1
|
Masopustová M, Goga A, Soural M, Kopečná M, Šebela M. N-carboxyacyl and N-α-aminoacyl derivatives of aminoaldehydes as shared substrates of plant aldehyde dehydrogenases 10 and 7. Amino Acids 2024; 56:52. [PMID: 39207552 PMCID: PMC11362210 DOI: 10.1007/s00726-024-03415-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
Aldehyde dehydrogenases (ALDHs) represent a superfamily of enzymes, which oxidize aldehydes to the corresponding acids. Certain families, namely ALDH9 and ALDH10, are best active with ω-aminoaldehydes arising from the metabolism of polyamines such as 3-aminopropionaldehyde and 4-aminobutyraldehyde. Plant ALDH10s show broad specificity and accept many different aldehydes (aliphatic, aromatic and heterocyclic) as substrates. This work involved the above-mentioned aminoaldehydes acylated with dicarboxylic acids, phenylalanine, and tyrosine. The resulting products were then examined with native ALDH10 from pea and recombinant ALDH7s from pea and maize. This investigation aimed to find a common efficient substrate for the two plant ALDH families. One of the best natural substrates of ALDH7s is aminoadipic semialdehyde carrying a carboxylic group opposite the aldehyde group. The substrate properties of the new compounds were demonstrated by mass spectrometry of the reaction mixtures, spectrophotometric assays and molecular docking. The N-carboxyacyl derivatives were good substrates of pea ALDH10 but were only weakly oxidized by the two plant ALDH7s. The N-phenylalanyl and N-tyrosyl derivatives of 3-aminopropionaldehyde were good substrates of pea and maize ALDH7. Particularly the former compound was converted very efficiently (based on the kcat/Km ratio), but it was only weakly oxidized by pea ALDH10. Although no compound exhibited the same level of substrate properties for both ALDH families, we show that these enzymes may possess more common substrates than expected.
Collapse
Affiliation(s)
- Michaela Masopustová
- Department of Biochemistry, Faculty of Science, Palacký University, Olomouc, Czech Republic
| | - Adam Goga
- Department of Biochemistry, Faculty of Science, Palacký University, Olomouc, Czech Republic
| | - Miroslav Soural
- Department of Organic Chemistry, Faculty of Science, Palacký University, Olomouc, Czech Republic
| | - Martina Kopečná
- Department of Experimental Biology, Faculty of Science, Palacký University, Olomouc, Czech Republic
| | - Marek Šebela
- Department of Biochemistry, Faculty of Science, Palacký University, Olomouc, Czech Republic.
| |
Collapse
|
2
|
Šebela M, Rašková M. Polyamine-Derived Aminoaldehydes and Acrolein: Cytotoxicity, Reactivity and Analysis of the Induced Protein Modifications. Molecules 2023; 28:7429. [PMID: 37959847 PMCID: PMC10648994 DOI: 10.3390/molecules28217429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 10/31/2023] [Accepted: 11/01/2023] [Indexed: 11/15/2023] Open
Abstract
Polyamines participate in the processes of cell growth and development. The degradation branch of their metabolism involves amine oxidases. The oxidation of spermine, spermidine and putrescine releases hydrogen peroxide and the corresponding aminoaldehyde. Polyamine-derived aminoaldehydes have been found to be cytotoxic, and they represent the subject of this review. 3-aminopropanal disrupts the lysosomal membrane and triggers apoptosis or necrosis in the damaged cells. It is implicated in the pathogenesis of cerebral ischemia. Furthermore, 3-aminopropanal yields acrolein through the elimination of ammonia. This reactive aldehyde is also generated by the decomposition of aminoaldehydes produced in the reaction of serum amine oxidase with spermidine or spermine. In addition, acrolein is a common environmental pollutant. It causes covalent modifications of proteins, including carbonylation, the production of Michael-type adducts and cross-linking, and it has been associated with inflammation-related diseases. APAL and acrolein are detoxified by aldehyde dehydrogenases and other mechanisms. High-performance liquid chromatography, immunochemistry and mass spectrometry have been largely used to analyze the presence of polyamine-derived aminoaldehydes and protein modifications elicited by their effect. However, the main and still open challenge is to find clues for discovering clear linkages between aldehyde-induced modifications of specific proteins and the development of various diseases.
Collapse
Affiliation(s)
- Marek Šebela
- Department of Biochemistry, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | | |
Collapse
|
3
|
Das P, Manna I, Sil P, Bandyopadhyay M, Biswas AK. Silicon augments salt tolerance through modulation of polyamine and GABA metabolism in two indica rice (Oryza sativa L.) cultivars. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 166:41-52. [PMID: 34090120 DOI: 10.1016/j.plaphy.2021.05.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 05/19/2021] [Indexed: 05/20/2023]
Abstract
Polyamines (PA) have multifarious roles in plant-environment interaction and stress responses. In conjunction with GABA shunt, they regulate induction of tolerance under salinity stress in plants. Here, we tested the hypothesis that silicon improves salt tolerance through mediating vital metabolic pathways rather than acting as a mere mechanical barrier. Seedlings of two rice (Oryza sativa L.) cultivars MTU 1010 (salt-sensitive) & Nonabokra (salt-tolerant) growing in hydroponic culture were treated with NaCl (0, 25, 50 & 100 mM) combined with or without Si (2 mM). NaCl stress enhanced PA synthesizing enzymes activity and PA production in salt tolerant cultivar Nonabokra, whereas in the sensitive cultivar, MTU 1010 both declined. Enhanced activities of GABA synthesizing enzymes along with a decline in the activities of GABA degrading enzymes under NaCl exposure led to GABA accumulation in both the cultivars. The interactive effects of silicon and NaCl also induced the activities of the enzymes related to polyamine biosynthesis and inhibited polyamine degrading enzymes that enhanced PA contents in the cultivars. Supplemental Si decreased endogenous GABA levels by modulating GABA metabolising enzymes under NaCl stress. On the basis of all tested parameters cv. MTU 1010 was proven to be more responsive towards silicon application than cv. Nonabokra. Such study of silicon-induced polyamine accretion and reduced GABA accumulation may lower oxidative damage in rice cultivars under NaCl stress and thereby form a successful strategy to boost tolerance.
Collapse
Affiliation(s)
- Prabal Das
- Plant Physiology and Biochemistry Laboratory, Centre of Advanced Study, Department of Botany, Ballygunge Science College, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India
| | - Indrani Manna
- Plant Molecular Cytogenetics Laboratory, Centre of Advanced Study, Department of Botany, Ballygunge Science College, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India
| | - Palin Sil
- Plant Physiology and Biochemistry Laboratory, Centre of Advanced Study, Department of Botany, Ballygunge Science College, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India
| | - Maumita Bandyopadhyay
- Plant Molecular Cytogenetics Laboratory, Centre of Advanced Study, Department of Botany, Ballygunge Science College, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India
| | - Asok K Biswas
- Plant Physiology and Biochemistry Laboratory, Centre of Advanced Study, Department of Botany, Ballygunge Science College, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India.
| |
Collapse
|
4
|
Plant Copper Amine Oxidases: Key Players in Hormone Signaling Leading to Stress-Induced Phenotypic Plasticity. Int J Mol Sci 2021; 22:ijms22105136. [PMID: 34066274 PMCID: PMC8152075 DOI: 10.3390/ijms22105136] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/03/2021] [Accepted: 05/07/2021] [Indexed: 02/07/2023] Open
Abstract
Polyamines are ubiquitous, low-molecular-weight aliphatic compounds, present in living organisms and essential for cell growth and differentiation. Copper amine oxidases (CuAOs) oxidize polyamines to aminoaldehydes releasing ammonium and hydrogen peroxide, which participates in the complex network of reactive oxygen species acting as signaling molecules involved in responses to biotic and abiotic stresses. CuAOs have been identified and characterized in different plant species, but the most extensive study on a CuAO gene family has been carried out in Arabidopsis thaliana. Growing attention has been devoted in the last years to the investigation of the CuAO expression pattern during development and in response to an array of stress and stress-related hormones, events in which recent studies have highlighted CuAOs to play a key role by modulation of a multilevel phenotypic plasticity expression. In this review, the attention will be focused on the involvement of different AtCuAOs in the IAA/JA/ABA signal transduction pathways which mediate stress-induced phenotypic plasticity events.
Collapse
|
5
|
Kinetic and structural analysis of human ALDH9A1. Biosci Rep 2019; 39:BSR20190558. [PMID: 30914451 PMCID: PMC6487263 DOI: 10.1042/bsr20190558] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 03/19/2019] [Accepted: 03/21/2019] [Indexed: 01/27/2023] Open
Abstract
Aldehyde dehydrogenases (ALDHs) constitute a superfamily of NAD(P)+-dependent enzymes, which detoxify aldehydes produced in various metabolic pathways to the corresponding carboxylic acids. Among the 19 human ALDHs, the cytosolic ALDH9A1 has so far never been fully enzymatically characterized and its structure is still unknown. Here, we report complete molecular and kinetic properties of human ALDH9A1 as well as three crystal forms at 2.3, 2.9, and 2.5 Å resolution. We show that ALDH9A1 exhibits wide substrate specificity to aminoaldehydes, aliphatic and aromatic aldehydes with a clear preference for γ-trimethylaminobutyraldehyde (TMABAL). The structure of ALDH9A1 reveals that the enzyme assembles as a tetramer. Each ALDH monomer displays a typical ALDHs fold composed of an oligomerization domain, a coenzyme domain, a catalytic domain, and an inter-domain linker highly conserved in amino-acid sequence and folding. Nonetheless, structural comparison reveals a position and a fold of the inter-domain linker of ALDH9A1 never observed in any other ALDH so far. This unique difference is not compatible with the presence of a bound substrate and a large conformational rearrangement of the linker up to 30 Å has to occur to allow the access of the substrate channel. Moreover, the αβE region consisting of an α-helix and a β-strand of the coenzyme domain at the dimer interface are disordered, likely due to the loss of interactions with the inter-domain linker, which leads to incomplete β-nicotinamide adenine dinucleotide (NAD+) binding pocket.
