1
|
Mtshali PS, Mtshali MS. Genetic Characterization and Phylogenetic Analysis of Babesia bigemina Isolates in Cattle from South Africa Based on BgRAP-1, BgAMA-1 and BgβTUB Genes. BIOLOGY 2025; 14:355. [PMID: 40282220 PMCID: PMC12025327 DOI: 10.3390/biology14040355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 03/18/2025] [Accepted: 03/27/2025] [Indexed: 04/29/2025]
Abstract
Babesia bigemina is one of the most important etiological agents of bovine babesiosis, a tick-borne disease posing a major threat in the livestock industry globally, including South Africa. Despite the huge economic impact of cattle babesiosis in South Africa, antigenic variation observed among B. bigemina strains worldwide has impeded the successful development of a single vaccine with the potential to eliminate the disease. As such, there is still a dearth of information regarding the conservation of B. bigemina genes encoding functionally important proteins that play a crucial role during the invasion of bovine erythrocytes by merozoites. Fifty blood samples previously collected from cattle in eight provinces of South Africa were genetically tested for the presence of B. bigemina DNA fragments using four nested PCR-based assays. The genes targeted coded for SpeI-AvaI restriction fragment, rhoptry-associated protein 1 (BgRAP-1), apical membrane antigen 1 (BgAMA-1) and β-tubulin (BgβTUB). PCR-generated fragments of randomly selected samples were sequenced. BLAST searches in GenBank were performed with newly determined sequences to search for homologous sequences. Neighbor-joining phylogenies were inferred from aligned, contiguous sequences of BgRAP-1, BgAMA-1 and BgβTUB genes. Nested PCR assays generated single fragments of 170 bp, 472 bp, 765 bp and 302 bp for SpeI-AvaI, BgRAP-1, BgAMA-1 and BgβTUB fragments, respectively. Of the 50 bovine samples tested by nested PCR, 82% (42/50; 95% CI = 69.2-90.2%), 68% (34/50; 95% CI = 54.2-79.2%), 50% (25/50; 95% CI = 36.6-63.4%) and 46% (23/50; 95% CI = 33.0-59.6%) possessed B. bigemina-specific SpeI-AvaI, BgRAP-1, BgAMA-1 and BgβTUB DNA fragments, respectively. The BgRAP-1, BgAMA-1 and BgβTUB sequences of South African B. bigemina isolates shared 98-100% similarity with previously reported sequences of strains originating from cattle in countries other than South Africa. The high genetic conservation observed among geographical isolates of B. bigemina suggests the conserved functional role of BgRAP-1 and BgAMA-1 proteins as potential candidates that could be incorporated in recombinant subunit vaccines.
Collapse
Affiliation(s)
- Phillip Senzo Mtshali
- Veterinary Parasitology Programme, Research and Scientific Services Department, National Zoological Gardens of South Africa, Pretoria 0001, South Africa
| | - Moses Sibusiso Mtshali
- Veterinary Parasitology Programme, Research and Scientific Services Department, National Zoological Gardens of South Africa, Pretoria 0001, South Africa
- School of Molecular and Life Sciences, University of Limpopo, Private Bag X 1106, Sovenga, Polokwane 0727, South Africa
| |
Collapse
|
2
|
Fernandes TA, Paulino PG, Dos Santos Juliano D, Rabello CA, de Oliveira NVB, de Souza Santana M, Peckle M, Massard CL, da Costa Angelo I, Jacob JCF, Santos HA. Epidemiology and genetic diversity of Theileria equi and Babesia caballi in draft horses in the Distrito Federal, Brazil. Trop Anim Health Prod 2025; 57:72. [PMID: 39969660 DOI: 10.1007/s11250-025-04321-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 02/06/2025] [Indexed: 02/20/2025]
Abstract
Equine piroplasmosis (EP) is a reportable disease according to the World Organization for Animal Health (WOAH), caused by Babesia caballi, Theileria equi and T. haneyi. This syndrome is prevalent in tropical and subtropical regions, including various areas in Brazilian. This study examines EP in the Distrito Federal, Brazil, focusing on prevalence, epidemiological characteristics, and circulating genotypes. Epidemiological data and whole blood samples were collected from horses in the Distrito Federal. DNA was analyzed using qPCR for Theileria sp. and B. caballi, followed by cPCR for 18S rDNA of Theileria sp and rap-1 gene for B. caballi and phylogenetic analysis. Results showed a high EP prevalence (56.23%) among the horses: 49.88% for Theileria sp, 1.47% for B. caballi and 4.89% for both. Phylogenetic analysis indicated genetic similarities with other countries, identifying of T. equi genotypes A and C and B. caballi genotype A. Factors linked to infection, included animals older than five years (p-value = 0.04; OR = 1.71, CI = 1.01-2.87) and health conditions (p-value = 0.049; OR = 1.91, CI = 1.003-3.64) as significantly associated with positivity for Theileria sp. and/or B. caballi. This study contributes to the awareness of the circulation and distribution of T. equi and B. caballi genotypes in Brazil, highlighting the importance of health condition and age as associated factors for infection. These findings deepen our understanding of the need for ongoing surveillance and control measures to manage EP effectively.
Collapse
Affiliation(s)
- Thais Alves Fernandes
- Department of Epidemiology and Public Health, Federal Rural University of Rio de Janeiro (UFRRJ), Seropedica, RJ, Brazil
| | - Patrícia Gonzaga Paulino
- Department of Epidemiology and Public Health, Federal Rural University of Rio de Janeiro (UFRRJ), Seropedica, RJ, Brazil
| | - Daniele Dos Santos Juliano
- Department of Epidemiology and Public Health, Federal Rural University of Rio de Janeiro (UFRRJ), Seropedica, RJ, Brazil
| | - Carla Alves Rabello
- Department of Epidemiology and Public Health, Federal Rural University of Rio de Janeiro (UFRRJ), Seropedica, RJ, Brazil
| | | | - Matheus de Souza Santana
- Department of Epidemiology and Public Health, Federal Rural University of Rio de Janeiro (UFRRJ), Seropedica, RJ, Brazil
| | - Maristela Peckle
- Department of Animal Parasitology, Federal Rural University of Rio de Janeiro (UFRRJ), Seropedica, RJ, Brazil
| | - Carlos Luiz Massard
- Department of Animal Parasitology, Federal Rural University of Rio de Janeiro (UFRRJ), Seropedica, RJ, Brazil
| | - Isabele da Costa Angelo
- Department of Epidemiology and Public Health, Federal Rural University of Rio de Janeiro (UFRRJ), Seropedica, RJ, Brazil
| | - Júlio César Ferraz Jacob
- Department of Animal Reproduction and Evaluation, Federal Rural University of Rio de Janeiro (UFRRJ), Seropedica, RJ, Brazil
| | - Huarrisson Azevedo Santos
- Department of Epidemiology and Public Health, Federal Rural University of Rio de Janeiro (UFRRJ), Seropedica, RJ, Brazil.
| |
Collapse
|
3
|
Rojas MJ, Bastos RG, Navas JA, Alzan HF, Laughery JM, Lacy PA, Ueti MW, Suarez CE. Evaluation of the Use of Sub-Immunodominant Antigens of Babesia bovis with Flagellin C Adjuvant in Subunit Vaccine Development. Vaccines (Basel) 2024; 12:1215. [PMID: 39591117 PMCID: PMC11598123 DOI: 10.3390/vaccines12111215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 11/28/2024] Open
Abstract
Bovine babesiosis caused by the tick-borne apicomplexan parasite Babesia bovis remains a threat for cattle worldwide, and new vaccines are needed. We propose using immune-subdominant (ISD) antigens as alternative vaccine candidates. We first determined that RAP-1 NT and RRA are subdominant antigens using recombinant antigens in ELISAs against sera from B. bovis-protected cattle. Protected animals demonstrated high antibody responses against the known immunodominant rRAP-1 CT antigen, but significantly lower levels against the rRAP-1 NT and rRRA antigens. Next, a group of cattle (n = 6) was vaccinated with rRRA and rRAP-1 NT using a FliC-Emulsigen mix as the adjuvant, and there was a control group (n = 6) with the adjuvant mix alone. All but one immunized animal demonstrated elicitation of strong humoral immune responses against the two ISD antigens. Acute babesiosis occurred in both groups of cattle upon a challenge with the virulent B. bovis, but a significant delay in the average rate of decrease in hematocrit in the vaccinated group, and an early monocyte response, was found in half of the vaccinated animals. In conclusion, we confirmed the immune subdominance of rRRA and rRAP-1 NT and the ability of FliC to increase immunogenicity of ISD antigens and generate useful information toward developing future subunit vaccines against B. bovis.
Collapse
Affiliation(s)
- Manuel J. Rojas
- Department of Veterinary Microbiology & Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA; (M.J.R.); (R.G.B.); (J.A.N.); (H.F.A.); (J.M.L.); (M.W.U.)
- Animal Health Department, Universidad Nacional de Colombia, Bogota 111321, Colombia
| | - Reginaldo G. Bastos
- Department of Veterinary Microbiology & Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA; (M.J.R.); (R.G.B.); (J.A.N.); (H.F.A.); (J.M.L.); (M.W.U.)
- Animal Disease Research Unit, Agricultural Research Service, US Department of Agriculture, Pullman, WA 99164, USA;
| | - Jinna A. Navas
- Department of Veterinary Microbiology & Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA; (M.J.R.); (R.G.B.); (J.A.N.); (H.F.A.); (J.M.L.); (M.W.U.)
| | - Heba F. Alzan
- Department of Veterinary Microbiology & Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA; (M.J.R.); (R.G.B.); (J.A.N.); (H.F.A.); (J.M.L.); (M.W.U.)
- Parasitology and Animal Diseases Department, National Research Center, Giza 12622, Egypt
| | - Jacob M. Laughery
- Department of Veterinary Microbiology & Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA; (M.J.R.); (R.G.B.); (J.A.N.); (H.F.A.); (J.M.L.); (M.W.U.)
| | - Paul A. Lacy
- Animal Disease Research Unit, Agricultural Research Service, US Department of Agriculture, Pullman, WA 99164, USA;
| | - Massaro W. Ueti
- Department of Veterinary Microbiology & Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA; (M.J.R.); (R.G.B.); (J.A.N.); (H.F.A.); (J.M.L.); (M.W.U.)
- Animal Disease Research Unit, Agricultural Research Service, US Department of Agriculture, Pullman, WA 99164, USA;
| | - Carlos E. Suarez
- Department of Veterinary Microbiology & Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA; (M.J.R.); (R.G.B.); (J.A.N.); (H.F.A.); (J.M.L.); (M.W.U.)
- Animal Disease Research Unit, Agricultural Research Service, US Department of Agriculture, Pullman, WA 99164, USA;
| |
Collapse
|
4
|
Giglioti R, Filho AEV, Domingos AG, da Silva SS, Cunha RC, Ibelli AMG, Okino CH, de Sena Oliveira MC. Detection and quantification of Babesia bovis and Babesia bigemina using different target genes. Res Vet Sci 2024; 168:105122. [PMID: 38194893 DOI: 10.1016/j.rvsc.2023.105122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 12/08/2023] [Accepted: 12/19/2023] [Indexed: 01/11/2024]
Abstract
Molecular assays have been widely used for the detection and quantification of bovine babesiosis due to their high sensitivity and specificity. However, variations in the sensitivity of pathogen detection may occur depending on the selected target gene. Thus, this study aimed to compare the detection sensitivity (DS) of Babesia bovis and B. bigemina infection levels in artificially and naturally infected cattle using quantitative PCR (qPCR) and six target genes. For B. bovis, the merozoite surface antigen genes 2b and 2c (msa-2b and msa-2c), and the mitochondrial cytochrome b gene (cybmt) were used. For B. bigemina, the genes encoding the proteins associated with rhoptry 1c (rap-1c), rap-1a, and cybmt were used. Six bovines, free of babesiosis, were artificially infected with 1 × 10-8 red blood cells infected (iRBC) with B. bovis (n = 3) or 1 × 10-6B. bigemina iRBC (n = 3). The animals were evaluated daily until parasitemia was confirmed (≥ 2.0%). The quantity of iRBC present in each animal was determined by examining blood smears. Blood samples were then subjected to DNA extraction, serial dilution, and qPCR analysis to determine the DS of each target gene. In addition, 30 calves naturally infected by Babesia spp. were also evaluated using the same six target genes. Regarding the artificial infection, B. bovis cybmt showed 25-fold higher sensitivity than the msa-2b and msa-2c genes, while the B. bigemina cybmt exhibited 5-fold and 25-fold higher sensitivity than the rap-1a and rap-1c genes, respectively. The rap-1a gene was found to be 5 times more sensitive than the rap-1c gene, while the B. bovis msa-2b and msa-2c genes exhibited similar DS. The positive frequencies of naturally infected calves for the target cybmt, msa-2b, and msa-2c genes (B. bovis) were: 100%, 33.3% and 50%, while cybmt, rap-1a, and rap-1c genes (B. bigemina) were 90%, 83.3%, and 63.3%, respectively. This study may contribute to the selection of suitable genes for molecular monitoring of bovine babesiosis. Mitochondrial genes could be considered as an alternative to improve the sensitivity of B. bovis and B. bigemina detection using qPCR.
Collapse
Affiliation(s)
- Rodrigo Giglioti
- Instituto de Zootecnia, Rua Heitor Penteado, n. 56, Nova Odessa, São Paulo 13380-011, Brazil.
| | | | | | - Sérgio Silva da Silva
- C.R.O. Animal Science, Estrada Colônia São Domingos, Colônia, Turuçú, Rio Grande do Sul, Brazil
| | - Rodrigo Casquero Cunha
- Laboratório de Biologia Molecular Veterinária, Faculdade de Veterinária, Universidade Federal de Pelotas, Capão do Leão, Rio Grande do Sul, Brazil
| | | | | | | |
Collapse
|
5
|
Hötzel I, Suarez CE. Structural definition of babesial RAP-1 proteins identifies a novel protein superfamily across Apicomplexa. Sci Rep 2023; 13:22330. [PMID: 38102310 PMCID: PMC10724250 DOI: 10.1038/s41598-023-49532-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023] Open
Abstract
Apicomplexan protozoa are intracellular parasites of medical and economic importance. These parasites contain specialized apical complex organelles, including rhoptries, that participate in the process of host cell invasion. Conserved antigens expressed in the rhoptries are rational vaccine targets, but whether conservation of protein structure is a functional requirement for invasion remains unknown. Novel protein structural modeling enables identification of structurally conserved protein families that are not evident by sequence analysis alone. Here we show by AlphaFold2 structural modeling that the rhoptry-associated protein 1 superfamily of the Piroplasmida hemoparasites Babesia and Theileria (pRAP-1) is structurally conserved, with the core conserved region being composed of a globin-like and a 4-helix bundle subdomain. Search for structurally related members of this protein family in other apicomplexan parasites revealed structural homologues of pRAP-1 in several species of Plasmodium, Toxoplasma gondii and other members of the Sarcocystidae family. Based on these structural findings, pRAP-1 is a conserved apical complex protein, but whether these proteins share functional features in different species remains unknown. Identification of widely conserved elements involved in infection in these parasites will enhance our knowledge of invasion mechanisms, and facilitate the design of methods for controlling diseases that affect humans and animals globally.
