1
|
Böcker M, Chatziioannou E, Niessner H, Hirn C, Busch C, Ikenberg K, Kalbacher H, Handgretinger R, Sinnberg T. Ecto-NOX Disulfide-Thiol Exchanger 2 (ENOX2/tNOX) Is a Potential Prognostic Marker in Primary Malignant Melanoma and May Serve as a Therapeutic Target. Int J Mol Sci 2024; 25:11853. [PMID: 39519404 PMCID: PMC11545956 DOI: 10.3390/ijms252111853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/10/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024] Open
Abstract
With an increasing incidence of malignant melanoma, new prognostic biomarkers for clinical decision making have become more important. In this study, we evaluated the role of ecto-NOX disulfide-thiol exchanger 2 (ENOX2/tNOX), a cancer- and growth-associated protein, in the prognosis and therapy of primary malignant melanoma. We conducted a tissue microarray analysis of immunohistochemical ENOX2 protein expression and The Cancer Genome Atlas (TCGA) ENOX2 RNA expression analysis, as well as viability assays and Western blots of melanoma cell lines treated with the ENOX2 inhibitor phenoxodiol (PXD) and BRAF inhibitor (BRAFi) vemurafenib. We discovered that high ENOX2 expression is associated with decreased overall (OS), disease-specific (DSS) and metastasis-free survival (MFS) in primary melanoma (PM) and a reduction in electronic tumor-infiltrating lymphocytes (eTILs). A gradual rise in ENOX2 expression was found with an increase in malignant potential from benign nevi (BNs) via PMs to melanoma metastases (MMs), as well as with an increasing tumor thickness and stage. These results highlight the important role of ENOX2 in cancer growth, progression and metastasis. The ENOX2 expression was not limited to malignant cell lines but could also be found in keratinocytes, fibroblasts and melanocytes. The viability of melanoma cell lines could be inhibited by PXD. A reduced induction of phospho-AKT under PXD could prevent the development of acquired BRAFi resistance. In conclusion, ENOX2 may serve as a potential prognostic marker and therapeutic target in malignant melanoma.
Collapse
Affiliation(s)
- Matti Böcker
- Division of Dermatooncology, Department of Dermatology, University of Tuebingen, Liebermeisterstraße 25, 72076 Tuebingen, Germany (E.C.); (H.N.); (C.H.)
- Department of Urology and Pediatric Urology, University Hospital of Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| | - Eftychia Chatziioannou
- Division of Dermatooncology, Department of Dermatology, University of Tuebingen, Liebermeisterstraße 25, 72076 Tuebingen, Germany (E.C.); (H.N.); (C.H.)
| | - Heike Niessner
- Division of Dermatooncology, Department of Dermatology, University of Tuebingen, Liebermeisterstraße 25, 72076 Tuebingen, Germany (E.C.); (H.N.); (C.H.)
- Department of Nutritional Biochemistry, Institute of Nutritional Sciences, University of Hohenheim, Garbenstraße 30, 70599 Stuttgart, Germany
- Cluster of Excellence iFIT (EXC 2180) “Image Guided and Functionally Instructed Tumor Therapies”, Eberhard Karls University of Tuebingen, 72076 Tuebingen, Germany
| | - Constanze Hirn
- Division of Dermatooncology, Department of Dermatology, University of Tuebingen, Liebermeisterstraße 25, 72076 Tuebingen, Germany (E.C.); (H.N.); (C.H.)
| | - Christian Busch
- Dermatologie zum Delfin, Stadthausstraße 12, 8400 Winterthur, Switzerland;
| | - Kristian Ikenberg
- Institute of Clinical Pathology, University Hospital Zuerich, Schmelzbergstraße 12, 8091 Zuerich, Switzerland;
| | - Hubert Kalbacher
- Institute of Clinical Anatomy and Cell Analysis, University of Tuebingen, Elfriede-Aulhorn-Straße 8, 72076 Tuebingen, Germany;
| | - Rupert Handgretinger
- Department of General Pediatrics, Hematology and Oncology, University Children’s Hospital Tuebingen, Hoppe-Seyler-Straße 1, 72076 Tuebingen, Germany;
| | - Tobias Sinnberg
- Division of Dermatooncology, Department of Dermatology, University of Tuebingen, Liebermeisterstraße 25, 72076 Tuebingen, Germany (E.C.); (H.N.); (C.H.)