Collapse
|
6
|
Golestan Hashemi FS, Ismail MR, Rafii MY, Aslani F, Miah G, Muharam FM. Critical multifunctional role of the betaine aldehyde dehydrogenase gene in plants. BIOTECHNOL BIOTEC EQ 2018. [DOI: 10.1080/13102818.2018.1478748] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
Affiliation(s)
- Farahnaz Sadat Golestan Hashemi
- Gembloux Agro-Bio Tech, University of Liege, Leige, Belgium
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Mohd Razi Ismail
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Mohd Y. Rafii
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Farzad Aslani
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Gous Miah
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Farah Melissa Muharam
- Department of Agricultural Technology, Faculty of Agriculture, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|
7
|
Hluska T, Šebela M, Lenobel R, Frébort I, Galuszka P. Purification of Maize Nucleotide Pyrophosphatase/Phosphodiesterase Casts Doubt on the Existence of Zeatin Cis- Trans Isomerase in Plants. FRONTIERS IN PLANT SCIENCE 2017; 8:1473. [PMID: 28878803 PMCID: PMC5572937 DOI: 10.3389/fpls.2017.01473] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 08/08/2017] [Indexed: 05/14/2023]
Abstract
Almost 25 years ago, an enzyme named zeatin cis-trans isomerase from common bean has been described by Bassil et al. (1993). The partially purified enzyme required an external addition of FAD and dithiothreitol for the conversion of cis-zeatin to its trans- isomer that occurred only under light. Although an existence of this important enzyme involved in the metabolism of plant hormones cytokinins was generally accepted by plant biologists, the corresponding protein and encoding gene have not been identified to date. Based on the original paper, we purified and identified an enzyme from maize, which shows the described zeatin cis-trans isomerase activity. The enzyme belongs to nucleotide pyrophosphatase/phosphodiesterase family, which is well characterized in mammals, but less known in plants. Further experiments with the recombinant maize enzyme obtained from yeast expression system showed that rather than the catalytic activity of the enzyme itself, a non-enzymatic flavin induced photoisomerization is responsible for the observed zeatin cis-trans interconversion in vitro. An overexpression of the maize nucleotide pyrophosphatase/phosphodiesterase gene led to decreased FAD and increased FMN and riboflavin contents in transgenic Arabidopsis plants. However, neither contents nor the ratio of zeatin isomers was altered suggesting that the enzyme is unlikely to catalyze the interconversion of zeatin isomers in vivo. Using enhanced expression of a homologous gene, functional nucleotide pyrophosphatase/phosphodiesterase was also identified in rice.
Collapse
Affiliation(s)
- Tomáš Hluska
- Department of Molecular Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University OlomoucOlomouc, Czechia
| | - Marek Šebela
- Department of Protein Biochemistry and Proteomics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University OlomoucOlomouc, Czechia
| | - René Lenobel
- Department of Protein Biochemistry and Proteomics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University OlomoucOlomouc, Czechia
| | - Ivo Frébort
- Department of Molecular Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University OlomoucOlomouc, Czechia
| | - Petr Galuszka
- Department of Molecular Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University OlomoucOlomouc, Czechia
- *Correspondence: Petr Galuszka,
| |
Collapse
|
8
|
Wakte K, Zanan R, Hinge V, Khandagale K, Nadaf A, Henry R. Thirty-three years of 2-acetyl-1-pyrroline, a principal basmati aroma compound in scented rice (Oryza sativa L.): a status review. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2017; 97:384-395. [PMID: 27376959 DOI: 10.1002/jsfa.7875] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 06/13/2016] [Accepted: 06/24/2016] [Indexed: 05/22/2023]
Abstract
Rice is the staple food of around 3 billion people, most of them in Asia which accounts for 90% of global rice consumption. Aromatic rices have been preferred over non-aromatic rice for hundreds of years. They have a premium value in national as well as international market owing to their unique aroma and quality. Many researchers were involved in identifying the compound responsible for the pleasant aroma in aromatic rice in the 20th century. However, due to its unstable nature, 2-acetyl-1-pyrroline (2AP) was discovered very late, in 1982. Buttery and co-workers found 2AP to be the principal compound imparting the pleasant aroma to basmati and other scented rice varieties. Since then, 2AP has been identified in all fragrant rice (Oryza sativa L.) varieties and a wide range of plants, animals, fungi, bacteria and various food products. The present article reviews in detail biochemical and genetic aspects of 2AP in living systems. The site of synthesis, site of storage and stability in plant systems in vivo is of interest. This compound requires more research on stability to facilitate use as a food additive. © 2016 Society of Chemical Industry.
Collapse
Affiliation(s)
- Kantilal Wakte
- Department of Botany, Savitribai Phule Pune University, Pune, 411007, India
| | - Rahul Zanan
- Department of Botany, Savitribai Phule Pune University, Pune, 411007, India
| | - Vidya Hinge
- Department of Botany, Savitribai Phule Pune University, Pune, 411007, India
| | - Kiran Khandagale
- Department of Botany, Savitribai Phule Pune University, Pune, 411007, India
| | - Altafhusain Nadaf
- Department of Botany, Savitribai Phule Pune University, Pune, 411007, India
| | - Robert Henry
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, St Lucia, QLD, 4072, Australia
| |
Collapse
|
9
|
Missihoun TD, Willée E, Guegan JP, Berardocco S, Shafiq MR, Bouchereau A, Bartels D. Overexpression of ALDH10A8 and ALDH10A9 Genes Provides Insight into Their Role in Glycine Betaine Synthesis and Affects Primary Metabolism in Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2015; 56:1798-807. [PMID: 26169197 DOI: 10.1093/pcp/pcv105] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 07/09/2015] [Indexed: 05/11/2023]
Abstract
Betaine aldehyde dehydrogenases oxidize betaine aldehyde to glycine betaine in species that accumulate glycine betaine as a compatible solute under stress conditions. In contrast, the physiological function of betaine aldehyde dehydrogenase genes is at present unclear in species that do not accumulate glycine betaine, such as Arabidopsis thaliana. To address this question, we overexpressed the Arabidopsis ALDH10A8 and ALDH10A9 genes, which were identified to code for betaine aldehyde dehydrogenases, in wild-type A. thaliana. We analysed changes in metabolite contents of transgenic plants in comparison with the wild type. Using exogenous or endogenous choline, our results indicated that ALDH10A8 and ALDH10A9 are involved in the synthesis of glycine betaine in Arabidopsis. Choline availability seems to be a factor limiting glycine betaine synthesis. Moreover, the contents of diverse metabolites including sugars (glucose and fructose) and amino acids were altered in fully developed transgenic plants compared with the wild type. The plant metabolic response to salt and the salt stress tolerance were impaired only in young transgenic plants, which exhibited a delayed growth of the seedlings early after germination. Our results suggest that a balanced expression of the betaine aldehyde dehydrogenase genes is important for early growth of A. thaliana seedlings and for salt stress mitigation in young seedlings.
Collapse
Affiliation(s)
- Tagnon D Missihoun
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, Kirschallee 1, D-53115 Bonn, Germany Department of Biology, 112 Science Place, University of Saskatchewan, Saskatoon, Saskatchewan, Canada, S7N 5E2
| | - Eva Willée
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, Kirschallee 1, D-53115 Bonn, Germany Present address: Botanisches Institut der Universität zu Köln Zülpicher Str.47b, D-50674 Köln, Germany
| | - Jean-Paul Guegan
- ENSCR-UMR CNRS 6226, Institute des Sciences Chimiques de Rennes, Campus de Beaulieu, 35708 Rennes, France
| | - Solenne Berardocco
- UMR 1349, Institut de Génétique, Environnement et Protection des Plantes, INRA, Agrocampus Ouest, Université de Rennes 1, 35653 Le Rheu, France
| | - Muhammad R Shafiq
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, Kirschallee 1, D-53115 Bonn, Germany
| | - Alain Bouchereau
- UMR 1349, Institut de Génétique, Environnement et Protection des Plantes, INRA, Agrocampus Ouest, Université de Rennes 1, 35653 Le Rheu, France
| | - Dorothea Bartels
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, Kirschallee 1, D-53115 Bonn, Germany
| |
Collapse
|
10
|
Končitíková R, Vigouroux A, Kopečná M, Andree T, Bartoš J, Šebela M, Moréra S, Kopečný D. Role and structural characterization of plant aldehyde dehydrogenases from family 2 and family 7. Biochem J 2015; 468:109-23. [PMID: 25734422 DOI: 10.1042/bj20150009] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Aldehyde dehydrogenases (ALDHs) are responsible for oxidation of biogenic aldehyde intermediates as well as for cell detoxification of aldehydes generated during lipid peroxidation. So far, 13 ALDH families have been described in plants. In the present study, we provide a detailed biochemical characterization of plant ALDH2 and ALDH7 families by analysing maize and pea ALDH7 (ZmALDH7 and PsALDH7) and four maize cytosolic ALDH(cALDH)2 isoforms RF2C, RF2D, RF2E and RF2F [the first maize ALDH2 was discovered as a fertility restorer (RF2A)]. We report the crystal structures of ZmALDH7, RF2C and RF2F at high resolution. The ZmALDH7 structure shows that the three conserved residues Glu(120), Arg(300) and Thr(302) in the ALDH7 family are located in the substrate-binding site and are specific to this family. Our kinetic analysis demonstrates that α-aminoadipic semialdehyde, a lysine catabolism intermediate, is the preferred substrate for plant ALDH7. In contrast, aromatic aldehydes including benzaldehyde, anisaldehyde, cinnamaldehyde, coniferaldehyde and sinapaldehyde are the best substrates for cALDH2. In line with these results, the crystal structures of RF2C and RF2F reveal that their substrate-binding sites are similar and are formed by an aromatic cluster mainly composed of phenylalanine residues and several nonpolar residues. Gene expression studies indicate that the RF2C gene, which is strongly expressed in all organs, appears essential, suggesting that the crucial role of the enzyme would certainly be linked to the cell wall formation using aldehydes from phenylpropanoid pathway as substrates. Finally, plant ALDH7 may significantly contribute to osmoprotection because it oxidizes several aminoaldehydes leading to products known as osmolytes.
