1
|
Quilles JC, Espada CR, Orsine LA, Defina TA, Almeida L, Holetz F, Cruz AK. A short ncRNA modulates gene expression and affects stress response and parasite differentiation in Leishmania braziliensis. Front Cell Infect Microbiol 2025; 15:1513908. [PMID: 39981380 PMCID: PMC11841412 DOI: 10.3389/fcimb.2025.1513908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 01/15/2025] [Indexed: 02/22/2025] Open
Abstract
The protozoan parasite Leishmania spp. is a causative agent of leishmaniasis, a disease that affects millions of people in more than 80 countries worldwide. Apart from its medical relevance, this organism has a genetic organization that is unique among eukaryotes. Studies of the mechanisms regulating gene expression in Leishmania led us to investigate noncoding RNAs (ncRNAs) as regulatory elements. We previously identified differentially expressed (DE) ncRNAs in Leishmania braziliensis with potential roles in the parasite biology and development. Herein, we present a functional analysis of one such DE ncRNA, the 147-nucleotide-long transcript ncRNA97, which is preferentially expressed in amastigotes, the replicative form within mammalian phagocytes. By RT-qPCR the ncRNA97 was detected in greater quantities in the nucleus under physiological conditions and in the cytoplasm under nutritional stress. Interestingly, the transcript is protected at the 5' end but is not processed by the canonical trypanosomatid trans-splicing mechanism, according to the RNA circularization assay. ncRNA97 knockout (KO) and addback (AB) transfectants were generated and subjected to phenotypic analysis, which revealed that the lack of ncRNA97 impairs the starvation response and differentiation to the infective form. Comparative transcriptomics of ncRNA97KO and parental cells revealed that transcripts encoding amastigote-specific proteins were affected. This pioneering work demonstrates that ncRNAs contribute to the developmental regulatory mechanisms of Leishmania.
Collapse
Affiliation(s)
- José C. Quilles
- Laboratory de Molecular Parasitology, Department of Cell and Molecular Biology, Ribeirão Preto Medical School, FMRP/USP – University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Caroline R. Espada
- Laboratory de Molecular Parasitology, Department of Cell and Molecular Biology, Ribeirão Preto Medical School, FMRP/USP – University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Lissur A. Orsine
- Laboratory de Molecular Parasitology, Department of Cell and Molecular Biology, Ribeirão Preto Medical School, FMRP/USP – University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Tânia A. Defina
- Laboratory de Molecular Parasitology, Department of Cell and Molecular Biology, Ribeirão Preto Medical School, FMRP/USP – University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Letícia Almeida
- Laboratory de Molecular Parasitology, Department of Cell and Molecular Biology, Ribeirão Preto Medical School, FMRP/USP – University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Fabíola Holetz
- Laboratory of Gene Expression Regulation, Carlos Chagas Institute, Oswaldo Cruz Foundation, Curitiba, PR, Brazil
| | - Angela K. Cruz
- Laboratory de Molecular Parasitology, Department of Cell and Molecular Biology, Ribeirão Preto Medical School, FMRP/USP – University of São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
2
|
Shital S, Madan E, Selvapandiyan A, Kumar Ganguly N. An update on recombinant vaccines against leishmaniasis. Indian J Med Res 2024; 160:323-337. [PMID: 39632642 PMCID: PMC11619067 DOI: 10.25259/ijmr_1040_2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 10/28/2024] [Indexed: 12/07/2024] Open
Abstract
Leishmaniasis is a parasitic disease caused by various species of the Leishmania parasite, manifesting in visceral (VL), cutaneous (CL), and mucocutaneous (MCL) forms. To combat this debilitating disease, various vaccines candidates including proteins, DNA, vectors, adjuvants, and recombinant whole parasites have been developed and tested experimentally and preclinically against several Leishmania species. Some vaccines have already entered human clinical trials. These vaccines aim to induce protective immunity using specific antigens. This review examines all efforts to develop recombinant vaccines against the parasite, analyzing successes including commercially available canine vaccines and the overall challenges faced in the quest to eradicate the disease. Additionally, recent advances in vaccine delivery systems, such as viral vectors and non-pathogenic bacteria, offer promising avenues to enhance immunogenicity and improve the targeted delivery of antigens, potentially leading to more effective and long-lasting immune responses. By understanding past and current efforts, future strategies can be refined to create more effective vaccines and ultimately control or eradicate this parasitic disease.
Collapse
Affiliation(s)
- Shital Shital
- Department of Molecular Medicine, Jamia Hamdard, India
| | - Evanka Madan
- Department of Research, Sir Ganga Ram Hospital, New Delhi, India
| | | | | |
Collapse
|
3
|
Abstract
The Hsp70/Hsp90 organising protein (Hop, also known as stress-inducible protein 1/STI1/STIP1) has received considerable attention for diverse cellular functions in both healthy and diseased states. There is extensive evidence that intracellular Hop is a co-chaperone of the major chaperones Hsp70 and Hsp90, playing an important role in the productive folding of Hsp90 client proteins, although recent evidence suggests that eukaryotic Hop is regulatory within chaperone complexes rather than essential. Consequently, Hop is implicated in many key signalling pathways, including aberrant pathways leading to cancer. Hop is also secreted, and it is now well established that Hop interacts with the prion protein, PrPC, to mediate multiple signalling events. The intracellular and extracellular forms of Hop most likely represent two different isoforms, although the molecular determinants of these divergent functions are yet to be identified. There is also a growing body of research that reports the involvement of Hop in cellular activities that appear independent of either chaperones or PrPC. While the various cellular functions of Hop have been described, its biological function remains elusive. However, recent knockout studies in mammals suggest that Hop has an important role in embryonic development. This review provides a critical overview of the latest molecular, cellular and biological research on Hop, critically evaluating its function in healthy systems and how this function is adapted in diseased states.
Collapse
|
4
|
Jamabo M, Bentley SJ, Macucule-Tinga P, Tembo P, Edkins AL, Boshoff A. In silico analysis of the HSP90 chaperone system from the African trypanosome, Trypanosoma brucei. Front Mol Biosci 2022; 9:947078. [PMID: 36213128 PMCID: PMC9538636 DOI: 10.3389/fmolb.2022.947078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/24/2022] [Indexed: 11/13/2022] Open
Abstract
African trypanosomiasis is a neglected tropical disease caused by Trypanosoma brucei (T. brucei) and spread by the tsetse fly in sub-Saharan Africa. The trypanosome relies on heat shock proteins for survival in the insect vector and mammalian host. Heat shock protein 90 (HSP90) plays a crucial role in the stress response at the cellular level. Inhibition of its interactions with chaperones and co-chaperones is being explored as a potential therapeutic target for numerous diseases. This study provides an in silico overview of HSP90 and its co-chaperones in both T. brucei brucei and T. brucei gambiense in relation to human and other trypanosomal species, including non-parasitic Bodo saltans and the insect infecting Crithidia fasciculata. A structural analysis of T. brucei HSP90 revealed differences in the orientation of the linker and C-terminal domain in comparison to human HSP90. Phylogenetic analysis displayed the T. brucei HSP90 proteins clustering into three distinct groups based on subcellular localizations, namely, cytosol, mitochondria, and endoplasmic reticulum. Syntenic analysis of cytosolic HSP90 genes revealed that T. b. brucei encoded for 10 tandem copies, while T. b. gambiense encoded for three tandem copies; Leishmania major (L. major) had the highest gene copy number with 17 tandem copies. The updated information on HSP90 from recently published proteomics on T. brucei was examined for different life cycle stages and subcellular localizations. The results show a difference between T. b. brucei and T. b. gambiense with T. b. brucei encoding a total of twelve putative HSP90 genes, while T. b. gambiense encodes five HSP90 genes. Eighteen putative co-chaperones were identified with one notable absence being cell division cycle 37 (Cdc37). These results provide an updated framework on approaching HSP90 and its interactions as drug targets in the African trypanosome.