Collapse
Affiliation(s)
- Isidro Hötzel
- Department of Antibody Engineering, Genentech, South San Francisco, CA, 94080, USA
| | - Carlos E Suarez
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, USA.
- Animal Disease Research Unit, United States Department of Agriculture - Agricultural Research Service, Pullman, WA, USA.
| |
Collapse
|
6
|
Wang J, Chen K, Ren Q, Zhang S, Yang J, Wang Y, Nian Y, Li X, Liu G, Luo J, Yin H, Guan G. Comparative genomics reveals unique features of two Babesia motasi subspecies: Babesia motasi lintanensis and Babesia motasi hebeiensis. Int J Parasitol 2023; 53:265-283. [PMID: 37004737 DOI: 10.1016/j.ijpara.2023.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 02/05/2023] [Accepted: 02/12/2023] [Indexed: 04/03/2023]
Abstract
Parasites of the Babesia genus are prevalent worldwide and infect a wide diversity of domestic animals and humans. Herein, using Oxford Nanopore Technology and Illumina sequencing technologies, we sequenced two Babesia sub-species, Babesia motasi lintanensis and Babesia motasi hebeiensis. We identified 3,815 one-to-one ortholog genes that are specific to ovine Babesia spp. Phylogenetic analysis reveals that the two B. motasi subspecies form a distinct clade from other Piroplasma spp. Consistent with their phylogenetic position, comparative genomic analysis reveals that these two ovine Babesia spp. share higher colinearity with Babesia bovis than with Babesia microti. Concerning the speciation date, B. m. lintanensis split from B. m. hebeiensis approximately 17 million years ago. Genes correlated to transcription, translation, protein modification and degradation, as well as differential/specialized gene family expansions in these two subspecies may favor adaptation to vertebrate and tick hosts. The close relationship between B. m. lintanensis and B. m. hebeiensis is underlined by a high degree of genomic synteny. Compositions of most invasion, virulence, development, and gene transcript regulation-related multigene families, including spherical body protein, variant erythrocyte surface antigen, glycosylphosphatidylinositol anchored proteins, and transcription factor Apetala 2 genes, is largely conserved, but in contrast to this conserved situation, we observe major differences in species-specific genes that may be involved in multiple functions in parasite biology. For the first time in Babesia spp., we find abundant fragments of long terminal repeat-retrotransposons in these two species. We provide fundamental information to characterize the genomes of B. m. lintanensis and B. m. hebeiensis, providing insights into the evolution of B. motasi group parasites.
Collapse
Affiliation(s)
- Jinming Wang
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Lanzhou, Gansu 730046, China.
| | - Kai Chen
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| | - Qiaoyun Ren
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Lanzhou, Gansu 730046, China.
| | - Shangdi Zhang
- Department of Clinical Laboratory, The Second Hospital of Lanzhou University, Lanzhou, China.
| | - Jifei Yang
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Lanzhou, Gansu 730046, China.
| | - Yanbo Wang
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Lanzhou, Gansu 730046, China; Department of Clinical Laboratory, The Second Hospital of Lanzhou University, Lanzhou, China.
| | - Yueli Nian
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Lanzhou, Gansu 730046, China; Department of Clinical Laboratory, The Second Hospital of Lanzhou University, Lanzhou, China.
| | - Xiaoyun Li
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Lanzhou, Gansu 730046, China.
| | - Guangyuan Liu
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Lanzhou, Gansu 730046, China.
| | - Jianxun Luo
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Lanzhou, Gansu 730046, China.
| | - Hong Yin
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Lanzhou, Gansu 730046, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou 225009, China.
| | - Guiquan Guan
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Lanzhou, Gansu 730046, China.
| |
Collapse
|
7
|
Capelli-Peixoto J, Saelao P, Johnson WC, Kappmeyer L, Reif KE, Masterson HE, Taus NS, Suarez CE, Brayton KA, Ueti MW. Comparison of high throughput RNA sequences between Babesia bigemina and Babesia bovis revealed consistent differential gene expression that is required for the Babesia life cycle in the vertebrate and invertebrate hosts. Front Cell Infect Microbiol 2022; 12:1093338. [PMID: 36601308 PMCID: PMC9806345 DOI: 10.3389/fcimb.2022.1093338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
Bovine babesiosis caused by Babesia bigemina and Babesia bovis is an economically important disease that affects cattle worldwide. Both B. bigemina and B. bovis are transovarially transmitted by Rhipicephalus ticks. However, little is known regarding parasite gene expression during infection of the tick vector or mammalian host, which has limited the development of effective control strategies to alleviate the losses to the cattle industry. To understand Babesia gene regulation during tick and mammalian host infection, we performed high throughput RNA-sequencing using samples collected from calves and Rhipicephalus microplus ticks infected with B. bigemina. We evaluated gene expression between B. bigemina blood-stages and kinetes and compared them with previous B. bovis RNA-seq data. The results revealed similar patterns of gene regulation between these two tick-borne transovarially transmitted Babesia parasites. Like B. bovis, the transcription of several B. bigemina genes in kinetes exceeded a 1,000-fold change while a few of these genes had a >20,000-fold increase. To identify genes that may have important roles in B. bigemina and B. bovis transovarial transmission, we searched for genes upregulated in B. bigemina kinetes in the genomic datasets of B. bovis and non-transovarially transmitted parasites, Theileria spp. and Babesia microti. Using this approach, we identify genes that may be potential markers for transovarial transmission by B. bigemina and B. bovis. The findings presented herein demonstrate common Babesia genes linked to infection of the vector or mammalian host and may contribute to elucidating strategies used by the parasite to complete their life cycle.
Collapse
Affiliation(s)
- Janaina Capelli-Peixoto
- Program in Vector-Borne Diseases, Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, United States,*Correspondence: Janaina Capelli-Peixoto,
| | - Perot Saelao
- Veterinary Pest Genetic Research Unit, USDA-ARS, Kerrville, TX, United States
| | | | - Lowell Kappmeyer
- Animal Disease Research Unit, USDA-ARS, Pullman, WA, United States
| | - Kathryn E. Reif
- Program in Vector-Borne Diseases, Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| | - Hayley E. Masterson
- Program in Vector-Borne Diseases, Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| | - Naomi S. Taus
- Program in Vector-Borne Diseases, Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, United States,Animal Disease Research Unit, USDA-ARS, Pullman, WA, United States
| | - Carlos E. Suarez
- Program in Vector-Borne Diseases, Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, United States,Animal Disease Research Unit, USDA-ARS, Pullman, WA, United States
| | - Kelly A. Brayton
- Program in Vector-Borne Diseases, Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| | - Massaro W. Ueti
- Program in Vector-Borne Diseases, Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, United States,Animal Disease Research Unit, USDA-ARS, Pullman, WA, United States
| |
Collapse
|
8
|
Rezvani Y, Keroack CD, Elsworth B, Arriojas A, Gubbels MJ, Duraisingh MT, Zarringhalam K. Comparative single-cell transcriptional atlases of Babesia species reveal conserved and species-specific expression profiles. PLoS Biol 2022; 20:e3001816. [PMID: 36137068 PMCID: PMC9531838 DOI: 10.1371/journal.pbio.3001816] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 10/04/2022] [Accepted: 09/05/2022] [Indexed: 11/18/2022] Open
Abstract
Babesia is a genus of apicomplexan parasites that infect red blood cells in vertebrate hosts. Pathology occurs during rapid replication cycles in the asexual blood stage of infection. Current knowledge of Babesia replication cycle progression and regulation is limited and relies mostly on comparative studies with related parasites. Due to limitations in synchronizing Babesia parasites, fine-scale time-course transcriptomic resources are not readily available. Single-cell transcriptomics provides a powerful unbiased alternative for profiling asynchronous cell populations. Here, we applied single-cell RNA sequencing to 3 Babesia species (B. divergens, B. bovis, and B. bigemina). We used analytical approaches and algorithms to map the replication cycle and construct pseudo-synchronized time-course gene expression profiles. We identify clusters of co-expressed genes showing "just-in-time" expression profiles, with gradually cascading peaks throughout asexual development. Moreover, clustering analysis of reconstructed gene curves reveals coordinated timing of peak expression in epigenetic markers and transcription factors. Using a regularized Gaussian graphical model, we reconstructed co-expression networks and identified conserved and species-specific nodes. Motif analysis of a co-expression interactome of AP2 transcription factors identified specific motifs previously reported to play a role in DNA replication in Plasmodium species. Finally, we present an interactive web application to visualize and interactively explore the datasets.
Collapse
Affiliation(s)
- Yasaman Rezvani
- Department of Mathematics, University of Massachusetts Boston, Boston, Massachusetts, United States of America
| | - Caroline D. Keroack
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, United States of America
| | - Brendan Elsworth
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, United States of America
| | - Argenis Arriojas
- Department of Mathematics, University of Massachusetts Boston, Boston, Massachusetts, United States of America
- Department of Physics, University of Massachusetts Boston, Boston, Massachusetts, United States of America
| | - Marc-Jan Gubbels
- Department of Biology, Boston College, Chestnut Hill, Massachusetts, United States of America
| | - Manoj T. Duraisingh
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, United States of America
| | - Kourosh Zarringhalam
- Department of Mathematics, University of Massachusetts Boston, Boston, Massachusetts, United States of America
- Center for Personalized Cancer Therapy, University of Massachusetts Boston, Boston, Massachusetts, United States of America
| |
Collapse
|
9
|
Onzere CK, Fry LM, Bishop RP, Da Silva M, Madsen-Bouterse SA, Bastos RG, Knowles DP, Suarez CE. Theileria equi RAP-1a and RAP-1b proteins contain immunoreactive epitopes and are suitable candidates for vaccine and diagnostics development. Int J Parasitol 2022; 52:385-397. [DOI: 10.1016/j.ijpara.2022.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 11/16/2022]
|
10
|
Bonsergent C, de Carné MC, de la Cotte N, Moussel F, Perronne V, Malandrin L. The New Human Babesia sp. FR1 Is a European Member of the Babesia sp. MO1 Clade. Pathogens 2021; 10:pathogens10111433. [PMID: 34832590 PMCID: PMC8618789 DOI: 10.3390/pathogens10111433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/28/2021] [Accepted: 10/30/2021] [Indexed: 11/16/2022] Open
Abstract
In Europe, Babesia divergens is responsible for most of the severe cases of human babesiosis. In the present study, we describe a case of babesiosis in a splenectomized patient in France and report a detailed molecular characterization of the etiological agent, named Babesia sp. FR1, as well as of closely related Babesia divergens, Babesia capreoli and Babesia sp. MO1-like parasites. The analysis of the conserved 18S rRNA gene was supplemented with the analysis of more discriminant markers involved in the red blood cell invasion process: rap-1a (rhoptry-associated-protein 1) and ama-1 (apical-membrane-antigen 1). The rap-1a and ama-1 phylogenetic analyses were congruent, placing Babesia sp. FR1, the new European etiological agent, in the American cluster of Babesia sp. MO1-like parasites. Based on two additional markers, our analysis confirms the clear separation of B. divergens and B. capreoli. Babesia sp. MO1-like parasites should also be considered as a separate species, with the rabbit as its natural host, differing from those of B. divergens (cattle) and B. capreoli (roe deer). The natural host of Babesia sp. FR1 remains to be discovered.
Collapse
Affiliation(s)
- Claire Bonsergent
- BIOEPAR, INRAE, Oniris, 44300 Nantes, France;
- Correspondence: (C.B.); (L.M.)
| | - Marie-Charlotte de Carné
- Service de Maladies Infectieuses et Tropicales, Hôpital F. Quesnay, 78200 Mantes-la Jolie, France; (M.-C.d.C.); (V.P.)
| | | | - François Moussel
- Laboratoire de Biologie Médicale, Hôpital F. Quesnay, 78200 Mantes-la-Jolie, France;
| | - Véronique Perronne
- Service de Maladies Infectieuses et Tropicales, Hôpital F. Quesnay, 78200 Mantes-la Jolie, France; (M.-C.d.C.); (V.P.)
| | - Laurence Malandrin
- BIOEPAR, INRAE, Oniris, 44300 Nantes, France;
- Correspondence: (C.B.); (L.M.)
| |
Collapse
|
11
|
Bastos RG, Thekkiniath J, Ben Mamoun C, Fuller L, Molestina RE, Florin-Christensen M, Schnittger L, Alzan HF, Suarez CE. Babesia microti Immunoreactive Rhoptry-Associated Protein-1 Paralogs Are Ancestral Members of the Piroplasmid-Confined RAP-1 Family. Pathogens 2021; 10:pathogens10111384. [PMID: 34832541 PMCID: PMC8624774 DOI: 10.3390/pathogens10111384] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/20/2021] [Accepted: 10/23/2021] [Indexed: 11/16/2022] Open
Abstract
Babesia, Cytauxzoon and Theileria are tick-borne apicomplexan parasites of the order Piroplasmida, responsible for diseases in humans and animals. Members of the piroplasmid rhoptry-associated protein-1 (pRAP-1) family have a signature cysteine-rich domain and are important for parasite development. We propose that the closely linked B. microti genes annotated as BMR1_03g00947 and BMR1_03g00960 encode two paralogue pRAP-1-like proteins named BmIPA48 and Bm960. The two genes are tandemly arranged head to tail, highly expressed in blood stage parasites, syntenic to rap-1 genes of other piroplasmids, and share large portions of an almost identical ~225 bp sequence located in their 5' putative regulatory regions. BmIPA48 and Bm960 proteins contain a N-terminal signal peptide, share very low sequence identity (<13%) with pRAP-1 from other species, and harbor one or more transmembrane domains. Diversification of the piroplasmid-confined prap-1 family is characterized by amplification of genes, protein domains, and a high sequence polymorphism. This suggests a functional involvement of pRAP-1 at the parasite-host interface, possibly in parasite adhesion, attachment, and/or evasion of the host immune defenses. Both BmIPA48 and Bm960 are recognized by antibodies in sera from humans infected with B. microti and might be promising candidates for developing novel serodiagnosis and vaccines.