Collapse
Affiliation(s)
- Radka Končitíková
- *Department of Protein Biochemistry and Proteomics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 11, Olomouc CZ-783 71, Czech Republic
| | - Armelle Vigouroux
- ‡Laboratoire d'Enzymologie et Biochimie Structurales, CNRS, Avenue de la Terrasse, Gif-sur-Yvette 91198, France
| | - Martina Kopečná
- *Department of Protein Biochemistry and Proteomics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 11, Olomouc CZ-783 71, Czech Republic
| | - Tomáš Andree
- †Department of Biochemistry, Faculty of Science, Palacký University, Šlechtitelů 11, Olomouc CZ-783 71, Czech Republic
| | - Jan Bartoš
- §Centre of Plant Structural and Functional Genomics, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany, Šlechtitelů 31, Olomouc CZ-78371, Czech Republic
| | - Marek Šebela
- *Department of Protein Biochemistry and Proteomics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 11, Olomouc CZ-783 71, Czech Republic
| | - Solange Moréra
- ‡Laboratoire d'Enzymologie et Biochimie Structurales, CNRS, Avenue de la Terrasse, Gif-sur-Yvette 91198, France
| | - David Kopečný
- *Department of Protein Biochemistry and Proteomics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 11, Olomouc CZ-783 71, Czech Republic
| |
Collapse
|
11
|
Frömmel J, Šebela M, Demo G, Lenobel R, Pospíšil T, Soural M, Kopečný D. N-acyl-ω-aminoaldehydes are efficient substrates of plant aminoaldehyde dehydrogenases. Amino Acids 2015; 47:175-87. [PMID: 25344796 DOI: 10.1007/s00726-014-1853-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 10/07/2014] [Indexed: 11/29/2022]
Abstract
Plant aminoaldehyde dehydrogenases (AMADHs, EC 1.2.1.19) belong to the family 10 of aldehyde dehydrogenases and participate in the metabolism of compounds related to amino acids such as polyamines or osmoprotectants. Their broad specificity covers ω-aminoaldehydes, aliphatic and aromatic aldehydes as well as nitrogen-containing heterocyclic aldehydes. The substrate preference of plant AMADHs is determined by the presence of aspartic acid and aromatic residues in the substrate channel. In this work, 15 new N-acyl derivates of 3-aminopropanal (APAL) and 4-aminobutanal (ABAL) were synthesized and confirmed as substrates of two pea AMADH isoenzymes (PsAMADH 1 and 2). The compounds were designed considering the previously demonstrated conversion of N-acetyl derivatives as well as substrate channel dimensions (5-8 Å × 14 Å). The acyl chain length and its branching were found less significant for substrate properties than the length of the initial natural substrate. In general, APAL derivatives were found more efficient than the corresponding ABAL derivatives because of the prevailing higher conversion rates and lower K m values. Differences in enzymatic performance between the two isoenzymes corresponded in part to their preferences to APAL to ABAL. The higher PsAMADH2 affinity to substrates correlated with more frequent occurrence of an excess substrate inhibition. Molecular docking indicated the possible auxiliary role of Tyr163, Ser295 and Gln451 in binding of the new substrates. The only derivative carrying a free carboxyl group (N-adipoyl APAL) was surprisingly better substrate than ABAL in PsAMADH2 reaction indicating that also negatively charged aldehydes might be good substrates for ALDH10 family.
Collapse
Affiliation(s)
- Jan Frömmel
- Department of Protein Biochemistry and Proteomics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 11, 783 71, Olomouc, Czech Republic
| | | | | | | | | | | | | |
Collapse
|
12
|
Tang W, Sun J, Liu J, Liu F, Yan J, Gou X, Lu BR, Liu Y. RNAi-directed downregulation of betaine aldehyde dehydrogenase 1 (OsBADH1) results in decreased stress tolerance and increased oxidative markers without affecting glycine betaine biosynthesis in rice (Oryza sativa). PLANT MOLECULAR BIOLOGY 2014; 86:443-454. [PMID: 25150410 DOI: 10.1007/s11103-014-0239-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Accepted: 08/14/2014] [Indexed: 06/03/2023]
Abstract
As an important osmoprotectant, glycine betaine (GB) plays an essential role in resistance to abiotic stress in a variety of organisms, including rice (Oryza sativa L.). However, GB content is too low to be detectable in rice, although rice genome possesses several orthologs coding for betaine aldehyde dehydrogenase (BADH) involved in plant GB biosynthesis. Rice BADH1 (OsBADH1) has been shown to be targeted to peroxisome and its overexpression resulted in increased GB biosynthesis and tolerance to abiotic stress. In this study, we demonstrated a pivotal role of OsBADH1 in stress tolerance without altering GB biosynthesis capacity, using the RNA interference (RNAi) technique. OsBADH1 was ubiquitously expressed in different organs, including roots, stems, leaves and flowers. Transgenic rice lines downregulating OsBADH1 exhibited remarkably reduced tolerance to NaCl, drought and cold stresses. The decrease of stress tolerance occurring in the OsBADH1-RNAi repression lines was associated with an elevated level of malondialdehyde content and hydrogen peroxidation. No GB accumulation was detected in transgene-positive and transgene-negative lines derived from heterozygous transgenic T0 plants. Moreover, transgenic OsBADH1-RNAi repression lines showed significantly reduced seed set and yield. In conclusion, the downregulation of OsBADH1, even though not causing any change of GB content, was accounted for the reduction of ability to dehydrogenate the accumulating metabolism-derived aldehydes and subsequently resulted in decreased stress tolerance and crop productivity. These results suggest that OsBADH1 possesses an enzyme activity to catalyze other aldehydes in addition to betaine aldehyde (the precursor of GB) and thus alleviate their toxic effects under abiotic stresses.
Collapse
Affiliation(s)
- Wei Tang
- Ministry of Education Key Laboratory for Bio-resource and Eco-environment, State Key Laboratory of Hydraulics and Mountain River Engineering, College of Life Science, Sichuan University, Chengdu, China
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Foster A, Barnes N, Speight R, Keane MA. Genomic organisation, activity and distribution analysis of the microbial putrescine oxidase degradation pathway. Syst Appl Microbiol 2013; 36:457-66. [DOI: 10.1016/j.syapm.2013.06.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 06/25/2013] [Accepted: 06/28/2013] [Indexed: 12/29/2022]
|
14
|
Tomar PC, Lakra N, Mishra SN. Cadaverine: a lysine catabolite involved in plant growth and development. PLANT SIGNALING & BEHAVIOR 2013; 8:doi: 10.4161/psb.25850. [PMID: 23887488 PMCID: PMC4091120 DOI: 10.4161/psb.25850] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 07/22/2013] [Accepted: 07/22/2013] [Indexed: 05/03/2023]
Abstract
The cadaverine (Cad) a diamine, imino compound produced as a lysine catabolite is also implicated in growth and development of plants depending on environmental condition. This lysine catabolism is catalyzed by lysine decarboxylase, which is developmentally regulated. However, the limited role of Cad in plants is reported, this review is tempted to focus the metabolism and its regulation, transport and responses, interaction and cross talks in higher plants. The Cad varied presence in plant parts/products suggests it as a potential candidate for taxonomic marker as well as for commercial exploitation along with growth and development.
Collapse
Affiliation(s)
- Pushpa C Tomar
- Department of Biotechnology Engineering; FE; Manav Rachna International University; Faridabad, Haryana, India
| | - Nita Lakra
- School of Life Sciences; Jawaharlal Nehru University; New Delhi, India
| | - S N Mishra
- Faculty of Life Sciences; Maharishi Dayanand University; Rohtak, Haryana, India
| |
Collapse
|
15
|
Li X, Guo R, Li J, Singer SD, Zhang Y, Yin X, Zheng Y, Fan C, Wang X. Genome-wide identification and analysis of the aldehyde dehydrogenase (ALDH) gene superfamily in apple (Malus × domestica Borkh.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2013; 71:268-82. [PMID: 23978559 DOI: 10.1016/j.plaphy.2013.07.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 07/26/2013] [Indexed: 05/01/2023]
Abstract
Aldehyde dehydrogenases (ALDHs) represent a protein superfamily encoding NAD(P)(+)-dependent enzymes that oxidize a wide range of endogenous and exogenous aliphatic and aromatic aldehydes. In plants, they are involved in many biological processes and play a role in the response to environmental stress. In this study, a total of 39 ALDH genes from ten families were identified in the apple (Malus × domestica Borkh.) genome. Synteny analysis of the apple ALDH (MdALDH) genes indicated that segmental and tandem duplications, as well as whole genome duplications, have likely contributed to the expansion and evolution of these gene families in apple. Moreover, synteny analysis between apple and Arabidopsis demonstrated that several MdALDH genes were found in the corresponding syntenic blocks of Arabidopsis, suggesting that these genes appeared before the divergence of lineages that led to apple and Arabidopsis. In addition, phylogenetic analysis, as well as comparisons of exon-intron and protein structures, provided further insight into both their evolutionary relationships and their putative functions. Tissue-specific expression analysis of the MdALDH genes demonstrated diverse spatiotemporal expression patterns, while their expression profiles under abiotic stress and various hormone treatments indicated that many MdALDH genes were responsive to high salinity and drought, as well as different plant hormones. This genome-wide identification, as well as characterization of evolutionary relationships and expression profiles, of the apple MdALDH genes will not only be useful for the further analysis of ALDH genes and their roles in stress response, but may also aid in the future improvement of apple stress tolerance.