- Cluster of Excellence iFIT (EXC 2180) “Image Guided and Functionally Instructed Tumor Therapies”, Eberhard Karls University of Tuebingen, 72076 Tuebingen, Germany
- Department of Dermatology, Venereology and Allergology, Charité-Universitaetsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| |
Collapse
|
2
|
Islam A, Chang YC, Chen XC, Weng CW, Chen CY, Wang CW, Chen MK, Tikhomirov AS, Shchekotikhin AE, Chueh PJ. Water-soluble 4-(dimethylaminomethyl)heliomycin exerts greater antitumor effects than parental heliomycin by targeting the tNOX-SIRT1 axis and apoptosis in oral cancer cells. eLife 2024; 12:RP87873. [PMID: 38567911 PMCID: PMC10990494 DOI: 10.7554/elife.87873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024] Open
Abstract
The antibiotic heliomycin (resistomycin), which is generated from Streptomyces resistomycificus, has multiple activities, including anticancer effects. Heliomycin was first described in the 1960s, but its clinical applications have been hindered by extremely low solubility. A series of 4-aminomethyl derivatives of heliomycin were synthesized to increase water solubility; studies showed that they had anti-proliferative effects, but the drug targets remained unknown. In this study, we conducted cellular thermal shift assays (CETSA) and molecular docking simulations to identify and validate that heliomycin and its water-soluble derivative, 4-(dimethylaminomethyl)heliomycin (designated compound 4-dmH) engaged and targeted with sirtuin-1 (SIRT1) in p53-functional SAS and p53-mutated HSC-3 oral cancer cells. We further addressed the cellular outcome of SIRT1 inhibition by these compounds and found that, in addition to SIRT1, the water-soluble 4-dmH preferentially targeted a tumor-associated NADH oxidase (tNOX, ENOX2). The direct binding of 4-dmH to tNOX decreased the oxidation of NADH to NAD+ which diminished NAD+-dependent SIRT1 deacetylase activity, ultimately inducing apoptosis and significant cytotoxicity in both cell types, as opposed to the parental heliomycin-induced autophagy. We also observed that tNOX and SIRT1 were both upregulated in tumor tissues of oral cancer patients compared to adjacent normal tissues, suggesting their clinical relevance. Finally, the better therapeutic efficacy of 4-dmH was confirmed in tumor-bearing mice, which showed greater tNOX and SIRT1 downregulation and tumor volume reduction when treated with 4-dmH compared to heliomycin. Taken together, our in vitro and in vivo findings suggest that the multifaceted properties of water-soluble 4-dmH enable it to offer superior antitumor value compared to parental heliomycin, and indicated that it functions through targeting the tNOX-NAD+-SIRT1 axis to induce apoptosis in oral cancer cells.
Collapse
Affiliation(s)
- Atikul Islam
- Institute of Biomedical Sciences, National Chung Hsing UniversityTaichungTaiwan
| | - Yu-Chun Chang
- Institute of Biomedical Sciences, National Chung Hsing UniversityTaichungTaiwan
| | - Xiao-Chi Chen
- Institute of Biomedical Sciences, National Chung Hsing UniversityTaichungTaiwan
| | - Chia-Wei Weng
- Institute of Biomedical Sciences, National Chung Hsing UniversityTaichungTaiwan
- Institute of Medicine, Chung Shan Medical UniversityTaichungTaiwan
| | - Chien-Yu Chen
- Institute of Biomedical Sciences, National Chung Hsing UniversityTaichungTaiwan
| | - Che-Wei Wang
- Department of Otorhinolaryngology-Head and Neck Surgery, Changhua Christian HospitalChanghuaTaiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing UniversityTaichungTaiwan
| | - Mu-Kuan Chen
- Department of Otorhinolaryngology-Head and Neck Surgery, Changhua Christian HospitalChanghuaTaiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing UniversityTaichungTaiwan
| | | | | | - Pin Ju Chueh
- Institute of Biomedical Sciences, National Chung Hsing UniversityTaichungTaiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing UniversityTaichungTaiwan
- Department of Medical Research, China Medical University HospitalTaichungTaiwan
- Graduate Institute of Basic Medicine, China Medical UniversityTaichungTaiwan
| |
Collapse
|
3
|
Chang JS, Chen CY, Tikhomirov AS, Islam A, Liang RH, Weng CW, Wu WH, Shchekotikhin AE, Chueh PJ. Bis(chloroacetamidino)-Derived Heteroarene-Fused Anthraquinones Bind to and Cause Proteasomal Degradation of tNOX, Leading to c-Flip Downregulation and Apoptosis in Oral Cancer Cells. Cancers (Basel) 2022; 14:cancers14194719. [PMID: 36230644 PMCID: PMC9562014 DOI: 10.3390/cancers14194719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/20/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary New-generation anthraquinone derivatives attached with different heterocycles and bearing chloroacetamidines in the side chains have been synthesized to reduce side effects and drug resistance. In this study, we identified the cellular target of the studied compounds through ligand binding assays and in silico simulations. Our results illustrate that the studied compounds bound to and targeted the tumor-associated NADH oxidase (tNOX) in oral cancer cells. tNOX is a growth-related protein and is found to be expressed in cancer cells but not in non-transformed cells, and its knockdown by RNA interference in tumor cells overturns cancer phenotypes, supporting its role in cellular growth. We also identified that tNOX bound to the studied compounds and underwent degradation, which was correlated with apoptosis induction in oral cancer cells. Abstract Anthraquinone-based intercalating compounds, namely doxorubicin and mitoxantrone, have been used clinically based on their capacity to bind DNA and induce DNA damage. However, their applications have been limited by side effects and drug resistance. New-generation anthraquinone derivatives fused with different heterocycles have been chemically synthesized and screened for higher anticancer potency. Among the compounds reported in our previous study, 4,11-bis(2-(2-chloroacetamidine)ethylamino)anthra[2,3-b]thiophene-5,10-dione dihydrochloride (designated 2c) was found to be apoptotic, but the direct cellular target responsible for the cytotoxicity remained unknown. Here, we report the synthesis and anticancer properties of two other derivatives, 4,11-bis(2-(2-chloroacetamidine)ethylamino)naphtho[2,3-f]indole-5,10-dione dihydrochloride (2a) and 4,11-bis(2-(2-chloroacetamidine)ethylamino)-2-methylanthra[2,3-b]furan-5,10-dione dihydrochloride (2b). We sought to identify and validate the protein target(s) of these derivatives in oral cancer cells, using molecular docking simulations and cellular thermal shift assays (CETSA). Our CETSA results illustrate that these derivatives targeted the tumor-associated NADH oxidase (tNOX, ENOX2), and their direct binding downregulated tNOX in p53-functional SAS and p53-mutated HSC-3 cells. Interestingly, the compounds targeted and downregulated tNOX to reduce SIRT1 deacetylase activity and increase Ku70 acetylation, which triggers c-Flip ubiquitination and induces apoptosis in oral cancer cells. Together, our data highlight the potential value of these heteroarene-fused anthraquinones in managing cancer by targeting tNOX and augmenting apoptosis.
