1
|
Aggregatibacter actinomycetemcomitans LtxA Hijacks Endocytic Trafficking Pathways in Human Lymphocytes. Pathogens 2020; 9:pathogens9020074. [PMID: 31973183 PMCID: PMC7168647 DOI: 10.3390/pathogens9020074] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/15/2020] [Accepted: 01/16/2020] [Indexed: 12/11/2022] Open
Abstract
Leukotoxin (LtxA), from oral pathogen Aggregatibacter actinomycetemcomitans, is a secreted membrane-damaging protein. LtxA is internalized by β2 integrin LFA-1 (CD11a/CD18)-expressing leukocytes and ultimately causes cell death; however, toxin localization in the host cell is poorly understood and these studies fill this void. We investigated LtxA trafficking using multi-fluor confocal imaging, flow cytometry and Rab5a knockdown in human T lymphocyte Jurkat cells. Planar lipid bilayers were used to characterize LtxA pore-forming activity at different pHs. Our results demonstrate that the LtxA/LFA-1 complex gains access to the cytosol of Jurkat cells without evidence of plasma membrane damage, utilizing dynamin-dependent and presumably clathrin-independent mechanisms. Upon internalization, LtxA follows the LFA-1 endocytic trafficking pathways, as identified by co-localization experiments with endosomal and lysosomal markers (Rab5, Rab11A, Rab7, and Lamp1) and CD11a. Knockdown of Rab5a resulted in the loss of susceptibility of Jurkat cells to LtxA cytotoxicity, suggesting that late events of LtxA endocytic trafficking are required for toxicity. Toxin trafficking via the degradative endocytic pathway may culminate in the delivery of the protein to lysosomes or its accumulation in Rab11A-dependent recycling endosomes. The ability of LtxA to form pores at acidic pH may result in permeabilization of the endosomal and lysosomal membranes.
Collapse
|
2
|
Vega BA, Belinka BA, Kachlany SC. Aggregatibacter actinomycetemcomitans Leukotoxin (LtxA; Leukothera ®): Mechanisms of Action and Therapeutic Applications. Toxins (Basel) 2019; 11:toxins11090489. [PMID: 31454891 PMCID: PMC6784247 DOI: 10.3390/toxins11090489] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 08/21/2019] [Accepted: 08/22/2019] [Indexed: 12/18/2022] Open
Abstract
Aggregatibacter actinomycetemcomitans is an oral pathogen that produces the RTX toxin, leukotoxin (LtxA; Leukothera®). A. actinomycetemcomitans is strongly associated with the development of localized aggressive periodontitis. LtxA acts as a virulence factor for A. actinomycetemcomitans to subvert the host immune response by binding to the β2 integrin lymphocyte function-associated antigen-1 (LFA-1; CD11a/CD18) on white blood cells (WBCs), causing cell death. In this paper, we reviewed the state of knowledge on LtxA interaction with WBCs and the subsequent mechanisms of induced cell death. Finally, we touched on the potential therapeutic applications of LtxA (trade name Leukothera®) toxin therapy for the treatment of hematological malignancies and immune-mediated diseases.
Collapse
Affiliation(s)
- Brian A Vega
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ 07103, USA
- Actinobac Biomed, Inc., Princeton, NJ 08540, USA
| | | | - Scott C Kachlany
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ 07103, USA.
- Actinobac Biomed, Inc., Princeton, NJ 08540, USA.