Collapse
Affiliation(s)
- Xiaoqin Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Planas-Portell J, Gallart M, Tiburcio AF, Altabella T. Copper-containing amine oxidases contribute to terminal polyamine oxidation in peroxisomes and apoplast of Arabidopsis thaliana. BMC PLANT BIOLOGY 2013; 13:109. [PMID: 23915037 PMCID: PMC3751259 DOI: 10.1186/1471-2229-13-109] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 07/30/2013] [Indexed: 05/18/2023]
Abstract
BACKGROUND Polyamines (PAs) are oxidatively deaminated at their primary or secondary amino-groups by copper-containing amine oxidases (CuAOs) or FAD-dependent amine oxidases (PAOs), respectively. Both enzymes have long been considered to be apoplastic proteins. However, three out of five PAO isoforms in Arabidopsis thaliana are localized in peroxisomes, while the other two PAOs are predicted to be cytosolic. Interestingly, most of these PAOs do not contribute to terminal PA oxidation, but instead are involved in the back-conversion pathway, producing spermidine from spermine and putrescine from spermidine, which in turn is inhibited by putrescine. This opens the question as to whether PAs are catabolized in the apoplast of Arabidopsis and if the terminal oxidation occurs in the peroxisomes. The main objective of this study was to know if these catabolic processes are mediated by CuAOs. RESULTS A. thaliana contains ten genes annotated as CuAOs, but only one (ATAO1) has been characterized at the protein level. Reported herein is the characterization of three genes encoding putative Arabidopsis CuAOs (AtCuAO1, AtCuAO2 and AtCuAO3). These genes encode functional CuAOs that use putrescine and spermidine as substrates. AtCuAO1, like ATAO1, is an extracellular protein, while AtCuAO2 and AtCuAO3 are localized in peroxisomes. The three genes present a different expression profile in response to exogenous treatments, such as application of abcisic acid, methyl jasmonate, salycilic acid, flagellin 22 and wounding. CONCLUSIONS PA catabolism in the Arabidopsis apoplast is mediated predominantly by CuAOs, while in peroxisomes the co-localization of CuAO-dependent terminal catabolism with PAO-back-conversion machineries might contribute to modulating putrescine-mediated inhibition of the back-conversion, suggesting the occurrence of a tight coordination between both catabolic pathways. The expression profile of AtCuAO1-3 in response to different exogenous treatments, together with the different localization of the corresponding proteins, provides evidence for the functional diversification of Arabidopsis CuAO proteins.
Collapse
Affiliation(s)
- Joan Planas-Portell
- Department of Molecular Genetics, Centre for Research in Agricultural Genomics (CRAG) (CSIC-IRTA-UAB-UB), Campus UAB, Bellaterra (Cerdanyola del Vallès), Barcelona, Spain
- Laboratory of Plant Physiology, Faculty of Pharmacy, University of Barcelona, Barcelona, Spain
| | - Marta Gallart
- Department of Molecular Genetics, Centre for Research in Agricultural Genomics (CRAG) (CSIC-IRTA-UAB-UB), Campus UAB, Bellaterra (Cerdanyola del Vallès), Barcelona, Spain
- Laboratory of Plant Physiology, Faculty of Pharmacy, University of Barcelona, Barcelona, Spain
| | - Antonio F Tiburcio
- Laboratory of Plant Physiology, Faculty of Pharmacy, University of Barcelona, Barcelona, Spain
| | - Teresa Altabella
- Department of Molecular Genetics, Centre for Research in Agricultural Genomics (CRAG) (CSIC-IRTA-UAB-UB), Campus UAB, Bellaterra (Cerdanyola del Vallès), Barcelona, Spain
- Laboratory of Plant Physiology, Faculty of Pharmacy, University of Barcelona, Barcelona, Spain
| |
Collapse
|
17
|
Kopečny D, Končitíková R, Tylichová M, Vigouroux A, Moskalíková H, Soural M, Šebela M, Moréra S. Plant ALDH10 family: identifying critical residues for substrate specificity and trapping a thiohemiacetal intermediate. J Biol Chem 2013; 288:9491-507. [PMID: 23408433 DOI: 10.1074/jbc.m112.443952] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Plant ALDH10 family members are aminoaldehyde dehydrogenases (AMADHs), which oxidize ω-aminoaldehydes to the corresponding acids. They have been linked to polyamine catabolism, osmoprotection, secondary metabolism (fragrance), and carnitine biosynthesis. Plants commonly contain two AMADH isoenzymes. We previously studied the substrate specificity of two AMADH isoforms from peas (PsAMADHs). Here, two isoenzymes from tomato (Solanum lycopersicum), SlAMADHs, and three AMADHs from maize (Zea mays), ZmAMADHs, were kinetically investigated to obtain further clues to the catalytic mechanism and the substrate specificity. We also solved the high resolution crystal structures of SlAMADH1 and ZmAMADH1a because these enzymes stand out from the others regarding their activity. From the structural and kinetic analysis, we can state that five residues at positions 163, 288, 289, 444, and 454 (PsAMADHs numbering) can, directly or not, significantly modulate AMADH substrate specificity. In the SlAMADH1 structure, a PEG aldehyde derived from the precipitant forms a thiohemiacetal intermediate, never observed so far. Its absence in the SlAMADH1-E260A structure suggests that Glu-260 can activate the catalytic cysteine as a nucleophile. We show that the five AMADHs studied here are capable of oxidizing 3-dimethylsulfoniopropionaldehyde to the cryo- and osmoprotectant 3-dimethylsulfoniopropionate. For the first time, we also show that 3-acetamidopropionaldehyde, the third aminoaldehyde besides 3-aminopropionaldehyde and 4-aminobutyraldehyde, is generally oxidized by AMADHs, meaning that these enzymes are unique in metabolizing and detoxifying aldehyde products of polyamine degradation to nontoxic amino acids. Finally, gene expression profiles in maize indicate that AMADHs might be important for controlling ω-aminoaldehyde levels during early stages of the seed development.
Collapse
Affiliation(s)
- David Kopečny
- Department of Protein Biochemistry and Proteomics, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Brocker C, Vasiliou M, Carpenter S, Carpenter C, Zhang Y, Wang X, Kotchoni SO, Wood AJ, Kirch HH, Kopečný D, Nebert DW, Vasiliou V. Aldehyde dehydrogenase (ALDH) superfamily in plants: gene nomenclature and comparative genomics. PLANTA 2013; 237:189-210. [PMID: 23007552 PMCID: PMC3536936 DOI: 10.1007/s00425-012-1749-0] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 08/21/2012] [Indexed: 05/19/2023]
Abstract
In recent years, there has been a significant increase in the number of completely sequenced plant genomes. The comparison of fully sequenced genomes allows for identification of new gene family members, as well as comprehensive analysis of gene family evolution. The aldehyde dehydrogenase (ALDH) gene superfamily comprises a group of enzymes involved in the NAD(+)- or NADP(+)-dependent conversion of various aldehydes to their corresponding carboxylic acids. ALDH enzymes are involved in processing many aldehydes that serve as biogenic intermediates in a wide range of metabolic pathways. In addition, many of these enzymes function as 'aldehyde scavengers' by removing reactive aldehydes generated during the oxidative degradation of lipid membranes, also known as lipid peroxidation. Plants and animals share many ALDH families, and many genes are highly conserved between these two evolutionarily distinct groups. Conversely, both plants and animals also contain unique ALDH genes and families. Herein we carried out genome-wide identification of ALDH genes in a number of plant species-including Arabidopsis thaliana (thale crest), Chlamydomonas reinhardtii (unicellular algae), Oryza sativa (rice), Physcomitrella patens (moss), Vitis vinifera (grapevine) and Zea mays (maize). These data were then combined with previous analysis of Populus trichocarpa (poplar tree), Selaginella moellindorffii (gemmiferous spikemoss), Sorghum bicolor (sorghum) and Volvox carteri (colonial algae) for a comprehensive evolutionary comparison of the plant ALDH superfamily. As a result, newly identified genes can be more easily analyzed and gene names can be assigned according to current nomenclature guidelines; our goal is to clarify previously confusing and conflicting names and classifications that might confound results and prevent accurate comparisons between studies.