Collapse
Affiliation(s)
- Jeng Shiun Chang
- Department of Otolaryngology, Head and Neck Surgery, Jen-Ai Hospital, Taichung 41265, Taiwan
| | - Chien-Yu Chen
- Institute of Biomedical Sciences, National Chung Hsing University, 145 Xingda Rd., Taichung 40227, Taiwan
| | | | - Atikul Islam
- Institute of Biomedical Sciences, National Chung Hsing University, 145 Xingda Rd., Taichung 40227, Taiwan
| | - Ru-Hao Liang
- Institute of Biomedical Sciences, National Chung Hsing University, 145 Xingda Rd., Taichung 40227, Taiwan
| | - Chia-Wei Weng
- Institute of Biomedical Sciences, National Chung Hsing University, 145 Xingda Rd., Taichung 40227, Taiwan
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
| | - Wei-Hou Wu
- Institute of Biomedical Sciences, National Chung Hsing University, 145 Xingda Rd., Taichung 40227, Taiwan
| | - Andrey E. Shchekotikhin
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya Street, 119021 Moscow, Russia
- Correspondence: (A.E.S.); (P.J.C.); Tel.: +7-499-246-0228 (A.E.S.); +886-4-22840896 (P.J.C.)
| | - Pin Ju Chueh
- Institute of Biomedical Sciences, National Chung Hsing University, 145 Xingda Rd., Taichung 40227, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, 145 Xingda Rd., Taichung 40227, Taiwan
- Department of Medical Research, China Medical University Hospital, Taichung 40402, Taiwan
- Graduate Institute of Basic Medicine, China Medical University, Taichung 40402, Taiwan
- Correspondence: (A.E.S.); (P.J.C.); Tel.: +7-499-246-0228 (A.E.S.); +886-4-22840896 (P.J.C.)
| |
Collapse
|
4
|
Chueh PJ. The Cancer-Suppressing and -Promoting Actions of Capsaicin. ROLE OF CAPSAICIN IN OXIDATIVE STRESS AND CANCER 2013:131-147. [DOI: 10.1007/978-94-007-6317-3_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
5
|
Phosphorylation of serine-504 of tNOX (ENOX2) modulates cell proliferation and migration in cancer cells. Exp Cell Res 2012; 318:1759-66. [DOI: 10.1016/j.yexcr.2012.04.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2012] [Revised: 04/25/2012] [Accepted: 04/29/2012] [Indexed: 12/15/2022]
|
6
|
Wang HM, Chuang SM, Su YC, Li YH, Chueh PJ. Down-regulation of tumor-associated NADH oxidase, tNOX (ENOX2), enhances capsaicin-induced inhibition of gastric cancer cell growth. Cell Biochem Biophys 2012; 61:355-66. [PMID: 21735133 DOI: 10.1007/s12013-011-9218-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Gastric cancer is a common human malignancy and a major contributor to cancer-related deaths worldwide. Unfortunately, the prognosis of most gastric cancer patients is poor because they are generally diagnosed at a late stage after the cancer has already metastasized. Most current research, therefore, emphasizes selective targeting of cancer cells by apoptosis-inducing agents. One such therapeutic agent is capsaicin, a component of chili peppers that has been shown to possess anti-growth activity against various cancer cell lines. Here, we examined the effect of capsaicin on SNU-1 and TMC-1 gastric cancer cells and found differing outcomes between the two cell lines. Our results show that capsaicin induced significant cytotoxicity with increases in oxidative stress, PARP cleavage, and apoptosis in sensitive SNU-1 cells. In contrast, TMC-1 cells were much less sensitive to capsaicin, exhibiting low cytotoxicity and very little apoptosis in response to capsaicin treatment. Capsaicin-induced apoptosis in SNU-1 cells was associated with down-regulation of tumor-associated NADH oxidase (tNOX) mRNA and protein. On the contrary, tNOX expression was scarcely affected by capsaicin in TMC-1 cells. We further showed that tNOX-knockdown sensitized TMC-1 cells to capsaicin-induced apoptosis and G1 phase accumulation, and led to decreased cell growth, demonstrating that tNOX is essential for cancer cell growth. Collectively, these results indicate that capsaicin induces divergent effects of the growth of gastric cancer cells that parallel its effects on tNOX expression, and demonstrate that forced tNOX down-regulation restored capsaicin-induced growth inhibition in TMC-1 cells.
Collapse
Affiliation(s)
- His-Ming Wang
- Graduate Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan, Republic of China
| | | | | | | | | |
Collapse
|
7
|
Del Principe D, Avigliano L, Savini I, Catani MV. Trans-plasma membrane electron transport in mammals: functional significance in health and disease. Antioxid Redox Signal 2011; 14:2289-318. [PMID: 20812784 DOI: 10.1089/ars.2010.3247] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Trans-plasma membrane electron transport (t-PMET) has been established since the 1960s, but it has only been subject to more intensive research in the last decade. The discovery and characterization at the molecular level of its novel components has increased our understanding of how t-PMET regulates distinct cellular functions. This review will give an update on t-PMET, with particular emphasis on how its malfunction relates to some diseases, such as cancer, abnormal cell death, cardiovascular diseases, aging, obesity, neurodegenerative diseases, pulmonary fibrosis, asthma, and genetically linked pathologies. Understanding these relationships may provide novel therapeutic approaches for pathologies associated with unbalanced redox state.