| |
Collapse
|
3
|
Chang EH, Huang J, Lin Z, Brown AC. Catechin-mediated restructuring of a bacterial toxin inhibits activity. Biochim Biophys Acta Gen Subj 2018; 1863:191-198. [PMID: 30342156 DOI: 10.1016/j.bbagen.2018.10.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 10/12/2018] [Accepted: 10/15/2018] [Indexed: 10/28/2022]
Abstract
BACKGROUND Catechins, polyphenols derived from tea leaves, have been shown to have antibacterial properties, through direct killing of bacteria as well as through inhibition of bacterial toxin activity. In particular, certain catechins have been shown to have bactericidal effects on the oral bacterium, Aggregatibacter actinomycetemcomitans, as well as the ability to inhibit a key virulence factor of this organism, leukotoxin (LtxA). The mechanism of catechin-mediated inhibition of LtxA has not been shown. METHODS In this work, we studied the ability of six catechins to inhibit LtxA-mediated cytotoxicity in human white blood cells, using Trypan blue staining, and investigated the mechanism of action using a combination of techniques, including fluorescence and circular dichroism spectroscopy, confocal microscopy, and surface plasmon resonance. RESULTS We found that all the catechins except (-)-catechin inhibited the activity of this protein, with the galloylated catechins having the strongest effect. Pre-incubation of the toxin with the catechins increased the inhibitory action, indicating that the catechins act on the protein, rather than the cell. The secondary structure of LtxA was dramatically altered in the presence of catechin, which resulted in an inhibition of toxin binding to cholesterol, an important initial step in the cytotoxic mechanism of the toxin. CONCLUSIONS These results demonstrate that the catechins inhibit LtxA activity by altering its structure to prevent interaction with specific molecules present on the host cell surface. GENERAL SIGNIFICANCE Galloylated catechins modify protein toxin structure, inhibiting the toxin from binding to the requisite molecules on the host cell surface.
Collapse
Affiliation(s)
- En Hyung Chang
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, PA 18015, USA
| | - Joanne Huang
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, PA 18015, USA
| | - Zixiang Lin
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, PA 18015, USA
| | - Angela C Brown
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, PA 18015, USA.
| |
Collapse
|
4
|
Brown AC, Koufos E, Balashova NV, Boesze-Battaglia K, Lally ET. Inhibition of LtxA toxicity by blocking cholesterol binding with peptides. Mol Oral Microbiol 2015; 31:94-105. [PMID: 26352738 DOI: 10.1111/omi.12133] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2015] [Indexed: 12/30/2022]
Abstract
The leukotoxin (LtxA) produced by Aggregatibacter actinomycetemcomitans kills host immune cells, allowing the bacterium to establish an ecological niche in the upper aerodigestive tract of its human host. The interaction of LtxA with human immune cells is both complex and multifaceted, involving membrane lipids as well as cell-surface proteins. In the initial encounter with the host cell, LtxA associates with lymphocyte function-associated antigen-1, a cell surface adhesion glycoprotein. However, we have also demonstrated that the toxin associates strongly with the plasma membrane lipids, specifically cholesterol. This association with cholesterol is regulated by a cholesterol recognition amino acid consensus (CRAC) motif, with a sequence of (334) LEEYSKR(340), in the N-terminal region of the toxin. Here, we have demonstrated that removal of cholesterol from the plasma membrane or mutation of the LtxA CRAC motif inhibits the activity of the toxin in THP-1 cells. To inhibit LtxA activity, we designed a short peptide corresponding to the CRAC(336) motif of LtxA (CRAC(336WT)). This peptide binds to cholesterol and thereby inhibits the toxicity of LtxA in THP-1 cells. Previously, we showed that this peptide inhibits LtxA toxicity against Jn.9 (Jurkat) cells, indicating that peptides derived from the cholesterol-binding site of LtxA may have a potential clinical applicability in controlling infections of repeats-in-toxin-producing organisms.
Collapse
Affiliation(s)
- A C Brown
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, PA, USA
| | - E Koufos
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, PA, USA
| | - N V Balashova
- Department of Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - K Boesze-Battaglia
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - E T Lally
- Department of Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
5
|
Outer membrane vesicles mediate transport of biologically active Vibrio cholerae cytolysin (VCC) from V. cholerae strains. PLoS One 2014; 9:e106731. [PMID: 25187967 PMCID: PMC4154730 DOI: 10.1371/journal.pone.0106731] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 07/28/2014] [Indexed: 12/03/2022] Open
Abstract
Background Outer membrane vesicles (OMVs) released from Gram-negative bacteria can serve as vehicles for the translocation of virulence factors. Vibrio cholerae produce OMVs but their putative role in translocation of effectors involved in pathogenesis has not been well elucidated. The V. cholerae cytolysin (VCC), is a pore-forming toxin that lyses target eukaryotic cells by forming transmembrane oligomeric β-barrel channels. It is considered a potent toxin that contributes to V. cholerae pathogenesis. The mechanisms involved in the secretion and delivery of the VCC have not been extensively studied. Methodology/Principal Findings OMVs from V. cholerae strains were isolated and purified using a differential centrifugation procedure and Optiprep centrifugation. The ultrastructure and the contents of OMVs were examined under the electron microscope and by immunoblot analyses respectively. We demonstrated that VCC from V. cholerae strain V:5/04 was secreted in association with OMVs and the release of VCC via OMVs is a common feature among V. cholerae strains. The biological activity of OMV-associated VCC was investigated using contact hemolytic assay and epithelial cell cytotoxicity test. It showed toxic activity on both red blood cells and epithelial cells. Our results indicate that the OMVs architecture might play a role in stability of VCC and thereby can enhance its biological activities in comparison with the free secreted VCC. Furthermore, we tested the role of OMV-associated VCC in host cell autophagy signalling using confocal microscopy and immunoblot analysis. We observed that OMV-associated VCC triggered an autophagy response in the target cell and our findings demonstrated for the first time that autophagy may operate as a cellular defence mechanism against an OMV-associated bacterial virulence factor. Conclusion/Significance Biological assays of OMVs from the V. cholerae strain V:5/04 demonstrated that OMV-associated VCC is indeed biologically active and induces toxicity on mammalian cells and furthermore can induce autophagy.