Collapse
Affiliation(s)
- Chad Brocker
- Department of Pharmaceutical Sciences, Molecular Toxicology and Environmental Health Sciences, Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Melpomene Vasiliou
- Department of Pharmaceutical Sciences, Molecular Toxicology and Environmental Health Sciences, Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Sarah Carpenter
- Department of Pharmaceutical Sciences, Molecular Toxicology and Environmental Health Sciences, Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Christopher Carpenter
- Department of Pharmaceutical Sciences, Molecular Toxicology and Environmental Health Sciences, Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Yucheng Zhang
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, College of Horticulture, Ministry of Agriculture, Northwest A&F University, Yangling, Shanxi 712100, People's Republic of China
| | - Xiping Wang
- Key Laboratory of Horticultural Plant Biology and Germplasm, Innovation in Northwest China, College of Horticulture, Ministry of Agriculture, Northwest A&F University, Yangling, Shanxi 712100, People's Republic of China
| | - Simeon O. Kotchoni
- Department of Biology, Center for Computational and Integrative Biology, Rutgers University, Camden, NJ 08102, USA
| | - Andrew J. Wood
- Department of Plant Biology, Southern Illinois University, Carbondale, Carbondale, IL 62901, USA
| | - Hans-Hubert Kirch
- Institute of Molecular Physiology and Biotechnology of Plants, (IMBIO), University of Bonn, 53115 Bonn, Germany
| | - David Kopečný
- Faculty of Science, Department of Protein Biochemistry and Proteomics, Centre of the Region Haná for Biotechnological and Agricultural Research, Palackyý University, Šlechtitelů 11, 783 71 Olomouc, Czech Republic
| | - Daniel W. Nebert
- Department of Environmental Health, University of Cincinnati, Medical Center, Cincinnati, OH 45267, USA
| | - Vasilis Vasiliou
- Department of Pharmaceutical Sciences, Molecular Toxicology and Environmental Health Sciences, Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
19
|
Riveros-Rosas H, González-Segura L, Julián-Sánchez A, Díaz-Sánchez AG, Muñoz-Clares RA. Structural determinants of substrate specificity in aldehyde dehydrogenases. Chem Biol Interact 2012; 202:51-61. [PMID: 23219887 DOI: 10.1016/j.cbi.2012.11.015] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 11/24/2012] [Accepted: 11/27/2012] [Indexed: 12/28/2022]
Abstract
Within the aldehyde dehydrogenase (ALDH) superfamily, proteins belonging to the ALDH9, ALDH10, ALDH25, ALDH26 and ALDH27 families display activity as ω-aminoaldehyde dehydrogenases (AMADHs). These enzymes participate in polyamine, choline and arginine catabolism, as well as in synthesis of several osmoprotectants and carnitine. Active site aromatic and acidic residues are involved in binding the ω-aminoaldehydes in plant ALDH10 enzymes. In order to ascertain the degree of conservation of these residues among AMADHs and to evaluate their possible relevance in determining the aminoaldehyde specificity, we compared the known amino acid sequences of every ALDH family that have at least one member with known crystal structure, as well as the electrostatic potential surface of the aldehyde binding sites of these structures. Our analyses showed that four or three aromatic residues form a similar "aromatic box" in the active site of the AMADH enzymes, being the equivalents to Phe170 and Trp177 (human ALDH2 numbering) strictly conserved in all of them, which supports their relevance in binding the aminoaldehyde by cation-π interactions. In addition, all AMADHs exhibit a negative electrostatic potential surface in the aldehyde-entrance tunnel, due to side-chain carboxyl and hydroxyl groups or main-chain carbonyl groups. In contrast, ALDHs that have non-polar or negatively charged substrates exhibit neutral or positive electrostatic potential surfaces, respectively. Finally, our comparative sequence analyses revealed that the residues equivalent to Asp121 and Phe170 are highly conserved in many ALDH families irrespective of their substrate specificity-suggesting that they perform a role in catalysis additional or different to binding of the substrate-and that the positions Met124, Cys301, and Cys303 are hot spots changed during evolution to confer aldehyde specificity to several ALDH families.
Collapse
Affiliation(s)
- Héctor Riveros-Rosas
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, 04510 México, DF, Mexico
| | | | | | | | | |
Collapse
|
20
|
Frömmel J, Soural M, Tylichová M, Kopečný D, Demo G, Wimmerová M, Sebela M. Plant aminoaldehyde dehydrogenases oxidize a wide range of nitrogenous heterocyclic aldehydes. Amino Acids 2012; 43:1189-202. [PMID: 22160258 DOI: 10.1007/s00726-011-1174-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Accepted: 11/21/2011] [Indexed: 11/29/2022]
Abstract
The metabolic degradation of aldehydes is catalyzed by oxidoreductases from which aldehyde dehydrogenases (EC 1.2.1) comprise nonspecific or substrate-specific enzymes. The latter subset is represented, e.g., by NAD(+)-dependent aminoaldehyde dehydrogenases (AMADHs; EC 1.2.1.19) oxidizing a group of naturally occurring ω-aminoaldehydes including polyamine oxidation products. Recombinant isoenzymes from pea (PsAMADH1 and 2) and tomato (LeAMADH1 and 2) were subjected to kinetic measurements with synthetic aldehydes containing a nitrogenous heterocycle such as pyridinecarbaldehydes and their halogenated derivatives, (pyridinylmethylamino)-aldehydes, pyridinyl propanals and aldehydes derived from purine, 7-deazapurine and pyrimidine to characterize their substrate specificity and significance of the resulting data for in vivo reactions. The enzymatic production of the corresponding carboxylic acids was analyzed by liquid chromatography coupled to electrospray ionization mass spectrometry. Although the studied AMADHs are largely homologous and supposed to have a very similar active site architecture, significant differences were observed. LeAMADH1 displayed the broadest specificity oxidizing almost all compounds followed by PsAMADH2 and 1. In contrast, LeAMADH2 accepted only a few compounds as substrates. Pyridinyl propanals were converted by all isoenzymes, usually better than pyridinecarbaldehydes and aldehydes with fused rings. The K (m) values for the best substrates were in the range of 10(-5)-10(-4) M. Nevertheless, the catalytic efficiency values (V (max)/K (m)) reached only a very small fraction of that with 3-aminopropanal (except for LeAMADH1 activity with two pyridine-derived compounds). Docking experiments using the crystal structure of PsAMADH2 were involved to discuss differences in results with position isomers or alkyl chain homologs.
Collapse
Affiliation(s)
- Jan Frömmel
- Department of Protein Biochemistry and Proteomics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 11, Olomouc, Czech Republic
| | | | | | | | | | | | | |
Collapse
|
21
|
Jiamsomboon K, Treesuwan W, Boonyalai N. Dissecting substrate specificity of two rice BADH isoforms: Enzyme kinetics, docking and molecular dynamics simulation studies. Biochimie 2012; 94:1773-83. [DOI: 10.1016/j.biochi.2012.04.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Accepted: 04/07/2012] [Indexed: 11/16/2022]
|
22
|
Abstract
Putrescine as the sole carbon source requires a novel catabolic pathway with glutamylated intermediates. Nitrogen limitation does not induce genes of this glutamylated putrescine (GP) pathway but instead induces genes for a putrescine catabolic pathway that starts with a transaminase-dependent deamination. We determined pathway utilization with putrescine as the sole nitrogen source by examining mutants with defects in both pathways. Blocks in both the GP and transaminase pathways were required to prevent growth with putrescine as the sole nitrogen source. Genetic and biochemical analyses showed redundant enzymes for γ-aminobutyraldehyde dehydrogenase (PatD/YdcW and PuuC), γ-aminobutyrate transaminase (GabT and PuuE), and succinic semialdehyde dehydrogenase (GabD and PuuC). PuuC is a nonspecific aldehyde dehydrogenase that oxidizes all the aldehydes in putrescine catabolism. A puuP mutant failed to use putrescine as the nitrogen source, which implies one major transporter for putrescine as the sole nitrogen source. Analysis of regulation of the GP pathway shows induction by putrescine and not by a product of putrescine catabolism and shows that putrescine accumulates in puuA, puuB, and puuC mutants but not in any other mutant. We conclude that two independent sets of enzymes can completely degrade putrescine to succinate and that their relative importance depends on the environment.
Collapse
|
23
|
Díaz-Sánchez ÁG, González-Segura L, Mújica-Jiménez C, Rudiño-Piñera E, Montiel C, Martínez-Castilla LP, Muñoz-Clares RA. Amino acid residues critical for the specificity for betaine aldehyde of the plant ALDH10 isoenzyme involved in the synthesis of glycine betaine. PLANT PHYSIOLOGY 2012; 158:1570-82. [PMID: 22345508 PMCID: PMC3343730 DOI: 10.1104/pp.112.194514] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Plant Aldehyde Dehydrogenase10 (ALDH10) enzymes catalyze the oxidation of ω-primary or ω-quaternary aminoaldehydes, but, intriguingly, only some of them, such as the spinach (Spinacia oleracea) betaine aldehyde dehydrogenase (SoBADH), efficiently oxidize betaine aldehyde (BAL) forming the osmoprotectant glycine betaine (GB), which confers tolerance to osmotic stress. The crystal structure of SoBADH reported here shows tyrosine (Tyr)-160, tryptophan (Trp)-167, Trp-285, and Trp-456 in an arrangement suitable for cation-π interactions with the trimethylammonium group of BAL. Mutation of these residues to alanine (Ala) resulted in significant K(m)(BAL) increases and V(max)/K(m)(BAL) decreases, particularly in the Y160A mutant. Tyr-160 and Trp-456, strictly conserved in plant ALDH10s, form a pocket where the bulky trimethylammonium group binds. This space is reduced in ALDH10s with low BADH activity, because an isoleucine (Ile) pushes the Trp against the Tyr. Those with high BADH activity instead have Ala (Ala-441 in SoBADH) or cysteine, which allow enough room for binding of BAL. Accordingly, the mutation A441I decreased the V(max)/K(m)(BAL) of SoBADH approximately 200 times, while the mutation A441C had no effect. The kinetics with other ω-aminoaldehydes were not affected in the A441I or A441C mutant, demonstrating that the existence of an Ile in the second sphere of interaction of the aldehyde is critical for discriminating against BAL in some plant ALDH10s. A survey of the known sequences indicates that plants have two ALDH10 isoenzymes: those known to be GB accumulators have a high-BAL-affinity isoenzyme with Ala or cysteine in this critical position, while non GB accumulators have low-BAL-affinity isoenzymes containing Ile. Therefore, BADH activity appears to restrict GB synthesis in non-GB-accumulator plants.
