1
|
da Silva Antunes R, Babor M, Carpenter C, Khalil N, Cortese M, Mentzer AJ, Seumois G, Petro CD, Purcell LA, Vijayanand P, Crotty S, Pulendran B, Peters B, Sette A. Th1/Th17 polarization persists following whole-cell pertussis vaccination despite repeated acellular boosters. J Clin Invest 2018; 128:3853-3865. [PMID: 29920186 DOI: 10.1172/jci121309] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 06/12/2018] [Indexed: 01/17/2023] Open
Abstract
In the mid-1990s, whole-cell pertussis (wP) vaccines were associated with local and systemic adverse events that prompted their replacement with acellular pertussis (aP) vaccines in many high-income countries. In the past decade, rates of pertussis disease have increased in children receiving only aP vaccines. We compared the immune responses to aP boosters in individuals who received their initial doses with either wP or aP vaccines using activation-induced marker (AIM) assays. Specifically, we examined pertussis-specific memory CD4+ T cell responses ex vivo, highlighting a type 2/Th2 versus type 1/Th1 and Th17 differential polarization as a function of childhood vaccination. Remarkably, after a contemporary aP booster, cells from donors originally primed with aP were (a) associated with increased IL-4, IL-5, IL-13, IL-9, and TGF-β and decreased IFN-γ and IL-17 production, (b) defective in their ex vivo capacity to expand memory cells, and (c) less capable of proliferating in vitro. These differences appeared to be T cell specific, since equivalent increases of antibody titers and plasmablasts after aP boost were seen in both groups. In conclusion, our data suggest that there are long-lasting effects and differences in polarization and proliferation of T cell responses in adults originally vaccinated with aP compared with those that initially received wP, despite repeated acellular boosters.
Collapse
Affiliation(s)
- Ricardo da Silva Antunes
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | - Mariana Babor
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | - Chelsea Carpenter
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | - Natalie Khalil
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | - Mario Cortese
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA
| | - Alexander J Mentzer
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Grégory Seumois
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | | | - Lisa A Purcell
- Regeneron Pharmaceuticals Inc., Tarrytown, New York, USA
| | - Pandurangan Vijayanand
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA.,UCSD School of Medicine, La Jolla, California, USA
| | - Shane Crotty
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA.,UCSD School of Medicine, La Jolla, California, USA
| | - Bali Pulendran
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA
| | - Bjoern Peters
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA.,UCSD School of Medicine, La Jolla, California, USA
| | - Alessandro Sette
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA.,UCSD School of Medicine, La Jolla, California, USA
| |
Collapse
|
2
|
Ma J, Zhang X, Feng Y, Zhang H, Wang X, Zheng Y, Qiao W, Liu X. Structural and Functional Study of Apoptosis-linked Gene-2·Heme-binding Protein 2 Interactions in HIV-1 Production. J Biol Chem 2016; 291:26670-26685. [PMID: 27784779 DOI: 10.1074/jbc.m116.752444] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 10/01/2016] [Indexed: 01/10/2023] Open
Abstract
In the HIV-1 replication cycle, the endosomal sorting complex required for transport (ESCRT) machinery promotes viral budding and release in the late stages. In this process, the ESCRT proteins, ALIX and TSG101, are recruited through interactions with HIV-1 Gag p6. ALG-2, also known as PDCD6, interacts with both ALIX and TSG101 and bridges ESCRT-III and ESCRT-I. In this study, we show that ALG-2 affects HIV-1 production negatively at both the exogenous and endogenous levels. Through a yeast two-hybrid screen, we identified HEBP2 as the binding partner of ALG-2, and we solved the crystal structure of the ALG-2·HEBP2 complex. The function of ALG-2·HEBP2 complex in HIV-1 replication was further explored. ALG-2 inhibits HIV-1 production by affecting Gag expression and distribution, and HEBP2 might aid this process by tethering ALG-2 in the cytoplasm.