Collapse
|
6
|
Brown AC, Balashova NV, Epand RM, Epand RF, Bragin A, Kachlany SC, Walters MJ, Du Y, Boesze-Battaglia K, Lally ET. Aggregatibacter actinomycetemcomitans leukotoxin utilizes a cholesterol recognition/amino acid consensus site for membrane association. J Biol Chem 2013; 288:23607-21. [PMID: 23792963 DOI: 10.1074/jbc.m113.486654] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Aggregatibacter actinomycetemcomitans produces a repeats-in-toxin (RTX) leukotoxin (LtxA) that selectively kills human immune cells. Binding of LtxA to its β2 integrin receptor (lymphocyte function-associated antigen-1 (LFA-1)) results in the clustering of the toxin·receptor complex in lipid rafts. Clustering occurs only in the presence of LFA-1 and cholesterol, and LtxA is unable to kill cells lacking either LFA-1 or cholesterol. Here, the interaction of LtxA with cholesterol was measured using surface plasmon resonance and differential scanning calorimetry. The binding of LtxA to phospholipid bilayers increased by 4 orders of magnitude in the presence of 40% cholesterol relative to the absence of cholesterol. The affinity was specific to cholesterol and required an intact secondary structure. LtxA contains two cholesterol recognition/amino acid consensus (CRAC) sites; CRAC(336) ((333)LEEYSKR(339)) is highly conserved among RTX toxins, whereas CRAC(503) ((501)VDYLK(505)) is unique to LtxA. A peptide corresponding to CRAC(336) inhibited the ability of LtxA to kill Jurkat (Jn.9) cells. Although peptides corresponding to both CRAC(336) and CRAC(503) bind cholesterol, only CRAC(336) competitively inhibited LtxA binding to this sterol. A panel of full-length LtxA CRAC mutants demonstrated that an intact CRAC(336) site was essential for LtxA cytotoxicity. The conservation of CRAC(336) among RTX toxins suggests that this mechanism may be conserved among RTX toxins.
Collapse
Affiliation(s)
- Angela C Brown
- Department of Pathology, University of Pennsylvania School of Dental Medicine, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Walters MJ, Brown AC, Edrington TC, Baranwal S, Du Y, Lally ET, Boesze-Battaglia K. Membrane association and destabilization by Aggregatibacter actinomycetemcomitans leukotoxin requires changes in secondary structures. Mol Oral Microbiol 2013; 28:342-53. [PMID: 23678967 DOI: 10.1111/omi.12028] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/01/2013] [Indexed: 01/13/2023]
Abstract
Aggregatibacter actinomycetemcomitans is a common inhabitant of the upper aerodigestive tract of humans and non-human primates and is associated with disseminated infections, including lung and brain abscesses, pediatric infective endocarditis, and localized aggressive periodontitis. Aggregatibacter actinomycetemcomitans secretes a repeats-in-toxin protein, leukotoxin, which exclusively kills lymphocyte function-associated antigen-1-bearing cells. The toxin's pathological mechanism is not fully understood; however, experimental evidence indicates that it involves the association with and subsequent destabilization of the target cell's plasma membrane. We have long hypothesized that leukotoxin secondary structure is strongly correlated with membrane association and destabilization. In this study, we tested this hypothesis by analysing lipid-induced changes in leukotoxin conformation. Upon incubation of leukotoxin with lipids that favor leukotoxin-membrane association, we observed an increase in leukotoxin α-helical content that was not observed with lipids that favor membrane destabilization. The change in leukotoxin conformation after incubation with these lipids suggests that membrane binding and membrane destabilization have distinct secondary structural requirements, suggesting that they are independent events. These studies provide insight into the mechanism of cell damage that leads to disease progression by A. actinomycetemcomitans.