Collapse
|
24
|
Wakte KV, Kad TD, Zanan RL, Nadaf AB. Mechanism of 2-acetyl-1-pyrroline biosynthesis in Bassia latifolia Roxb. flowers. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2011; 17:231-7. [PMID: 23573014 PMCID: PMC3550574 DOI: 10.1007/s12298-011-0075-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The flowers of Bassia latifolia are known to contain 2-acetyl-1-pyrroline (2AP), the compound responsible for pleasant aroma in basmati and other scented rice. Four growth stages of Bassia flowers were identified and 2AP contents were analysed in each stage. It was found that 2AP (3.30 ppm) gets synthesized only in fleshy corolla of mature flowers (fourth stage). The activity of γ-aminobutyraldehyde dehydrogenase (AADH); an enzyme responsible for synthesis of γ-aminobutyricacid (GABA) from γ-aminobutyraldehyde (GABald) was assessed in these four stages. The AADH activity was absent in the fourth stage. It was concluded that ceased activity of AADH in fourth stage flowers leads to the accumulation of γ-aminobutyraldehyde which is cyclised spontaneously to Δ(1)-pyrroline, the key precursor of 2AP. Δ(1)-pyrroline further reacts unenzymatically with methylglyoxal to form 2AP.
Collapse
Affiliation(s)
| | - Trupti D. Kad
- Department of Botany, University of Pune, Pune, 411007 India
| | - Rahul L. Zanan
- Department of Botany, University of Pune, Pune, 411007 India
| | | |
Collapse
|
25
|
Dittami SM, Gravot A, Renault D, Goulitquer S, Eggert A, Bouchereau A, Boyen C, Tonon T. Integrative analysis of metabolite and transcript abundance during the short-term response to saline and oxidative stress in the brown alga Ectocarpus siliculosus. PLANT, CELL & ENVIRONMENT 2011; 34:629-42. [PMID: 21281312 DOI: 10.1111/j.1365-3040.2010.02268.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The model brown alga Ectocarpus siliculosus undergoes extensive transcriptomic changes in response to abiotic stress, many of them related to primary metabolism and particularly to amino acid biosynthesis and degradation. In this study we seek to improve our knowledge of the mechanisms underlying the stress tolerance of this alga, in particular with regard to compatible osmolytes, by examining the effects of these changes on metabolite concentrations. We performed extensive metabolic profiling (urea, amino acids, sugars, polyols, organic acids, fatty acids) of Ectocarpus samples subjected to short-term hyposaline, hypersaline and oxidative stress, and integrated the results with previously published transcriptomic data. The most pronounced changes in metabolite concentrations occurred under hypersaline stress: both mannitol and proline were accumulated, but their low final concentrations indicate that, in this stress condition, both compounds are not likely to significantly contribute to osmoregulation at the level of the entire cell. Urea and trehalose were not detected in any of our samples. We also observed a shift in fatty acid composition from n-3 to n-6 fatty acids under high salinities, and demonstrated the salt stress-induced accumulation of small amounts of γ-aminobutyric acid (GABA). GABA could be synthesized in E. siliculosus through a salt stress-induced putrescine-degradation pathway.
Collapse
Affiliation(s)
- Simon M Dittami
- UPMC Univ Paris 6, UMR 7139 Marine Plants and Biomolecules, Station Biologique, F-29680, Roscoff, France
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Missihoun TD, Schmitz J, Klug R, Kirch HH, Bartels D. Betaine aldehyde dehydrogenase genes from Arabidopsis with different sub-cellular localization affect stress responses. PLANTA 2011; 233:369-82. [PMID: 21053011 DOI: 10.1007/s00425-010-1297-4] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2010] [Accepted: 09/23/2010] [Indexed: 05/04/2023]
Abstract
Arabidopsis thaliana belongs to those plants that do not naturally accumulate glycine betaine (GB), although its genome contains two genes, ALDH10A8 and ALDH10A9 that code for betaine aldehyde dehydrogenases (BADHs). BADHs were initially known to catalyze the last step of the biosynthesis of GB in plants. But they can also oxidize metabolism-derived aminoaldehydes to their corresponding amino acids in some cases. This study was carried out to investigate the functional properties of Arabidopsis BADH genes. Here, we have shown that ALDH10A8 and ALDH10A9 proteins are targeted to leucoplasts and peroxisomes, respectively. The expression patterns of ALDH10A8 and ALDH10A9 genes have been analysed under abiotic stress conditions. Both genes are expressed in the plant and weakly induced by ABA, salt, chilling (4°C), methyl viologen and dehydration. The role of the ALDH10A8 gene was analysed using T-DNA insertion mutants. There was no phenotypic difference between wild-type and mutant plants in the absence of stress. But ALDH10A8 seedlings and 4-week-old plants were more sensitive to dehydration and salt stress than wild-type plants. The recombinant ALDH10A9 enzyme was shown to oxidize betaine aldehyde, 4-aminobutyraldehyde and 3-aminopropionaldehyde to their corresponding carboxylic acids. We hypothesize that ALDH10A8 or ALDH10A9 may serve as detoxification enzymes controlling the level of aminoaldehydes, which are produced in cellular metabolism under stress conditions.
Collapse
Affiliation(s)
- Tagnon D Missihoun
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, Kirschallee 1, 53115 Bonn, Germany
| | | | | | | | | |
Collapse
|
27
|
Arikit S, Yoshihashi T, Wanchana S, Uyen TT, Huong NTT, Wongpornchai S, Vanavichit A. Deficiency in the amino aldehyde dehydrogenase encoded by GmAMADH2, the homologue of rice Os2AP, enhances 2-acetyl-1-pyrroline biosynthesis in soybeans (Glycine max L.). PLANT BIOTECHNOLOGY JOURNAL 2011; 9:75-87. [PMID: 20497370 DOI: 10.1111/j.1467-7652.2010.00533.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
2-Acetyl-1-pyrroline (2AP), the volatile compound that provides the 'popcorn-like' aroma in a large variety of cereal and food products, is widely found in nature. Deficiency in amino aldehyde dehydrogenase (AMADH) was previously shown to be the likely cause of 2AP biosynthesis in rice (Oryza sativa L.). In this study, the validity of this mechanism was investigated in soybeans (Glycine max L.). An assay of AMADH activity in soybeans revealed that the aromatic soybean, which contains 2AP, also lacked AMADH enzyme activity. Two genes, GmAMADH1 and GmAMADH2, which are homologous to the rice Os2AP gene that encodes AMADH, were characterized. The transcription level of GmAMADH2 was lower in aromatic varieties than in nonaromatic varieties, whereas the expression of GmAMADH1 did not differ. A double nucleotide (TT) deletion was found in exon 10 of GmAMADH2 in all aromatic varieties. This variation caused a frame-shift mutation and a premature stop codon. Suppression of GmAMADH2 by introduction of a GmAMADH2-RNAi construct into the calli of the two nonaromatic wild-type varieties inhibited the synthesis of AMADH and induced the biosynthesis of 2AP. These results suggest that deficiency in the GmAMADH2 product, AMADH, plays a similar role in soybean as in rice, which is to promote 2AP biosynthesis. This phenomenon might be a conserved mechanism among plant species.
Collapse
Affiliation(s)
- Siwaret Arikit
- Rice Science Center and Rice Gene Discovery, Kasetsart University Kamphaeng Saen Campus, Nakhon Pathom, Thailand
| | | | | | | | | | | | | |
Collapse
|
28
|
Angelini R, Cona A, Federico R, Fincato P, Tavladoraki P, Tisi A. Plant amine oxidases "on the move": an update. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2010; 48:560-4. [PMID: 20219383 DOI: 10.1016/j.plaphy.2010.02.001] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2009] [Revised: 01/22/2010] [Accepted: 02/02/2010] [Indexed: 05/18/2023]
Abstract
Amine oxidases (AOs) catalyse the oxidative de-amination of polyamines, ubiquitous polycationic compounds involved in important events of cell life. They include the copper-containing amine oxidases (CuAOs; EC 1.4.3.6) and the flavin-containing polyamine oxidases (PAOs; EC 1.5.3.11). The main physiological role of these moonlighting proteins has been linked to compartment-specific H2O2 synthesis in different phases of development and differentiation as well as in the course of defence mechanisms against pathogens and abiotic stress. Moreover, several studies evidenced a correlation of AO expression levels with physiological stages characterized by intense metabolism, such as cell division or organ formation, thus leaving open the hypothesis that AOs may have also a role in the regulation of cell cycle through the modulation of polyamine cellular content. This update will deal with recent reports on the involvement of CuAOs and PAOs in abiotic (salt) stress, wound-healing and host-pathogen interactions.