Collapse
Affiliation(s)
- Miebaka Jamabo
- Biotechnology Innovation Centre, Rhodes University, Grahamstown, South Africa
| | | | | | - Praise Tembo
- Biotechnology Innovation Centre, Rhodes University, Grahamstown, South Africa
| | - Adrienne Lesley Edkins
- Department of Biochemistry and Microbiology, Biomedical Biotechnology Research Unit (BioBRU), Rhodes University, Grahamstown, South Africa
| | - Aileen Boshoff
- Biotechnology Innovation Centre, Rhodes University, Grahamstown, South Africa
- *Correspondence: Aileen Boshoff,
| |
Collapse
|
5
|
Cortazzo da Silva L, Aoki JI, Floeter-Winter LM. Finding Correlations Between mRNA and Protein Levels in Leishmania Development: Is There a Discrepancy? Front Cell Infect Microbiol 2022; 12:852902. [PMID: 35903202 PMCID: PMC9318571 DOI: 10.3389/fcimb.2022.852902] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 05/02/2022] [Indexed: 12/02/2022] Open
Abstract
Multiple genes and proteins have been identified as differentially expressed in the stages of the Leishmania life cycle. The differentiation processes are implicated in specific transcriptional and proteomic adjustments driven by gene expression regulation mechanisms. Leishmania parasites lack gene-specific transcriptional control, and gene expression regulation mostly depends on posttranscriptional mechanisms. Due to the lack of transcriptional regulation, criticism regarding the relevance of transcript quantification as a possible and efficient prediction of protein levels is recurrent in studies that use transcriptomic information. The advent of high-throughput technologies has improved the analysis of genomes, transcriptomes and proteomes for different organisms under several conditions. Nevertheless, defining the correlation between transcriptional and proteomic profiles requires arduous and expensive work and remains a challenge in Leishmania. In this review, we analyze transcriptomic and proteomic data for several Leishmania species in two different stages of the parasite life cycle: metacyclogenesis and amastigogenesis (amastigote differentiation). We found a correlation between mRNA and protein levels of 60.9% and 69.8% for metacyclogenesis and amastigogenesis, respectively; showing that majority mRNA and protein levels increase or decrease concomitantly. Among the analyzed genes that did not present correlation indicate that transcriptomic data should be carefully interpreted as protein expression. We also discuss possible explanations and mechanisms involved for this lack of correlation.
Collapse
|
6
|
Mohammadi AM, Duthie MS, Reed SG, Javadi A, Khamesipour A. Evolution of antigen-specific immune responses in cutaneous leishmaniasis patients. Parasite Immunol 2021; 43:e12814. [PMID: 33351204 DOI: 10.1111/pim.12814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 12/18/2020] [Accepted: 12/18/2020] [Indexed: 11/27/2022]
Abstract
AIMS Despite immunization appearing to be the most appropriate strategy for long-term control of the vector-borne leishmaniases, no sustainable vaccine is currently available against any form of leishmaniasis. We therefore evaluated, in the context of vaccine antigen candidates, antigen-specific immune response at various stages of cutaneous leishmaniasis (CL). METHODS AND RESULTS Peripheral blood mononuclear cells (PBMC) isolated from healthy volunteers and CL patients (caused by either Leishmania major or L tropica) were incubated with crude Leishmania proteins (soluble Leishmania antigen; SLA), single recombinant proteins (TSA, LeIF, LmSTI1) or chimeric fusion proteins (LEISH-F2 and LEISH-F3). The concentrations of immune modulatory cytokines were then determined. While we did not detect appreciable antigen-specific IL-5 secretion, SLA induced secretion of interleukin (IL)-10 in cultures from early active lesion CL patients and even from healthy individuals. Conversely, interferon (IFN)-γ responses to SLA and recombinant proteins followed a similar pattern, developing only in the late active CL lesion phase. Once established, antigen-specific IFN-γ responses persisted in cured CL patients. CONCLUSION Together, our results provide further insight into the development of immune responses during CL and further validate the selection of LEISH-F2 and LEISH-F3 as vaccine antigen candidates.
Collapse
Affiliation(s)
- Akram Miramin Mohammadi
- Center for Research & Training in Skin Diseases & Leprosy (CRTSDL), Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | | | | | - Amir Javadi
- Department of Social Medicines, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Ali Khamesipour
- Center for Research & Training in Skin Diseases & Leprosy (CRTSDL), Tehran University of Medical Sciences (TUMS), Tehran, Iran
| |
Collapse
|
7
|
Heat Shock Proteins as the Druggable Targets in Leishmaniasis: Promises and Perils. Infect Immun 2021; 89:IAI.00559-20. [PMID: 33139381 DOI: 10.1128/iai.00559-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Leishmania, the causative agent of leishmaniasis, is an intracellular pathogen that thrives in the insect gut and mammalian macrophages to complete its life cycle. Apart from temperature difference (26 to 37°C), it encounters several harsh conditions, including oxidative stress, inflammatory reactions, and low pH. Heat shock proteins (HSPs) play essential roles in cell survival by strategically reprogramming cellular processes and signaling pathways. HSPs assist cells in multiple functions, including differentiation, adaptation, virulence, and persistence in the host cell. Due to cyclical epidemiological patterns, limited chemotherapeutic options, drug resistance, and the absence of a vaccine, control of leishmaniasis remains a far-fetched dream. The essential roles of HSPs in parasitic differentiation and virulence and increased expression in drug-resistant strains highlight their importance in combating the disease. In this review, we highlighted the diverse physiological importance of HSPs present in Leishmania, emphasizing their significance in disease pathogenesis. Subsequently, we assessed the potential of HSPs as a chemotherapeutic target and underlined the challenges associated with it. Furthermore, we have summarized a few ongoing drug discovery initiatives that need to be explored further to develop clinically successful chemotherapeutic agents in the future.
Collapse
|
8
|
Toribio R, Mangano S, Fernández-Bautista N, Muñoz A, Castellano MM. HOP, a Co-chaperone Involved in Response to Stress in Plants. FRONTIERS IN PLANT SCIENCE 2020; 11:591940. [PMID: 33193548 PMCID: PMC7658193 DOI: 10.3389/fpls.2020.591940] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 10/06/2020] [Indexed: 05/25/2023]
Abstract
Protein folding is an essential step for protein functionality. In eukaryotes this process is carried out by multiple chaperones that act in a cooperative manner to maintain the proteome homeostasis. Some of these chaperones are assisted during protein folding by different co-chaperones. One of these co-chaperones is HOP, the HSP70-HSP90 organizing protein. This assistant protein, due to its importance, has been deeply analyzed in other eukaryotes, but its function has only recently started to be envisaged in plants. In this kingdom, the role of HOP has been associated to plant response to different cellular, biotic and abiotic stresses. In this article, we analyze the current knowledge about HOP in eukaryotes, paying a special attention to the recently described roles of HOP in plants. In addition, we discuss the recent breakthroughs in the field and the possible new avenues for the study of plant HOP proteins in the future.
Collapse
Affiliation(s)
- René Toribio
- Centro de Biotecnología y Genómica de Plantas, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Universidad Politécnica de Madrid (UPM), Madrid, Spain
| | - Silvina Mangano
- Centro de Biotecnología y Genómica de Plantas, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Universidad Politécnica de Madrid (UPM), Madrid, Spain
| | - Nuria Fernández-Bautista
- Centro de Biotecnología y Genómica de Plantas, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Universidad Politécnica de Madrid (UPM), Madrid, Spain
| | - Alfonso Muñoz
- Departamento de Botánica, Ecología y Fisiología Vegetal, Universidad de Córdoba, Córdoba, Spain
| | - M. Mar Castellano
- Centro de Biotecnología y Genómica de Plantas, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Universidad Politécnica de Madrid (UPM), Madrid, Spain
| |
Collapse
|
9
|
Hombach-Barrigah A, Bartsch K, Smirlis D, Rosenqvist H, MacDonald A, Dingli F, Loew D, Späth GF, Rachidi N, Wiese M, Clos J. Leishmania donovani 90 kD Heat Shock Protein - Impact of Phosphosites on Parasite Fitness, Infectivity and Casein Kinase Affinity. Sci Rep 2019; 9:5074. [PMID: 30911045 PMCID: PMC6434042 DOI: 10.1038/s41598-019-41640-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 03/11/2019] [Indexed: 12/28/2022] Open
Abstract
Leishmania parasites are thought to control protein activity at the post-translational level, e.g. by protein phosphorylation. In the pathogenic amastigote, the mammalian stage of Leishmania parasites, heat shock proteins show increased phosphorylation, indicating a role in stage-specific signal transduction. Here we investigate the impact of phosphosites in the L. donovani heat shock protein 90. Using a chemical knock-down/genetic complementation approach, we mutated 11 confirmed or presumed phosphorylation sites and assessed the impact on overall fitness, morphology and in vitro infectivity. Most phosphosite mutations affected the growth and morphology of promastigotes in vitro, but with one exception, none of the phosphorylation site mutants had a selective impact on the in vitro infection of macrophages. Surprisingly, aspartate replacements mimicking the negative charge of phosphorylated serines or threonines had mostly negative impacts on viability and infectivity. HSP90 is a substrate for casein kinase 1.2-catalysed phosphorylation in vitro. While several putative phosphosite mutations abrogated casein kinase 1.2 activity on HSP90, only Ser289 could be identified as casein kinase target by mass spectrometry. In summary, our data show HSP90 as a downstream client of phosphorylation-mediated signalling in an organism that depends on post-transcriptional gene regulation.