Collapse
Affiliation(s)
- Jing Ma
- From the State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071.,the Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xianfeng Zhang
- the CAAS-Michigan State University Joint Laboratory of Innate Immunity, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, and
| | - Yanbin Feng
- From the State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071
| | - Hui Zhang
- From the State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071
| | - Xiaojun Wang
- the CAAS-Michigan State University Joint Laboratory of Innate Immunity, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, and
| | - Yonghui Zheng
- the CAAS-Michigan State University Joint Laboratory of Innate Immunity, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, and
| | - Wentao Qiao
- From the State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, .,the Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xinqi Liu
- From the State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071,
| |
Collapse
|
3
|
Mörbt N, Mögel I, Kalkhof S, Feltens R, Röder-Stolinski C, Zheng J, Vogt C, Lehmann I, von Bergen M. Proteome changes in human bronchoalveolar cells following styrene exposure indicate involvement of oxidative stress in the molecular-response mechanism. Proteomics 2009; 9:4920-33. [PMID: 19862763 DOI: 10.1002/pmic.200800836] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Styrene is a volatile organic compound that is widely used as an intermediate in many industrial settings. There are known adverse health effects at environmentally significant concentrations, but little is known about the molecular effect of exposure to styrene at sub-acute toxic concentrations. We exposed human lung epithelial cells, at a wide range of concentrations (1 mg/m(3)-10 g/m(3)), to styrene and analyzed the effects on the proteome level by 2-DE, where 1380 proteins spots were detected and 266 were identified unambiguously by MS. A set of 16 protein spots were found to be significantly altered due to exposure to styrene at environmentally significant concentrations of 1-10 mg/m(3) (0.2-2.3 ppm). Among these, superoxide dismutase as well as biliverdin reductase A could be correlated with the molecular pathway of oxidative stress, while eukaryotic translation initiation factor 5A-1, ezrin, lamin B2 and voltage-dependent anion channel 2 have been reported to be involved in apoptosis. Treatment with styrene also caused the formation of styrene oxide-protein adducts, specifically for thioredoxin reductase 1. These results underline the relevance of oxidative stress as a primary molecular response mechanism of lung epithelial cells to styrene exposure at indoor-relevant concentrations.
Collapse
Affiliation(s)
- Nora Mörbt
- Department of Proteomics, UFZ, Helmholtz-Centre for Environmental Research, Leipzig, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
The influence of calcium signaling on the regulation of alternative splicing. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1793:979-84. [PMID: 19133299 DOI: 10.1016/j.bbamcr.2008.12.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2008] [Revised: 11/27/2008] [Accepted: 12/03/2008] [Indexed: 02/07/2023]
Abstract
In this review the influence of calcium signaling on the regulation of alternative splicing is discussed with respect to its influence on cell- and developmental-specific expression of different isoforms of the plasma membrane calcium pump (PMCA). In a second part the possibility is discussed that due to the interaction of the calcium-binding protein ALG-2 with a spliceosomal regulator of alternative splicing, RBM22, Ca2+-signaling may thus influence its regulatory property.
Collapse
|
5
|
Lennartsson J, Wardega P, Engström U, Hellman U, Heldin CH. Alix facilitates the interaction between c-Cbl and platelet-derived growth factor beta-receptor and thereby modulates receptor down-regulation. J Biol Chem 2006; 281:39152-8. [PMID: 17082185 DOI: 10.1074/jbc.m608489200] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Alix (ALG-2-interacting protein X) is an adaptor protein involved in down-regulation and sorting of cell surface receptors through the endosomal compartments toward the lysosome. In this study, we show that Alix interacts with the C-terminal region of the platelet-derived growth factor (PDGF) beta-receptor (PDGFRbeta) and becomes transiently tyrosine-phosphorylated in response to PDGF-BB stimulation. Increased expression levels of Alix resulted in a reduced rate of PDGFRbeta removal from the cell surface following receptor activation, and this was associated with decreased receptor degradation. Furthermore, Alix was found to co-immunoprecipitate with the ubiquitin ligase c-Cbl, and elevated Alix levels increased the interaction between c-Cbl and PDGFRbeta. Interestingly, Alix interacted constitutively with both c-Cbl and PDGFRbeta. Moreover, c-Cbl was found to be hyperphosphorylated in cells engineered to overexpress Alix compared with control cells. The increased c-Cbl phosphorylation correlated with enhanced proteasomal degradation of c-Cbl, which in turn correlated with a decreased ubiquitination of PDGFRbeta. Our data suggest that Alix inhibits down-regulation of PDGFRbeta by modulating the interaction between c-Cbl and the receptor, thereby affecting the ubiquitination of the receptor.