Collapse
Affiliation(s)
- Domenico Del Principe
- Department of Experimental Medicine and Biochemical Sciences, University of Rome Tor Vergata, Rome, Italy.
| | | | | | | |
Collapse
|
8
|
Wang HM, Chueh PJ, Chang SP, Yang CL, Shao KN. Effect of Ccapsaicin on tNOX (ENOX2) protein expression in stomach cancer cells. Biofactors 2010. [PMID: 19734122 DOI: 10.1002/biof.5520340305] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Tumor-associated NADH oxidase (tNOX, also known as ENOX2) is a growth-related protein expressed in transformed cells. Previous reports have revealed that the inhibition of tNOX activity by the anti-cancer drug, capsaicin, correlates with a reduction in growth of cancer cells, indicating a close relationship between tNOX activity and cell growth. Moreover, the study of depleted tNOX expression by RNA interference in HeLa cells suggests that it may be associated with the ability of tumor cells to acquire an aggressive phenotype, particularly in relation to cell proliferation. A key role for tNOX in regulating cell growth is further supported by the observation that the growth rate of MEF cells from tNOX-overexpressing transgenic mice is approximately two-fold greater than that of wild-type cells. The purpose of this study was to investigate the anti-proliferative effect of capsaicin on tNOX expression level in stomach cancer cells. We showed that capsaicin induced cytotoxicity in SCM cells concomitantly with apoptosis, PARP cleavage, and down-regulation of tNOX protein.
Collapse
Affiliation(s)
- Hsi-Ming Wang
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan
| | | | | | | | | |
Collapse
|
9
|
Jiang Z, Gorenstein NM, Morré DM, Morré DJ. Molecular cloning and characterization of a candidate human growth-related and time-keeping constitutive cell surface hydroquinone (NADH) oxidase. Biochemistry 2009; 47:14028-38. [PMID: 19055324 DOI: 10.1021/bi801073p] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
ENOX (ECTO-NOX) proteins are growth-related cell surface proteins that catalyze both hydroquinone or NADH oxidation and protein disulfide-thiol interchange and exhibit both prion-like and time-keeping (clock) properties. The two enzymatic activities they catalyze alternate to generate a regular period of 24 min in length. Here we report the cloning, expression, and characterization of a human candidate constitutive ENOX (CNOX or ENOX1) protein. The gene encoding this 643 amino acid long protein is located on chromosome 13 (13q 14.11). Functional motifs previously identified by site-directed mutagenesis in a cancer-associated ENOX (tNOX or ENOX2) as adenine nucleotide or copper binding along with essential cysteines are present, but the drug-binding motif (EEMTE) sequence of ENOX2 is absent. The activities of the recombinant protein expressed in Escherichia coli were not affected by capsaicin, EGCg, and other ENOX2-inhibiting substances. The purified recombinant protein bound ca. 2 mol of copper/mol of protein. Bound copper was necessary for activity. H260 and H579 were required for copper binding as confirmed by site-directed mutagenesis, loss of copper-binding capacity, and resultant loss of enzymatic activity. Addition of melatonin phased the 24 min period such that the next complete period began exactly 24 min after the melatonin addition as appears to be characteristic of ENOX1 activities in general. Oxidative activity was exhibited with both NAD(P)H and reduced coenzyme Q as substrate. Concentrated solutions of the purified candidate ENOX1 protein irreversibly formed insoluble aggregates, devoid of enzymatic activity, resembling amyloid.
Collapse
Affiliation(s)
- Ziying Jiang
- Departments of Foods and Nutrition, Biological Sciences, and Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, USA
| | | | | | | |
Collapse
|
10
|
Mao LC, Wang HM, Lin YY, Chang TK, Hsin YH, Chueh PJ. Stress-induced down-regulation of tumor-associated NADH oxidase during apoptosis in transformed cells. FEBS Lett 2008; 582:3445-50. [PMID: 18789934 DOI: 10.1016/j.febslet.2008.09.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2008] [Revised: 08/22/2008] [Accepted: 09/03/2008] [Indexed: 12/11/2022]
Abstract
Tumor-associated NADH oxidase (tNOX) is a growth-related protein expressed in transformed cells. tNOX knockdown using RNA interference leads to a significant reduction in HeLa cell proliferation and migration, indicating an important role for tNOX in growth regulation and the cancer phenotype. Here, we show that tNOX is down-regulated during apoptosis in HCT116 cells. Treatment with diverse stresses induced a dose- and time-dependent decrease in tNOX expression that was concurrent with apoptosis. Moreover, shRNA-mediated tNOX knockdown rendered cells susceptible to apoptosis, whereas re-expression of tNOX partially recovered cell proliferation. Our results indicate that tNOX is suppressed during apoptosis and demonstrate that tNOX down-regulation sensitizes cells to stress-induced growth reduction, suggesting that tNOX is required for transformed cell growth.