Collapse
Affiliation(s)
| | | | - Despina Smirlis
- Institut Pasteur and Institut National de Santé et Recherche Médicale INSERM U1201, Unité de Parasitologie Moléculaire et Signalisation, Paris, France
- Hellenic Pasteur Institute, Athens, Greece
| | - Heidi Rosenqvist
- Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS) University of Strathclyde, Glasgow, Scotland, UK
- Novo Nordisk A/S, Gentofte, Denmark
| | - Andrea MacDonald
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Florent Dingli
- Laboratoire de Spectrométrie de Masse Protéomique, Centre de Recherche, Institut Curie, PSL Research University, Paris, France
| | - Damarys Loew
- Laboratoire de Spectrométrie de Masse Protéomique, Centre de Recherche, Institut Curie, PSL Research University, Paris, France
| | - Gerald F Späth
- Institut Pasteur and Institut National de Santé et Recherche Médicale INSERM U1201, Unité de Parasitologie Moléculaire et Signalisation, Paris, France
| | - Najma Rachidi
- Institut Pasteur and Institut National de Santé et Recherche Médicale INSERM U1201, Unité de Parasitologie Moléculaire et Signalisation, Paris, France
| | - Martin Wiese
- Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS) University of Strathclyde, Glasgow, Scotland, UK
| | - Joachim Clos
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany.
| |
Collapse
|
10
|
Schmidt JC, Manhães L, Fragoso SP, Pavoni DP, Krieger MA. Involvement of STI1 protein in the differentiation process of Trypanosoma cruzi. Parasitol Int 2017; 67:131-139. [PMID: 29081390 DOI: 10.1016/j.parint.2017.10.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 10/23/2017] [Accepted: 10/24/2017] [Indexed: 11/18/2022]
Abstract
The protozoan Trypanosoma cruzi is a parasite exposed to several environmental stressors inside its invertebrate and vertebrate hosts. Although stress conditions are involved in its differentiation processes, little information is available about the stress response proteins engaged in these activities. This work reports the first known association of the stress-inducible protein 1 (STI1) with the cellular differentiation process in a unicellular eukaryote. Albeit STI1 expression is constitutive in epimastigotes and metacyclic trypomastigotes, higher protein levels were observed in late growth phase epimastigotes subjected to nutritional stress. Analysis by indirect immunofluorescence revealed that T. cruzi STI1 (TcSTI1) is located throughout the cell cytoplasm, with some cytoplasmic granules appearing in greater numbers in late growing epimastigotes and late growing epimastigotes subjected to nutritional stress. We observed that part of the fluorescence signal from both TcSTI1 and TcHSP70 colocalized around the nucleus. Gene silencing of sti1 in Trypanosoma brucei did not affect cell growth. Similarly, the growth of T. cruzi mutant parasites with a single allele sti1 gene knockout was not affected. However, the differentiation of epimastigotes in metacyclic trypomastigotes (metacyclogenesis) was compromised. Lower production rates and numbers of metacyclic trypomastigotes were obtained from the mutant parasites compared with the wild-type parasites. These data indicate that reduced levels of TcSTI1 decrease the rate of in vitro metacyclogenesis, suggesting that this protein may participate in the differentiation process of T. cruzi.
Collapse
Affiliation(s)
- Juliana C Schmidt
- Laboratory of Functional Genomics, Instituto Carlos Chagas, Oswaldo Cruz Foundation (FIOCRUZ), Curitiba, Paraná, Brazil; Health Science Department, Universidade Comunitária da Região de Chapecó (UNOCHAPECÓ), Chapecó, Santa Catarina, Brazil
| | - Lauro Manhães
- Laboratory of Functional Genomics, Instituto Carlos Chagas, Oswaldo Cruz Foundation (FIOCRUZ), Curitiba, Paraná, Brazil
| | - Stenio P Fragoso
- Laboratory of Functional Genomics, Instituto Carlos Chagas, Oswaldo Cruz Foundation (FIOCRUZ), Curitiba, Paraná, Brazil
| | - Daniela P Pavoni
- Laboratory of Functional Genomics, Instituto Carlos Chagas, Oswaldo Cruz Foundation (FIOCRUZ), Curitiba, Paraná, Brazil.
| | - Marco A Krieger
- Laboratory of Functional Genomics, Instituto Carlos Chagas, Oswaldo Cruz Foundation (FIOCRUZ), Curitiba, Paraná, Brazil; Instituto de Biologia Molecular do Paraná (IBMP), Curitiba, Paraná, Brazil
| |
Collapse
|
11
|
MAPK1 of Leishmania donovani interacts and phosphorylates HSP70 and HSP90 subunits of foldosome complex. Sci Rep 2017; 7:10202. [PMID: 28860596 PMCID: PMC5579238 DOI: 10.1038/s41598-017-09725-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 07/17/2017] [Indexed: 01/14/2023] Open
Abstract
MAP kinases (MAPK) are the most downstream kinases in signal transduction cascades and regulate critical cellular activities such as cell proliferation, differentiation, mortality, stress response, and apoptosis. The Leishmania donovani MAPK1 (LdMAPK1) is involved in parasite viability and drug resistance, but its substrates have not been identified yet. Aiming to identify the possible targets(s) of LdMAPK1, we sought to isolate interacting partners by co-immunoprecipitation, gel electrophoresis and mass spectrometry. Out of fifteen analyzed protein bands, four were identified as subunits of the HSP90 foldosome complex, namely HSP 90, HSP70, STI and SGT. Western blot analysis not only confirmed that LdMAPK1 interacts with HSP70 and HSP90 but also demonstrated that MAPK1 abundance modulates their expression. The interaction is sensitive to treatment with AMTZD, a competitive ERK inhibitor. MAPK1 also displayed kinase activity with HSP90 or HSP70 as substrates. By phosphorylating HSPs in the foldosome complex, MAPK1 may regulate the stability and activity of the foldosome which in turn plays a pivotal role in the parasitic life cycle of L. donovani. Our study therefore implicates LdMAPK1 in the post-translational modification and possibly the regulation of heat shock proteins. Conversely, HSP90 and HSP70 are identified as the first substrates of LdMAPK1.
Collapse
|
12
|
Stiles JK, Hicock PI, Shah PH, Meade JC. Genomic organization, transcription, splicing and gene regulation inLeishmania. ANNALS OF TROPICAL MEDICINE AND PARASITOLOGY 2016. [DOI: 10.1080/00034983.1999.11813485] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
13
|
Fakhraee F, Badiee A, Alavizadeh SH, Jalali SA, Chavoshian O, Khamesipour A, Mahboudi F, Jaafari MR. Coadminstration of L. major amastigote class I nuclease (rLmaCIN) with LPD nanoparticles delays the progression of skin lesion and the L. major dissemination to the spleen in BALB/c mice-based experimental setting. Acta Trop 2016; 159:211-8. [PMID: 27060774 DOI: 10.1016/j.actatropica.2016.04.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 04/04/2016] [Accepted: 04/05/2016] [Indexed: 10/22/2022]
Abstract
Human cutaneous leishmaniasis is a disease caused by eukaryotic single-celled Leishmania species, the developmental program of which relies upon blood-feeding adult female sand flies and their dominant mammal blood sources, namely wild rodents in area where human beings exert more or less transient activities. The recourse to model rodents - namely laboratory mice such as C57BL/6 mice - has allowed extracted the immune signatures that account for the healing of the transient cutaneous lesion that develops at the site where Leishmania major promastigotes were delivered. Indeed, if the latter mice are exposed to a second inoculum of L. major promastigotes, no lesion will develop in the secondary skin site remodeled as a niche for a low size intracellular L. major amastigote population. Moreover, IFN-γ dominates over IL-10 in the supernatant of cultures of PBMCs -prepared from blood sampled from human beings who healed from a cutaneous lesion- and incubated with L. major class I Nuclease LmaCIN, a protein highly expressed in the cell-cycling amastigote population which is dominant by macrophages. Altogether, these datasets were strong incentive to promote research aimed to design and monitor efficacy of L. major amastigote protein-based vaccines in pre-clinical settings. Using L. major enzyme class I nuclease (LmaCIN) expressed in the L. major cell-cycling amastigote population hosted by macrophages, BALB/c mice were immunized three times with either rLmaCIN plus LPD nanoparticles (LPD-rLmaCIN), or rLmaCIN-CpG DNA or free rLmaCIN and dextrose. The following parameters: footpad swelling, splenic L. major load, L. major binding IgGs and cytokine profiles of rLmaCIN- reactive T lymphocytes were then compared. Once coadminstered with LPD, rLmaCIN allow BALB/c mice to display delayed onset of skin lesion at the challenge inoculation site and delayed L. major dissemination from the challenged site to the spleen. Thus, the LPD-rLmaCIN is shown to display some promising features out of three formulations inoculated to the BALB/c mouse immunization.