Collapse
Affiliation(s)
- Reginaldo G. Bastos
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA;
- Correspondence: (R.G.B.); (C.E.S.)
| | - Jose Thekkiniath
- Fuller Laboratories, 1312 East Valencia Drive, Fullerton, CA 92831, USA; (J.T.); (L.F.)
| | - Choukri Ben Mamoun
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06520, USA;
| | - Lee Fuller
- Fuller Laboratories, 1312 East Valencia Drive, Fullerton, CA 92831, USA; (J.T.); (L.F.)
| | - Robert E. Molestina
- Protistology Laboratory, American Type Culture Collection, Manassas, VA 10801, USA;
| | - Monica Florin-Christensen
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1033AAJ, Argentina; (M.F.-C.); (L.S.)
- Instituto de Patobiología Veterinaria, CICVyA, INTA-Castelar, Hurlingham, Buenos Aires C1033AAE, Argentina
| | - Leonhard Schnittger
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1033AAJ, Argentina; (M.F.-C.); (L.S.)
- Instituto de Patobiología Veterinaria, CICVyA, INTA-Castelar, Hurlingham, Buenos Aires C1033AAE, Argentina
| | - Heba F. Alzan
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA;
- Parasitology and Animal Diseases Department, National Research Center, Dokki, Giza 12622, Egypt
- Tick and Tick-Borne Disease Research Unit, National Research Center, Dokki, Giza 12622, Egypt
| | - Carlos E. Suarez
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA;
- Animal Disease Research Unit, United States Department of Agricultural—Agricultural Research Service, Pullman, WA 99164, USA
- Correspondence: (R.G.B.); (C.E.S.)
| |
Collapse
|
12
|
González LM, Estrada K, Grande R, Jiménez-Jacinto V, Vega-Alvarado L, Sevilla E, de la Barrera J, Cuesta I, Zaballos Á, Bautista JM, Lobo CA, Sánchez-Flores A, Montero E. Comparative and functional genomics of the protozoan parasite Babesia divergens highlighting the invasion and egress processes. PLoS Negl Trop Dis 2019; 13:e0007680. [PMID: 31425518 PMCID: PMC6715253 DOI: 10.1371/journal.pntd.0007680] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 08/29/2019] [Accepted: 08/01/2019] [Indexed: 12/31/2022] Open
Abstract
Babesiosis is considered an emerging disease because its incidence has significantly increased in the last 30 years, providing evidence of the expanding range of this rare but potentially life-threatening zoonotic disease. Babesia divergens is a causative agent of babesiosis in humans and cattle in Europe. The recently sequenced genome of B. divergens revealed over 3,741 protein coding-genes and the 10.7-Mb high-quality draft become the first reference tool to study the genome structure of B. divergens. Now, by exploiting this sequence data and using new computational tools and assembly strategies, we have significantly improved the quality of the B. divergens genome. The new assembly shows better continuity and has a higher correspondence to B. bovis chromosomes. Moreover, we present a differential expression analysis using RNA sequencing of the two different stages of the asexual lifecycle of B. divergens: the free merozoite capable of invading erythrocytes and the intraerythrocytic parasite stage that remains within the erythrocyte until egress. Comparison of mRNA levels of both stages identified 1,441 differentially expressed genes. From these, around half were upregulated and the other half downregulated in the intraerythrocytic stage. Orthogonal validation by real-time quantitative reverse transcription PCR confirmed the differential expression. A moderately increased expression level of genes, putatively involved in the invasion and egress processes, were revealed in the intraerythrocytic stage compared with the free merozoite. On the basis of these results and in the absence of molecular models of invasion and egress for B. divergens, we have proposed the identified genes as putative molecular players in the invasion and egress processes. Our results contribute to an understanding of key parasitic strategies and pathogenesis and could be a valuable genomic resource to exploit for the design of diagnostic methods, drugs and vaccines to improve the control of babesiosis. Babesiosis has long been recognized as an economically important disease of cattle, but only in the last 40 years has Babesia been recognized as an important pathogen in humans. Babesiosis in humans is caused by one of several species (B. microti, B. divergens, B. duncani and B. venatorum). The complete Babesia lifecycle requires two hosts, the ixodid ticks and a vertebrate host. It is the parasite's ability to first recognize and then invade host erythrocytes that is central to the pathogenesis of babesiosis. Once inside the cell, the parasite begins a cycle of maturation and growth, resulting in merozoites that egress from the red blood cells (RBCs) and seek new, uninfected RBCs to invade, perpetuating the infection. To better understand this asexual lifecycle, the authors focused on the parasite genome and transcriptome of the asexual erythrocytic forms of B. divergens. Through this functional and comparative genomic approach, the authors have identified genes putatively involved in invasion, gliding motility, moving junction formation and egress, providing new insights into the molecular mechanisms of these processes necessary for B. divergens to survive and propagate during its life cycle.
Collapse
Affiliation(s)
- Luis Miguel González
- Laboratorio de Referencia e Investigación en Parasitología, Centro Nacional de Microbiología, ISCIII Majadahonda, Madrid, Spain
| | - Karel Estrada
- Unidad Universitaria de Secuenciación Masiva y Bioinformática, Instituto de Biotecnología, Cuernavaca, México
| | - Ricardo Grande
- Unidad Universitaria de Secuenciación Masiva y Bioinformática, Instituto de Biotecnología, Cuernavaca, México
| | - Verónica Jiménez-Jacinto
- Unidad Universitaria de Secuenciación Masiva y Bioinformática, Instituto de Biotecnología, Cuernavaca, México
| | | | - Elena Sevilla
- Laboratorio de Referencia e Investigación en Parasitología, Centro Nacional de Microbiología, ISCIII Majadahonda, Madrid, Spain
| | - Jorge de la Barrera
- Unidad de Bioinformática, Área de Unidades Centrales Científico-Técnicas, ISCIII, Majadahonda, Madrid, Spain
| | - Isabel Cuesta
- Unidad de Bioinformática, Área de Unidades Centrales Científico-Técnicas, ISCIII, Majadahonda, Madrid, Spain
| | - Ángel Zaballos
- Unidad de Genómica, Área de Unidades Centrales Científico-Técnicas, ISCIII, Majadahonda, Madrid, Spain
| | - José Manuel Bautista
- Department of Biochemistry and Molecular Biology & Research Institute Hospital 12 de Octubre, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - Cheryl A. Lobo
- Blood Borne Parasites, LFKRI, New York Blood Center, New York, New York, United States of America
| | - Alejandro Sánchez-Flores
- Unidad Universitaria de Secuenciación Masiva y Bioinformática, Instituto de Biotecnología, Cuernavaca, México
- * E-mail: (ASF); (EM)
| | - Estrella Montero
- Laboratorio de Referencia e Investigación en Parasitología, Centro Nacional de Microbiología, ISCIII Majadahonda, Madrid, Spain
- * E-mail: (ASF); (EM)
| |
Collapse
|
13
|
Allred DR. Variable and Variant Protein Multigene Families in Babesia bovis Persistence. Pathogens 2019; 8:pathogens8020076. [PMID: 31212587 PMCID: PMC6630957 DOI: 10.3390/pathogens8020076] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 06/03/2019] [Accepted: 06/07/2019] [Indexed: 11/16/2022] Open
Abstract
Cattle infected with Babesia bovis face a bifurcated fate: Either die of the severe acute infection, or survive and carry for many years a highly persistent but generally asymptomatic infection. In this review, the author describes known and potential contributions of three variable or highly variant multigene-encoded families of proteins to persistence in the bovine host, and the mechanisms by which variability arises among these families. Ramifications arising from this variability are discussed.
Collapse
Affiliation(s)
- David R Allred
- Department of Infectious Diseases and Immunology, University of Florida, Gainesville, FL 32611, USA.
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32611, USA.
- Genetics Institute, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
14
|
Bohaliga GAR, Johnson WC, Taus NS, Hussein HE, Bastos RG, Suarez CE, Scoles GA, Ueti MW. Identification of proteins expressed by Babesia bigemina kinetes. Parasit Vectors 2019; 12:271. [PMID: 31138276 PMCID: PMC6537212 DOI: 10.1186/s13071-019-3531-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 05/23/2019] [Indexed: 01/09/2023] Open
Abstract
Background Babesia bigemina is an apicomplexan parasite transovarially transmitted via Rhipicephalus ticks that infect red blood cells and causes bovine babesiosis, a poorly controlled severe acute disease in cattle. New methods of control are urgently needed, including the development of transmission blocking vaccines (TBV). Babesia bigemina reproduces sexually in the gut of adult female R. microplus upon acquisition following a blood meal. Sexual reproduction results in zygotes that infect gut epithelial cells to transform into kinete stage parasites, which invade tick ovaries and infects the egg mass. The subsequent tick generation transmits B. bigemina upon feeding on bovine hosts. An important limitation for developing novel TBV is that the pattern of protein expression in B. bigemina tick stages, such as the kinete stage, remain essentially uncharacterized. Results We determined the protein expression profile of three B. bigemina putative tick stage candidates BbiKSP (BBBOND_0206730), CCp2 and CCp3. We found that BbiKSP expression was restricted to B. bigemina kinetes. CCp2 and CCp3, previously shown to be expressed by induced sexual stages, were also expressed by kinetes. Importantly, none of these proteins were expressed by B. bigemina blood stages. Conclusions Babesia bigemina kinetes express BbiKSP, CCp2 and CCp3 proteins, therefore, these proteins may play important roles during B. bigemina development within tick hemolymph and may serve as potential candidate targets for the development of TBV. Electronic supplementary material The online version of this article (10.1186/s13071-019-3531-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gamila A R Bohaliga
- Program in Vector-borne Diseases, Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, 99164, USA
| | - Wendell C Johnson
- Animal Disease Research Unit, USDA-ARS, Pullman, WA, 99164-6630, USA
| | - Naomi S Taus
- Program in Vector-borne Diseases, Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, 99164, USA.,Animal Disease Research Unit, USDA-ARS, Pullman, WA, 99164-6630, USA
| | - Hala E Hussein
- Program in Vector-borne Diseases, Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, 99164, USA.,Department of Entomology, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Reginaldo G Bastos
- Program in Vector-borne Diseases, Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, 99164, USA
| | - Carlos E Suarez
- Program in Vector-borne Diseases, Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, 99164, USA.,Animal Disease Research Unit, USDA-ARS, Pullman, WA, 99164-6630, USA
| | - Glen A Scoles
- Program in Vector-borne Diseases, Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, 99164, USA.,Animal Disease Research Unit, USDA-ARS, Pullman, WA, 99164-6630, USA
| | - Massaro W Ueti
- Program in Vector-borne Diseases, Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, 99164, USA. .,Animal Disease Research Unit, USDA-ARS, Pullman, WA, 99164-6630, USA. .,The Paul G. Allen School for Global Animal Health, Washington State University, Pullman, WA, 99164-70403, USA.
| |
Collapse
|
15
|
Pradeep RK, Nimisha M, Sruthi MK, Vidya P, Amrutha BM, Kurbet PS, Kumar KGA, Varghese A, Deepa CK, Dinesh CN, Chandrasekhar L, Juliet S, Pradeepkumar PR, Ravishankar C, Ghosh S, Ravindran R. Molecular characterization of South Indian field isolates of bovine Babesia spp. and Anaplasma spp. Parasitol Res 2019; 118:617-630. [PMID: 30560519 DOI: 10.1007/s00436-018-6172-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 12/03/2018] [Indexed: 01/01/2023]
Abstract
Ticks and tick-borne diseases (TTBDs) are considered major causes of economic loss in the livestock sector which incur an annual control cost estimated at US$ 498.7 million in India. Among these diseases, babesiosis, theileriosis and anaplasmosis are listed among the top ten livestock diseases in India and cause significant mortality and morbidity among cattle. However, molecular characterization of bovine Babesia and Anaplasma species are scant; thus, the aim of this study is to perform molecular characterization of field isolates of Babesia spp. and Anaplasma spp. infecting bovines in Kerala, South India. Blood smears and whole blood samples were collected from a total of 199 apparently healthy adult female cattle in Kerala. Based on microscopy, Babesia spp., Theileria orientalis and Anaplasma spp. organisms were detected in 9 (4.5%), 40 (20%) and 6 (3%) samples, respectively. Genus-specific polymerase chain reactions for amplification of 18S rRNA of Babesia spp. and 16S rRNA of Anaplasma spp. revealed positive results with 18 (9%) and 14 (7%) samples. The phylogenetic analysis of 18S rRNA gene sequences of Babesia spp. confirmed the existence of two different populations of Babesia spp. circulating in the blood of infected cattle viz., Babesia bigemina and a Babesia sp. genetically related to Babesia ovata. Further phylogenetic analysis using rap-1a sequences of isolates of B. bigemina revealed higher levels of genetic heterogeneity. However, the field isolates of B. bigemina displayed only slight heterogeneity when the rap-1c gene was examined. Polymerase chain reaction followed by sequencing and phylogenetic analysis of 16S rRNA gene of Anaplasma spp. revealed the existence of Anaplasma marginale, Anaplasma bovis and Anaplasma platys in bovines in South India. Based on msp4 gene sequences, all the field isolates of A. marginale from Kerala were clustered in a single clade with others isolated from around the world. To our knowledge, this study forms the first report on occurrence of B. ovata-like parasites and A. platys in cattle from India.