Collapse
Affiliation(s)
- Liang-Chi Mao
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung 40227, Taiwan, ROC
| | | | | | | | | | | |
Collapse
|
11
|
Herst PM, Perrone GG, Dawes IW, Bircham PW, Berridge MV. Plasma membrane electron transport in Saccharomyces cerevisiae depends on the presence of mitochondrial respiratory subunits. FEMS Yeast Res 2008; 8:897-905. [PMID: 18657191 DOI: 10.1111/j.1567-1364.2008.00418.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Most investigations into plasma membrane electron transport (PMET) in Saccharomyces cerevisiae have focused on the inducible ferric reductase responsible for iron uptake under iron/copper-limiting conditions. In this paper, we describe a PMET system, distinct from ferric reductase, which reduces the cell-impermeable water-soluble tetrazolium dye, 2-(4-iodophenyl)-3-(4-nitrophenyl)-5-(2,4-disulphophenyl)-2H-tetrazolium monosodium salt (WST-1), under normal iron/copper conditions. WST-1/1-methoxy-phenazine methosulphate reduction was unaffected by anoxia and relatively insensitive to diphenyleneiodonium. Dye reduction was increased when intracellular NADH levels were high, which, in S. cerevisiae, required deletion of numerous genes associated with NADH recycling. Genome-wide screening of all viable nuclear gene-deletion mutants of S. cerevisiae revealed that, although mitochondrial electron transport per se was not required, the presence of several nuclear and mitochondrially encoded subunits of respiratory complexes III and IV was mandatory for PMET. This suggests some form of interaction between components of mitochondrial and plasma membrane electron transport. In support of this, mitochondrial tubular networks in S. cerevisiae were shown to be located in close proximity to the plasma membrane using confocal microscopy.
Collapse
Affiliation(s)
- Patries M Herst
- Malaghan Institute of Medical Research, Wellington, New Zealand.
| | | | | | | | | |
Collapse
|
12
|
Yuan L, Wang J, Shen WC. Lipidization of human interferon-alpha: A new approach toward improving the delivery of protein drugs. J Control Release 2008; 129:11-7. [DOI: 10.1016/j.jconrel.2008.03.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2007] [Revised: 03/13/2008] [Accepted: 03/17/2008] [Indexed: 10/22/2022]
|
13
|
Morré DJ, Heald SM, Coleman J, Orczyk J, Jiang Z, Morré DM. Structural observations of time dependent oscillatory behavior of CuIICl2 solutions measured via extended X-ray absorption fine structure. J Inorg Biochem 2007; 101:715-26. [PMID: 17320185 DOI: 10.1016/j.jinorgbio.2006.12.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2006] [Revised: 12/11/2006] [Indexed: 11/22/2022]
Abstract
Cell surface ECTO-NOX proteins exhibit a clock-related, temperature-independent entrainable pattern of periodic (24 min) oscillations in the rate of oxidation of NAD(P)H. Aqueous solutions of copper salts also oxidize NAD(P)H with a similar temperature-independent pattern. For both, five maxima are observed, two of which are separated by 6 min and the remaining three are separated by 4.5 min. In D2O, the pattern is retained but the period length is proportionately increased to 30 min in direct relationship to the 30 h circadian day observed with D2O-grown organisms. With copper solutions, periodic changes in redox potential correlate precisely with the periodic changes in the rates of NAD(P)H oxidation. Consequently, the local environment of the Cu2+ ion in copper chloride solutions was investigated by X-ray absorption spectroscopy. Detailed extended X-ray absorption fine structure (EXAFS) analyses revealed a pattern of oscillations closely resembling those of the copper-catalyzed oxidation of NADH. With CuCl2 in D2O, a pattern with a period length of 30 min was observed. The findings suggest a regular pattern of distortion in the axial and/or equatorial oxygen atoms of the coordinated water molecules which correlate with redox potential changes sufficient to oxidize NADH. A metastable equilibrium condition in the ratio of ortho to para nuclear spin orientation of the water associated hydrogen atoms would be kinetically consistent with a 24-30 min timeframe. The temperature independence of the biological clock can thus be understood as the consequence of a physical rather than a chemical basis for the timing events.
Collapse
Affiliation(s)
- D J Morré
- Department of Medicinal Chemistry and Molecular Pharmacology, Hansen Life Sciences Research Building, Purdue University, 201 S. University Street, West Lafayette, IN 47907-2064, USA.
| | | | | | | | | | | |
Collapse
|
14
|
Kim C, Layman S, Morré DM, Morré DJ. Structural changes revealed by Fourier transform infrared and circular dichroism spectroscopic analyses underlie tNOX periodic oscillations. Dose Response 2006; 3:391-413. [PMID: 18648622 PMCID: PMC2475952 DOI: 10.2203/dose-response.003.03.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
A recurring pattern of spectral changes indicative of periodic changes in the proportion of beta-structure and a-helix of a recombinant ECTO-NOX fusion protein of tNOX, with a cellulose binding domain peptide, was demonstrated by Fourier transform infrared (FTIR) and circular dichroism (CD) spectroscopic analyses. The pattern of structural changes correlated with oscillatory patterns of enzymatic activities exhibited by the protein previously interpreted as indicative of a clock function. The pattern consisted of a repeating pattern of oscillations with a period length of 21 min with five maxima (two separated by 5 min and 3 separated by 4 to 4.5 min) within each 21 min repeat. Oscillatory patterns were not obvious in comparable FTIR or CD spectra of albumin, ribonuclease or concanavalin A. The period length was constant at 5, 15, 25, 35 and 45 degrees C (temperature compensated) and oscillations occurred independently of substrate presence. Spectra obtained in deuterium oxide yielded a longer period length of 26 min both for oscillations in enzymatic activity and absorbance ratios determined by FTIR. Taken together the findings suggest that the regular patterns of oscillations exhibited by the ECTO-NOX proteins are accompanied by recurrent global changes in the conformation of the protein backbone that directly modulate enzymatic activity.