Collapse
|
14
|
Molecular Chaperones of Leishmania: Central Players in Many Stress-Related and -Unrelated Physiological Processes. BIOMED RESEARCH INTERNATIONAL 2015; 2015:301326. [PMID: 26167482 PMCID: PMC4488524 DOI: 10.1155/2015/301326] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Accepted: 05/24/2015] [Indexed: 12/12/2022]
Abstract
Molecular chaperones are key components in the maintenance of cellular homeostasis and survival, not only during stress but also under optimal growth conditions. Folding of nascent polypeptides is supported by molecular chaperones, which avoid the formation of aggregates by preventing nonspecific interactions and aid, when necessary, the translocation of proteins to their correct intracellular localization. Furthermore, when proteins are damaged, molecular chaperones may also facilitate their refolding or, in the case of irreparable proteins, their removal by the protein degradation machinery of the cell. During their digenetic lifestyle, Leishmania parasites encounter and adapt to harsh environmental conditions, such as nutrient deficiency, hypoxia, oxidative stress, changing pH, and shifts in temperature; all these factors are potential triggers of cellular stress. We summarize here our current knowledge on the main types of molecular chaperones in Leishmania and their functions. Among them, heat shock proteins play important roles in adaptation and survival of this parasite against temperature changes associated with its passage from the poikilothermic insect vector to the warm-blooded vertebrate host. The study of structural features and the function of chaperones in Leishmania biology is providing opportunities (and challenges) for drug discovery and improving of current treatments against leishmaniasis.
Collapse
|
15
|
Abstract
The ability of Leishmania parasites to infect and persist in the antigen-presenting cell population of their mammalian hosts is dependent on their ability to gain entry to their host and host cells, to survive the mammalian cell environment, and to suppress or evade the protective immune response mechanisms of their hosts. A multitude of genes and their products have been implicated in each of these virulence-enhancing strategies to date, and we present an overview of the nature and known function of such virulence genes.
Collapse
|
16
|
Baindur-Hudson S, Edkins AL, Blatch GL. Hsp70/Hsp90 organising protein (hop): beyond interactions with chaperones and prion proteins. Subcell Biochem 2015; 78:69-90. [PMID: 25487016 DOI: 10.1007/978-3-319-11731-7_3] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The Hsp70/Hsp90 organising protein (Hop), also known as stress-inducible protein 1 (STI1), has received considerable attention for diverse cellular functions in both healthy and diseased states. There is extensive evidence that intracellular Hop is a co-chaperone of the major chaperones Hsp70 and Hsp90, playing an important role in the productive folding of Hsp90 client proteins. Consequently, Hop is implicated in a number of key signalling pathways, including aberrant pathways leading to cancer. However, Hop is also secreted and it is now well established that Hop also serves as a receptor for the prion protein, PrP(C). The intracellular and extracellular forms of Hop most likely represent two different isoforms, although the molecular determinants of these divergent functions are yet to be identified. There is also a growing body of research that reports the involvement of Hop in cellular activities that appear independent of either chaperones or PrP(C). While Hop has been shown to have various cellular functions, its biological function remains elusive. However, recent knockout studies in mammals suggest that Hop has an important role in embryonic development. This review provides a critical overview of the latest molecular, cellular and biological research on Hop, critically evaluating its function in healthy systems and how this function is adapted in diseases states.
Collapse
Affiliation(s)
- Swati Baindur-Hudson
- College of Health and Biomedicine, Victoria University, VIC 8001, Melbourne, Australia,
| | | | | |
Collapse
|
17
|
Abstract
Leishmaniasis is a neglected tropical disease spread by an arthropod vector. It remains a significant health problem with an incidence of 0.2–0.4 million visceral leishmaniasis and 0.7–1.2 million cutaneous leishmaniasis cases each year. There are limitations associated with the current therapeutic regimens for leishmaniasis and the fact that after recovery from infection the host becomes immune to subsequent infection therefore, these factors force the feasibility of a vaccine for leishmaniasis. Publication of the genome sequence of Leishmania has paved a new way to understand the pathogenesis and host immunological status therefore providing a deep insight in the field of vaccine research. This review is an effort to study the antigenic targets in Leishmania to develop an anti-leishmanial vaccine.
Collapse
|
18
|
Abstract
SUMMARY Hsp90 (a.k.a. Hsp83) plays a significant role in the life cycle control of the protozoan parasite Leishmania donovani. Rather than protecting Leishmania spp. against adverse and stressful environs, Hsp90 is required for the maintenance of the motile, highly proliferative insect stage, the promastigote. However, Hsp90 is also essential for survival and proliferation of the intracellular mammalian stage, the amastigote. Moreover, recent evidence shows Hsp90 and other components of large multi-chaperone complexes as substrates of stage-specific protein phosphorylation pathways, and thus as likely effectors of the signal transduction pathways in Leishmania spp. Future efforts should be directed towards the identification of the protein kinases and the critical phosphorylation sites as targets for novel therapeutic approaches.
Collapse
|
19
|
Matos I, Mizenina O, Lubkin A, Steinman RM, Idoyaga J. Targeting Leishmania major Antigens to Dendritic Cells In Vivo Induces Protective Immunity. PLoS One 2013; 8:e67453. [PMID: 23840706 PMCID: PMC3694010 DOI: 10.1371/journal.pone.0067453] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 05/18/2013] [Indexed: 11/19/2022] Open
Abstract
Efficient vaccination against the parasite Leishmania major, the causative agent of human cutaneous leishmaniasis, requires development of type 1 T-helper (Th1) CD4+ T cell immunity. Because of their unique capacity to initiate and modulate immune responses, dendritic cells (DCs) are attractive targets for development of novel vaccines. In this study, for the first time, we investigated the capacity of a DC-targeted vaccine to induce protective responses against L. major. To this end, we genetically engineered the N-terminal portion of the stress-inducible 1 protein of L. major (LmSTI1a) into anti-DEC205/CD205 (DEC) monoclonal antibody (mAb) and thereby delivered the conjugated protein to DEC+ DCs in situ in the intact animal. Delivery of LmSTI1a to adjuvant-matured DCs increased the frequency of antigen-specific CD4+ T cells producing IFN-γ+, IL-2+, and TNF-α+ in two different strains of mice (C57BL/6 and Balb/c), while such responses were not observed with the same doses of a control Ig-LmSTI1a mAb without receptor affinity or with non-targeted LmSTI1a protein. Using a peptide library for LmSTI1a, we identified at least two distinct CD4+ T cell mimetopes in each MHC class II haplotype, consistent with the induction of broad immunity. When we compared T cell immune responses generated after targeting DCs with LmSTI1a or other L. major antigens, including LACK (Leishmania receptor for activated C kinase) and LeIF (Leishmania eukaryotic ribosomal elongation and initiation factor 4a), we found that LmSTI1a was superior for generation of IFN-γ-producing CD4+ T cells, which correlated with higher protection of susceptible Balb/c mice to a challenge with L. major. For the first time, this study demonstrates the potential of a DC-targeted vaccine as a novel approach for cutaneous leishmaniasis, an increasing public health concern that has no currently available effective treatment.
Collapse
Affiliation(s)
- Ines Matos
- Laboratory of Cellular Physiology and Immunology and Chris Browne Center for Immunology and Immune Diseases, The Rockefeller University, New York, New York, United States of America
| | - Olga Mizenina
- Laboratory of Cellular Physiology and Immunology and Chris Browne Center for Immunology and Immune Diseases, The Rockefeller University, New York, New York, United States of America
| | - Ashira Lubkin
- Laboratory of Cellular Physiology and Immunology and Chris Browne Center for Immunology and Immune Diseases, The Rockefeller University, New York, New York, United States of America
| | - Ralph M. Steinman
- Laboratory of Cellular Physiology and Immunology and Chris Browne Center for Immunology and Immune Diseases, The Rockefeller University, New York, New York, United States of America
| | - Juliana Idoyaga
- Laboratory of Cellular Physiology and Immunology and Chris Browne Center for Immunology and Immune Diseases, The Rockefeller University, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
20
|
Li HB, Du YZ. Molecular cloning and characterization of an Hsp90/70 organizing protein gene from Frankliniella occidentalis (Insecta: Thysanoptera, Thripidae). Gene 2013; 520:148-55. [DOI: 10.1016/j.gene.2013.02.026] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 02/06/2013] [Accepted: 02/13/2013] [Indexed: 01/06/2023]
|
21
|
Hombach A, Ommen G, Chrobak M, Clos J. The Hsp90-Sti1 interaction is critical for Leishmania donovani proliferation in both life cycle stages. Cell Microbiol 2013; 15:585-600. [PMID: 23107115 PMCID: PMC3654555 DOI: 10.1111/cmi.12057] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Revised: 09/19/2012] [Accepted: 10/20/2012] [Indexed: 11/30/2022]
Abstract
The heat shock protein 90 plays a pivotal role in the life cycle control of Leishmania donovani promoting the fast-growing insect stage of this parasite. Equally important for insect stage growth is the co-chaperone Sti1. We show that replacement of Sti1 is only feasible in the presence of additional Sti1 transgenes indicating an essential role. To better understand the impact of Sti1 and its interaction with Hsp90, we performed a mutational analysis of Hsp90. We established that a single amino acid exchange in the Leishmania Hsp90 renders that protein resistant to the inhibitor radicicol (RAD), yet does not interfere with its functionality. Based on this RAD-resistant Hsp90, we established a combined chemical knockout/gene complementation (CKC) approach. We can show that Hsp90 function is required in both insect and mammalian life stages and that the Sti1-binding motif of Hsp90 is crucial for proliferation of insect and mammalian stages of the parasite. The Sti1-binding motif in Leishmania Hsp90 is suboptimal - optimizing the motif increased initial intracellular proliferation underscoring the importance of the Hsp90-Sti1 interaction for this important parasitic protozoan. The CKC strategy we developed will allow the future analysis of more Hsp90 domains and motifs in parasite viability and infectivity.