Collapse
Affiliation(s)
- M J Walters
- Department of Pathology, University of Pennsylvania School of Dental Medicine, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | |
Collapse
|
8
|
Johansson A. Aggregatibacter actinomycetemcomitans leukotoxin: a powerful tool with capacity to cause imbalance in the host inflammatory response. Toxins (Basel) 2011; 3:242-59. [PMID: 22069708 PMCID: PMC3202821 DOI: 10.3390/toxins3030242] [Citation(s) in RCA: 119] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Revised: 03/01/2011] [Accepted: 03/08/2011] [Indexed: 11/21/2022] Open
Abstract
Aggregatibacter actinomycetemcomitans has been described as a member of the indigenous oral microbiota of humans, and is involved in the pathology of periodontitis and various non-oral infections. This bacterium selectively kills human leukocytes through expression of leukotoxin, a large pore-forming protein that belongs to the Repeat in Toxin (RTX) family. The specificity of the toxin is related to its prerequisite for a specific target cell receptor, LFA-1, which is solely expressed on leukocytes. The leukotoxin causes death of different leukocyte populations in a variety of ways. It activates a rapid release of lysosomal enzymes and MMPs from neutrophils and causes apoptosis in lymphocytes. In the monocytes/macrophages, the toxin activates caspase-1, a cysteine proteinase, which causes a proinflammatory response by the activation and secretion of IL-1β and IL-18. A specific clone (JP2) of A. actinomycetemcomitans with enhanced leukotoxin expression significantly correlates to disease onset in infected individuals. Taken together, the mechanisms by which this toxin kills leukocytes are closely related to the pathogenic mechanisms of inflammatory disorders, such as periodontitis. Therapeutic strategies targeting the cellular and molecular inflammatory host response in periodontal diseases might be a future treatment alternative.
Collapse
Affiliation(s)
- Anders Johansson
- Department of Odontology, Umea University, SE-901 87 Umea, Sweden.
| |
Collapse
|
9
|
Aldick T, Bielaszewska M, Uhlin BE, Humpf HU, Wai SN, Karch H. Vesicular stabilization and activity augmentation of enterohaemorrhagicEscherichia colihaemolysin. Mol Microbiol 2009; 71:1496-508. [DOI: 10.1111/j.1365-2958.2009.06618.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
10
|
Affiliation(s)
- Denis F Kinane
- Center for Oral Health and Systemic Disease, University of Louisville School of Dentistry, Louisville, KY, USA
| | | | | | | | | |
Collapse
|
11
|
Fine DH, Kaplan JB, Kachlany SC, Schreiner HC. How we got attached to Actinobacillus actinomycetemcomitans: A model for infectious diseases. Periodontol 2000 2006; 42:114-57. [PMID: 16930309 DOI: 10.1111/j.1600-0757.2006.00189.x] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Daniel H Fine
- Center for Oral Infectious Diseases, Department of Oral Biology, University of Medicine and Dentistry of New Jersey, Newark, New Jersey, USA
| | | | | | | |
Collapse
|
12
|
Orrù G, Marini MF, Ciusa ML, Isola D, Cotti M, Baldoni M, Piras V, Pisano E, Montaldo C. Usefulness of real time PCR for the differentiation and quantification of 652 and JP2 Actinobacillus actinomycetemcomitans genotypes in dental plaque and saliva. BMC Infect Dis 2006; 6:98. [PMID: 16772039 PMCID: PMC1539009 DOI: 10.1186/1471-2334-6-98] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2006] [Accepted: 06/13/2006] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The aim of our study is to describe a fast molecular method, able to distinguish and quantize the two different genotypes (652 and JP2) of an important periodontal pathogen: Actinobacillus actinomycetemcomitans. The two genotypes show differences in the expression of an important pathogenic factor: the leukotoxin (ltx). In order to evidence this, we performed a real time PCR procedure on the ltx operon, able to recognize Aa clinical isolates with different