Collapse
Affiliation(s)
- Chinpal Kim
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 201 South University Street, West Lafayette, IN 47907-2064, USA
| | | | | | | |
Collapse
|
15
|
Chen CF, Huang S, Liu SC, Chueh PJ. Effect of polyclonal antisera to recombinant tNOX protein on the growth of transformed cells. Biofactors 2006; 28:119-33. [PMID: 17379942 DOI: 10.1002/biof.5520280206] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Previous reports have described a tumor-associated NADH oxidase (tNOX) and its continuous activation in transformed culture cells. Certain anticancer drugs have been shown to inhibit preferentially both the tNOX activity and the growth of transformed culture cells and the cytotoxicity is associated with the induction of apoptosis. To investigate the biological function of tNOX protein, we have raised polyclonal antisera against bacterial expressed tNOX protein and the antisera are able to recognize protein bands in transformed cells but not the non-transformed cells tested. With tNOX antisera treatment, the survival in transformed cell lines is decreased but not the non-transformed cells. In addition, tNOX antisera-induced cytotoxicity is accompanied by the induction of apoptosis. However, slightly higher amount of PARP cleavage and activation of caspase-9 are observed in tNOX antisera treated HCT116 cells. Further experiments have demonstrated the activation of JNK and phosphorylation of p53 by treatment. In addition, tNOX antisera treatment leads to an impressive increase in reactive oxygen species in COS cells but not the control sera. Our data suggest that (a) tNOX antisera treatment may inhibit the growth of transformed cells by inducing apoptosis and (b) the apoptotic mechanism might be through modulating ROS production and JNK pathway.
Collapse
Affiliation(s)
- Chun-Feng Chen
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung, 40227, Taiwan, Republic of China
| | | | | | | |
Collapse
|
16
|
Cooper R, Morré DJ, Morré DM. Medicinal Benefits of Green Tea: Part II. Review of Anticancer Properties. J Altern Complement Med 2005; 11:639-52. [PMID: 16131288 DOI: 10.1089/acm.2005.11.639] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Currently there is wide interest in the medicinal benefits of green tea (Camellia sinensis). Tea is one of the most widely consumed beverages in the world, and extracts of tea leaves are also sold as dietary supplements. Green tea extracts contain a unique set of catechins that possess biologic activity in antioxidant, antiangiogenesis, and antiproliferative assays that are potentially relevant to the prevention and treatment of various forms of cancer. With the increasing interest in the health properties of tea and a significant rise in their scientific investigation, it is the aim of this review to summarize recent findings on the anticancer and medicinal properties of green tea, focusing on the biologic properties of the major tea catechin, (-)-epigallocatechin and its antitumor properties.
Collapse
|
17
|
Encío I, Morré DJ, Villar R, Gil MJ, Martínez-Merino V. Benzo[b]thiophenesulphonamide 1,1-dioxide derivatives inhibit tNOX activity in a redox state-dependent manner. Br J Cancer 2005; 92:690-5. [PMID: 15685230 PMCID: PMC2361890 DOI: 10.1038/sj.bjc.6602383] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Benzo[b]thiophenesulphonamide 1,1-dioxide (BTS) derivatives are strong cytotoxic agents that induce reactive oxygen species (ROS) overproduction and apoptosis in tumour cells. Although the precise origin of BTS-induced ROS is not known, a clear correlation between their cytotoxic effect and ability to inhibit a tumour-associated NADH oxidase (tNOX) activity of the plasma membrane has been described. To analyse the putative implication of tNOX in BTS-induced ROS generation, in this work we have synthesised and tested a new BTS derivative, the 6-[N-(2-phenylethyl)]benzo[b]thiophenesulphonamide 1,1-dioxide. According to its high lipophilicity, this compound showed a strong cytotoxic activity against a panel of six human tumour cell lines, including two human leukaemia (K-562 and CCRF-CEM) and four human solid tumours (HT-29, HTB54, HeLa and MEL-AC). We also tested the ability of this compound to inhibit the tNOX activity and we found an absolute dependence of this inhibition on the redox state of the tNOX: while under reducing conditions, that is, 100 mM GSH, the drug inhibits strongly the NOX activity with an EC50 of about 0.1 nM, under oxidising conditions, there is no effect of the drug or just a slight stimulation of activity.
Collapse
Affiliation(s)
- I Encío
- Department of Health Sciences, Universidad Pública de Navarra, Avda. Barañain, 31008 Pamplona, Spain
| | - D J Morré
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA
| | - R Villar
- Department of Applied Chemistry, Universidad Pública de Navarra, Campus Arrosadía, 31006 Pamplona, Spain
| | - M J Gil
- Department of Applied Chemistry, Universidad Pública de Navarra, Campus Arrosadía, 31006 Pamplona, Spain
| | - V Martínez-Merino
- Department of Applied Chemistry, Universidad Pública de Navarra, Campus Arrosadía, 31006 Pamplona, Spain
- Department of Applied Chemistry, Universidad Pública de Navarra, Campus Arrosadía, 31006 Pamplona, Spain. E-mail:
| |
Collapse
|
18
|
Morré DM, Guo F, Morré DJ. An aging-related cell surface NADH oxidase (arNOX) generates superoxide and is inhibited by coenzyme Q. Mol Cell Biochem 2004; 254:101-9. [PMID: 14674687 DOI: 10.1023/a:1027301405614] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
This report describes a novel ECTO-NOX protein with an oscillating activity having a period length of ca. 26 min encountered with buffy coat fractions and sera of aged individuals (70-100 years) that generates superoxide as measured by the reduction of ferricytochrome c. The oscillating, age-related reduction of ferricytochrome c is sensitive to superoxide dismutase, is inhibited by coenzyme Q and is reduced or absent from sera of younger individuals (20-40 years). An oscillating activity with a regular period length is a defining characteristic of ECTO-NOX proteins (a group of cell surface oxidases with enzymatic activities that oscillate). The period length of ca. 26 min is longer than the period length of 24 min for the usual constitutive (CNOX) ECTO-NOX proteins of the cell surface and sera which neither generate superoxide nor reduce ferricytochrome c. The aging-related ECTO-NOX protein (arNOX) provides a mechanism to transmit cell surface oxidative changes to surrounding cells and circulating lipoproteins potentially important to atherogenesis. Additionally, the findings provide a rational basis for the use of dietary coenzyme Q to retard aging-related arterial lesions.