Collapse
Affiliation(s)
- Johan Lennartsson
- Ludwig Institute for Cancer Research, Uppsala University, Biomedical Center, SE-751 24 Uppsala, Sweden
| | | | | | | | | |
Collapse
|
6
|
Montaville P, Dai Y, Cheung CY, Giller K, Becker S, Michalak M, Webb SE, Miller AL, Krebs J. Nuclear translocation of the calcium-binding protein ALG-2 induced by the RNA-binding protein RBM22. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1763:1335-43. [PMID: 17045351 DOI: 10.1016/j.bbamcr.2006.09.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2006] [Revised: 08/31/2006] [Accepted: 09/01/2006] [Indexed: 11/15/2022]
Abstract
By yeast two-hybrid screening using the calcium-binding protein ALG-2 as bait a new target of ALG-2 was identified, the RNA-binding protein RBM22. In order to confirm these interactions in vivo we prepared fluorescent constructs by using the monomeric red fluorescent protein to label ALG-2 and the enhanced green fluorescent protein to label RBM22. Confocal microscopy of NIH 3T3 cells transfected with either ALG-2 or RBM22 expression constructs encoding fluorescent fusion proteins alone revealed that the majority of ALG-2 was localized in the cytoplasm whereas RBM22 was located in the nucleus. When cells were co-transfected with expression vectors encoding both fusion proteins ALG-2 was found in the nucleus indicating that RBM22 which can shuttle between the cytoplasm and the nucleus may play a role in nuclear translocation of ALG-2. Using zebrafish as a model mRNA homologues of ALG-2 and RBM22 were microinjected into the blastodisc-yolk margin of zebrafish embryos at the 1-cell stage followed by monitoring the fusion proteins during development of the zebrafish. Hereby, we observed that ALG-2 alone evenly distributed within the cell, whereas in the presence of RBM22 the two proteins co-localized within the nucleus. More than 95% of the two proteins co-localized within the same area in the nucleus suggesting a functional interaction between the Ca(2+)-signaling protein ALG-2 and the RNA-binding protein RBM22.
Collapse
Affiliation(s)
- P Montaville
- Department of NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Pan S, Wang R, Zhou X, He G, Koomen J, Kobayashi R, Sun L, Corvera J, Gallick GE, Kuang J. Involvement of the conserved adaptor protein Alix in actin cytoskeleton assembly. J Biol Chem 2006; 281:34640-50. [PMID: 16966331 DOI: 10.1074/jbc.m602263200] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The conserved adaptor protein Alix, also called AIP1 or Hp95, promotes flattening and alignment of cultured mammalian fibroblasts; however, the mechanism by which Alix regulates fibroblast morphology is not understood. Here we demonstrate that Alix in WI38 cells, which require Alix expression for maintaining typical fibroblast morphology, associates with filamentous actin (F-actin) and F-actin-based structures lamellipodia and stress fibers. Reducing Alix expression by small interfering RNA (siRNA) decreases F-actin content and inhibits stress fiber assembly. In cell-free systems, Alix directly interacts with F-actin at both the N-terminal Bro1 domain and the C-terminal proline-rich domain. In Alix immunoprecipitates from WI38 cell lysates, actin is the most abundant partner protein of Alix. In addition, the N-terminal half of the middle region of Alix binds cortactin, an activator of the ARP2/3 complex-mediated initiation of actin polymerization. Alix is required for lamellipodial localization of cortactin. The C-terminal half of the middle region of Alix interacts with alpha-actinin, a key factor that bundles F-actin in stress fibers. Alix knockdown decreases the amount of alpha-actinin that associates with F-actin. These findings establish crucial involvement of Alix in actin cytoskeleton assembly.