Collapse
Affiliation(s)
- Rangapura Kariyappa Pradeep
- Department of Veterinary Parasitology, College of Veterinary and Animal Sciences, Pookode, Wayanad, Kerala, 673 576, India
| | - Murikoli Nimisha
- Department of Veterinary Parasitology, College of Veterinary and Animal Sciences, Pookode, Wayanad, Kerala, 673 576, India
| | - Meethalae Koombayil Sruthi
- Department of Veterinary Parasitology, College of Veterinary and Animal Sciences, Pookode, Wayanad, Kerala, 673 576, India
| | - Pakideery Vidya
- Department of Veterinary Parasitology, College of Veterinary and Animal Sciences, Pookode, Wayanad, Kerala, 673 576, India
| | - Birur Mallappa Amrutha
- Department of Veterinary Parasitology, College of Veterinary and Animal Sciences, Pookode, Wayanad, Kerala, 673 576, India
| | - Prashant Somalingappa Kurbet
- Department of Veterinary Parasitology, College of Veterinary and Animal Sciences, Pookode, Wayanad, Kerala, 673 576, India
| | | | - Anju Varghese
- Department of Veterinary Parasitology, College of Veterinary and Animal Sciences, Pookode, Wayanad, Kerala, 673 576, India
| | - Chundayil Kalarikkal Deepa
- Department of Veterinary Parasitology, College of Veterinary and Animal Sciences, Pookode, Wayanad, Kerala, 673 576, India
| | | | - Leena Chandrasekhar
- Department of Veterinary Anatomy, College of Veterinary and Animal Sciences, Pookode, Wayanad, Kerala, 673 576, India
| | - Sanis Juliet
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary and Animal Sciences, Pookode, Wayanad, Kerala, 673 576, India
| | | | - Chintu Ravishankar
- Department of Veterinary Microbiology, College of Veterinary and Animal Sciences, Pookode, Wayanad, Kerala, 673 576, India
| | - Srikant Ghosh
- Division of Parasitology, Indian Veterinary Research Institute, Izatnagar, UP243122, India
| | - Reghu Ravindran
- Department of Veterinary Parasitology, College of Veterinary and Animal Sciences, Pookode, Wayanad, Kerala, 673 576, India.
| |
Collapse
|
16
|
Costa VM, Ribeiro MFB, Duarte GA, Soares JF, Azevedo SS, Barros ATM, Riet-Correa F, Labruna MB. Incidência de Anaplasma marginale, Babesia bigemina e Babesia bovis em bezerros no semiárido paraibano. PESQUISA VETERINARIA BRASILEIRA 2018. [DOI: 10.1590/1678-5150-pvb-4786] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
RESUMO: Este estudo avaliou a incidência de infecções naturais pelos agentes da tristeza parasitária bovina (TPB), Anaplasma marginale, Babesia bovis e Babesia bigemina, em bezerros nascidos em cinco fazendas do semiárido paraibano. Em cada fazenda, foram coletadas amostras de sangue de 6 a 14 bezerros a cada 14 dias durante os primeiros 12 meses de vida de cada animal. As amostras de sangue foram processadas por microhematócrito e testadas por PCR para detecção de DNA de A. marginale, B. bovis e B. bigemina. Em paralelo, foram quantificadas as infestações por carrapatos nos bovinos nas cinco fazendas, assim como as populações de tabanídeos em três fazendas. De 41 bezerros monitorados durante o primeiro ano de vida, 25 (61,0%) apresentaram PCR positivo para A. marginale, 7 (17,1%) para B. bigemina e 3 (7,3%) para B. bovis. Os valores de incidência da infecção por A. marginale variaram de 83,3% a 100% em quatro fazendas. A infecção por B. bigemina ocorreu em bezerros de apenas duas fazendas (incidências de 12,5% e 85,7%) e a por B. bovis em apenas uma (incidência de 42,8%). Em uma fazenda os 14 bezerros permaneceram negativos para A. marginale, B. bigemina e B. bovis durante os 12 meses de acompanhamento. Os resultados de PCR foram confirmados por sequenciamento de DNA de produtos amplificados. A presença de carrapatos Rhipicephalus (Boophilus) microplus foi verificada somente em duas propriedades, nas quais houve infecção por A. marginale, B. bigemina e B. bovis (este último agente em apenas uma delas). Foram capturados 930 tabanídeos no estudo, a maioria durante os períodos de chuvas na região; 70,7% dos tabanídeos corresponderam a Tabanus claripennis. Houve associação significativa entre PCR positivo para A. marginale ou B. bigemina e menores valores de hematócrito. Este estudo demonstra que, mesmo avaliando apenas cinco propriedades rurais, a incidência dos agentes da TPB ocorreu de forma heterogênea na região, corroborando o status de área de instabilidade enzoótica para TPB previamente relatado para o semiárido paraibano.
Collapse
|
17
|
Prevalence, risk factors, and genetic diversity of veterinary important tick-borne pathogens in cattle from Rhipicephalus microplus-invaded and non-invaded areas of Benin. Ticks Tick Borne Dis 2018; 9:450-464. [DOI: 10.1016/j.ttbdis.2017.12.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 11/13/2017] [Accepted: 12/21/2017] [Indexed: 01/08/2023]
|
18
|
Oldiges DP, Laughery JM, Tagliari NJ, Leite Filho RV, Davis WC, da Silva Vaz I, Termignoni C, Knowles DP, Suarez CE. Transfected Babesia bovis Expressing a Tick GST as a Live Vector Vaccine. PLoS Negl Trop Dis 2016; 10:e0005152. [PMID: 27911903 PMCID: PMC5135042 DOI: 10.1371/journal.pntd.0005152] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 11/01/2016] [Indexed: 11/18/2022] Open
Abstract
The Rhipicephalus microplus tick is a notorious blood-feeding ectoparasite of livestock, especially cattle, responsible for massive losses in animal production. It is the main vector for transmission of pathogenic bacteria and parasites, including Babesia bovis, an intraerythrocytic apicomplexan protozoan parasite responsible for bovine Babesiosis. This study describes the development and testing of a live B. bovis vaccine expressing the protective tick antigen glutathione-S-transferase from Haemaphysalis longicornis (HlGST). The B. bovis S74-T3B parasites were electroporated with a plasmid containing the bidirectional Ef-1α (elongation factor 1 alpha) promoter of B. bovis controlling expression of two independent genes, the selectable marker GFP-BSD (green fluorescent protein–blasticidin deaminase), and HlGST fused to the MSA-1 (merozoite surface antigen 1) signal peptide from B. bovis. Electroporation followed by blasticidin selection resulted in the emergence of a mixed B. bovis transfected line (termed HlGST) in in vitro cultures, containing parasites with distinct patterns of insertion of both exogenous genes, either in or outside the Ef-1α locus. A B. bovis clonal line termed HlGST-Cln expressing intracellular GFP and HlGST in the surface of merozoites was then derived from the mixed parasite line HlGST using a fluorescent activated cell sorter. Two independent calf immunization trials were performed via intravenous inoculation of the HlGST-Cln and a previously described control consisting of an irrelevant transfected clonal line of B. bovis designated GFP-Cln. The control GFP-Cln line contains a copy of the GFP-BSD gene inserted into the Ef-1α locus of B. bovis in an identical fashion as the HIGST-Cln parasites. All animals inoculated with the HlGST-Cln and GFP-Cln transfected parasites developed mild babesiosis. Tick egg fertility and fully engorged female tick weight was reduced significantly in R. microplus feeding on HlGST-Cln-immunized calves. Collectively, these data show the efficacy of a transfected HlGST-Cln B. bovis parasite to induce detectable anti-glutathione-S-transferase antibodies and a reduction in tick size and fecundity of R. microplus feeding in experimentally inoculated animals. The cattle tick Rhipicephalus microplus is a hematophagous ectoparasite, responsible for the transmission of lethal parasites such as Babesia sp, limiting cattle production in tropical and subtropical regions of the world. There is an urgent emerging need for improved methods of control for these currently neglected tick and tick borne diseases. It is hypothesized that a dual attenuated-live vector vaccine containing a stably transfected tick antigen elicits protective immune responses against the parasite and the tick vector in vaccinated cattle. Live Babesia vaccines based on attenuated parasites are the only effective method available for preventing acute babesiosis. On the other hand, glutathione-S-transferase from Haemaphysalis longicornis (HlGST) is a known effective antigen against Rhipicephalus microplus, the most common vector for B. bovis. This study describes the development and testing of a transfected, B. bovis vaccine expressing HlGST against the tick R. microplus. A B. bovis clonal line designated HlGST-Cln expressing HlGST and GFP/BSD, and separately a control transfected B. bovis clonal line expressing only GFP/BSD was used to vaccinate calves in two independent experiments. All immunized calves developed mild babesiosis, and only calves immunized with the HlGST-Cln parasite line generated anti-HlGST antibodies. Tick egg fertility and fully engorged female tick weight were reduced significantly in R. microplus feeding on HlGST-Cln-vaccinated calves. Taken together, these data demonstrates the ability of transfected B. bovis to elicit antibodies against a heterologous tick antigen in cattle and to induce partial protection in the vaccinated animals against the cattle tick for the first time, representing a step toward the goal to produce a live vector anti-tick vaccine.
Collapse
Affiliation(s)
- Daiane P. Oldiges
- Centro de Biotecnologia Universidade Federal do Rio Grande do Sul, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Jacob M. Laughery
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, United States of America
| | - Nelson Junior Tagliari
- Faculdade de Veterinária Universidade Federal do Rio Grande do Sul; Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Ronaldo Viana Leite Filho
- Faculdade de Veterinária Universidade Federal do Rio Grande do Sul; Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - William C. Davis
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, United States of America
| | - Itabajara da Silva Vaz
- Centro de Biotecnologia Universidade Federal do Rio Grande do Sul, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
- Faculdade de Veterinária Universidade Federal do Rio Grande do Sul; Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Carlos Termignoni
- Centro de Biotecnologia Universidade Federal do Rio Grande do Sul, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
- Departamento de Bioquímica Universidade Federal do Rio Grande do Sul; Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Donald P. Knowles
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, United States of America
- Animal Disease Research Unit, Agricultural Research Service, United States Department of Agriculture, Pullman, Washington, United States of America
| | - Carlos E. Suarez
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, United States of America
- Animal Disease Research Unit, Agricultural Research Service, United States Department of Agriculture, Pullman, Washington, United States of America
- * E-mail: ,
| |
Collapse
|
19
|
Niu Q, Bonsergent C, Rogniaux H, Guan G, Malandrin L, Moreau E. RAP-1a is the main rhoptry-associated-protein-1 (RAP-1) recognized during infection with Babesia sp. BQ1 (Lintan) (B. motasi-like phylogenetic group), a pathogen of sheep in China. Vet Parasitol 2016; 232:48-57. [DOI: 10.1016/j.vetpar.2016.11.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 10/24/2016] [Accepted: 11/11/2016] [Indexed: 12/14/2022]
|
20
|
Expression analysis and biological characterization of Babesia sp. BQ1 (Lintan) (Babesia motasi-like) rhoptry-associated protein 1 and its potential use in serodiagnosis via ELISA. Parasit Vectors 2016; 9:313. [PMID: 27245213 PMCID: PMC4888343 DOI: 10.1186/s13071-016-1573-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 05/05/2016] [Indexed: 01/25/2023] Open
Abstract
Background In China, ovine babesiosis is one of the most important tick-borne haemoparasitic diseases of small ruminants. It has a significant economic impact, and several Babesia motasi-like isolates have been recently shown to be responsible for ovine babesiosis in this country. Methods Full-length and C-terminal-truncated forms of the rap-1a61-1 gene of Babesia sp. BQ1 (Lintan) were cloned into the pET-30a plasmid and subsequently expressed as His-fusion proteins. The resulting recombinant RAP-1a proteins (rRAP-1a61-1 and rRAP-1a61-1/CT) were purified and evaluated as diagnostic antigens using Western blot analysis and ELISA. The native Babesia sp. BQ1 (Lintan) RAP-1 protein was recognized using Western blots and IFAT by antibodies that were raised in rabbits against rRAP-1a61-1/CT. The specificity, sensitivity and positive threshold values for rRAP-1a61-1/CT in ELISA were evaluated. Results Cross-reactivity was observed between rRAP-1a61-1/CT and positive sera for Babesia sp. BQ1 (Lintan), Babesia sp. BQ1 (Ningxian) and Babesia sp. Tianzhu isolates obtained from infected sheep. At one week post-inoculation, a significant increase was observed in the amount of antibodies produced against RAP-1a, and high levels of antibodies against RAP-1a were observed for 3 months (at 84 days p.i.). A total of 3198 serum samples were collected from small ruminants in 54 different regions in 23 provinces of China. These samples were tested using ELISA based on the rRAP-1a61-1/CT protein. The results indicated that the average positive rate was 36.02 %. Conclusions The present study suggests that rRAP-1a61-1/CT might be a potential diagnostic antigen for detecting several isolates of B. motasi-like parasites infection.
Collapse
|
21
|
Hakimi H, Yamagishi J, Kegawa Y, Kaneko O, Kawazu SI, Asada M. Establishment of transient and stable transfection systems for Babesia ovata. Parasit Vectors 2016; 9:171. [PMID: 27008652 PMCID: PMC4806448 DOI: 10.1186/s13071-016-1439-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 03/09/2016] [Indexed: 11/10/2022] Open
Abstract
Background Bovine babesiosis is a tick-borne disease caused by several species of Babesia which produce acute and fatal disease in cattle and affect livestock industry worldwide. Babesia ovata is a benign species widespread in east Asian countries and causes anemia, particularly in cattle which are co-infected with Theileria orientalis. The development of genetic manipulation methods is necessary to improve our understanding of the basic biology of protozoan pathogens toward a better control of disease. Such tools have not been developed for B. ovata, and are the aim of this study. Methods In this study we transfected constructs that were designed to evaluate the ability of several B. ovata promoter candidates to drive expression of a reporter luciferase. We found that the elongation factor-1 alpha intergenic region (ef-1α IG) and the actin 5’ non-coding region (NR) had highest promoter activities. To establish a stable transfection system, we generated a plasmid construct in which the ef-1α IG promoter drives gfp expression, and the actin 5’ NR mediates expression of the selectable marker hdhfr. The plasmid was designed for episomal transfection, as well as to integrate by double cross-over homologous recombination into the ef-1α locus. Circular or linearized plasmid was transfected by electroporation into in vitro cultured B. ovata and retention of the plasmid was facilitated by drug selection with 5 nM WR99210 initiated 48 h after transfection. Results After one-week cultivation with WR99210, GFP-expressing parasites were observed by fluorescence microscopy. Integration of the plasmid construct into the ef-1α locus was confirmed by PCR, Southern blot analysis, and sequencing of recombination sites. These results confirm successful development of a stable transfection system for B. ovata. Conclusion The current study provides a fundamental molecular tool to aid in molecular and cellular studies of B. ovata. Electronic supplementary material The online version of this article (doi:10.1186/s13071-016-1439-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hassan Hakimi
- Department of Protozoology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Sakamoto 1-12-4, Nagasaki, 852-8523, Japan
| | - Junya Yamagishi
- Research Center for Zoonosis Control, Hokkaido University, Sapporo, 001-0020, Japan.,Global Station for Zoonosis Control, GI-CoRE, Hokkaido University, Sapporo, 001-0020, Japan
| | - Yuto Kegawa
- Department of Protozoology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Sakamoto 1-12-4, Nagasaki, 852-8523, Japan.,Leading Program, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, 852-8523, Japan
| | - Osamu Kaneko
- Department of Protozoology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Sakamoto 1-12-4, Nagasaki, 852-8523, Japan
| | - Shin-Ichiro Kawazu
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, 080-8555, Japan.
| | - Masahito Asada
- Department of Protozoology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Sakamoto 1-12-4, Nagasaki, 852-8523, Japan.