Collapse
Affiliation(s)
- Dorothy M Morré
- Department of Foods and Nutrition, Purdue University, West Lafayette, IN, USA
| | | | | |
Collapse
|
19
|
Affiliation(s)
- D James Morré
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, Lafayette, Indiana 47907, USA
| |
Collapse
|
20
|
Mahalingam R, Fedoroff N. Stress response, cell death and signalling: the many faces of reactive oxygen species. PHYSIOLOGIA PLANTARUM 2003; 119:56-68. [PMID: 0 DOI: 10.1034/j.1399-3054.2003.00156.x] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
|
21
|
Morré DJ, Morré DM. Spectroscopic Analyses of Oscillations in ECTO-NOX-Catalyzed Oxidation of NADH. NONLINEARITY IN BIOLOGY, TOXICOLOGY, MEDICINE 2003; 1:345-62. [PMID: 19330139 PMCID: PMC2656126 DOI: 10.1080/15401420390249916] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Spectroscopic strategies that substantiate periodic oscillations in low rates of NADH oxidation exhibited by ECTO-NOX proteins at the animal and plant cell surface are described. Both continuous display and discontinuous rate determinations exhibit the oscillations but continuous displays lack sufficient resolution to discern details. A procedure is documented where rates are determined by least squares analyses of traces recorded over 1 min at intervals of 1.5 min. These traces recapitulate the continuous displays but offer an opportunity to reliably estimate changes in reaction rates over short time intervals not afforded by the continuous traces. Results from previously used rate determination over 5 min intervals are included for comparison. Turbidity is identified as the major contributor to losses in resolution. Even highly purified NOX preparations tend to aggregate to form turbid suspensions. With turbid suspensions, double beam or dual wavelength instrumentation where the sample is placed immediately adjacent to the photomultiplier tube are required to reduce losses in resolution from turbidity. Also required are high levels of synchronous ECTO-NOX function. Blue or red (plants) light, small molecules (i.e., melatonin) and autosynchrony alone or in combination were used to synchronize the oscillations. Special problems posed by preparations containing more than one ECTO-NOX form and where the different ECTO-NOX forms do not cross entrain are discussed.
Collapse
|
22
|
Macho A, Sancho R, Minassi A, Appendino G, Lawen A, Muñoz E. Involvement of reactive oxygen species in capsaicinoid-induced apoptosis in transformed cells. Free Radic Res 2003; 37:611-9. [PMID: 12868488 DOI: 10.1080/1071576031000083215] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Some varieties of sweet pepper accumulate non-pungent isosters of capsaicin, a type of compounds exemplified by capsiate. The only structural difference between capsaicin and capsiate is the link between the vanillyl and the acyl moieties, via an amide bond in the former and via an ester bond in the latter. By flow cytometry analyses we have determined that nor-dihydrocapsiate, a simplified analogue of capsiate, is a pro-oxidant compound that induces apoptosis in the Jurkat tumor cell line. The nuclear DNA fragmentation induced by nor-dihydrocapsiate is preceded by an increase in the production of reactive oxygen species and by a subsequent disruption of mitochondria transmembrane potential. Capsiate-induced apoptosis is initiated at the S phase of the cell cycle and is mediated by a caspase-3-dependent pathway. The accumulation of intracellular reactive oxygen species in capsiate-treated cells is greatly prevented by the presence of ferricyanide, suggesting that capsiates target a cellular redox system distinct from the one involved in the mitochondrial electron-chain transport. Methylation of the phenolic hydroxyl of nor-dihydrocapsiate completely abrogated the ability to induce reactive oxygen species and apoptosis, highlighting the relevance of the presence of a free phenolic hydroxyl for the pro-oxidant properties of capsaicinoids.
Collapse
Affiliation(s)
- Antonio Macho
- Departamento de Biología Celular, Fisiología e Inmunología, Facultad de Medicina, Universidad de Córdoba, Avda. de Menéndez Pidal s/n, 14004, Córdoba, Spain
| | | | | | | | | | | |
Collapse
|
23
|
Morré DJ, Morré DM, Sun H, Cooper R, Chang J, Janle EM. Tea catechin synergies in inhibition of cancer cell proliferation and of a cancer specific cell surface oxidase (ECTO-NOX). PHARMACOLOGY & TOXICOLOGY 2003; 92:234-41. [PMID: 12753411 DOI: 10.1034/j.1600-0773.2003.920506.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The anticancer properties of tea catechins are most frequently attributed to the principal catechin (-)-epigallocatechin-3-gallate (EGCg). Efficacy was evaluated using growth of cultured HeLa cells and inhibition of the enzymatic activity of a putative cell surface tea target enzyme, a cancer-associated cell surface-located NADH oxidase (ECTO-NOX) designated tNOX. The amounts of EGCg required to inhibit by both criteria was reduced 10 times by combination with inactive catechins such as (-)-epicatechin (EC), (-)-epigallocatechin (EGC) or (-)-epicatechin-3-gallate (ECG). Various synthetic mixtures based on purified catechins and decaffeinated tea extracts treated enzymatically to reduce the ester bond-containing catechins varying in EGCg content from 0.065 to 40% were of comparable efficacy to decaffeinated green tea extracts as long as EGCg was present and the ratio of total catechins to EGCg + EGC was about 1.5. Such mixtures appear to offer potential cancer protection and therapeutic advantages over those of EGCg alone through lowered toxicity of the mixture to normal cells and for more efficient blood delivery of orally-administered catechins to a tumour site.