Collapse
Affiliation(s)
- Shujuan Pan
- Department of Experimental Therapeutics, University of Texas, M. D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Besada V, Diaz M, Becker M, Ramos Y, Castellanos-Serra L, Fichtner I. Proteomics of xenografted human breast cancer indicates novel targets related to tamoxifen resistance. Proteomics 2006; 6:1038-48. [PMID: 16385476 DOI: 10.1002/pmic.200500151] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Tamoxifen is the most frequently used drug for hormone therapy of breast cancer patients, even though a high percentage of women are (or become) refractory to this treatment. The proteins involved in tamoxifen resistance of breast tumor cells as well as the mechanisms by which they interact, are still unknown. Some years ago, we established the xenograft breast tumor 3366, sensitive to tamoxifen and the 3366/TAM, resistant to tamoxifen, derived after two years of in vivo passages of the parental 3366 under tamoxifen treatment. Here, we compare the protein expression levels of both xenografts. 2-DE of proteins from total cell extracts showed very high reproducibility among tumors from each group (tamoxifen sensitive and tamoxifen resistant). The heuristic clustering analysis of these gels pooled them correctly in both groups. Twelve proteins were found up-regulated in the tamoxifen-resistant line, while nine were down-regulated. The proteins differentially expressed were identified by MS and sequence database analysis. Biological functions of these proteins are related to cell-cell adhesion and interaction, signal transduction, DNA and protein synthesis machinery, mitochondrial respiratory chain, oxidative stress processes and apoptosis. Three of the identified proteins (ALG-2 interacting protein and two GDP-dissociation inhibitors) could be directly involved in the resistance phenomenon.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antineoplastic Agents, Hormonal/therapeutic use
- Biomarkers, Tumor/metabolism
- Breast Neoplasms/drug therapy
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Cluster Analysis
- Drug Resistance, Neoplasm
- Electrophoresis, Gel, Two-Dimensional
- Female
- Humans
- Mice
- Mice, Nude
- Molecular Sequence Data
- Proteomics
- Sequence Homology, Amino Acid
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
- Tamoxifen/therapeutic use
- Transplantation, Heterologous
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Vladimir Besada
- Department for Proteome Analysis, Centre for Genetic Engineering and Biotechnology, Havana, Cuba
| | | | | | | | | | | |
Collapse
|
9
|
Wong DCF, Wong KTK, Nissom PM, Heng CK, Yap MGS. Targeting early apoptotic genes in batch and fed-batch CHO cell cultures. Biotechnol Bioeng 2006; 95:350-61. [PMID: 16894638 DOI: 10.1002/bit.20871] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Based on the transcriptional profiling of CHO cell culture using microarray, four key early apoptosis signaling genes, Fadd, Faim, Alg-2, and Requiem, were identified and CHO GT (Gene Targeted) cell lines were developed by targeting these four genes. Two were CHO GT(O) cell lines overexpressing anti-apoptotic genes, Faim and Fadd DN and two were CHO GT(KD) cell lines involving knockdown of Alg-2 and Requiem which are pro-apoptotic genes using small interfering RNA (siRNA) technology. Comparisons of these CHO GT cell lines with the parental cell line in batch culture (BC) and fed-batch culture (FBC) were performed. Compared to parental cells, the CHO GT cell lines showed apoptosis resistance as they significantly delayed and/or suppressed initiator caspase-8 and -9 and executioner caspase-3 activities during culture. FBC of CHO GT cell lines reached significantly higher maximum viable cell densities (up to 9 x 10(6) cells/mL) compared with the parental cell line (5 x 10(6) cells/mL). The recombinant interferon gamma (IFN-gamma) yields were increased by up to 2.5-fold. Furthermore, it was observed that the IFN-gamma was more highly sialylated.
Collapse
Affiliation(s)
- Danny Chee Furng Wong
- Bioprocessing Technology Institute, Biomedical Sciences Institutes, Agency for Science, Technology and Research, A*STAR, 20 Biopolis Way, #06-01, Centros, Singapore 138668
| | | | | | | | | |
Collapse
|
10
|
Mollerup J, Berchtold MW. The co-chaperone p23 is degraded by caspases and the proteasome during apoptosis. FEBS Lett 2005; 579:4187-92. [PMID: 16038904 DOI: 10.1016/j.febslet.2005.06.045] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2005] [Revised: 06/23/2005] [Accepted: 06/27/2005] [Indexed: 11/25/2022]
Abstract
The heat shock protein 90 co-chaperone p23 has recently been shown to be up-regulated in cancer cells and down-regulated in atheroschlerotic plaques. We found that p23 is degraded during apoptosis induced by several stimuli, including Fas and TNFalpha-receptor activation as well as staurosporine treatment. Caspase inhibition protected p23 from degradation in several cell lines. In addition, recombinant caspase-3 and 8 cleaved p23 at Asp 142 generating a degradation product of 18 kDa as seen in apoptotic cells. Truncated p23 is further degraded in a proteasome dependent process during apoptosis. Furthermore, we found that the anti-aggregating activity of truncated p23 was reduced compared to full length p23 indicating that caspase mediated p23 degradation contributes to protein destabilisation in apoptosis.