leukotoxic potentials. METHODS The specificity of the method was confirmed in subgingival plaque and saliva specimens collected from eighty-one Italian (Sardinian) subjects with a mean age of 43.9, fifty five (68 %) of whom had various clinical forms of periodontal disease. RESULTS This procedure showed a good sensitivity and a high linear dynamic range of quantization (10(7)-10(2) cells/ml) for all genotypes and a good correlation factor (R2 = 0.97-0.98). Compared with traditional cultural methods, this real time PCR procedure is more sensitive; in fact in two subgingival plaque and two positive saliva specimens Aa was only detected with the molecular method. CONCLUSION A low number of Sardinian patients was found positive for Aa infections in the oral cavity, (just 10 positive periodontal cases out of 81 and two of these were also saliva positive). The highly leukotoxic JP2 strain was the most representative (60 % of the positive specimens); the samples from periodontal pockets and from saliva showed some ltx genotype for the same patient. Our experience suggests that this approach is suitable for a rapid and complete laboratory diagnosis for Aa infection.
Collapse
Affiliation(s)
- Germano Orrù
- O.B.L. (Oral Biotechnology Laboratory), Dipartimento di Chirurgia e Odontostomatologia Università degli Studi di Cagliari, Cagliari, Italy
| | - Mario Francesco Marini
- O.B.L. (Oral Biotechnology Laboratory), Dipartimento di Chirurgia e Odontostomatologia Università degli Studi di Cagliari, Cagliari, Italy
- Universita' degli Studi Milano Bicocca, Dipartimento di Neuroscienze, Dottorato di Ricerca in Parodontologia Sperimentale, Milano, Italy
| | - Maria Laura Ciusa
- O.B.L. (Oral Biotechnology Laboratory), Dipartimento di Chirurgia e Odontostomatologia Università degli Studi di Cagliari, Cagliari, Italy
| | - Daniela Isola
- O.B.L. (Oral Biotechnology Laboratory), Dipartimento di Chirurgia e Odontostomatologia Università degli Studi di Cagliari, Cagliari, Italy
| | - Marina Cotti
- O.B.L. (Oral Biotechnology Laboratory), Dipartimento di Chirurgia e Odontostomatologia Università degli Studi di Cagliari, Cagliari, Italy
| | - Marco Baldoni
- Universita' degli Studi Milano Bicocca, Dipartimento di Neuroscienze, Dottorato di Ricerca in Parodontologia Sperimentale, Milano, Italy
| | - Vincenzo Piras
- O.B.L. (Oral Biotechnology Laboratory), Dipartimento di Chirurgia e Odontostomatologia Università degli Studi di Cagliari, Cagliari, Italy
| | - Elisabetta Pisano
- O.B.L. (Oral Biotechnology Laboratory), Dipartimento di Chirurgia e Odontostomatologia Università degli Studi di Cagliari, Cagliari, Italy
| | - Caterina Montaldo
- O.B.L. (Oral Biotechnology Laboratory), Dipartimento di Chirurgia e Odontostomatologia Università degli Studi di Cagliari, Cagliari, Italy
| |
Collapse
|
13
|
Ohara M, Sugai M. Cytolethal Distending Toxin and Its Implication in Periodontal Diseases. J Oral Biosci 2005. [DOI: 10.1016/s1349-0079(05)80004-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
14
|
Mitchell C, Gao L, Demuth DR. Positive and negative cis-acting regulatory sequences control expression of leukotoxin in Actinobacillus actinomycetemcomitans 652. Infect Immun 2003; 71:5640-9. [PMID: 14500484 PMCID: PMC201044 DOI: 10.1128/iai.71.10.5640-5649.2003] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Integration of IS1301 into an AT-rich inverted repeat located upstream of the ltx operon was previously shown to confer a hyperleukotoxic phenotype in Actinobacillus actinomycetemcomitans IS1 (T. He, T. Nishihara, D. R. Demuth, and I. Ishikawa, J. Periodontol. 