Collapse
Affiliation(s)
- D James Morré
- Departments of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA.
| | | | | | | | | | | |
Collapse
|
24
|
Wang S, Morré DM, Morré DJ. Sera from cancer patients contain two oscillating ECTO-NOX activities with different period lengths. Cancer Lett 2003; 190:135-41. [PMID: 12565167 DOI: 10.1016/s0304-3835(02)00616-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
ECTO-NOX protein's are cell surface-associated and growth-related hydroquinone oxidases with both protein disulfide-thiol interchange activity and the capacity to oxidize NAD(P)H. The activities of these ECTO-NOX proteins are not steady state but fluctuate to create a repeating pattern of oscillations. Two forms of ECTO-NOX activities have been distinguished. The constitutive ECTO-NOX (CNOX), is hormone responsive and refractory to quinone-site inhibitors. A tumor-associated NOX (tNOX) is unregulated, refractory to hormones and growth factors and responds to quinone-site inhibitors. CNOX proteins are widely distributed and exhibit oscillations in enzymatic activity with a period length of 24 min. tNOX proteins are cancer specific and exhibit oscillations with a period length of about 22 min. Our findings now demonstrate the presence of the novel oscillating tNOX activity in sera of patients with cancer whereas the constitutive NOX of non-cancer cells is present in sera of both cancer patients and healthy volunteers. We conclude that ECTO-NOX proteins in sera exhibit oscillatory characteristics similar to those of ECTO-NOX forms of the cell surface.
Collapse
Affiliation(s)
- Sui Wang
- Department of Foods and Nutrition, Purdue University, West Lafayette, IN, USA
| | | | | |
Collapse
|
25
|
Saito G, Swanson JA, Lee KD. Drug delivery strategy utilizing conjugation via reversible disulfide linkages: role and site of cellular reducing activities. Adv Drug Deliv Rev 2003; 55:199-215. [PMID: 12564977 DOI: 10.1016/s0169-409x(02)00179-5] [Citation(s) in RCA: 1061] [Impact Index Per Article: 48.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The first disulfide linkage-employing drug conjugate that exploits the reversible nature of this unique covalent bond was recently approved for human use. Increasing numbers of drug formulations that incorporate disulfide bonds have been reported, particularly in the next generation macromolecular pharmaceuticals. These are designed to exploit differences in the reduction potential at different locations within and upon cells. The recent characterization of a novel redox enzyme in endosomes and lysosomes adds more excitement to this approach. This review focuses on understanding where and how the disulfide bond in the bioconjugate is reduced upon contact with biological milieu, which affects delivery design and the interpretation of the delivery strategies.
Collapse
Affiliation(s)
- Go Saito
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109-1065, USA
| | | | | |
Collapse
|
26
|
Morré DM, Morré DJ. Specificity of coenzyme Q inhibition of an aging-related cell surface NADH oxidase (ECTO-NOX) that generates superoxide. Biofactors 2003; 18:33-43. [PMID: 14695918 DOI: 10.1002/biof.5520180205] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Our laboratories have described a novel class of ectoproteins at the cell surface with both NADH or hydroquinone oxidase (NOX) and protein disulfide-thiol interchange activities (ECTO-NOX proteins). The two activities exhibited by these proteins alternate to generate characteristic patterns of oscillations where the period length is independent of temperature. The period length for the constitutive ECTO-NOX is 24 min. Here we describe a distinctive age-related ECTO-NOX (arNOX) whose activity is blocked by coenzyme Q10. arNOX occurs exclusively in aged cells and tissues. The period length of the oscillations is 26 min. Rather than reducing 1/2 O2 to H2O, electrons are transferred to O2 to form superoxide. Superoxide formation was demonstrated by superoxide dismutase-sensitive reduction of ferricytochrome c and by reduction of a superoxide-specific tetrazolium salt. Quinone inhibition was given by coenzymes Q8, 9 and Q10 but not by Q0, Q2, Q4, Q6 or 7. The arNOX provides a mechanism to propagate reactive oxygen species generated at the cell surface to surrounding cells and circulating lipoproteins of importance to atherogenesis. Inhibition of arNOX by dietary coenzyme Q10 provides a rational basis for dietary coenzyme 10 use to retard aging-related arterial lesions.
Collapse
Affiliation(s)
- Dorothy M Morré
- Department of Foods and Nutrition, Purdue University, West Lafayette, IN 47907, USA.
| | | |
Collapse
|
27
|
Morré DJ. Preferential inhibition of the plasma membrane NADH oxidase (NOX) activity by diphenyleneiodonium chloride with NADPH as donor. Antioxid Redox Signal 2002; 4:207-12. [PMID: 11970854 DOI: 10.1089/152308602753625960] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The cell-surface NADH oxidase (NOX) protein of plant and animal cells will utilize both NADH and NADPH as reduced electron donors for activity. The two activities are distinguished by a differential inhibition by the redox inhibitor diphenyleneiodonium chloride (DPI). Using both plasma membranes and cells, activity with NADPH as donor was markedly inhibited by DPI at submicromolar concentrations, whereas with NADH as donor, DPI was much less effective or had no effect on the activity. The possibility of the inhibition being the result of two different enzymes was eliminated by the use of a recombinant NOX protein. The findings support the concept that NOX proteins serve as terminal oxidases for plasma membrane electron transport involving cytosolic reduced pyridine nucleotides as the natural electron donors and with molecular oxygen as the electron acceptor.
Collapse
Affiliation(s)
- D James Morré
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907-1333, USA.
| |
Collapse
|