Collapse
Affiliation(s)
- Jens Mollerup
- Institute of Molecular Biology and Physiology, Department of Molecular Cell Biology, University of Copenhagen, Oester Farimagsgade 2A, 1353 Copenhagen K, Denmark.
| | | |
Collapse
|
11
|
Subramanian L, Crabb JW, Cox J, Durussel I, Walker TM, van Ginkel PR, Bhattacharya S, Dellaria JM, Palczewski K, Polans AS. Ca2+ binding to EF hands 1 and 3 is essential for the interaction of apoptosis-linked gene-2 with Alix/AIP1 in ocular melanoma. Biochemistry 2004; 43:11175-86. [PMID: 15366927 PMCID: PMC1351334 DOI: 10.1021/bi048848d] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Apoptosis-linked gene-2 (ALG-2) encodes a 22 kDa Ca(2+)-binding protein of the penta EF-hand family that is required for programmed cell death in response to various apoptotic agents. Here, we demonstrate that ALG-2 mRNA and protein are down-regulated in human uveal melanoma cells compared to their progenitor cells, normal melanocytes. The down regulation of ALG-2 may provide melanoma cells with a selective advantage. ALG-2 and its putative target molecule, Alix/AIP1, are localized primarily in the cytoplasm of melanocytes and melanoma cells independent of the intracellular Ca(2+) concentration or the activation of apoptosis. Cross-linking and analytical centrifugation studies support a single-species dimer conformation of ALG-2, also independent of Ca(2+) concentration. However, binding of Ca(2+) to both EF-1 and EF-3 is necessary for ALG-2 interaction with Alix/AIP1 as demonstrated using surface plasmon resonance spectroscopy. Mutations in EF-5 result in reduced target interaction without alteration in Ca(2+) affinity. The addition of N-terminal ALG-2 peptides, residues 1-22 or residues 7-17, does not alter the interaction of ALG-2 or an N-terminal deletion mutant of ALG-2 with Alix/AIP1, as might be expected from a model derived from the crystal structure of ALG-2. Fluorescence studies of ALG-2 demonstrate that an increase in surface hydrophobicity is primarily due to Ca(2+) binding to EF-3, while Ca(2+) binding to EF-1 has little effect on surface exposure of hydrophobic residues. Together, these data indicate that gross surface hydrophobicity changes are insufficient for target recognition.
Collapse
Affiliation(s)
- Lalita Subramanian
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, Wisconsin 53792, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Mollerup J, Krogh TN, Nielsen PF, Berchtold MW. Properties of the co-chaperone protein p23 erroneously attributed to ALG-2 (apoptosis-linked gene 2). FEBS Lett 2003; 555:478-82. [PMID: 14675759 DOI: 10.1016/s0014-5793(03)01310-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A commercial antibody (clone 22) directed against the apoptosis-linked gene 2 (alg2, pdcd6) encoded protein has been used by several groups. Up-regulated expression of the antigen was observed in primary tumours and in metastatic tissue and also during rat brain ischemia. Furthermore, antigen down-regulation was found in human atherosclerotic plaques. Recently, we found that the clone 22 antibody does not recognise ALG-2. In the present study the antigen of the clone 22 antibody was identified as the heat shock protein 90 (HSP90) co-chaperone protein p23, identical to the cytosolic prostaglandin E2 synthase, by immunoprecipitation followed by tryptic in-gel digests and mass spectrometry of the purified peptides. Moreover, the heterogeneous ribonuclear protein A2/B1 was found to be a part of the p23 co-immunoprecipitated protein complex.