| |
Collapse
|
22
|
Niu Q, Liu Z, Yu P, Yang J, Abdallah MO, Guan G, Liu G, Luo J, Yin H. Genetic characterization and molecular survey of Babesia bovis, Babesia bigemina and Babesia ovata in cattle, dairy cattle and yaks in China. Parasit Vectors 2015; 8:518. [PMID: 26452623 PMCID: PMC4600270 DOI: 10.1186/s13071-015-1110-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 09/22/2015] [Indexed: 11/22/2022] Open
Abstract
Background Babesiosis is an important haemoparasitic disease, caused by the infection and subsequent intra-erythrocytic multiplication of protozoa of the genus Babesia that impacts the livestock industry and animal health. The distribution, epidemiology and genetic characterization of B. bigemina, B. bovis, and B. ovata in cattle in China as well as the prevalence of these protozoan agents were assessed. Methods A total of 646 blood specimens from cattle, dairy cattle and yaks from 14 provinces were collected and tested for the presence of the three Babesia species via a specific nested PCR assay based on the rap-1 and ama-1 genes. The PCR results were confirmed by DNA sequencing. Gene sequences and the genetic characterization were determined for selected positive samples from each sampling area. Results Of a total of 646 samples, 134 (20.7 %), 60 (9.3 %) and 10 (1.5 %) were positive for B. bovis, B. bigemina and B. ovata infections, respectively. Mixed infections were found in 7 of 14 provinces; 43 (6.7 %) samples were infected with B. bovis and B. bigemina. Three samples (0.5 %) exhibited a co-infection with B. bovis and B. ovata, and 6 (0.9 %) were infected with all three parasites. The rap-1a gene of B. bovis indicated a high degree of sequence heterogeneity compared with other published rap-1a sequences worldwide and was 85–100 % identical to B. bovis rap-1a sequences in Chinese isolates. B. bigemina rap-1c and B. ovata ama-1 genes were nearly identical, with 97.8–99.3 % and 97.8–99.6 % sequence identity, respectively, in GenBank. Conclusions Positive rates of B. bovis and B. bigemina infection are somewhat high in China. The B. bovis infection in yaks was first reported. The significant sequence heterogeneity in different variants of the rap-1a gene from Chinese B. bovis isolates might be a great threat to the cattle industry if RAP-1a protein is used as immunological antigen against Babesia infections in China. The data obtained in this study can be used to plan effective control strategies against babesiosis in China. Electronic supplementary material The online version of this article (doi:10.1186/s13071-015-1110-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Qingli Niu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, Gansu, 730046, PR China.
| | - Zhijie Liu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, Gansu, 730046, PR China.
| | - Peifa Yu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, Gansu, 730046, PR China.
| | - Jifei Yang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, Gansu, 730046, PR China.
| | - Mirza Omar Abdallah
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, Gansu, 730046, PR China.
| | - Guiquan Guan
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, Gansu, 730046, PR China.
| | - Guangyuan Liu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, Gansu, 730046, PR China.
| | - Jianxun Luo
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, Gansu, 730046, PR China.
| | - Hong Yin
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, Gansu, 730046, PR China. .,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, PR China.
| |
Collapse
|
23
|
Molad T, Erster O, Fleiderovitz L, Roth A, Leibovitz B, Wolkomirsky R, Mazuz ML, Behar A, Markovics A. Molecular characterization of the Israeli B. bigemina vaccine strain and field isolates. Vet Parasitol 2015; 212:147-55. [PMID: 26154404 DOI: 10.1016/j.vetpar.2015.06.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 06/17/2015] [Accepted: 06/22/2015] [Indexed: 10/23/2022]
Abstract
The present study demonstrated the genetic character of the Israeli Babesia bigemina vaccine strain and field isolates, based on rap-1a and rap-1c gene sequences. The RAP-1a of blood-derived Israeli B. bigemina field isolates shared 100% amino acid sequence identity. However, comparison of RAP-1c from various Israeli B. bigemina field isolates revealed that the total sequence identity among the field isolates ranged from 98.2 to 100%. High identity was observed when RAP-1a sequences from the Israeli vaccine strain and field isolates were compared with RAP-1a from Egypt, Syria, Mexico and South Africa, while, the Israeli RAP-1c sequences showed the highest identity to the Mexican isolate JG-29 and to the PR isolate from Puerto-Rico. Based on sequence variations between the rap-1a of the vaccine strain and that of the field isolate, and between the rap-1c of the vaccine strain and that of the field isolates, nPCR-RFLP procedures were developed that enable, for the first time differentiation between the Israeli B. bigemina vaccine strain and field-infection isolates. These assays could serve as fast and sensitive methods for detection and differentiation between Israeli B. bigemina vaccine strains and field isolates, as well as for epidemiological investigations.
Collapse
Affiliation(s)
- T Molad
- Division of Parasitology, Kimron Veterinary Institute, P.O. Box 12, Bet Dagan 50250, Israel.
| | - O Erster
- Division of Parasitology, Kimron Veterinary Institute, P.O. Box 12, Bet Dagan 50250, Israel
| | - L Fleiderovitz
- Division of Parasitology, Kimron Veterinary Institute, P.O. Box 12, Bet Dagan 50250, Israel
| | - A Roth
- Division of Parasitology, Kimron Veterinary Institute, P.O. Box 12, Bet Dagan 50250, Israel
| | - B Leibovitz
- Division of Parasitology, Kimron Veterinary Institute, P.O. Box 12, Bet Dagan 50250, Israel
| | - R Wolkomirsky
- Division of Parasitology, Kimron Veterinary Institute, P.O. Box 12, Bet Dagan 50250, Israel
| | - M L Mazuz
- Division of Parasitology, Kimron Veterinary Institute, P.O. Box 12, Bet Dagan 50250, Israel
| | - A Behar
- Division of Parasitology, Kimron Veterinary Institute, P.O. Box 12, Bet Dagan 50250, Israel
| | - A Markovics
- Division of Parasitology, Kimron Veterinary Institute, P.O. Box 12, Bet Dagan 50250, Israel
| |
Collapse
|
24
|
Mahmoud MS, Kandil OM, Nasr SM, Hendawy SHM, Habeeb SM, Mabrouk DM, Silva MG, Suarez CE. Serological and molecular diagnostic surveys combined with examining hematological profiles suggests increased levels of infection and hematological response of cattle to babesiosis infections compared to native buffaloes in Egypt. Parasit Vectors 2015; 8:319. [PMID: 26062684 PMCID: PMC4467044 DOI: 10.1186/s13071-015-0928-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 06/02/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Babesiosis threatens the development of the cattle and buffaloes industries in Egypt and improved control is needed. The main objectives of this study are surveying the presence of bovine babesiosis in distinct selected bovine and buffalo populations in Egypt using novel molecular and previously validated serological methods, while also comparing the occurrence of hematological alterations among Babesia infected cattle and buffalos. METHODS A total of 253 and 81 blood samples from apparently healthy cattle and buffaloes, respectively, were randomly collected from diverse locations in Egypt. All samples were tested for Babesia bovis and B. bigemina infection using blood film examination, competitive ELISA (cELISA) and PCR. Novel semi-nested and nested PCR assays for the detection of B. bovis and B. bigemina respectively, were developed and used to analyze DNA extracted from bovine and buffalo samples. Hematological profiles were studied using a hematological analyzer. RESULTS Blood films examination revealed 13.8% and 7.4% Babesia infection rates in cattle and buffaloes, respectively. However, in cattle, the cELISA detected 32.8%, 21.3% and 10.7% infection rates with B. bigemina, B. bovis and mixed infection, respectively. In addition, cELISA identified 22.2%, 22.2% and 6.2% infection rates with B. bigemina, B. bovis and mixed infection, respectively in buffaloes. The semi-nested PCR assay showed that 15% of the tested samples were positive for B. bovis in cattle, but just 3% in buffaloes. Infections with B. bigemina were also found in cattle (32.4%), but not in buffaloes upon nested PCR analysis. Sequencing analysis confirmed the identity of the PCR amplicons and showed that Egyptian genotypes of B. bigemina and B. bovis highly resemble sequences previously deposited in GenBank. Hemograms performed on the sampled animals revealed macrocytic hypochromic anemia associated with reduced platelet counts in infected cattle with babesiosis. In addition, marked increases in total leukocyte and granulocytic counts and decreases in lymphocytic counts were found in infected cattle. In contrast, no such hematological anomalies were found in presumably Babesia-infected buffaloes. CONCLUSIONS Frequent occurrence of babesiosis among apparently healthy bovines in Egypt, suggests the need for appropriately designed prevalence studies in this country. Infected bovine, but not buffalo, populations often present hematological disorders compatible with intravascular hemolysis and thrombocytopenia.
Collapse
Affiliation(s)
- Mona S Mahmoud
- Parasitology and Animal Diseases Department, National Research Center, 33 Bohouth St., Giza, Dokki, 12622, Egypt.
| | - Omnia M Kandil
- Parasitology and Animal Diseases Department, National Research Center, 33 Bohouth St., Giza, Dokki, 12622, Egypt.
| | - Soad M Nasr
- Parasitology and Animal Diseases Department, National Research Center, 33 Bohouth St., Giza, Dokki, 12622, Egypt.
| | - Seham H M Hendawy
- Parasitology and Animal Diseases Department, National Research Center, 33 Bohouth St., Giza, Dokki, 12622, Egypt.
| | - Salwa M Habeeb
- Parasitology and Animal Diseases Department, National Research Center, 33 Bohouth St., Giza, Dokki, 12622, Egypt.
| | - Dalia M Mabrouk
- Cell biology Department, National Research Center, 33 Bohouth St., Giza, Dokki, 12622, Egypt.
| | - Marta G Silva
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, USA.
| | - Carlos E Suarez
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, USA. .,Animal Disease Research Unit, Agricultural Research Service, United States Department of Agriculture, Pullman, WA, USA.
| |
Collapse
|
25
|
Niu Q, Marchand J, Yang C, Bonsergent C, Guan G, Yin H, Malandrin L. Rhoptry-associated protein (rap-1) genes in the sheep pathogen Babesia sp. Xinjiang: Multiple transcribed copies differing by 3' end repeated sequences. Vet Parasitol 2015; 211:158-69. [PMID: 26026806 DOI: 10.1016/j.vetpar.2015.04.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 04/24/2015] [Accepted: 04/25/2015] [Indexed: 12/11/2022]
Abstract
Sheep babesiosis occurs mainly in tropical and subtropical areas. The sheep parasite Babesia sp. Xinjiang is widespread in China, and our goal is to characterize rap-1 (rhoptry-associated protein 1) gene diversity and expression as a first step of a long term goal aiming at developing a recombinant subunit vaccine. Seven different rap-1a genes were amplified in Babesia sp. Xinjiang, using degenerate primers designed from conserved motifs. Rap-1b and rap-1c gene types could not be identified. In all seven rap-1a genes, the 5' regions exhibited identical sequences over 936 nt, and the 3' regions differed at 28 positions over 147 nt, defining two types of genes designated α and β. The remaining 3' part varied from 72 to 360 nt in length, depending on the gene. This region consists of a succession of two to ten 36 nt repeats, which explains the size differences. Even if the nucleotide sequences varied, 6 repeats encoded the same stretch of amino acids. Transcription of at least four α and two β genes was demonstrated by standard RT-PCR.
Collapse
Affiliation(s)
- Qingli Niu
- INRA, UMR1300 Biology, Epidemiology and Risk Analysis in Animal Health, CS 40706, F-44307 Nantes, France; LUNAM Université, Oniris, UMR1300 BioEpAR, F-44307 Nantes, France; State Key Laboratory of Veterinary Etiological Biology, LVRI, Lanzhou, China.
| | - Jordan Marchand
- INRA, UMR1300 Biology, Epidemiology and Risk Analysis in Animal Health, CS 40706, F-44307 Nantes, France; LUNAM Université, Oniris, UMR1300 BioEpAR, F-44307 Nantes, France
| | - Congshan Yang
- State Key Laboratory of Veterinary Etiological Biology, LVRI, Lanzhou, China
| | - Claire Bonsergent
- INRA, UMR1300 Biology, Epidemiology and Risk Analysis in Animal Health, CS 40706, F-44307 Nantes, France; LUNAM Université, Oniris, UMR1300 BioEpAR, F-44307 Nantes, France
| | - Guiquan Guan
- State Key Laboratory of Veterinary Etiological Biology, LVRI, Lanzhou, China
| | - Hong Yin
- State Key Laboratory of Veterinary Etiological Biology, LVRI, Lanzhou, China
| | - Laurence Malandrin
- INRA, UMR1300 Biology, Epidemiology and Risk Analysis in Animal Health, CS 40706, F-44307 Nantes, France; LUNAM Université, Oniris, UMR1300 BioEpAR, F-44307 Nantes, France
| |
Collapse
|
26
|
Domingos A, Antunes S, Villar M, de la Fuente J. Functional genomics of tick vectors challenged with the cattle parasite Babesia bigemina. Methods Mol Biol 2015; 1247:475-489. [PMID: 25399115 DOI: 10.1007/978-1-4939-2004-4_32] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Ticks are obligate hematophagous ectoparasites considered as vectors of animal diseases, having a huge economic impact in cattle industry. Babesia spp. are tick-borne pathogens that cause a disease called babesiosis in a wide range of animals and in humans. Control of tick infestations is mainly based on the use of acaricides, which have limited efficacy reducing tick infestations, mostly due to wrong usage, and is often accompanied by the selection of acaricide-resistant ticks, environmental contamination, and contamination of milk and meat products. Vaccines affecting both vector and pathogens constitute new control strategies for tick and tick-borne diseases and are, therefore, a good alternative to chemical control. In this chapter we describe the identification of Rhipicephalus (Boophilus) annulatus genes differentially expressed in response to infection with B. bigemina by using suppression-subtractive hybridization (SSH), which allows the identification of differentially expressed genes. The results of the SSH studies are validated by real-time reverse transcription (RT)-PCR. Functional analyses are conducted by RNAi on selected R. annulatus genes to determine their putative role in B. bigemina-tick interactions. Gathered data may be useful for the future development of improved vaccines and vaccination strategies to control babesiosis.
Collapse
Affiliation(s)
- Ana Domingos
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisbon, Portugal,
| | | | | | | |
Collapse
|
27
|
Florin-Christensen M, Suarez CE, Rodriguez AE, Flores DA, Schnittger L. Vaccines against bovine babesiosis: where we are now and possible roads ahead. Parasitology 2014; 141:1563-1592. [PMID: 25068315 DOI: 10.1017/s0031182014000961] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Bovine babesiosis caused by the tick-transmitted haemoprotozoans Babesia bovis, Babesia bigemina and Babesia divergens commonly results in substantial cattle morbidity and mortality in vast world areas. Although existing live vaccines confer protection, they have considerable disadvantages. Therefore, particularly in countries where large numbers of cattle are at risk, important research is directed towards improved vaccination strategies. Here a comprehensive overview of currently used live vaccines and of the status quo of experimental vaccine trials is presented. In addition, pertinent research fields potentially contributing to the development of novel non-live and/or live vaccines are discussed, including parasite antigens involved in host cell invasion and in pathogen-tick interactions, as well as the protective immunity against infection. The mining of available parasite genomes is continuously enlarging the array of potential vaccine candidates and, additionally, the recent development of a transfection tool for Babesia can significantly contribute to vaccine design. However, the complication and high cost of vaccination trials hinder Babesia vaccine research, and have so far seriously limited the systematic examination of antigen candidates and prevented an in-depth testing of formulations using different immunomodulators and antigen delivery systems.