70:1261-1268, 1999), but the mechanism leading to increased leukotoxin production was not determined. We show that an IS1 ltx promoter::lacZ reporter construct expresses 12-fold higher levels of beta-galactosidase activity than a reporter containing the ltx promoter from A. actinomycetemcomitans 652, suggesting that IS1301 increases transcription of the ltx operon. Examination of the IS1301 sequence identified a potential outwardly directed promoter. However, site-specific mutagenesis of the -35 element of the putative promoter had no effect on the transcriptional activity of the IS1 reporter construct. Furthermore, reverse transcriptase PCR and real-time PCR experiments did not detect a transcript that was initiated within IS1301. These results suggest that increased expression of leukotoxin in strain IS1 does not arise from an outwardly directed IS1301 promoter. To determine how IS1301 alters transcriptional regulation of the ltx operon, cis-acting sequences that regulate leukotoxin expression were identified. The AT-rich sequence that resides downstream from the site of IS1301 insertion was shown to function as a positive cis-acting regulator of leukotoxin expression. This sequence resembles an UP element in its location, AT-rich content, and activity and is homologous to the consensus UP element sequence. In addition, a negative cis-acting sequence was identified upstream from the site of IS1301 insertion, and deletion of this region increased promoter activity by fourfold. Mobility shift experiments showed that this region bound to a protein(s) in extracts from A. actinomycetemcomitans 652. The specific sequences required for this interaction were localized to a 26-nucleotide segment of the ltx promoter that resides 17 bp upstream from the site of IS1301 insertion. Together, these results suggest that positive and negative cis-acting sequences regulate leukotoxin expression and that IS1301 may increase transcription of the ltx operon in A. actinomycetemcomitans IS1 by displacing a negative cis-acting regulator approximately 900 bp upstream from the basal elements of the ltx promoter.
Collapse
Affiliation(s)
- Christine Mitchell
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19014, USA
| | | | | |
Collapse
|
15
|
Demuth DR, James D, Kowashi Y, Kato S. Interaction of Actinobacillus actinomycetemcomitans outer membrane vesicles with HL60 cells does not require leukotoxin. Cell Microbiol 2003; 5:111-21. [PMID: 12580947 DOI: 10.1046/j.1462-5822.2003.00259.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Outer membrane derived vesicles (MVs) secreted by Actinobacillus actinomycetemcomitans JP2 contain a membranolytic leukotoxin and are toxic to human HL60 cells. To determine how MVs interact with human target cells, HL60 cells were incubated with vesicles, reacted with anti-vesicle antibodies and a FITC-labelled reporter, and visualized by confocal scanning laser microscopy. Target cells rapidly became reactive with anti-vesicle antibodies upon exposure to vesicles. Confocal microscopy showed that labelling occurred primarily in the cytoplasmic membrane and that very little internal fluorescence was observed. The cytoplasmic membrane of HL60 cells was also strongly labelled after exposure to MVs that contained the fluorescent phospholipid, SP-DiOC18. In contrast, incubation of cells with free SP-DiOC18 resulted primarily in the labelling of internal structures of HL60 cells. These results suggest that A. actinomycetemcomitans MVs associate with, or are incorporated into the cytoplasmic membrane of HL60 cells. The leukotoxin is a membranolytic cytotoxin and cells exposed to MVs were lysed by vesicle-associated toxin in a time and dose-dependent manner. However, cells became reactive with anti-vesicle antibodies when MVs were added in the presence of inhibitors of leukotoxin-mediated lysis or when sublytic doses of MVs were analysed. In addition, MVs produced by an isogenic leukotoxin-deficient strain of A. actinomycetemcomitans JP2 were non-toxic but rapidly interacted with HL60 cells. These results suggest that A. actinomycetemcomitans MVs can deliver leukotoxin to HL60 cells but that the association of vesicles with the cytoplasmic membrane occurs independently of the leukotoxin polypeptide.