Collapse
Affiliation(s)
- Jens Mollerup
- Department of Molecular Cell Biology, Institute of Molecular Biology, University of Copenhagen, Øster Farimagsgade 2A, 1353 Copenhagen K, Denmark.
| | | | | | | |
Collapse
|
13
|
Xu SF, Peng ZH, Li DP, Qiu GQ, Zhang F. Refinement of heterozygosity loss on chromosome 5p15 in sporadic colorectal cancer. World J Gastroenterol 2003; 9:1713-8. [PMID: 12918106 PMCID: PMC4611529 DOI: 10.3748/wjg.v9.i8.1713] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To refine the loss of heterozygosity on chromosome 5p15 and to identify the new tumor suppressor gene (s) in colorectal tumorigenesis.
METHODS: Sixteen polymorphic microsatellite markers were analyzed on chromosome 5 and another 6 markers were applied on chromosome 5p15 in 83 cases of colorectal and normal DNA by PCR. PCR products were electrophoresed on an ABI 377 DNA sequencer. Genescan 3.1 and Genotype 2.1 software were used for LOH scanning and analysis.
RESULTS: We observed 2 distinct regions of frequent allelic deletions on Chromosome 5, at D5S416 on 5p15 and D5S428-D5S410 on 5q. Another 6 polymorphric microsatellite markers were applied to 5p15 and the minimal region of frequent loss of heterozygosity was established on 5p15 spanning the D5S416 locus.
CONCLUSION: Through our detailed deletion mapping studies, we have found a critical and precise location of 5p deletions, 5p15.2-5p15.3, which must contain one or more unknown tumor suppressor gene (s) of colorectal cancer.
Collapse
Affiliation(s)
- Shi-Feng Xu
- Department of General Surgery, Shanghai First People's Hospital, Shanghai 200080, China
| | | | | | | | | |
Collapse
|
14
|
Arst HN, Peñalva MA. pH regulation in Aspergillus and parallels with higher eukaryotic regulatory systems. Trends Genet 2003; 19:224-31. [PMID: 12683976 DOI: 10.1016/s0168-9525(03)00052-0] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
All organisms respond to their environment to some extent, and for many microbes the variation in environment can be enormous. An important asset for coping with environmental variation is physiological versatility--a hallmark of many fungi. The ability of fungi to thrive over a wide range of pH is partly due to a genetic regulatory system that tailors gene expression to the ambient pH. Here we focus on the pH regulatory system of Aspergillus nidulans, where a novel signal transduction (pal) pathway mediates the first of two steps in the proteolytic processing of a transcription factor (PacC). Such processing is reminiscent of that of some well-known higher eukaryotic transcription factors, such as Cubitus interruptus, NF-kappa B and sterol regulatory element binding proteins. Intriguingly, endocytosis seems to be connected to pH signalling.
Collapse
Affiliation(s)
- Herbert N Arst
- Department of Infectious Diseases and Microbiology, Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
| | | |
Collapse
|
15
|
Maki M, Kitaura Y, Satoh H, Ohkouchi S, Shibata H. Structures, functions and molecular evolution of the penta-EF-hand Ca2+-binding proteins. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1600:51-60. [PMID: 12445459 DOI: 10.1016/s1570-9639(02)00444-2] [Citation(s) in RCA: 143] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Penta-EF-hand (PEF) proteins comprise a family of Ca(2+)-binding proteins that have five repetitive EF-hand motifs. Among the eight alpha-helices (alpha1-alpha8), alpha4 and alpha7 link EF2-EF3 and EF4-EF5, respectively. In addition to the structural similarities in the EF-hand regions, the PEF protein family members have common features: (i) dimerization through unpaired C-terminal EF5s, (ii) possession of hydrophobic Gly/Pro-rich N-terminal domains, and (iii) Ca(2+)-dependent translocation to membranes. Based on comparison of amino acid sequences, mammalian PEF proteins are classified into two groups: Group I PEF proteins (ALG-2 and peflin) and Group II PEF proteins (Ca(2+)-dependent protease calpain subfamily members, sorcin and grancalcin). The Group I genes have also been found in lower animals, plants, fungi and protists. Recent findings of specific interacting proteins have started to gradually unveil the functions of the noncatalytic mammalian PEF proteins.