Collapse
Affiliation(s)
- Antje Hombach
- Bernhard Nocht Institute for Tropical MedicineHamburg, Germany
| | | | - Mareike Chrobak
- Bernhard Nocht Institute for Tropical MedicineHamburg, Germany
| | - Joachim Clos
- Bernhard Nocht Institute for Tropical MedicineHamburg, Germany
| |
Collapse
|
22
|
Raman VS, Duthie MS, Fox CB, Matlashewski G, Reed SG. Adjuvants for Leishmania vaccines: from models to clinical application. Front Immunol 2012; 3:144. [PMID: 22701453 PMCID: PMC3371596 DOI: 10.3389/fimmu.2012.00144] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 05/18/2012] [Indexed: 12/12/2022] Open
Abstract
Two million new cases of leishmaniasis occur every year, with the cutaneous leishmaniasis (CL) presentation accounting for approximately two-thirds of all cases. Despite the high incidence rates and geographic expansion of the disease, CL remains a neglected tropical disease without effective intervention strategies. Efforts to address this deficit have given rise to the experimental murine model of CL. By virtue of its simplicity and pliability, the CL model has been used to provide substantial information regarding cellular immunity, as well as in the discovery and evaluation of various vaccine adjuvants. The CL model has facilitated in vivo studies of the mechanism of action of many adjuvants, including the TLR4 agonist monophosphoryl lipid A, the TLR7/8 agonist imiquimod, the TLR9 agonist CpG, adenoviral vectors, and the immunostimulatory complexes. Together, these studies have helped to unveil the requirement for certain types of immune responses at specific stages of CL disease and provide a basis to aid the design of effective second-generation vaccines for human CL. This review focuses on adjuvants that have been tested in experimental CL, outlining how they have helped advance our understanding of the disease and ultimately, how they have performed when applied within clinical trials against human CL.
Collapse
Affiliation(s)
- Vanitha S Raman
- Pre-clinical Biology, Infectious Disease Research Institute, Seattle, WA, USA
| | | | | | | | | |
Collapse
|
23
|
Silverman JM, Reiner NE. Leishmania exosomes deliver preemptive strikes to create an environment permissive for early infection. Front Cell Infect Microbiol 2012; 1:26. [PMID: 22919591 PMCID: PMC3417360 DOI: 10.3389/fcimb.2011.00026] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Accepted: 12/23/2011] [Indexed: 01/20/2023] Open
Abstract
Herein, we review evidence supporting a role for Leishmania exosomes during early infection. We suggest a model in which Leishmania secreted microvesicles released into the extracellular milieu deliver effector cargo to host target cells. This cargo mediates immunosuppression and functionally primes host cells for Leishmania invasion. Leishmania ssp. release microvesicles and the amount of vesicle release and the specific protein cargo of the vesicles is sensitive to changes in environmental conditions that mimic infection. Leishmania exosomes influence the phenotype of treated immune cells. For example, wild-type (WT) exosomes attenuate interferon-γ-induced pro-inflammatory cytokine production (TNF-α) by Leishmania-infected monocytes while conversely enhancing production of the anti-inflammatory cytokine IL-10. The Leishmania proteins GP63 and elongation factor-1α (EF-1α) are found in secreted vesicles and are likely important effectors responsible for these changes in phenotype. GP63 and EF-1α access host cell cytosol and activate multiple host protein-tyrosine phosphatases (PTPs). Activation of these PTPs negatively regulates interferon-γ signaling and this prevents effective expression of the macrophage microbicidal arsenal, including TNF-α and nitric oxide. In addition to changing macrophage phenotype, WT vesicles dampen the immune response of monocyte-derived dendritic cells and CD4+ T lymphocytes. This capacity is lost when the protein cargo of the vesicles is modified, specifically when the amount of GP63 and EF-1α in the vesicles is reduced. It appears that exosome delivery of effector proteins results in activation of host PTPs and the negative regulatory effects of the latter creates a pro-parasitic environment. The data suggest that Leishmania exosomes secreted upon initial infection are capable of delivering effector cargo to naïve target cells wherein the cargo primes host cells for infection by interfering with host cell signaling pathways.
Collapse
Affiliation(s)
- Judith Maxwell Silverman
- Brain Research Center, Division of Neurology, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | | |
Collapse
|
24
|
Vaccine candidates for leishmaniasis: A review. Int Immunopharmacol 2011; 11:1464-88. [DOI: 10.1016/j.intimp.2011.05.008] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Revised: 04/13/2011] [Accepted: 05/09/2011] [Indexed: 01/08/2023]
|
25
|
Schmidt JC, Soares MJ, Goldenberg S, Pavoni DP, Krieger MA. Characterization of TcSTI-1, a homologue of stress-induced protein-1, in Trypanosoma cruzi. Mem Inst Oswaldo Cruz 2011; 106:70-7. [PMID: 21340359 DOI: 10.1590/s0074-02762011000100012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Accepted: 10/21/2010] [Indexed: 11/21/2022] Open
Abstract
The life cycle of the protozoan Trypanosoma cruzi exposes it to several environmental stresses in its invertebrate and vertebrate hosts. Stress conditions are involved in parasite differentiation, but little is known about the stress response proteins involved. We report here the first characterization of stress-induced protein-1 (STI-1) in T. cruzi (TcSTI-1). This co-chaperone is produced in response to stress and mediates the formation of a complex between the stress proteins HSP70 and HSP90 in other organisms. Despite the similarity of TcSTI-1 to STI-1 proteins in other organisms, its expression profile in response to various stress conditions, such as heat shock, acidic pH or nutrient starvation, is quite different. Neither polysomal mRNA nor protein levels changed in exponentially growing epimastigotes cultured under any of the stress conditions studied. Increased levels of TcSTI-1 were observed in epimastigotes subjected to nutritional stress in the late growth phase. Co-immunoprecipitation assays revealed an association between TcSTI-1 and TcHSP70 in T. cruzi epimastigotes. Immunolocalization demonstrated that TcSTI-1 was distributed throughout the cytoplasm and there was some colocalization of TcSTI-1 and TcHSP70 around the nucleus. Thus, TcSTI-1 associates with TcHSP70 and TcSTI-1 expression is induced when the parasites are subjected to stress conditions during specific growth phase.
Collapse
|
26
|
Ommen G, Chrobak M, Clos J. The co-chaperone SGT of Leishmania donovani is essential for the parasite's viability. Cell Stress Chaperones 2010; 15:443-55. [PMID: 19953351 PMCID: PMC3082645 DOI: 10.1007/s12192-009-0160-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Revised: 10/30/2009] [Accepted: 11/11/2009] [Indexed: 10/20/2022] Open
Abstract
Molecular chaperone proteins play a pivotal role in the protozoan parasite Leishmania donovani, controlling cell fate and ensuring intracellular survival. In higher eukaryotes, the so-called co-chaperone proteins are required for client protein recognition and proper function of chaperones, among them the small glutamine-rich tetratricopeptide repeat proteins (SGT) which interact with both HSP70 and HSP90 chaperones. An atypical SGT homolog is found in the L. donovani genome, encoding a protein lacking the C-terminal glutamine-rich region, normally typical for SGT family members. The gene is expressed constitutively during the life cycle and is essential for survival and/or growth of the parasites. LdSGT forms large, stable complexes that also include another putative co-chaperone, HSC70 interacting protein (HIP). The gene product forms cytoplasmic clusters, matching the subcellular distribution of HIP and partly that of the major cytoplasmic chaperones, HSP70 and HSP90, reflecting a direct molecular interaction with both chaperones.