Collapse
Affiliation(s)
- Donald R Demuth
- Department of Biochemistry, Levy Research Building, Room 540, University of Pennsylvania School of Dental Medicine, 4010 Locust Street, Philadelphia, PA 19104-6002, USA.
| | | | | | | |
Collapse
|
16
|
Fong KP, Gao L, Demuth DR. luxS and arcB control aerobic growth of Actinobacillus actinomycetemcomitans under iron limitation. Infect Immun 2003; 71:298-308. [PMID: 12496179 PMCID: PMC143191 DOI: 10.1128/iai.71.1.298-308.2003] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
LuxS is responsible for the production of autoinducer 2 (AI-2), which functions in Vibrio harveyi as a quorum-sensing signal that controls the cell density-dependent expression of the lux operon. In nonluminescent organisms, the physiologic role of AI-2 is not clear. We report that inactivation of luxS in Actinobacillus actinomycetemcomitans JP2 results in reduced growth of the mutant, but not the wild-type organism, under aerobic, iron-limited conditions. Stunted cultures of the luxS mutant A. actinomycetemcomitans JP2-12 grew to high cell density when subcultured under iron-replete conditions. In addition, the mutant strain grew to high cell density under iron limitation after transformation with a plasmid containing a functional copy of luxS. Results of real-time PCR showed that A. actinomycetemcomitans JP2-12 exhibited significantly reduced expression of afuA (eightfold), fecBCDE (10-fold), and ftnAB (>50-fold), which encode a periplasmic ferric transport protein, a putative ferric citrate transporter, and ferritin, respectively. The expressions of putative receptors for transferrin, hemoglobin, and hemophore binding protein were also reduced at more modest levels (two- to threefold). In contrast, expressions of sidD and frpB (encoding putative siderophore receptors) were increased 10- and 3-fold, respectively, in the luxS mutant. To better understand the mechanism of the AI-2 response, the A. actinomycetemcomitans genome was searched for homologs of the V. harveyi signal transduction proteins, LuxP, LuxQ, LuxU, and LuxO. Interestingly, ArcB was found to be most similar to LuxQ sensor/kinase. To determine whether arcB plays a role in the response of A. actinomycetemcomitans to AI-2, an arcB-deficient mutant was constructed. The isogenic arcB mutant grew poorly under anaerobic conditions but grew normally under aerobic iron-replete conditions. However, the arcB mutant failed to grow aerobically under iron limitation, and reverse transcriptase PCR showed that inactivation of arcB resulted in decreased expression of afuA and ftnAB. Thus, isogenic luxS and arcB mutants of A. actinomycetemcomitans exhibit similar phenotypes when cultured aerobically under iron limitation, and both mutants exhibit reduced expression of a common set of genes involved in the transport and storage of iron. These results suggest that LuxS and ArcB may act in concert to control the adaptation of A. actinomycetemcomitans to iron-limiting conditions and its growth under such conditions.
Collapse
Affiliation(s)
- Karen P Fong
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | |
Collapse
|
17
|
Kachlany SC, Fine DH, Figurski DH. Purification of secreted leukotoxin (LtxA) from Actinobacillus actinomycetemcomitans. Protein Expr Purif 2002; 25:465-71. [PMID: 12182827 DOI: 10.1016/s1046-5928(02)00037-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The RTX (repeats in toxin) family of toxins is important in the pathogenesis of many Gram-negative bacteria. The oral and systemic human pathogen Actinobacillus actinomycetemcomitans produces a member of this family known as leukotoxin (LtxA). Previously, we found that LtxA is secreted into culture supernatants of A. actinomycetemcomitans and that this protein is abundant and relatively pure. Here, we report a large-scale method for the isolation and purification of LtxA from culture supernatants of A. actinomycetemcomitans strain JP2. The purification scheme involves ammonium sulfate precipitation of culture supernatants, dialysis, and ultrafiltration to concentrate LtxA to approximately 10mg/ml. We found that LtxA remained soluble in buffer that contained at least 250mM NaCl. Purified LtxA was >98% pure and the final preparations were active against HL-60 cells. The entire purification protocol can be completed within 2 days. The ability to readily obtain a large amount of purified leukotoxin should accelerate investigations into the structure and biology of this important virulence factor.