Collapse
Affiliation(s)
- Monica Florin-Christensen
- Instituto de Patobiologia, CICVyA, INTA-Castelar, 1686 Hurlingham, Argentina
- CONICET, C1033AAJ Ciudad Autonoma de Buenos Aires, Argentina
| | - Carlos E Suarez
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164-7040, USA
- ADRU-ARS, United States Department of Agriculture, Pullman, WA 99164-6630, USA
| | - Anabel E Rodriguez
- Instituto de Patobiologia, CICVyA, INTA-Castelar, 1686 Hurlingham, Argentina
| | - Daniela A Flores
- Instituto de Patobiologia, CICVyA, INTA-Castelar, 1686 Hurlingham, Argentina
- ANPCyT, C1425FQD Ciudad Autonoma de Buenos Aires, Argentina
| | - Leonhard Schnittger
- Instituto de Patobiologia, CICVyA, INTA-Castelar, 1686 Hurlingham, Argentina
- CONICET, C1033AAJ Ciudad Autonoma de Buenos Aires, Argentina
| |
Collapse
|
28
|
Rodriguez M, Alhassan A, Ord RL, Cursino-Santos JR, Singh M, Gray J, Lobo CA. Identification and characterization of the RouenBd1987 Babesia divergens Rhopty-Associated Protein 1. PLoS One 2014; 9:e107727. [PMID: 25226276 PMCID: PMC4166668 DOI: 10.1371/journal.pone.0107727] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 08/20/2014] [Indexed: 11/19/2022] Open
Abstract
Human babesiosis is caused by one of several babesial species transmitted by ixodid ticks that have distinct geographical distributions based on the presence of competent animal hosts. The pathology of babesiosis, like malaria, is a consequence of the parasitaemia which develops through the cyclical replication of Babesia parasites in a patient's red blood cells, though symptoms typically are nonspecific. We have identified the gene encoding Rhoptry-Associated Protein -1 (RAP-1) from a human isolate of B. divergens, Rouen1987 and characterized its protein product at the molecular and cellular level. Consistent with other Babesia RAP-1 homologues, BdRAP-1 is expressed as a 46 kDa protein in the parasite rhoptries, suggesting a possible role in red cell invasion. Native BdRAP-1 binds to an unidentified red cell receptor(s) that appears to be non-sialylated and non-proteinacious in nature, but we do not find significant reduction in growth with anti-rRAP1 antibodies in vitro, highlighting the possibility the B. divergens is able to use alternative pathways for invasion, or there is an alternative, complementary, role for BdRAP-1 during the invasion process. As it is the parasite's ability to recognize and then invade host cells which is central to clinical disease, characterising and understanding the role of Babesia-derived proteins involved in these steps are of great interest for the development of an effective prophylaxis.
Collapse
Affiliation(s)
- Marilis Rodriguez
- Department of Blood-Borne Parasites, New York Blood Center, New York, New York, United States of America
| | - Andy Alhassan
- Department of Blood-Borne Parasites, New York Blood Center, New York, New York, United States of America
| | - Rosalynn L. Ord
- Department of Blood-Borne Parasites, New York Blood Center, New York, New York, United States of America
| | - Jeny R. Cursino-Santos
- Department of Blood-Borne Parasites, New York Blood Center, New York, New York, United States of America
| | - Manpreet Singh
- Department of Blood-Borne Parasites, New York Blood Center, New York, New York, United States of America
| | - Jeremy Gray
- University College Dublin School of Biology and Environmental Science, Dublin, Republic of Ireland
| | - Cheryl A. Lobo
- Department of Blood-Borne Parasites, New York Blood Center, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
29
|
Niu Q, Valentin C, Bonsergent C, Malandrin L. Strong conservation of rhoptry-associated-protein-1 (RAP-1) locus organization and sequence among Babesia isolates infecting sheep from China (Babesia motasi-like phylogenetic group). INFECTION GENETICS AND EVOLUTION 2014; 28:21-32. [PMID: 25200723 DOI: 10.1016/j.meegid.2014.08.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 08/26/2014] [Accepted: 08/28/2014] [Indexed: 11/28/2022]
Abstract
Rhoptry-associated-protein 1 (RAP-1) is considered as a potential vaccine candidate due to its involvement in red blood cell invasion by parasites in the genus Babesia. We examined its value as a vaccine candidate by studying RAP-1 conservation in isolates of Babesia sp. BQ1 Ningxian, Babesia sp. Tianzhu and Babesia sp. Hebei, responsible for ovine babesiosis in different regions of China. The rap-1 locus in these isolates has very similar features to those described for Babesia sp. BQ1 Lintan, another Chinese isolate also in the B. motasi-like phylogenetic group, namely the presence of three types of rap-1 genes (rap-1a, rap-1b and rap-1c), multiple conserved rap-1b copies (5) interspaced with more or less variable rap-1a copies (6), and the 3' localization of one rap-1c. The isolates Babesia sp. Tianzhu, Babesia sp. BQ1 Lintan and Ningxian were almost identical (average nucleotide identity of 99.9%) over a putative locus of about 31 Kb, including the intergenic regions. Babesia sp. Hebei showed a similar locus organization but differed in the rap-1 locus sequence, for each gene and intergenic region, with an average nucleotide identity of 78%. Our results are in agreement with 18S rDNA phylogenetic studies performed on these isolates. However, in extremely closely related isolates the rap-1 locus seems more conserved (99.9%) than the 18S rDNA (98.7%), whereas in still closely related isolates the identities are much lower (78%) compared with the 18S rDNA (97.7%). The particularities of the rap-1 locus in terms of evolution, phylogeny, diagnosis and vaccine development are discussed.
Collapse
Affiliation(s)
- Qingli Niu
- INRA, UMR1300 Biology, Epidemiology and Risk Analysis in Animal Health, CS 40706, F-44307 Nantes, France; LUNAM Université, Oniris, UMR1300 BioEpAR, F-44307 Nantes, France
| | - Charlotte Valentin
- INRA, UMR1300 Biology, Epidemiology and Risk Analysis in Animal Health, CS 40706, F-44307 Nantes, France; LUNAM Université, Oniris, UMR1300 BioEpAR, F-44307 Nantes, France
| | - Claire Bonsergent
- INRA, UMR1300 Biology, Epidemiology and Risk Analysis in Animal Health, CS 40706, F-44307 Nantes, France; LUNAM Université, Oniris, UMR1300 BioEpAR, F-44307 Nantes, France
| | - Laurence Malandrin
- INRA, UMR1300 Biology, Epidemiology and Risk Analysis in Animal Health, CS 40706, F-44307 Nantes, France; LUNAM Université, Oniris, UMR1300 BioEpAR, F-44307 Nantes, France.
| |
Collapse
|
30
|
Thompson C, Baravalle ME, Valentini B, Mangold A, Torioni de Echaide S, Ruybal P, Farber M, Echaide I. Typification of virulent and low virulence Babesia bigemina clones by 18S rRNA and rap-1c. Exp Parasitol 2014; 141:98-105. [PMID: 24681200 DOI: 10.1016/j.exppara.2014.03.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 02/24/2014] [Accepted: 03/04/2014] [Indexed: 11/29/2022]
Abstract
The population structure of original Babesia bigemina isolates and reference strains with a defined phenotypic profile was assessed using 18S rRNA and rap-1c genes. Two reference strains, BbiS2P-c (virulent) and BbiS1A-c (low virulence), were biologically cloned in vitro. The virulence profile of the strains and clones was assessed in vivo. One fully virulent and one low-virulence clone were mixed in identical proportions to evaluate their growth efficiency in vitro. Each clone was differentiated by two microsatellites and the gene gp45. The 18S rRNA and rap-1c genes sequences from B. bigemina biological clones and their parental strains, multiplied exclusively in vivo or in vitro, were compared with strain JG-29. The virulence of clones derived from the BbiS2P-c strain was variable. Virulent clone Bbi9P1 grew more efficiently in vitro than did the low-virulence clone Bbi2A1. The haplotypes generated by the nucleotide polymorphism, localized in the V4 region of the 18S rRNA, allowed the identification of three genotypes. The rap-1c haplotypes allowed defining four genotypes. Parental and original strains were defined by multiple haplotypes identified in both genes. The rap-1c gene, analyzed by high-resolution melting (HRM), allowed discrimination between two genotypes according to their phenotype, and both were different from JG-29. B. bigemina biological clones made it possible to define the population structure of isolates and strains. The polymorphic regions of the 18S rRNA and rap-1c genes allowed the identification of different subpopulations within original B. bigemina isolates by the definition of several haplotypes and the differentiation of fully virulent from low virulence clones.
Collapse
Affiliation(s)
- C Thompson
- Instituto Nacional de Tecnología Agropecuaria, Estación Experimental Agropecuaria Rafaela, Ruta 34 km 227, CC 22, CP 2300 Rafaela, Santa Fe, Argentina.
| | - M E Baravalle
- Instituto Nacional de Tecnología Agropecuaria, Estación Experimental Agropecuaria Rafaela, Ruta 34 km 227, CC 22, CP 2300 Rafaela, Santa Fe, Argentina
| | - B Valentini
- Instituto Nacional de Tecnología Agropecuaria, Estación Experimental Agropecuaria Rafaela, Ruta 34 km 227, CC 22, CP 2300 Rafaela, Santa Fe, Argentina
| | - A Mangold
- Instituto Nacional de Tecnología Agropecuaria, Estación Experimental Agropecuaria Rafaela, Ruta 34 km 227, CC 22, CP 2300 Rafaela, Santa Fe, Argentina
| | - S Torioni de Echaide
- Instituto Nacional de Tecnología Agropecuaria, Estación Experimental Agropecuaria Rafaela, Ruta 34 km 227, CC 22, CP 2300 Rafaela, Santa Fe, Argentina
| | - P Ruybal
- Instituto Nacional de Tecnología Agropecuaria, Centro Nacional de Investigaciones Agropecuarias Castelar, Los Reseros y Las Cabañas, CP 1712 Castelar, Buenos Aires, Argentina
| | - M Farber
- Instituto Nacional de Tecnología Agropecuaria, Centro Nacional de Investigaciones Agropecuarias Castelar, Los Reseros y Las Cabañas, CP 1712 Castelar, Buenos Aires, Argentina
| | - I Echaide
- Instituto Nacional de Tecnología Agropecuaria, Estación Experimental Agropecuaria Rafaela, Ruta 34 km 227, CC 22, CP 2300 Rafaela, Santa Fe, Argentina
| |
Collapse
|
31
|
Niu Q, Bonsergent C, Guan G, Yin H, Malandrin L. Sequence and organization of the rhoptry-associated-protein-1 (rap-1) locus for the sheep hemoprotozoan Babesia sp. BQ1 Lintan (B. motasi phylogenetic group). Vet Parasitol 2013; 198:24-38. [PMID: 24075419 DOI: 10.1016/j.vetpar.2013.08.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 08/27/2013] [Accepted: 08/27/2013] [Indexed: 10/26/2022]
Abstract
Babesiosis is a frequent infection of animals worldwide by tick borne pathogen Babesia, and several species are responsible for ovine babesiosis. Recently, several Babesia motasi-like isolates were described in sheep in China. In this study, we sequenced the multigenic rap-1 gene locus of one of these isolates, Babesia sp. BQ1 Lintan. The RAP-1 proteins are involved in the process of red blood cells invasion and thus represent a potential target for vaccine development. A complex composition and organization of the rap-1 locus was discovered with: (1) the presence of 3 different types of rap-1 sequences (rap-1a, rap-1b and rap-1c); (2) the presence of multiple copies of rap-1a and rap-1b; (3) polymorphism among the rap-1a copies, with two classes (named rap-1a61 and rap-1a67) having a similarity of 95.7%, each class represented by two close variants; (4) polymorphism between rap-1a61-1 and rap-1a61-2 limited to three nucleotide positions; (5) a difference of eight nucleotides between rap-1a67-1 and rap-1a67-2 from position 1270 to the putative stop site of rap-1a67-1 which might produce two putative proteins of slightly different sizes; (6) the ratio of rap-1a copies corresponding to one rap-1a67, one rap-1a61-1 and one rap-1a61-2; (7) the presence of three different intergenic regions separating rap-1a, rap-1b and rap-1c; (8) interspacing of the rap-1a copies with rap-1b copies; and (9) the terminal position of rap-1c in the locus. A 31kb locus composed of 6 rap-1a sequences interspaced with 5 rap-1b sequences and with a terminal rap-1c copy was hypothesized. A strikingly similar sequence composition (rap-1a, rap-1b and rap-1c), as well as strong gene identities and similar locus organization with B. bigemina were found and highlight the conservation of synteny at this locus in this phylogenetic clade.
Collapse
Affiliation(s)
- Qingli Niu
- INRA, UMR1300 Biology, Epidemiology and Risk Analysis in Animal Health, BP 40706, F-44307 Nantes, France; LUNAM Université, Oniris, UMR BioEpAR, F-44307 Nantes, France
| | | | | | | | | |
Collapse
|
32
|
Bastos RG, Suarez CE, Laughery JM, Johnson WC, Ueti MW, Knowles DP. Differential expression of three members of the multidomain adhesion CCp family in Babesia bigemina, Babesia bovis and Theileria equi. PLoS One 2013; 8:e67765. [PMID: 23844089 PMCID: PMC3701008 DOI: 10.1371/journal.pone.0067765] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Accepted: 05/22/2013] [Indexed: 12/16/2022] Open
Abstract
Members of the CCp protein family have been previously described to be expressed on gametocytes of apicomplexan Plasmodium parasites. Knocking out Plasmodium CCp genes blocks the development of the parasite in the mosquito vector, making the CCp proteins potential targets for the development of a transmission-blocking vaccine. Apicomplexans Babesia bovis and Babesia bigemina are the causative agents of bovine babesiosis, and apicomplexan Theileria equi causes equine piroplasmosis. Bovine babesiosis and equine piroplasmosis are the most economically important parasite diseases that affect worldwide cattle and equine industries, respectively. The recent sequencing of the B. bovis and T. equi genomes has provided the opportunity to identify novel genes involved in parasite biology. Here we characterize three members of the CCp family, named CCp1, CCp2 and CCp3, in B. bigemina, B. bovis and T. equi. Using B. bigemina as an in vitro model, expression of all three CCp genes and proteins was demonstrated in temperature-induced sexual stages. Transcripts for all three CCp genes were found in vivo in blood stages of T. equi, and transcripts for CCp3 were detected in vivo in blood stages of B. bovis. However, no protein expression was detected in T. equi blood stages or B. bovis blood stages or B. bovis tick stages. Collectively, the data demonstrated a differential pattern of expression of three orthologous genes of the multidomain adhesion CCp family by B. bigemina, B. bovis and T. equi. The novel CCp members represent potential targets for innovative approaches to control bovine babesiosis and equine piroplasmosis.