Collapse
Affiliation(s)
- Riccardo Angelini
- Dipartimento di Biologia, Università degli Studi "Roma Tre", Viale Guglielmo Marconi 446, 00146 Rome, Italy.
| | | | | | | | | | | |
Collapse
|
29
|
Tylichová M, Kopecný D, Moréra S, Briozzo P, Lenobel R, Snégaroff J, Sebela M. Structural and functional characterization of plant aminoaldehyde dehydrogenase from Pisum sativum with a broad specificity for natural and synthetic aminoaldehydes. J Mol Biol 2010; 396:870-82. [PMID: 20026072 DOI: 10.1016/j.jmb.2009.12.015] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Revised: 12/08/2009] [Accepted: 12/10/2009] [Indexed: 11/17/2022]
Abstract
Aminoaldehyde dehydrogenases (AMADHs, EC 1.2.1.19) belong to the large aldehyde dehydrogenase (ALDH) superfamily, namely, the ALDH9 family. They oxidize polyamine-derived omega-aminoaldehydes to the corresponding omega-amino acids. Here, we report the first X-ray structures of plant AMADHs: two isoenzymes, PsAMADH1 and PsAMADH2, from Pisum sativum in complex with beta-nicotinamide adenine dinucleotide (NAD(+)) at 2.4 and 2.15 A resolution, respectively. Both recombinant proteins are dimeric and, similarly to other ALDHs, each monomer is composed of an oligomerization domain, a coenzyme binding domain and a catalytic domain. Each subunit binds NAD(+) as a coenzyme, contains a solvent-accessible C-terminal peroxisomal targeting signal (type 1) and a cation bound in the cavity close to the NAD(+) binding site. While the NAD(+) binding mode is classical for PsAMADH2, that for PsAMADH1 is unusual among ALDHs. A glycerol molecule occupies the substrate binding site and mimics a bound substrate. Structural analysis and substrate specificity study of both isoenzymes in combination with data published previously on other ALDH9 family members show that the established categorization of such enzymes into distinct groups based on substrate specificity is no more appropriate, because many of them seem capable of oxidizing a large spectrum of aminoaldehyde substrates. PsAMADH1 and PsAMADH2 can oxidize N,N,N-trimethyl-4-aminobutyraldehyde into gamma-butyrobetaine, which is the carnitine precursor in animal cells. This activity highly suggests that in addition to their contribution to the formation of compatible osmolytes such as glycine betaine, beta-alanine betaine and gamma-aminobutyric acid, AMADHs might participate in carnitine biosynthesis in plants.
Collapse
Affiliation(s)
- Martina Tylichová
- Department of Biochemistry, Faculty of Science, Palacký University, Slechtitelů 11, CZ-783 71 Olomouc, Czech Republic
| | | | | | | | | | | | | |
Collapse
|
30
|
Fitzgerald TL, Waters DLE, Henry RJ. Betaine aldehyde dehydrogenase in plants. PLANT BIOLOGY (STUTTGART, GERMANY) 2009; 11:119-30. [PMID: 19228319 DOI: 10.1111/j.1438-8677.2008.00161.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Plant betaine aldehyde dehydrogenases (BADHs) have been the target of substantial research, especially during the last 20 years. Initial characterisation of BADH as an enzyme involved in the production of glycine betaine (GB) has led to detailed studies of the role of BADH in the response of plants to abiotic stress in vivo, and the potential for transgenic expression of BADH to improve abiotic stress tolerance. These studies have, in turn, yielded significant information regarding BADH and GB function. Recent research has identified the potential for BADH as an antibiotic-free marker for selection of transgenic plants, and a major role for BADH in 2-acetyl-1-pyrroline-based fragrance associated with jasmine and basmati style aromatic rice varieties.
Collapse
Affiliation(s)
- T L Fitzgerald
- Grain Foods CRC, Centre for Plant Conservation Genetics, Southern Cross University, Lismore, NSW, Australia
| | | | | |
Collapse
|
31
|
Bradbury LMT, Gillies SA, Brushett DJ, Waters DLE, Henry RJ. Inactivation of an aminoaldehyde dehydrogenase is responsible for fragrance in rice. PLANT MOLECULAR BIOLOGY 2008; 68:439-49. [PMID: 18704694 DOI: 10.1007/s11103-008-9381-x] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2007] [Accepted: 07/23/2008] [Indexed: 05/18/2023]
Abstract
Rice (Oryza sativa) has two betaine aldehyde dehydrogenase homologs, BAD1 and BAD2, encoded on chromosome four and chromosome eight respectively. BAD2 is responsible for the characteristic aroma of fragrant rice. Complementary DNA clones of both BAD1 and BAD2 were isolated and expressed in E. coli. BAD2 had optimum activity at pH 10, little to no affinity towards N-acetyl-gamma-aminobutyraldehyde (NAGABald) with a Km of approximately 10 mM and moderate affinity towards gamma-guanidinobutyraldehyde (GGBald) and betaine aldehyde (bet-ald) with Km values of approximately 260 microM and 63 microM respectively. A lower Km of approximately 9 microM was observed with gamma-aminobutyraldehyde (GABald), suggesting BAD2 has a higher affinity towards this substate in vivo. The enzyme encoded on chromosome four, BAD1, had optimum activity at pH 9.5, showed little to no affinity towards bet-ald with a Km of 3 mM and had moderate affinity towards GGBald, NAGABald and GABald with Km values of approximately 545, 420 and 497 microM respectively. BAD1 had a half life roughly double that of BAD2. We discuss the implications of these findings on the pathway of fragrance generation in Basmati and Jasmine rice and the potential of rice to accumulate the osmoprotectant glycine betaine.
Collapse
Affiliation(s)
- Louis M T Bradbury
- Centre for Plant Conservation Genetics, Southern Cross University, Military Road, Lismore, NSW 2480, Australia
| | | | | | | | | |
Collapse
|
32
|
Tylichová M, Briozzo P, Kopečný D, Ferrero J, Moréra S, Joly N, Snégaroff J, Šebela M. Purification, crystallization and preliminary crystallographic study of a recombinant plant aminoaldehyde dehydrogenase from Pisum sativum. Acta Crystallogr Sect F Struct Biol Cryst Commun 2008; 64:88-90. [PMID: 18259056 PMCID: PMC2374172 DOI: 10.1107/s1744309107068522] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2007] [Accepted: 12/27/2007] [Indexed: 11/11/2022]
Abstract
Aminoaldehydes are products of polyamine degradation and are known to be reactive metabolites that are toxic to living cells at high concentrations. These compounds are catabolized by aminoaldehyde dehydrogenases, which are enzymes that contain a nicotinamide adenine dinucleotide coenzyme. Aminoaldehyde dehydrogenase from Pisum sativum was overexpressed in Escherichia coli, purified and crystallized using the hanging-drop method. A complete data set was collected to 2.8 A resolution at 100 K. Crystals belong to the monoclinic space group P2(1), with unit-cell parameters a = 86.4, b = 216.6, c = 205.4 A, beta = 98.1 degrees. Molecular replacement was performed and led to the identification of six dimers per asymmetric unit.
Collapse
Affiliation(s)
- Martina Tylichová
- Department of Biochemistry, Faculty of Science, Palacký University, Šlechtitelů 11, CZ-78371 Olomouc, Czech Republic
| | - Pierre Briozzo
- UMR 206 AgroParisTech-INRA de Chimie Biologique, F-78850 Thiverval-Grignon, France
| | - David Kopečný
- Department of Biochemistry, Faculty of Science, Palacký University, Šlechtitelů 11, CZ-78371 Olomouc, Czech Republic
| | - Julien Ferrero
- Laboratoire d’Enzymologie et de Biochimie Structurales, CNRS, F-91198 Gif-sur-Yvette CEDEX, France.
| | - Solange Moréra
- Laboratoire d’Enzymologie et de Biochimie Structurales, CNRS, F-91198 Gif-sur-Yvette CEDEX, France.
| | - Nathalie Joly
- UMR 206 AgroParisTech-INRA de Chimie Biologique, F-78850 Thiverval-Grignon, France
| | - Jacques Snégaroff
- UMR 206 AgroParisTech-INRA de Chimie Biologique, F-78850 Thiverval-Grignon, France
| | - Marek Šebela
- Department of Biochemistry, Faculty of Science, Palacký University, Šlechtitelů 11, CZ-78371 Olomouc, Czech Republic
| |
Collapse
|
33
|
Petrivalský M, Brauner F, Luhová L, Gagneul D, Sebela M. Aminoaldehyde dehydrogenase activity during wound healing of mechanically injured pea seedlings. JOURNAL OF PLANT PHYSIOLOGY 2007; 164:1410-8. [PMID: 17728013 DOI: 10.1016/j.jplph.2007.01.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2006] [Revised: 01/16/2007] [Accepted: 01/18/2007] [Indexed: 05/04/2023]
Abstract
Aminoaldehyde dehydrogenase (AMADH, EC 1.2.1.19) is an enzyme that, in association with amine oxidase, participates in polyamine catabolism. In plants, the enzyme is well characterized in pea seedlings. In this study, we used etiolated and light-grown pea seedlings as model plants to evaluate the possible AMADH role in response to stress caused by mechanical damage. In the beginning, the activity distribution of AMADH, amine oxidase and peroxidase in organs of 7-day-old intact pea seedlings was analyzed. To perform mechanical damage, stems of 10-day-old seedlings were each divided into four segments of equal length. The top (=fourth) segments were then longitudinally cut with a lancet. During healing, the injured segments and their control counterparts were harvested in 1-day intervals and analyzed for activity of the above enzymes, polyamine and 4-aminobutyrate (GABA) concentrations. The injury elicited increases in AMADH, amine oxidase and peroxidase activities in both etiolated and green seedlings, accompanied by parallel increases in putrescine, cadaverine, spermidine and GABA content. Histochemical experiments allowed visualization of increased AMADH activity in cross sections obtained from the injured stem segments. The activity was localized in cortical parenchyma and epidermal cells adjacent to the wound site in spatial correlation with an intensive lignification. In the control seedlings, AMADH activity or lignification in these tissues could not be visualized. Thus, we conclude that, in plants, AMADH may participate in processes of adaptation to stress events caused by mechanical injury, which involve polyamine catabolism, GABA production and lignification.