Collapse
Affiliation(s)
- Gabi Ommen
- Bernhard Nocht Institute for Tropical Medicine, Bernhard Nocht St. 74, 20359 Hamburg, Germany
| | - Mareike Chrobak
- Bernhard Nocht Institute for Tropical Medicine, Bernhard Nocht St. 74, 20359 Hamburg, Germany
| | - Joachim Clos
- Bernhard Nocht Institute for Tropical Medicine, Bernhard Nocht St. 74, 20359 Hamburg, Germany
| |
Collapse
|
27
|
Phosphoproteome dynamics reveal heat-shock protein complexes specific to the Leishmania donovani infectious stage. Proc Natl Acad Sci U S A 2010; 107:8381-6. [PMID: 20404152 DOI: 10.1073/pnas.0914768107] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Leishmania is exposed to a sudden increase in environmental temperature during the infectious cycle that triggers stage differentiation and adapts the parasite phenotype to intracellular survival in the mammalian host. The absence of classical promoter-dependent mechanisms of gene regulation and constitutive expression of most of the heat-shock proteins (HSPs) in these human pathogens raise important unresolved questions as to regulation of the heat-shock response and stage-specific functions of Leishmania HSPs. Here we used a gel-based quantitative approach to assess the Leishmania donovani phosphoproteome and revealed that 38% of the proteins showed significant stage-specific differences, with a strong focus of amastigote-specific phosphoproteins on chaperone function. We identified STI1/HOP-containing chaperone complexes that interact with ribosomal client proteins in an amastigote-specific manner. Genetic analysis of STI1/HOP phosphorylation sites in conditional sti1(-/-) null mutant parasites revealed two phosphoserine residues essential for parasite viability. Phosphorylation of the major Leishmania chaperones at the pathogenic stage suggests that these proteins may be promising drug targets via inhibition of their respective protein kinases.
Collapse
|
28
|
Nagill R, Kaur S. Enhanced efficacy and immunogenicity of 78kDa antigen formulated in various adjuvants against murine visceral leishmaniasis. Vaccine 2010; 28:4002-12. [PMID: 20093205 DOI: 10.1016/j.vaccine.2010.01.015] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2009] [Revised: 12/23/2009] [Accepted: 01/11/2010] [Indexed: 12/14/2022]
Abstract
Leishmania infection causes localized cutaneous to severe visceral disease in humans and animals. Current control measures, based on antimonial compounds, are not effective because of resistance in Leishmania. Vaccination would be a feasible alternative, but as yet no vaccine to protect humans against infection has been commercialized. Parasite antigens that preferentially stimulate the induction of significant protection through Th1 response presents a rational approach for a vaccine against leishmaniasis. With this view in mind, we investigated the potential of 78kDa antigen of Leishmania donovani alone and along with different adjuvants against murine visceral leishmaniasis. Various adjuvants used along with 78kDa antigen include monophosphoryl lipid A (MPL-A), liposomal encapsulation, recombinant IL-12, autoclaved Leishmania antigen (ALD) and Freund's adjuvant (FCA). BALB/c mice were immunized subcutaneously thrice with respective vaccine formulation. Challenge infection was given intracardially after 2 weeks of second booster. A significant decrease in parasite burden was seen in vaccinees over the infected controls on all post challenge days and was found that maximum protection was provided by 78kDa+rIL-12 vaccine and it was highly immunogenic as depicted by the reduction in parasite load (71-94.8%), reduction in infection rate of peritoneal macrophages (92.9-98%), enhanced DTH response (6.5-10.5 fold), increase in IgG2a anti-leishmanial antibody production (3-3.7 fold) and up-regulation of IFN-gamma (3.7-6.5 fold) and IL-2 levels (7.7-12.3 fold), which demonstrate the generation of protective Th1 type of immune response. Comparable results were also observed in 78kDa+MPL-A and liposome-encapsulated 78kDa vaccines with 56.5-92% and 62.9-93.4% reduction in parasite load respectively. Significant results have also been obtained with 78kDa antigen+ALD, 78kDa antigen+FCA and 78kDa antigen alone group but the protective efficacy was reduced as compared to the other vaccine groups. The present study indicates that the three vaccine formulations i.e. 78kDa antigen+rIL-12, liposome-encapsulated 78kDa antigen and 78kDa antigen+MPL-A, are highly efficacious and effective vaccine candidates against visceral leishmaniasis.
Collapse
Affiliation(s)
- Rajeev Nagill
- Parasitology Laboratory, Department of Zoology, Panjab University, Chandigarh-160014, India
| | | |
Collapse
|
29
|
Bertholet S, Goto Y, Carter L, Bhatia A, Howard RF, Carter D, Coler RN, Vedvick TS, Reed SG. Optimized subunit vaccine protects against experimental leishmaniasis. Vaccine 2009; 27:7036-45. [PMID: 19786136 DOI: 10.1016/j.vaccine.2009.09.066] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2009] [Revised: 09/10/2009] [Accepted: 09/16/2009] [Indexed: 10/20/2022]
Abstract
Development of a protective subunit vaccine against Leishmania spp. depends on antigens and adjuvants that induce appropriate immune responses. We evaluated a second generation polyprotein antigen (Leish-110f) in different adjuvant formulations for immunogenicity and protective efficacy against Leishmania spp. challenges. Vaccine-induced protection was associated with antibody and T cell responses to Leish-110f. CD4 T cells were the source of IFN-gamma, TNF, and IL-2 double- and triple-positive populations. This study establishes the immunogenicity and protective efficacy of the improved Leish-110f subunit vaccine antigen adjuvanted with natural (MPL-SE) or synthetic (EM005) Toll-like receptor 4 agonists.
Collapse
|
30
|
Soto M, Ramírez L, Pineda MA, González VM, Entringer PF, de Oliveira CI, Nascimento IP, Souza AP, Corvo L, Alonso C, Bonay P, Brodskyn C, Barral A, Barral-Netto M, Iborra S. Searching Genes Encoding Leishmania Antigens for Diagnosis and Protection. SCHOLARLY RESEARCH EXCHANGE 2009; 2009:1-25. [DOI: 10.3814/2009/173039] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
31
|
Morales MA, Watanabe R, Laurent C, Lenormand P, Rousselle JC, Namane A, Späth GF. Phosphoproteomic analysis of Leishmania donovani pro- and amastigote stages. Proteomics 2008; 8:350-63. [PMID: 18203260 DOI: 10.1002/pmic.200700697] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Following transmission to the vertebrate host, the protozoan parasite Leishmania donovani differentiates into the pathogenic amastigote stage that is adapted for intracellular survival. This developmental transition is induced by environmental factors including elevated temperature and acidic pH and is likely transduced by signaling cascades involving protein kinases and their downstream phosphoprotein substrates. These signaling networks are highly adapted to the specific nutritional and physiological requirements of the organism and thus studying Leishmania phosphorylation may allow important insight into the parasite-specific biology. We used a gel-based approach to investigate qualitative and quantitative changes of the phosphoproteome of the major L. donovani life cycle stages. Phosphoproteins were purified by immobilized metal affinity chromatography (IMAC), separated by IEF and SDS-PAGE using pH 4-7 IPG immobiline strips, revealed by fluorescent multiplex staining, and identified by MALDI-MS and MS/MS. Our analysis allowed us to establish a first repertoire of the Leishmania phosphoproteome and to identify phosphoproteins implicated in stress- and heat shock response, RNA/protein turnover, metabolism, and signaling.
Collapse
Affiliation(s)
- Miguel A Morales
- Department of Parasitology and Mycology, Laboratory of Parasite Virulence, Institut Pasteur, 25-28 rue du Dr. Roux, Paris Cedex 15, France
| | | | | | | | | | | | | |
Collapse
|
32
|
Nuclear translocation of the phosphoprotein Hop (Hsp70/Hsp90 organizing protein) occurs under heat shock, and its proposed nuclear localization signal is involved in Hsp90 binding. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1783:1003-14. [PMID: 18280255 DOI: 10.1016/j.bbamcr.2008.01.014] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2007] [Revised: 01/11/2008] [Accepted: 01/14/2008] [Indexed: 11/24/2022]
Abstract
The Hsp70-Hsp90 complex is implicated in the folding and regulation of numerous signaling proteins, and Hop, the Hsp70-Hsp90 Organizing Protein, facilitates the association of this multichaperone machinery. Phosphatase treatment of mouse cell extracts reduced the number of Hop isoforms compared to untreated extracts, providing the first direct evidence that Hop was phosphorylated in vivo. Furthermore, surface plasmon resonance (SPR) spectroscopy showed that a cdc2 kinase phosphorylation mimic of Hop had reduced affinity for Hsp90 binding. Hop was predominantly cytoplasmic, but translocated to the nucleus in response to heat shock. A putative bipartite nuclear localization signal (NLS) has been identified within the Hsp90-binding domain of Hop. Although substitution of residues within the major arm of this proposed NLS abolished Hop-Hsp90 interaction as determined by SPR, this was not sufficient to prevent the nuclear accumulation of Hop under leptomycin-B treatment and heat shock conditions. These results showed for the first time that the subcellular localization of Hop was stress regulated and that the major arm of the putative NLS was not directly important for nuclear translocation but was critical for Hop-Hsp90 association in vitro. We propose a model in which the association of Hop with Hsp90 and the phosphorylated status of Hop both play a role in the mechanism of nucleo-cytoplasmic shuttling of Hop.