Collapse
Affiliation(s)
- Reginaldo G Bastos
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, United States of America.
| | | | | | | | | | | |
Collapse
|
33
|
Marcelino I, de Almeida AM, Ventosa M, Pruneau L, Meyer DF, Martinez D, Lefrançois T, Vachiéry N, Coelho AV. Tick-borne diseases in cattle: applications of proteomics to develop new generation vaccines. J Proteomics 2012; 75:4232-50. [PMID: 22480908 DOI: 10.1016/j.jprot.2012.03.026] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2012] [Revised: 03/13/2012] [Accepted: 03/15/2012] [Indexed: 01/11/2023]
Abstract
Tick-borne diseases (TBDs) affect 80% of the world's cattle population, hampering livestock production throughout the world. Livestock industry is important to rural populations not only as food supply, but also as a source of income. Tick control is usually achieved by using acaricides which are expensive, deleterious to the environment and can induce chemical resistance of vectors; the development of more effective and sustainable control methods is therefore required. Theileriosis, babesiosis, anaplasmosis and heartwater are the most important TBDs in cattle. Immunization strategies are currently available but with variable efficacy. To develop a new generation of vaccines which are more efficient, cheaper and safer, it is first necessary to better understand the mechanisms by which these parasites are transmitted, multiply and cause disease; this becomes especially difficult due to their complex life cycles, in vitro culture conditions and the lack of genetic tools to manipulate them. Proteomics and other complementary post-genomic tools such as transcriptomics and metabolomics in a systems biology context are becoming key tools to increase knowledge on the biology of infectious diseases. Herein, we present an overview of the so called "Omics" studies currently available on these tick-borne pathogens, giving emphasis to proteomics and how it may help to discover new vaccine candidates to control TBDs.
Collapse
|
34
|
Functional genomics studies of Rhipicephalus (Boophilus) annulatus ticks in response to infection with the cattle protozoan parasite, Babesia bigemina. Int J Parasitol 2012; 42:187-95. [PMID: 22265898 DOI: 10.1016/j.ijpara.2011.12.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Revised: 12/05/2011] [Accepted: 12/06/2011] [Indexed: 11/22/2022]
Abstract
Ticks are obligate haematophagous ectoparasites of wild and domestic animals as well as humans, considered to be second worldwide to mosquitoes as vectors of human diseases, but the most important vectors of disease-causing pathogens in domestic and wild animals. Babesia spp. are tick-borne pathogens that cause a disease called babesiosis in a wide range of animals and in humans. In particular, Babesia bovis and Babesia bigemina are transmitted by cattle ticks, Rhipicephalus (Boophilus) annulatus and Rhipicephalus microplus, which are considered the most important cattle ectoparasites with major economic impacts on cattle production. The objectives of this study were to identify R. annulatus genes differentially expressed in response to infection with B. bigemina. Functional analyses were conducted on selected genes by RNA interference in both R. annulatus and R. microplus ticks. Eight hundred randomly selected suppression-subtractive hybridisation library clones were sequenced and analysed. Molecular function Gene Ontology assignments showed that the obtained tick sequences encoded for proteins with different cellular functions. Differentially expressed genes with putative functions in tick-pathogen interactions were selected for validation of SSH results by real-time reverse transcription-PCR. Genes encoding for TROSPA, calreticulin, ricinusin and serum amyloid A were over-expressed in B. bigemina-infected ticks while Kunitz-type protease inhibitor 5 mRNA levels were down-regulated in infected ticks. Functional analysis of differentially expressed genes by double stranded RNA-mediated RNAi showed that under the conditions of the present study knockdown of TROSPA and serum amyloid A significantly reduced B. bigemina infection levels in R. annulatus while in R. microplus, knockdown of TROSPA, serum amyloid A and calreticulin also reduced pathogen infection levels when compared with controls. Several studies have characterised the tick-pathogen interface at the molecular level. However, to our knowledge this is the first report of functional genomics studies in R. annulatus infected with B. bigemina. The results reported here increase our understanding of the role of tick genes in Babesia infection/multiplication.
Collapse
|
35
|
Mosqueda J, Olvera-Ramirez A, Aguilar-Tipacamu G, Canto GJ. Current advances in detection and treatment of babesiosis. Curr Med Chem 2012; 19:1504-18. [PMID: 22360483 PMCID: PMC3355466 DOI: 10.2174/092986712799828355] [Citation(s) in RCA: 178] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Revised: 10/25/2011] [Accepted: 10/26/2011] [Indexed: 01/15/2023]
Abstract
Babesiosis is a disease with a world-wide distribution affecting many species of mammals principally cattle and man. The major impact occurs in the cattle industry where bovine babesiosis has had a huge economic effect due to loss of meat and beef production of infected animals and death. Nowadays to those costs there must be added the high cost of tick control, disease detection, prevention and treatment. In almost a century and a quarter since the first report of the disease, the truth is: there is no a safe and efficient vaccine available, there are limited chemotherapeutic choices and few low-cost, reliable and fast detection methods. Detection and treatment of babesiosis are important tools to control babesiosis. Microscopy detection methods are still the cheapest and fastest methods used to identify Babesia parasites although their sensitivity and specificity are limited. Newer immunological methods are being developed and they offer faster, more sensitive and more specific options to conventional methods, although the direct immunological diagnoses of parasite antigens in host tissues are still missing. Detection methods based on nucleic acid identification and their amplification are the most sensitive and reliable techniques available today; importantly, most of those methodologies were developed before the genomics and bioinformatics era, which leaves ample room for optimization. For years, babesiosis treatment has been based on the use of very few drugs like imidocarb or diminazene aceturate. Recently, several pharmacological compounds were developed and evaluated, offering new options to control the disease. With the complete sequence of the Babesia bovis genome and the B. bigemina genome project in progress, the post-genomic era brings a new light on the development of diagnosis methods and new chemotherapy targets. In this review, we will present the current advances in detection and treatment of babesiosis in cattle and other animals, with additional reference to several apicomplexan parasites.
Collapse
Affiliation(s)
- J Mosqueda
- C.A. Salud Animal y Microbiología Ambiental. Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Mexico.
| | | | | | | |
Collapse
|
36
|
Suarez CE, Noh S. Emerging perspectives in the research of bovine babesiosis and anaplasmosis. Vet Parasitol 2011; 180:109-25. [DOI: 10.1016/j.vetpar.2011.05.032] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
37
|
A novel neutralization sensitive and subdominant RAP-1-related antigen (RRA) is expressed byBabesia bovismerozoites. Parasitology 2011; 138:809-18. [DOI: 10.1017/s0031182011000321] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
SUMMARYObjective.TheBabesia bovisgenome encodes arap-1related gene denominated RAP-1 related antigen (RRA). In this study, we analysed the pattern of expression, immunogenicity and functional relevance of RRA.Methods.Phylogenetic analysis was performed using the program Phylip. Expression ofrrawas analysed by Northern blots, RT-PCR, immunoprecipitation, Western blots and immunofluorescence. RRA antigenicity was tested by T-cell proliferation and Western blot analysis, and functional relevance was determined in anin vitroneutralization assay.Results.RRA is more closely related to RAP-1b ofBabesia bigeminathan toB. bovisRAP-1, and it is highly conserved among distinct strains. Transcriptional analysis suggests lower numbers ofrratranscripts compared torap-1.Immunoprecipitation of metabolically labelledB. bovisproteins with antibodies against synthetic peptides representing predicted antigenic regions of RRA confirmed the expression of a ∼43 kDa RRA in cultured merozoites. Antibodies present inB. bovishyperimmune sera, but not in field-infected cattle sera, reacted weakly with recombinant RRA, and no significant stimulation was obtained using recombinant RRA as antigen in T-cell proliferation assays, indicating that RRA is a subdominant antigen. Antibodies against RRA synthetic peptides reacted with merozoites using immunofluorescence, and were able to significantly inhibit erythrocyte invasion inin vitroneutralization tests, suggesting functional relevance for parasite survival.Conclusion.B. bovisexpress a novel subdominant RAP-1-like molecule that may contribute to erythrocyte invasion and/or egression by the parasite.
Collapse
|
38
|
Bhoora R, Quan M, Zweygarth E, Guthrie AJ, Prinsloo SA, Collins NE. Sequence heterogeneity in the gene encoding the rhoptry-associated protein-1 (RAP-1) of Babesia caballi isolates from South Africa. Vet Parasitol 2010; 169:279-88. [DOI: 10.1016/j.vetpar.2010.01.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2009] [Revised: 12/02/2009] [Accepted: 01/05/2010] [Indexed: 11/15/2022]
|
39
|
Molecular characterizations of three distinctBabesia gibsonirhoptry-associated protein-1s (RAP-1s). Parasitology 2009; 136:1147-60. [DOI: 10.1017/s003118200999045x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
SUMMARYThree cDNAs encoding rhoptry-associated protein 1 (RAP-1) homologues were found in theBabesia gibsoniEST database. Based on similarities to BgRAP-1a, which was identified previously by serological screening of a cDNA merozoite library, the two new genes were designatedBgRAP-1b(33·7%) andBgRAP-1c(57%). Mice antiserum raised against each recombinant protein reacted specifically withB. gibsoniparasites as determined by Western blotting, which showed native molecular sizes of the BgRAP-1a (51 kDa), BgRAP-1b (53 kDa) and BgRAP-1c (47 kDa) consistent with predictable molecular weights. Immunofluoresence using these antibodies revealed localization of all BgRAP-1s within the matrix of merozoites; however, BgRAP-1a appeared to diverge from the other two when it was found secreted into the cytoplasm of infected erythrocytes. Apical localization of all 3 BgRAP-1s during the extracellular stage of the parasite combined with their ability to bind a canine erythrocyte membrane fraction was suggestive of a role for these proteins in erythrocyte attachment. Lastly, the ability of these recombinant proteins to be used as diagnostic reagents was tested by ELISA and the sensitivities of BgRAP-1a and BgRAP-1c were found increased through N-terminal truncation. Taken together, our data suggest divergent roles for the 3 BgRAP-1s in the merozoite stage ofB. gibsoni.
Collapse
|
40
|
Stable expression of a GFP-BSD fusion protein in Babesia bovis merozoites. Int J Parasitol 2009; 39:289-97. [DOI: 10.1016/j.ijpara.2008.08.006] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2008] [Revised: 07/29/2008] [Accepted: 08/08/2008] [Indexed: 11/22/2022]
|
41
|
Petrigh R, Ruybal P, Thompson C, Neumann R, Moretta R, Wilkowsky S, Draghi G, Echaide I, de Echaide ST, Farber M. Improved molecular tools for detection of Babesia bigemina. Ann N Y Acad Sci 2009; 1149:155-7. [PMID: 19120197 DOI: 10.1196/annals.1428.038] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Molecular detection of Babesia bigemina involves a nested PCR protocol and reverse line blot hybridization (RLBH) assay based on the 18S gene. In this study, we report the development of molecular tools for improving B. bigemina detection in bovine blood-a one-step PCR assay based on the amplification of rap-1a paralogous and a new RLBH Babesia spp. 18S probe. The one-step PCR assay is highly specific, with an estimated analytical sensitivity corresponding to 0.00002% parasitemia. The RLBH assay, with a new B. bigemina probe, allows the detection of all tested B. bigemina isolates showing no cross-hybridization with B. bovis 18S gene. By developing this highly specific and sensitive one-step PCR and upgrading the RLBH assay for B. bigemina, we have improved molecular assays which, together with serologic methods, provide valuable tools for epidemiologic studies of bovine babesiosis.
Collapse
Affiliation(s)
- Romina Petrigh
- INTA-Castelar, CC25, CP 1712 Castelar, Buenos Aires, Argentina.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Vichido R, Falcon A, Ramos JA, Alvarez A, Figueroa JV, Norimine J, Brown WC, Castro LA, Mosqueda J. Expression analysis of heat shock protein 20 and rhoptry-associated protein 1a in sexual stages and kinetes of Babesia bigemina. Ann N Y Acad Sci 2009; 1149:136-40. [PMID: 19120192 DOI: 10.1196/annals.1428.073] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Heat shock protein 20 (HSP-20) and rhoptry-associated protein 1a (RAP-1a) are two proteins considered as candidates to be included in vaccines or diagnostics methods for the control of bovine babesiosis. It has been hypothesized that both genes have a basic function in the cellular physiology of erythrocyte-infecting stages; it is not known if they have a functional role in tick stages. The objective of this work was to analyze whether hsp-20 and rap-1a are expressed in sexual stages and kinetes of Babesia bigemina. Purified RNA from sexual stages and kinetes was analyzed by reverse transcriptase (RT)-PCR with specific primers for hsp-20 or rap-1a. Expression analysis was carried out using an indirect immunofluorescence test with specific antibodies against HSP-20 and RAP-1a. Results obtained by RT-PCR showed amplicons for hsp-20 and rap-1a in sexual stages and kinetes. Positive signals were also detected when sexual stages and kinetes were analyzed with specific antibodies for HSP-20 and RAP-1a. The results obtained here confirm the hypothesis that the genes hsp-20 and rap-1a from B. bigemina are expressed in sexual stages and kinetes and stress the importance of these proteins in the cellular physiology of tick stages.
Collapse
Affiliation(s)
- Rodrigo Vichido
- Centro Nacional de Investigación Disciplinaria en Parasitologia, Veterinaria-Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Jiutepec, Morelos, México
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Validation of a competitive enzyme-linked immunosorbent assay for detection of Babesia bigemina antibodies in cattle. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2008; 15:1316-21. [PMID: 18632921 DOI: 10.1128/cvi.00150-08] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A competitive enzyme-linked immunosorbent assay (cELISA) based on a broadly conserved, species-specific, B-cell epitope within the C terminus of Babesia bigemina rhoptry-associated protein 1a was validated for international use. Receiver operating characteristic analysis revealed 16% inhibition as the threshold for a negative result, with an associated specificity of 98.3% and sensitivity of 94.7%. Increasing the threshold to 21% increased the specificity to 100% but modestly decreased the sensitivity to 87.2%. By using 21% inhibition, the positive predictive values ranged from 90.7% (10% prevalence) to 100% (95% prevalence) and the negative predictive values ranged from 97.0% (10% prevalence) to 48.2% (95% prevalence). The assay was able to detect serum antibody as early as 7 days after intravenous inoculation. The cELISA was distributed to five different laboratories along with a reference set of 100 defined bovine serum samples, including known positive, known negative, and field samples. The pairwise concordance among the five laboratories ranged from 100% to 97%, and all kappa values were above 0.8, indicating a high degree of reliability. Overall, the cELISA appears to have the attributes necessary for international application.