Collapse
Affiliation(s)
- Masatoshi Maki
- Laboratory of Molecular and Cellular Regulation, Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan.
| | | | | | | | | |
Collapse
|
16
|
Krebs J, Saremaslani P, Caduff R. ALG-2: a Ca2+ -binding modulator protein involved in cell proliferation and in cell death. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1600:68-73. [PMID: 12445461 DOI: 10.1016/s1570-9639(02)00446-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
During the development of an organism, cell proliferation, differentiation and cell death are tightly balanced, and are controlled by a number of different regulators. Alterations in this balance are often observed in a variety of human diseases. The role of Ca(2+) as one of the key regulators of the cell is discussed with respect to a recently discovered Ca(2+)-binding protein, ALG-2, which is highly upregulated in cancerous tissues of different origins. The role of ALG-2 as a possible clinical marker and, molecularly, as a possible modulator at the interface between cell proliferation and cell death is discussed.
Collapse
Affiliation(s)
- Joachim Krebs
- Institute of Biochemistry, Swiss Federal Institute of Technology (ETH), HPM1, CH-8093, Zurich, Switzerland.
| | | | | |
Collapse
|
17
|
Wu Y, Pan S, Luo W, Lin SH, Kuang J. Hp95 promotes anoikis and inhibits tumorigenicity of HeLa cells. Oncogene 2002; 21:6801-8. [PMID: 12360406 DOI: 10.1038/sj.onc.1205849] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2002] [Revised: 06/28/2002] [Accepted: 07/05/2002] [Indexed: 11/09/2022]
Abstract
p95 is a putative signal transduction protein of approximately 95 kDa that contains multiple tyrosine residues that are conserved from yeast to human, a Src phosphorylation consensus sequence and a proline-rich C-terminus that binds SH3-domains. Previous studies have established that mammalian p95 is physically associated with proteins that regulate apoptotic induction and cell transformation; however, it is unclear whether p95 is a positive or negative regulator in these processes. Moreover, a p95 partner protein has been localized at both focal adhesions and actin-cytoskeletons in rat astrocytes. However, there is no evidence that mammalian p95 has roles in regulating cell adhesion or morphology. In this study, we examined the effects of p95 on the anchorage-independent growth and tumorigenicity of malignant HeLa cells, and on the growth and morphology of non-transformed NIH3T3 cells. In HeLa cells, p95 overexpression promoted detachment-induced apoptosis (anoikis), inhibited detachment of viable cells from substratum and reduced tumorigenicity. In NIH3T3 cells, p95 overexpression promoted flat cell morphology and slowed cell proliferation, whereas p95 downregulation had opposite effects. These findings indicate that the mammalian p95 is a positive regulator in apoptotic signaling and a negative regulator in cell transformation. They also suggest that p95 has roles in regulating cell adhesion and morphology.
Collapse
Affiliation(s)
- Ying Wu
- Department of Experimental Therapeutics, The University of Texas, M.D. Anderson Cancer Center, Houston, Texas, TX 77030, USA
| | | | | | | | | |
Collapse
|
18
|
Peñalva MA, Arst HN. Regulation of gene expression by ambient pH in filamentous fungi and yeasts. Microbiol Mol Biol Rev 2002; 66:426-46, table of contents. [PMID: 12208998 PMCID: PMC120796 DOI: 10.1128/mmbr.66.3.426-446.2002] [Citation(s) in RCA: 215] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Life, as we know it, is water based. Exposure to hydroxonium and hydroxide ions is constant and ubiquitous, and the evolutionary pressure to respond appropriately to these ions is likely to be intense. Fungi respond to their environments by tailoring their output of activities destined for the cell surface or beyond to the ambient pH. We are beginning to glimpse how they sense ambient pH and transmit this information to the transcription factor, whose roles ensure that a suitable collection of gene products will be made. Although relatively little is known about pH signal transduction itself, its consequences for the cognate transcription factor are much clearer. Intriguingly, homologues of components of this system mediating the regulation of fungal gene expression by ambient pH are to be found in the animal kingdom. The potential applied importance of this regulatory system lies in its key role in fungal pathogenicity of animals and plants and in its control of fungal production of toxins, antibiotics, and secreted enzymes.