Collapse
|
33
|
Ghalib H, Modabber F. Consultation meeting on the development of therapeutic vaccines for post kala azar dermal leishmaniasis. KINETOPLASTID BIOLOGY AND DISEASE 2007; 6:7. [PMID: 17705861 PMCID: PMC2000869 DOI: 10.1186/1475-9292-6-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2007] [Accepted: 08/17/2007] [Indexed: 11/10/2022]
Abstract
Background Post kala azar dermal leishmaniasis (PKDL) is a disease that appears after treatment of visceral leishmaniasis (VL). The highest incidence of PKDL in the world is in Sudan. Many patients heal spontaneously within 6 months but those who don't are difficult to treat, often requiring months of daily injections. These patients harbour parasite in their skin and are believed to be a source of infection and possibly epidemics. Present treatment modalities of PKDL are inadequate and impractical due to cost, duration of treatment required and side effects. New approach for treatment of PKDL is required. A joint meeting of the UNICEF/UNDP/World Bank/WHO Special Programme for research and training in Tropical Disease (TDR) and the Infectious Disease Research Institute (IDRI) Seattle, USA was held to review the progress of therapeutic vaccines and plan the development of treatment modalities for PKDL. Methods The history of leishmaniasis vaccine development for prophylaxis and therapy was reviewed. Other than previous infection – simulated by inoculation of live Leishmania as a vaccine (leishmanization), none of the preparations of killed parasite with or without adjuvants have shown significant prophylactic efficacy. Killed L. major absorbed with alum and mixed with BCG remains to be tested as a prophylactic vaccine. Results Killed parasite preparations i.e. L. mexicana mixed with BCG and L. amazonensis (combined with low dose of antimonial), have shown efficacy in immunotherapy and immuno-chemotherapy, respectively. In addition combined full antimonial plus alum-absorbed autoclaved L. major vaccine has been shown to significantly improve therapy of refractory PKDL patients. These are all crude preparations of parasites and are difficult to define and standardize. However, there is now a new, second generation vaccine, Leish-111f + MPL-SE, composed of a recombinant protein comprising three leishmanial antigens and a defined adjuvant in clinical development. Conclusion and recommendations Immuno-chemotherapy has the potential of becoming a practical and affordable treatment modality for PKDL and other forms of leishmaniasis. The encouraging results with alum-autoclaved L. major + antimonial should be pursued. However, before further trials, availability of the vaccine and its production under Good Manufacturing Product, hence quality control must be assured. Following satisfactory safety profile of Leish-111f+MPL-SE, clinical trials using this vaccine initially with antimonials should be initiated. Similarly immunotherapy of VL should be considered with the view to controlling development of PKDL. Some immunological studies are required prior to initiation of immunotherapy in VL patients.
Collapse
Affiliation(s)
- Hashim Ghalib
- UNICEF/UNDP/World Bank/WHO Special Programme for Research and Training in Tropical Diseases (TDR), Geneva, Switzerland
| | - Farrokh Modabber
- Centre for Research and Training in Skin Diseases and Leprosy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
34
|
Salay G, Dorta ML, Santos NM, Mortara RA, Brodskyn C, Oliveira CI, Barbiéri CL, Rodrigues MM. Testing of four Leishmania vaccine candidates in a mouse model of infection with Leishmania (Viannia) braziliensis, the main causative agent of cutaneous leishmaniasis in the New World. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2007; 14:1173-81. [PMID: 17626159 PMCID: PMC2043302 DOI: 10.1128/cvi.00060-07] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
We evaluated whether four recombinant antigens previously used for vaccination against experimental infection with Leishmania (Leishmania) major could also induce protective immunity against a challenge with Leishmania (Viannia) braziliensis, the species responsible for 90% of the 28,712 annual cases of cutaneous and mucocutaneous leishmaniasis recorded in Brazil during the year of 2004. Initially, we isolated the homolog genes encoding four L. (V.) braziliensis antigens: (i) homologue of receptor for activated C kinase, (ii) thiol-specific antioxidant, (iii) Leishmania elongation and initiation factor, and (iv) L. (L.) major stress-inducible protein 1. At the deduced amino acid level, all four open reading frames had a high degree of identity with the previously described genes of L. (L.) major being expressed on promastigotes and amastigotes of L. (V.) braziliensis. These genes were inserted into the vector pcDNA3 or expressed as bacterial recombinant proteins. After immunization with recombinant plasmids or proteins, BALB/c mice generated specific antibody or cell-mediated immune responses (gamma interferon production). After an intradermal challenge with L. (V.) braziliensis infective promastigotes, no significant reduction on the lesions was detected. We conclude that the protective immunity afforded by these four vaccine candidates against experimental cutaneous leishmaniasis caused by L. (L.) major could not be reproduced against a challenge with L. (V.) braziliensis. Although negative, we consider our results important since they suggest that studies aimed at the development of an effective vaccine against L. (V.) braziliensis, the main causative agent of cutaneous leishmaniasis in the New World, should be redirected toward distinct antigens or different vaccination strategies.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antibodies, Protozoan/biosynthesis
- Antibodies, Protozoan/immunology
- Antigens, Protozoan/biosynthesis
- Antigens, Protozoan/genetics
- Antigens, Protozoan/immunology
- Disease Models, Animal
- Heat-Shock Proteins/biosynthesis
- Heat-Shock Proteins/genetics
- Heat-Shock Proteins/immunology
- Humans
- Immunoassay/methods
- Leishmania braziliensis/genetics
- Leishmania braziliensis/immunology
- Leishmaniasis, Cutaneous/immunology
- Leishmaniasis, Cutaneous/parasitology
- Leishmaniasis, Cutaneous/prevention & control
- Leishmaniasis, Mucocutaneous/immunology
- Leishmaniasis, Mucocutaneous/parasitology
- Leishmaniasis, Mucocutaneous/prevention & control
- Life Cycle Stages
- Male
- Mice
- Mice, Inbred BALB C
- Molecular Sequence Data
- Open Reading Frames
- Peptide Initiation Factors/biosynthesis
- Peptide Initiation Factors/genetics
- Peptide Initiation Factors/immunology
- Protozoan Proteins/biosynthesis
- Protozoan Proteins/genetics
- Protozoan Proteins/immunology
- Protozoan Vaccines/genetics
- Protozoan Vaccines/immunology
- Protozoan Vaccines/pharmacology
- Vaccines, Synthetic/genetics
- Vaccines, Synthetic/immunology
- Vaccines, Synthetic/pharmacology
Collapse
Affiliation(s)
- G Salay
- Centro Interdisciplinar de Terapia Gênica, UNIFESP-EPM, Rua Mirassol, 207, São Paulo, SP 04044-010, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Coler RN, Goto Y, Bogatzki L, Raman V, Reed SG. Leish-111f, a recombinant polyprotein vaccine that protects against visceral Leishmaniasis by elicitation of CD4+ T cells. Infect Immun 2007; 75:4648-54. [PMID: 17606603 PMCID: PMC1951162 DOI: 10.1128/iai.00394-07] [Citation(s) in RCA: 153] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Leishmania-derived recombinant polyprotein Leish-111f or its three component proteins, thiol-specific antioxidant (TSA), Leishmania major stress-inducible protein 1 (LmSTI1), and Leishmania elongation initiation factor (LeIF), have previously been demonstrated to be efficacious against cutaneous or mucosal leishmaniasis in mice, nonhuman primates, and humans. In this study we demonstrate that Leish-111f is also a vaccine antigen candidate against visceral leishmaniasis (VL) caused by Leishmania infantum. We evaluated the immune response and protection induced by Leish-111f formulated with monophosphoryl lipid A in a stable emulsion (Leish-111f+MPL-SE) and demonstrated that mice developed strong humoral and T-cell responses to the vaccine antigen. Analysis of the cellular immune responses of immunized, uninfected mice demonstrated that the vaccine induced a significant increase in CD4(+) T cells producing gamma interferon, interleukin 2, and tumor necrosis factor cytokines, indicating a Th1-type immune response. Experimental infection of immunized mice and hamsters demonstrated that Leish-111f+MPL-SE induced significant protection against L. infantum infection, with reductions in parasite loads of 99.6%, a level of protection greater than that reported for other vaccine candidates in animal models of VL. Taken together, our results suggest that this vaccine represents a good candidate for use against several Leishmania species. The Leish-111f+MPL-SE product we report here is the first defined vaccine for leishmaniasis in human clinical trials and has completed phase 1 and 2 safety and immunogenicity testing in normal, healthy human subjects.