Collapse
Affiliation(s)
- Marek Petrivalský
- Department of Biochemistry, Faculty of Science, Palacký University, Slechtitelů 11, CZ-783 71 Olomouc, Czech Republic
| | | | | | | | | |
Collapse
|
34
|
Cona A, Rea G, Angelini R, Federico R, Tavladoraki P. Functions of amine oxidases in plant development and defence. TRENDS IN PLANT SCIENCE 2006; 11:80-8. [PMID: 16406305 DOI: 10.1016/j.tplants.2005.12.009] [Citation(s) in RCA: 383] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2005] [Revised: 11/17/2005] [Accepted: 12/21/2005] [Indexed: 05/06/2023]
Abstract
Copper amine oxidases and flavin-containing amine oxidases catalyse the oxidative de-amination of polyamines, which are ubiquitous compounds essential for cell growth and proliferation. Far from being only a means of degrading cellular polyamines and, thus, contributing to polyamine homeostasis, amine oxidases participate in important physiological processes through their reaction products. In plants, the production of hydrogen peroxide (H(2)O(2)) deriving from polyamine oxidation has been correlated with cell wall maturation and lignification during development as well as with wound-healing and cell wall reinforcement during pathogen invasion. As a signal molecule, H(2)O(2) derived from polyamine oxidation mediates cell death, the hypersensitive response and the expression of defence genes. Furthermore, aminoaldehydes and 1,3-diaminopropane from polyamine oxidation are involved in secondary metabolite synthesis and abiotic stress tolerance.
Collapse
Affiliation(s)
- Alessandra Cona
- Dipartimento di Biologia, Università degli Studi "Roma Tre", Viale G. Marconi 446, 00146 Rome, Italy
| | | | | | | | | |
Collapse
|
35
|
Oishi H, Ebina M. Isolation of cDNA and enzymatic properties of betaine aldehyde dehydrogenase from Zoysia tenuifolia. JOURNAL OF PLANT PHYSIOLOGY 2005; 162:1077-86. [PMID: 16255165 DOI: 10.1016/j.jplph.2005.01.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
We isolated cDNAs encoding betaine aldehyde dehydrogenase (BADH, EC 1.2.1.8) from the salt-tolerant Poaceae, Zoysia tenuifolia by polymerase chain reactions. Zoysia betaine aldehyde dehydrogenase 1 (ZBD1) is 1892bp long and codes for 507 amino acids. The deduced amino acid sequence of ZBD1 is 88% similar to the sequence of rice BADH. Ten cDNA clones were isolated from a cDNA Library of salt-treated Z. tenuifolia by using the ZBD1 fragment as a probe. The proteins coded in some clones were more homologous to BBD2, the cytosolic BADH of barley, than to ZBD1. To investigate their enzymatic properties, ZBD1 and spinach BADH were expressed in Escherichia coli and purified. The optimal pH of ZBD1 was 9.5, which was more alkaline than that of spinach BADH. ZBD1 was less tolerant to NaCl than spinach BADH. ZBD1 showed not only BADH activity but also aminoaldehyde dehydrogenase activity. The Km values of ZBD1 for betaine aldehyde, 4-aminobutyraldehyde (AB-ald), and 3-aminopropionaldehyde (AP-ald) were 291, 49, and 4.0 microM, respectively. ZBD1 showed higher specific activities for AB-ald and AP-ald than did spinach BADH.
Collapse
Affiliation(s)
- Hideki Oishi
- Japan Grassland Farming and Forage Seed Association, Forage Crop Research Institute, Nishinasuno, Tochigi, Japan.
| | | |
Collapse
|
36
|
Reumann S, Ma C, Lemke S, Babujee L. AraPerox. A database of putative Arabidopsis proteins from plant peroxisomes. PLANT PHYSIOLOGY 2004; 136:2587-608. [PMID: 15333753 PMCID: PMC523325 DOI: 10.1104/pp.104.043695] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2004] [Revised: 06/14/2004] [Accepted: 06/16/2004] [Indexed: 05/17/2023]
Abstract
To identify unknown proteins from plant peroxisomes, the Arabidopsis genome was screened for proteins with putative major or minor peroxisome targeting signals type 1 or 2 (PTS1 or PTS2), as defined previously (Reumann S [2004] Plant Physiol 135: 783-800). About 220 and 60 proteins were identified that carry a putative PTS1 or PTS2, respectively. To further support postulated targeting to peroxisomes, several prediction programs were applied and the putative targeting domains analyzed for properties conserved in peroxisomal proteins and for PTS conservation in homologous plant expressed sequence tags. The majority of proteins with a major PTS and medium to high overall probability of peroxisomal targeting represent novel nonhypothetical proteins and include several enzymes involved in beta-oxidation of unsaturated fatty acids and branched amino acids, and 2-hydroxy acid oxidases with a predicted function in fatty acid alpha-oxidation, as well as NADP-dependent dehydrogenases and reductases. In addition, large protein families with many putative peroxisomal isoforms were recognized, including acyl-activating enzymes, GDSL lipases, and small thioesterases. Several proteins are homologous to prokaryotic enzymes of a novel aerobic hybrid degradation pathway for aromatic compounds and proposed to be involved in peroxisomal biosynthesis of plant hormones like jasmonic acid, auxin, and salicylic acid. Putative regulatory proteins of plant peroxisomes include protein kinases, small heat shock proteins, and proteases. The information on subcellular targeting prediction, homology, and in silico expression analysis for these Arabidopsis proteins has been compiled in the public database AraPerox to accelerate discovery and experimental investigation of novel metabolic and regulatory pathways of plant peroxisomes.
Collapse
Affiliation(s)
- Sigrun Reumann
- Georg-August-University of Goettingen, Albrecht-von-Haller-Institute for Plant Sciences, Department for Plant Biochemistry, D-37077 Goettingen, Germany.
| | | | | | | |
Collapse
|
37
|
Livingstone JR, Maruo T, Yoshida I, Tarui Y, Hirooka K, Yamamoto Y, Tsutui N, Hirasawa E. Purification and properties of betaine aldehyde dehydrogenase from Avena sativa. JOURNAL OF PLANT RESEARCH 2003; 116:133-140. [PMID: 12736784 DOI: 10.1007/s10265-003-0077-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2002] [Accepted: 12/12/2002] [Indexed: 05/24/2023]
Abstract
Betaine aldehyde dehydrogenase (BADH; EC 1.2.1.8) is the enzyme that catalyzes the second step in the synthesis of the osmoprotectant, glycine betaine. NAD-dependent BADH was purified from Avena sativa shoots by DEAE Sephacel, hydroxyapatite, 5'-AMP Sepharose 4B, Mono Q and TSK-GEL column chromatographies to homogeneity by the criterion of native PAGE, and the properties of BADH were compared with those of aminoaldehyde dehydrogenase purified to homogeneity from A. sativa. The molecular mass estimated by both gel filtration using TSK-GEL column and Sephacryl S-200 was 120 and 115, kDa, respectively. The enzyme is a homodimer with a subunit molecular mass of 61 kDa as shown by SDS-PAGE. The pI value of the enzyme was found to be 6.3. The purified enzyme catalyzed not only the oxidation of betaine aldehyde (BAL), but also that of aminoaldehydes, 3-aminopropionaldehyde (APAL), 4-aminobutyraldehyde (ABAL), and 4-guanidinobutyraldehyde (GBAL). The K(m) values for BAL, APAL, ABAL and GBAL were 5x10(-6), 5.4x10(-7), 2.4x10(-5) and 5x10(-5) M, respectively. APAL showed substrate inhibition at a concentration of 0.1 mM. A fragment of BADH cleaved by V8 protease shared homology with other plant BADHs.
Collapse
Affiliation(s)
- Jeyanthi Rebecca Livingstone
- Division of Bio- and Geosciences, Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka 558-8585, Japan
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Sebela M, Frébort I, Lemr K, Brauner F, Pec P. A study on the reactions of plant copper amine oxidase with C3 and C4 aliphatic diamines. Arch Biochem Biophys 2000; 384:88-99. [PMID: 11147840 DOI: 10.1006/abbi.2000.2081] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The paper reports a study on the reactions of grass pea (Lathyrus sativus) amine oxidase (GPAO) with several aliphatic diamines. The influence of the chain length and of unsaturations in the molecules was examined. Kinetic measurements confirmed that trans-, i.e., (E)-2-butene-1,4-diamine (TDABE) and cis-, i.e., (Z)-2-butene-1,4-diamine (CDABE) could be classified as good substrates. Propane-1,3-diamine (DAP) and propene-1,3-diamine (DAPE) were only weakly oxidized, whereas 1,3-diamino-2-propanol (DAPL) was not utilized as a substrate. Contrary to the inactivator 2-butyne-1,4-diamine (DABI), DAPE was shown to be only a competitive inhibitor. DAP itself did not inhibit the catalytic activity. Irreversible inhibition of the activity occurred only after the incubation of GPAO with DABI; other diamines were without this effect. Differential pulse polarography and chromatofocusing confirmed that the aminoaldehyde product of DABI oxidation binds to the enzyme. Activity assay of pea aminoaldehyde dehydrogenase enabled us to detect the products of the oxidation of TDABE, CDABE, and DAP by GPAO. As the product of DAP oxidation, 3-amino-propanal (APAL) was detected by mass spectrometry and confirmed to be a potent noncompetitive inhibitor of GPAO. The absorption changes that occurred in the course of the reaction of GPAO with the diamines were investigated using rapid-scanning spectrophotometry. DABI, TDABE, CDABE, DAP, and DAPE reacted with GPAO providing characteristic maxima of the Cu(I)-semiquinolamine species that is formed in the catalytic cycle. The results presented here confirm that with the exception of DAPL, all the studied diamines could be classified as GPAO substrates, but only DABI can be considered as a mechanism-based inhibitor.
Collapse
Affiliation(s)
- M Sebela
- Department of Biochemistry, Faculty of Science, Palacký University, Olomouc, Czech Republic.
| | | | | | | | | |
Collapse
|