homologue of XPMC2 was responsible for genetic rescue of the temperature-sensitive defect in ts11C9 parasites. This protein is a known suppressor of mitotic defects, and in tachyzoites, TgXPMC2-YFP localized to the parasite nucleus and nucleolus which is consistent with the expected subcellular localization of critical mitotic factors. Altogether, these results demonstrate that ts11C9 is a conditional mitotic mutant containing a single defect which influences two distinct control points in the T. gondii tachyzoite cell cycle.
Collapse
Affiliation(s)
- Michael W White
- Department of Veterinary Molecular Biology, Montana State University, Bozeman, MT 59717-3610, USA.
| | | | | | | | | | | |
Collapse
|
13
|
Guerini MN, Behnke MS, White MW. Biochemical and genetic analysis of the distinct proliferating cell nuclear antigens of Toxoplasma gondii. Mol Biochem Parasitol 2005; 142:56-65. [PMID: 15878790 DOI: 10.1016/j.molbiopara.2005.03.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2004] [Revised: 03/05/2005] [Accepted: 03/07/2005] [Indexed: 11/27/2022]
Abstract
The apicomplexa parasite Toxoplasma gondii expresses two distinct proliferating cell nuclear antigens (PCNA) that exhibit distinct patterns of subcellular localization during tachyzoite growth. In all cell cycle phases, TgPCNA1 is concentrated in the nucleus, while TgPCNA2 is only concentrated in the nucleus during S-phase and uniformly distributed throughout the cell during mitosis and early G1-phase. TgPCNA1-GFP and native TgPCNA2 display a punctate staining pattern that is consistent with assembly into replication foci during S-phase; however, TgPCNA2 disassociates from replication foci before TgPCNA1-GFP. Consistent with the distinct pattern of TgPCNA2 cellular localization, homotypic TgPCNA2 interactions were primarily observed by yeast two-hybrid or co-immunoprecipitation analysis. Transgenic parasites in which the TgPCNA2 gene was disrupted displayed a slower growth rate in vitro; however, no difference in DNA polymerase activity, response to chemical mutagens, or recombinational frequency was observed in these mutant clones demonstrating that TgPCNA2 is non-essential in the tachyzoite developmental stage. Heterologous expression of TgPCNA1, but not TgPCNA2, was able to complement a POL30 cold-sensitive yeast strain suggesting that this isoform may serve as a major replisomal factor in T. gondii and is consistent with the failure to disrupt this gene in tachyzoites.
Collapse
Affiliation(s)
- Michael N Guerini
- Department of Veterinary Molecular Biology, 960 Technology Blvd, Montana State University, Bozeman, MT 59717-3610, USA
| | | | | |
Collapse
|
14
|
Hu K, Roos DS, Angel SO, Murray JM. Variability and heritability of cell division pathways in Toxoplasma gondii. J Cell Sci 2004; 117:5697-705. [PMID: 15494366 DOI: 10.1242/jcs.01494] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A histone 2b-YFP fusion protein stably expressed in Toxoplasma gondii has several advantages: it reveals previously hidden details of nuclear morphology; it makes it possible to observe cell-cycle events; it provides a basis for quantitative measurements of DNA content in living cells; and it enables sorting of live cells according to cell-cycle phase or ploidy. With this cell line it was possible to recognize and directly clone individual progeny arising from different patterns of cell division that produce two, three or four daughter cells. These experiments established that the progeny produced by all cell division pathways are viable and infective. Furthermore, the number of progeny produced by a mature parasite during cell division is not correlated with the number of its siblings. The complete repertoire of cell division pathways is therefore inherited by a single cell produced through any one of the individual paths. The results expand the range of what must be considered normal in T. gondii cell division and provide a useful tool for further study of nuclear structure and proliferation in this important human pathogen.
Collapse
Affiliation(s)
- Ke Hu
- Department of Cell and Developmental Biology, University of Pennsylvania, 421 Curie Boulevard, Philadelphia, PA 19104, USA
| | | | | | | |
Collapse
|
15
|
Ellis J, Sinclair D, Morrison D. Microarrays and stage conversion in Toxoplasma gondii. Trends Parasitol 2004; 20:288-95. [PMID: 15147680 DOI: 10.1016/j.pt.2004.04.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- John Ellis
- Department of Cell and Molecular Biology, University of Technology Sydney, Westbourne St, Gore Hill, Sydney, NSW 2065, Australia.
| | | | | |
Collapse
|
16
|
Khan F, Tang J, Qin CL, Kim K. Cyclin-dependent kinase TPK2 is a critical cell cycle regulator in Toxoplasma gondii. Mol Microbiol 2002; 45:321-32. [PMID: 12123447 DOI: 10.1046/j.1365-2958.2002.03026.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Apicomplexan parasite Toxoplasma gondii replicates by endodyogeny, an unusual form of binary fission. We tested the role of TPK2, a homologue of the CDC2 cyclin-dependent kinases, in cell cycle regulation. TPK2 tagged with HA epitope (TPK2-HA-wt) was expressed in mammalian cells as confirmed by Western blot analysis using HA tag and PSTAIRE antibodies. TPK2-HA-wt phosphorylated a peptide from Histone H1, proving that TPK2 is a functional kinase. TPK2-HA-wt coimmunoprecipitated with mammalian cyclins A, B1, D3 and E. Despite being a functional kinase, TPK2 did not rescue Schizosaccharomyces pombe cdc2 and Saccharomyces cerevisiae cdc28 mutant strains. Overexpression of a dominant-negative mutant of TPK2 (TPK2-HA-dn) in T. gondii tachyzoites arrested replication. FACS analysis of tachyzoites expressing TPK2-HA-dn revealed an increase in the fraction of cells in S-phase when compared with TPK2-HA-wt transfected parasites. Expression of TPK2-HA-wt did not arrest tachyzoite replication. No discernable G2 cell cycle block was evident suggesting that cell cycle checkpoints differ in T. gondii from most other eukaryotic cells. These data suggest that TPK2 executes an essential function in T. gondii cell cycle and is likely to be the T. gondii CDC2 orthologue.
Collapse
Affiliation(s)
- Farzana Khan
- Department of Medicine, Division of Infectious Diseases, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | |
Collapse
|