Collapse
Affiliation(s)
- Rhea N Coler
- Infectious Disease Research Institute, 1124 Columbia St., Suite 400, Seattle, WA 98104, USA
| | | | | | | | | |
Collapse
|
36
|
Abstract
The kinetoplastids Leishmania major, Trypanosoma brucei and Trypanosoma cruzi are causative agents of a diverse spectrum of human diseases: leishmaniasis, sleeping sickness and Chagas' disease, respectively. These protozoa possess digenetic life cycles that involve development in mammalian and insect hosts. It is generally accepted that temperature is a triggering factor of the developmental programme allowing the adaptation of the parasite to the mammalian conditions. The heat shock response is a general homeostatic mechanism that protects cells from the deleterious effects of environmental stresses, such as heat. This response is universal and includes the synthesis of the heat-shock proteins (HSPs). In this review, we summarize the salient features of the different HSP families and describe their main cellular functions. In parallel, we analyse the composition of these families in kinetoplastids according to literature data and our understanding of genome sequence data. The genome sequences of these parasites have been recently completed. The HSP families described here are: HSP110, HSP104, group I chaperonins, HSP90, HSP70, HSP40 and small HSPs. All these families are widely represented in these parasites. In particular, kinetoplastids possess an unprecedented number of members of the HSP70, HSP60 and HSP40 families, suggesting key roles for these HSPs in their biology.
Collapse
Affiliation(s)
- Cristina Folgueira
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, Madrid, Spain
| | | |
Collapse
|
37
|
Abstract
Leishmaniaare protozoan parasites spread by a sandfly insect vector and causing a spectrum of diseases collectively known as leishmaniasis. The disease is a significant health problem in many parts of the world resulting in an estimated 12 million new cases each year. Current treatment is based on chemotherapy, which is difficult to administer, expensive and becoming ineffective due to the emergence of drug resistance. Leishmaniasis is considered one of a few parasitic diseases likely to be controllable by vaccination. The relatively uncomplicated leishmanial life cycle and the fact that recovery from infection renders the host resistant to subsequent infection indicate that a successful vaccine is feasible. Extensive evidence from studies in animal models indicates that solid protection can be achieved by immunisation with protein or DNA vaccines. However, to date no such vaccine is available despite substantial efforts by many laboratories. Advances in our understanding ofLeishmaniapathogenesis and generation of host protective immunity, together with the completedLeishmaniagenome sequence open new avenues for vaccine research. The major remaining challenges are the translation of data from animal models to human disease and the transition from the laboratory to the field. This review focuses on advances in anti-leishmania vaccine development over the recent years and examines current problems hampering vaccine development and implementation.
Collapse
Affiliation(s)
- L Kedzierski
- Infection and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville 3050, Melbourne, Australia.
| | | | | |
Collapse
|
38
|
McNicoll F, Drummelsmith J, Müller M, Madore E, Boilard N, Ouellette M, Papadopoulou B. A combined proteomic and transcriptomic approach to the study of stage differentiation in Leishmania infantum. Proteomics 2006; 6:3567-81. [PMID: 16705753 DOI: 10.1002/pmic.200500853] [Citation(s) in RCA: 138] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Protozoan parasites of the genus Leishmania are found as promastigotes in the sandfly vector and as amastigotes in mammalian macrophages. Mechanisms controlling stage-regulated gene expression in these organisms are poorly understood. Here, we applied a comprehensive approach consisting of protein prefractionation, global proteomics and targeted DNA microarray analysis to the study of stage differentiation in Leishmania. By excluding some abundant structural proteins and reducing complexity, we detected and identified numerous novel differentially expressed protein isoforms in L. infantum. Using 2-D gels, over 2200 protein isoforms were visualized in each developmental stage. Of these, 6.1% were strongly increased or appeared unique in the promastigote stage, while the relative amounts of 12.4% were increased in amastigotes. Amastigote-specific protein isoform and mRNA expression trends correlated modestly (53%), while no correlation was found for promastigote-specific spots. Even where direction of regulation was similar, fold-changes were more modest at the RNA than protein level. Many proteins were present in multiple spots, suggesting that PTM is extensive in this organism. In several cases, different isoforms appeared to be specific to different life stages. Our results suggest that post-transcriptional controls at translational and post-translational levels could play major roles in differentiation in Leishmania parasites.
Collapse
Affiliation(s)
- François McNicoll
- Infectious Diseases Research Centre, CHUL Research Centre and Division of Microbiology, Faculty of Medicine, Laval University, Quebec, Canada
| | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
Molecular chaperones facilitate the correct folding of other proteins under physiological and stress conditions. Recently it has become evident that various co-chaperone proteins regulate the cellular functions of these chaperones, particularly Hsp70 and Hsp90. Hop is one of the most extensively studied co-chaperones that is able to directly associate with both Hsp70 and Hsp90. The current dogma proposes that Hop functions primarily as an adaptor that directs Hsp90 to Hsp70-client protein complexes in the cytoplasm. However, recent evidence suggests that Hop can also modulate the chaperone activities of these Hsps, and that it is not dedicated to Hsp70 and Hsp90. While the co-chaperone function of Hop within the cytoplasm has been extensively studied, its association with nuclear complexes and prion proteins remains to be elucidated. This article will review the structural features of Hop, and the evidence that its biological function is considerably broader than previously envisaged.
Collapse
Affiliation(s)
- O O Odunuga
- Division of Medical Virology, Faculty of Health Sciences, University of Cape Town, South Africa
| | | | | |
Collapse
|
40
|
Persing DH, Coler RN, Lacy MJ, Johnson DA, Baldridge JR, Hershberg RM, Reed SG. Taking toll: lipid A mimetics as adjuvants and immunomodulators. Trends Microbiol 2002; 10:S32-7. [PMID: 12377566 DOI: 10.1016/s0966-842x(02)02426-5] [Citation(s) in RCA: 186] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Vaccine adjuvants based on the structure of lipid A, such as monophosphoryl lipid A (MLA), have proven to be safe and effective in inducing immune responses to heterologous proteins in animal and human vaccines. Recent work on the development of a recombinant vaccine for leishmaniasis has demonstrated that a clinical grade MLA formulation - MPL(R) adjuvant - is essential in the development of a protective response. Preliminary evidence suggests that MLA and a chemically distinct family of lipid A mimetics - the aminoalkyl glucosaminide 4-phosphates - act on Toll-like receptor 4 (TLR4). As TLR4 agonists, they have potent immunomodulatory effects when used both as vaccine adjuvants and as stand-alone products. Novel approaches to vaccine development could benefit from taking full advantage of the effects of these compounds on innate and adaptive responses.
Collapse
Affiliation(s)
- David H Persing
- Corixa, Suite 200, 1124 Columbia Street, Seattle, WA 98104, USA.
| | | | | | | | | | | | | |
Collapse
|
41
|
Probst P, Stromberg E, Ghalib HW, Mozel M, Badaro R, Reed SG, Webb JR. Identification and characterization of T cell-stimulating antigens from Leishmania by CD4 T cell expression cloning. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 166:498-505. [PMID: 11123329 DOI: 10.4049/jimmunol.166.1.498] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Persistent immunity against Leishmania: infections in humans is mediated predominantly by CD4(+) T cells of the Th1 phenotype. Herein we report the expression cloning of eight Leishmania: Ags using parasite-specific T cell lines derived from an immune donor. The Ags identified by this technique include the flagellar proteins alpha- and beta-tubulin, histone H2b, ribosomal protein S4, malate dehydrogenase, and elongation factor 2, as well as two novel parasite proteins. None of these proteins have been previously reported as T cell-stimulating Ags from Leishmania: beta-tubulin-specific T cell clones generated against Leishmania: major amastigotes responded to Leishmania:-infected macrophages and dendritic cells. IFN-gamma enzyme-linked immunospot analysis demonstrated the presence of T cells specific for several of these Ags in PBMC from self-healing cutaneous leishmaniasis patients infected with either Leishmania: tropica or L. major. The responses elicited by Leishmania: histone H2b were particularly striking in terms of frequency of histone-specific T cells in PBMC (1 T cell of 6000 PBMC) as well as the percentage of responding donors (86%, 6 of 7). Ags identified by T cells from immune donors might constitute potential vaccine candidates for leishmaniasis.
Collapse
Affiliation(s)
- P Probst
- Corixa Corporation, Seattle, WA 98104, USA.
| | | | | | | | | | | | | |
Collapse
|