Collapse
Affiliation(s)
- Scott C Kachlany
- Department of Microbiology, College of Physicians and Surgeons, Columbia University, 701 W. 168th St., New York, NY 10032, USA.
| | | | | |
Collapse
|
18
|
Fong KP, Chung WO, Lamont RJ, Demuth DR. Intra- and interspecies regulation of gene expression by Actinobacillus actinomycetemcomitans LuxS. Infect Immun 2001; 69:7625-34. [PMID: 11705942 PMCID: PMC98856 DOI: 10.1128/iai.69.12.7625-7634.2001] [Citation(s) in RCA: 149] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The cell density-dependent control of gene expression is employed by many bacteria for regulating a variety of physiological functions, including the generation of bioluminescence, sporulation, formation of biofilms, and the expression of virulence factors. Although periodontal organisms do not appear to secrete acyl-homoserine lactone signals, several species, e.g., Porphyromonas gingivalis, Prevotella intermedia, and Fusobacterium nucleatum, have recently been shown to secrete a signal related to the autoinducer II (AI-2) of the signal system 2 pathway in Vibrio harveyi. Here, we report that the periodontal pathogen Actinobacillus actinomycetemcomitans expresses a homolog of V. harveyi luxS and secretes an AI-2-like signal. Cell-free conditioned medium from A. actinomycetemcomitans or from a recombinant Escherichia coli strain (E. coli AIS) expressing A. actinomycetemcomitans luxS induced luminescence in V. harveyi BB170 >200-fold over controls. AI-2 levels peaked in mid-exponential-phase cultures of A. actinomycetemcomitans and were significantly reduced in late-log- and stationary-phase cultures. Incubation of early-log-phase A. actinomycetemcomitans cells with conditioned medium from A. actinomycetemcomitans or from E. coli AIS resulted in a threefold induction of leukotoxic activity and a concomitant increase in leukotoxin polypeptide. In contrast, no increase in leukotoxin expression occurred when cells were exposed to sterile medium or to conditioned broth from E. coli AIS(-), a recombinant strain in which luxS was insertionally inactivated. A. actinomycetemcomitans AI-2 also induced expression of afuA, encoding a periplasmic iron transport protein, approximately eightfold, suggesting that LuxS-dependent signaling may play a role in the regulation of iron acquisition by A. actinomycetemcomitans. Finally, A. actinomycetemcomitans AI-2 added in trans complemented a luxS knockout mutation in P. gingivalis by modulating the expression of the luxS-regulated genes uvrB and hasF in this organism. Together, these results suggest that LuxS-dependent signaling may modulate aspects of virulence and the uptake of iron by A. actinomycetemcomitans and induce responses in other periodontal organisms in mixed-species oral biofilm.
Collapse
Affiliation(s)
- K P Fong
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, Philadelphia 19104-6002, USA
| | | | | | | |
Collapse
|
19
|
Welch RA. RTX toxin structure and function: a story of numerous anomalies and few analogies in toxin biology. Curr Top Microbiol Immunol 2001; 257:85-111. [PMID: 11417123 DOI: 10.1007/978-3-642-56508-3_5] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Abstract
It can be agreed that RTX toxins contribute to the pathogenesis of different diseases by causing dysfunction of the general cellular reactions of the immune response. The suggestion that RTX toxins induce cytokine production in nonimmune cells that would ultimately cause tissue damage is an expansion of their role in disease pathogenesis (Uhlen et al. 2000). Investigators in the RTX toxin field may not agree with me, but precise and satisfactory answers to the following questions are not yet available. How do RTX toxins mechanistically damage a cell? Do RTX toxins have receptors in the classic sense, in which there is a reversible ligand and receptor complex? What is responsible for the common Ca2+ ion influx in affected cells? The recent observation that an RTX toxin stimulates host-cell-mediated Ca2+ ion oscillation in part challenges the long held concept that these toxins damage cells by the direct formation of pores. Are the Ca2+ ion fluxes truly the noxious cellular insult? What is the final molecular structure of RTX toxins at the time they cause cellular death? How does the common requirement for acyl modification among RTX toxins fit into the toxin structure and mechanism of cellular killing, particularly when mixtures of unusual fatty acids are used by some toxins? There are a number of outstanding laboratories throughout the world that are seeking answers to these questions. We can reasonably expect that during the next decade research on the structure and function of RTX toxins will lead to new chemotherapeutic targets and reagents for basic cell biology and biotechnology.
Collapse
Affiliation(s)
- R A Welch
- Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine, Madison, WI 53706, USA
| |
Collapse
|