Collapse
|
44
|
Genome sequence of Babesia bovis and comparative analysis of apicomplexan hemoprotozoa. PLoS Pathog 2007; 3:1401-13. [PMID: 17953480 PMCID: PMC2034396 DOI: 10.1371/journal.ppat.0030148] [Citation(s) in RCA: 299] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2007] [Accepted: 08/30/2007] [Indexed: 12/28/2022] Open
Abstract
Babesia bovis is an apicomplexan tick-transmitted pathogen of cattle imposing a global risk and severe constraints to livestock health and economic development. The complete genome sequence was undertaken to facilitate vaccine antigen discovery, and to allow for comparative analysis with the related apicomplexan hemoprotozoa Theileria parva and Plasmodium falciparum. At 8.2 Mbp, the B. bovis genome is similar in size to that of Theileria spp. Structural features of the B. bovis and T. parva genomes are remarkably similar, and extensive synteny is present despite several chromosomal rearrangements. In contrast, B. bovis and P. falciparum, which have similar clinical and pathological features, have major differences in genome size, chromosome number, and gene complement. Chromosomal synteny with P. falciparum is limited to microregions. The B. bovis genome sequence has allowed wide scale analyses of the polymorphic variant erythrocyte surface antigen protein (ves1 gene) family that, similar to the P. falciparum var genes, is postulated to play a role in cytoadhesion, sequestration, and immune evasion. The ∼150 ves1 genes are found in clusters that are distributed throughout each chromosome, with an increased concentration adjacent to a physical gap on chromosome 1 that contains multiple ves1-like sequences. ves1 clusters are frequently linked to a novel family of variant genes termed smorfs that may themselves contribute to immune evasion, may play a role in variant erythrocyte surface antigen protein biology, or both. Initial expression analysis of ves1 and smorf genes indicates coincident transcription of multiple variants. B. bovis displays a limited metabolic potential, with numerous missing pathways, including two pathways previously described for the P. falciparum apicoplast. This reduced metabolic potential is reflected in the B. bovis apicoplast, which appears to have fewer nuclear genes targeted to it than other apicoplast containing organisms. Finally, comparative analyses have identified several novel vaccine candidates including a positional homolog of p67 and SPAG-1, Theileria sporozoite antigens targeted for vaccine development. The genome sequence provides a greater understanding of B. bovis metabolism and potential avenues for drug therapies and vaccine development. Vector-transmitted blood parasites cause some of the most widely distributed, serious, and poorly controlled diseases globally, including the most severe form of human malaria caused by Plasmodium falciparum. In livestock, tick-transmitted blood parasites include the protozoa Theileria parva, the cause of East Coast fever and Babesia bovis, the cause of tick fever, to which well over half of the world's cattle population are at risk. There is a critical need to better understand the mechanisms by which these parasites are transmitted, persist, and cause disease in order to optimize methods for control, including development of vaccines. This manuscript presents the genome sequence of B. bovis, and provides a whole genome comparative analysis with P. falciparum and T. parva. Genome-wide characterization of the B. bovis antigenically variable ves1 family reveals interesting differences in organization and expression from the related P. falciparum var genes. The second largest gene family (smorf) in B. bovis was newly discovered and may itself be involved in persistence, highlighting the utility of this approach in gene discovery. Organization and structure of the B. bovis genome is most similar to that of Theileria, and despite common features in clinical outcome is limited to microregional similarity with P. falciparum. Comparative gene analysis identifies several previously unknown proteins as homologs of vaccine candidates in one or more of these parasites, and candidate genes whose expression might account for unique properties such as the ability of Theileria to reversibly transform leukocytes.
Collapse
|
45
|
Hilpertshauser H, Deplazes P, Meli ML, Hofmann-Lehmann R, Lutz H, Mathis A. Genotyping of Babesia bigemina from cattle from a non-endemic area (Switzerland). Vet Parasitol 2007; 145:59-64. [PMID: 17208377 DOI: 10.1016/j.vetpar.2006.12.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2006] [Revised: 11/30/2006] [Accepted: 12/06/2006] [Indexed: 11/29/2022]
Abstract
In August 2002, bovine anaplasmosis and concurrent infections with Mycoplasma sp. and piroplasms were reported in a cattle herd in an alpine region of Switzerland. The piroplasms were identified by PCR/sequencing of part of the 18S rRNA gene as Babesia bigemina and Theileria of the buffeli/sergenti/orientalis-complex, which have never been diagnosed in Switzerland before. The B. bigemina isolate was genetically characterised at two loci and compared with isolates from Italy, Spain, Turkey, Kenya and Mexico. Analysis of the internal transcribed spacer 2 (ITS2) of the rRNA genes revealed high polymorphism not only among the isolates but even within the isolates, and the presence of two types of the ITS2 in every isolate was confirmed. A dendrogram based on ITS2 sequences showed that the Swiss isolate was most closely related to a Spanish isolate but no sequences of the isolate from Switzerland were identical to any of the other isolates. The isolate from Italy was not positioned in the same cluster as the Swiss and the Spanish isolate. This had been anticipated as the nearest known endemic area of B. bigemina in Central Italy. Sequence analysis of the rhoptry-associated protein-1c gene (rap1c) confirmed the similarity of the Swiss and Spanish isolate. Hence, our molecular analyses of the Swiss B. bigemina isolate did not unequivocally track its geographical origin and the way of introduction remains obscure.
Collapse
Affiliation(s)
- H Hilpertshauser
- Institute of Parasitology, Medical and Vetsuisse Faculty, University of Zürich, Winterthurerstr 266a, CH-8057 Zürich, Switzerland
| | | | | | | | | | | |
Collapse
|
46
|
Zhou J, Zhang G, Nishikawa Y, Fujisaki K, Xuan X. A 38-kDa protein from Babesia gibsoni and its antibody response in an experimentally infected dog. Vet Parasitol 2006; 141:345-8. [PMID: 16815635 DOI: 10.1016/j.vetpar.2006.05.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2006] [Revised: 05/22/2006] [Accepted: 05/24/2006] [Indexed: 11/29/2022]
Abstract
A cDNA encoding the Babesia bovis 12D3 antigen homologue was obtained by immunoscreening the expression library prepared from Babesia gibsoni merozoite mRNA. The complete nucleotide sequence of the gene was 1406 bp. Computer analysis suggested that the sequence contains an open reading frame of 1052 bp encoding an expected protein with a molecular weight of 36kDa. Based on homology analysis, this putative protein was designated as the B. gibsoni 12D3 antigen (Bg12D3). The Bg12D3 gene was expressed in the Escherichia coli BL21 strain, and the chronically infected dog serum reacted with the recombinant protein. The antiserum against the recombinant Bg12D3 protein can recognize a 38-kDa native protein, which is consistent with its expected size. Moreover, the purified recombinant proteins were used as the antigen to detect the antibody response in an experimentally infected dog by the enzyme-linked immunosorbent assay (ELISA). Our results indicated that the Bg12D3 protein was recognized by the host immune system and that it induced an antibody response in chronic B. gibsoni infection. These results allowed us to identify a new member of the 12D3 antigens and its characteristic immune response in canine B. gibsoni infection.
Collapse
Affiliation(s)
- Jinlin Zhou
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
| | | | | | | | | |
Collapse
|
47
|
Brown WC, Norimine J, Goff WL, Suarez CE, McElwain TF. Prospects for recombinant vaccines against Babesia bovis and related parasites. Parasite Immunol 2006; 28:315-27. [PMID: 16842268 DOI: 10.1111/j.1365-3024.2006.00849.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Babesial parasites infect cattle in tropical and temperate regions of the world and cause significant morbidity and mortality. Discovery of protective antigens that could be used in a killed vaccine has been slow and to date there are few promising vaccine candidates for cattle Babesia. This review describes mechanisms of protective innate and adaptive immune responses to babesial parasites and different strategies to identify potentially protective protein antigens of B. bovis, B. bigemina, and B. divergens. Successful parasites often cause persistent infection, and this paper also discusses how B. bovis evades and regulates the immune response to promote survival of parasite and host. Development of successful non-living recombinant vaccines will depend on increased understanding of protective immune mechanisms and availability of parasite genomes.
Collapse
Affiliation(s)
- W C Brown
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164-7040, USA.
| | | | | | | | | |
Collapse
|
48
|
Carcy B, Précigout E, Schetters T, Gorenflot A. Genetic basis for GPI-anchor merozoite surface antigen polymorphism of Babesia and resulting antigenic diversity. Vet Parasitol 2006; 138:33-49. [PMID: 16551492 DOI: 10.1016/j.vetpar.2006.01.038] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Glycosyl-phosphatidylinositol anchor merozoite surface antigens (GPI-anchor MSA) are proposed to act in the invasion process of infective merozoites of Babesia into host erythrocytes. Because of their essential function in the survival of Babesia parasites, they constitute good candidates for the development of vaccines against babesiosis and they have been extensively analyzed. These include Babesia bovis variable MSA (VMSA) and Babesia bigemina gp45/gp55 proteins of the agents of bovine babesiosis from tropical and subtropical countries, and the Babesia divergens Bd37 and Babesia canis Bc28 proteins of the main agents of bovine and canine babesiosis in Europe, respectively. However, these are very polymorphic antigens and Babesia parasites have evolved molecular mechanisms that enable these antigens to evade the host immune system as a survival strategy. This review focuses on the genetic basis of GPI-anchor MSA polymorphism and the antigenic diversity of B-cell epitopes that might be generated in each of these Babesia species. The picture is incomplete and no Babesia genome sequence is yet available. However, the available sequences suggest that two distinct, non cross-reactive GPI-anchor MSA (i.e., with unique B-cell epitopes) may be required by all Babesia species for invasion, and that these two distinct GPI-anchor MSA would be encoded by a multigene family. Furthermore, the data are consistent with the ability of biological clones from Babesia to use these multigene families for the expression of GPI-anchor MSA, either conserved (B. canis and B. bovis) or polymorphic (B. divergens and B. bigemina) in their amino acid sequence. Moreover, as a consequence for successful parasitism, the data suggest that both conserved and polymorphic GPI-anchor MSA would present unique B-cell epitopes.
Collapse
Affiliation(s)
- Bernard Carcy
- Laboratoire de Biologie Cellulaire et Moléculaire, EA MESR 2413, ERT 1038 Vaccination antiparasitaire, UFR des Sciences Pharmaceutiques et Biologiques, BP 14491, F-34093 Montpellier Cedex 5, France.
| | | | | | | |
Collapse
|
49
|
Mosqueda J, Ramos JA, Falcon A, Alvarez JA, Aragon V, Figueroa JV. Babesia bigemina: Sporozoite Isolation fromBoophilus microplusNymphs and Initial Immunomolecular Characterization. Ann N Y Acad Sci 2004; 1026:222-31. [PMID: 15604497 DOI: 10.1196/annals.1307.034] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
It has been hypothesized that babesial sporozoites express specific antigens that induce protective immunologic responses in cattle. However, they remain uncharacterized, partly for lack of research on the sporozoite stage of Babesia spp. This field suffers from complete knowledge of parasite development in the tick salivary gland; limited amounts of sporozoites from ticks, and a lack of protocols for induction and purification of sporozoites. In this work, Boophilus microplus larvae infected with B. bigemina were fed on susceptible cattle. Nymphs were collected and macerates were separated by a Percoll density gradient. Microscopic analysis of Giemsa-stained smears showed a larger number of sporozoites from nymphs fed for 9 days. Percoll-purified sporozoites were observed in large numbers in groups or individually and free of tick cells. RT-PCR analysis of total RNA extracted from purified sporozoites indicated transcription of the rhoptry associate protein 1 (rap-1) genes: rap-1a, rap-b, rap-1c, as well as the heat shock protein 20 (hsp-20) gene. Purified sporozoites were cultured in vitro analyzed for RAP-1a expression using an immunocytochemistry assay. Erythrocyte-attached sporozoites reacted with a specific RAP-1a monoclonal antibody. This is the first report of Babesia bigemina sporozoite antigens. Moreover, purified sporozoites will allow the characterization of stage-specific antigens involved in immunologic protection.
Collapse
Affiliation(s)
- Juan Mosqueda
- Centro Nacional de Investigacion Disciplinaria en Parasitologia Veeterinaria, Instituto Nacional de Investigaciones Forestales y Pecuarias, Km 11.5 Carretera Federal, Cuernavaca-Cuautla, Jiutepec, Morelos, Mexico.
| | | | | | | | | | | |
Collapse
|
50
|
Suarez CE, Palmer GH, LeRoith T, Florin-Christensen M, Crabb B, McElwain TF. Intergenic regions in the rhoptry associated protein-1 (rap-1) locus promote exogenous gene expression in Babesia bovis. Int J Parasitol 2004; 34:1177-84. [PMID: 15380689 DOI: 10.1016/j.ijpara.2004.07.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2004] [Revised: 06/30/2004] [Accepted: 07/02/2004] [Indexed: 11/18/2022]
Abstract
Members of the Babesiarap-1 gene family are expressed during multiple parasite stages, and are regulated by both transcriptional and post-transcriptional mechanisms. In all Babesia species, tandemly arranged rap-1 gene copies are separated by an intergenic (IG) region that is hypothesized to regulate gene expression. In this study, we tested that hypothesis by determining whether the Babesia bovisrap-1 IG region could promote extra-chromosomal expression of exogenous genes introduced into merozoites by transfection, and whether a tandem arrangement of IG regions similar to the rap-1 locus enhances exogenous gene expression. Initially, electroporation conditions of B. bovis parasites were determined using expression of the reporter luciferase gene. Both B. bovis transfected by electroporation and Escherichia coli transformed with plasmid p40-15-luc containing the luciferase gene under the control of the B. bovisrap-1 IG and 3' flanking regions were able to express luciferase, indicating that the rap-1 IG region contains a functional promoter. The chromosomal organization of the B. bovisrap-1 locus includes two identical rap-1 open reading frames and IG regions in a head to tail orientation. To determine whether this orientation enhanced expression of exogenous genes, plasmid constructs containing two rap-1-IG regions controlling expression of the luc and human dihydrofolate reductase (hdhfr) genes, and oriented either in head to head (pLuc-H-13) or head to tail (pLuc-H-18) arrangement, were compared. The head to tail orientation of the gene cassettes resulted in a significant increase in the level of luciferase as compared to either head to head orientation or a single IG region construct (p40-15-luc). Thus, an organization that mimics the native structure of the rap-1 locus results in enhanced luciferase expression. These results are the first to demonstrate exogenous gene expression in B. bovis after transfection, and to confirm that the B. bovisrap-1 IG region can promote extra-chromosomal gene expression in vivo.
Collapse
Affiliation(s)
- Carlos E Suarez
- Program in Vector-Borne Diseases, Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164-7040, USA.
| | | | | | | | | | | |
Collapse
|