Collapse
|
19
|
Satoh H, Shibata H, Nakano Y, Kitaura Y, Maki M. ALG-2 interacts with the amino-terminal domain of annexin XI in a Ca(2+)-dependent manner. Biochem Biophys Res Commun 2002; 291:1166-72. [PMID: 11883939 DOI: 10.1006/bbrc.2002.6600] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The apoptosis-linked protein ALG-2 is a Ca(2+)-binding protein that belongs to the penta-EF-hand protein family. ALG-2 forms a homodimer, a heterodimer with another penta-EF-hand protein, peflin, and a complex with its interacting protein, named AIP1 or Alix. By yeast two-hybrid screening using human ALG-2 as bait, we isolated a cDNA of a novel ALG-2-interacting protein, which turned out to be annexin XI. Deletion analysis revealed that ALG-2 interacted with the N-terminal domain of annexin XI (AnxN), which has an amino acid sequence similar to that of the C-terminal region of AIP1/Alix. Using recombinant biotin-tagged ALG-2 and the glutathione S-transferase (GST) fusion protein of AnxN, the direct interaction was analyzed by an ALG-2 overlay assay and by real-time interaction analysis with a surface plasmon resonance (SPR) biosensor. The dissociation constant (K(d)) was estimated to be approximately 70 nM. The Ca(2+)-dependent fluorescence change of ALG-2 in the presence of the hydrophobicity fluorescent probe 2-p-toluidinylnaphthalene-6-sulfonate (TNS) was inhibited by mixing with GST-AnxN, suggesting that the Pro/Gly/Tyr/Ala-rich hydrophobic region in AnxN masked the Ca(2+)-dependently exposed hydrophobic surface of ALG-2.
Collapse
Affiliation(s)
- Hirokazu Satoh
- Laboratory of Molecular and Cellular Regulation, Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | | | | | | | | |
Collapse
|
20
|
Xu W, Mitchell AP. Yeast PalA/AIP1/Alix homolog Rim20p associates with a PEST-like region and is required for its proteolytic cleavage. J Bacteriol 2001; 183:6917-23. [PMID: 11698381 PMCID: PMC95533 DOI: 10.1128/jb.183.23.6917-6923.2001] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The Saccharomyces cerevisiae zinc finger protein Rim101p is activated by cleavage of its C-terminal region, which resembles PEST regions that confer susceptibility to proteolysis. Here we report that Rim20p, a member of the broadly conserved PalA/AIP1/Alix family, is required for Rim101p cleavage. Two-hybrid and coimmunoprecipitation assays indicate that Rim20p binds to Rim101p, and a two-hybrid assay shows that the Rim101p PEST-like region is sufficient for Rim20p binding. Rim101p-Rim20p interaction is conserved in Candida albicans, supporting the idea that interaction is functionally significant. Analysis of Rim20p mutant proteins indicates that some of its broadly conserved regions are required for processing of Rim101p and for stability of Rim20p itself but are not required for interaction with Rim101p. A recent genome-wide two-hybrid study (T. Ito, T. Chiba, R. Ozawa, M. Yoshida, M. Hattori, and Y. Sakaki, Proc. Natl. Acad. Sci. USA 98:4569-4574, 2000) indicates that Rim20p interacts with Snf7p and that Snf7p interacts with Rim13p, a cysteine protease required for Rim101p proteolysis. We suggest that Rim20p may serve as part of a scaffold that places Rim101p and Rim13p in close proximity.
Collapse
Affiliation(s)
- W Xu
- Department of Microbiology, Integrated Program in Cellular, Molecular, and Biophysical Studies, Columbia University, 701 West 168th Street, New York, NY 10032, USA
| | | |
Collapse
|
21
|
Jung YS, Kim KS, Kim KD, Lim JS, Kim JW, Kim E. Apoptosis-linked gene 2 binds to the death domain of Fas and dissociates from Fas during Fas-mediated apoptosis in Jurkat cells. Biochem Biophys Res Commun 2001; 288:420-6. [PMID: 11606059 DOI: 10.1006/bbrc.2001.5769] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Apoptosis-linked gene 2 (ALG-2) is a member of the family of Ca(2+)-binding proteins with penta-EF-hand and is essential for the execution of apoptosis by various signals including Fas activation. We studied the regulation of ALG-2 during Fas-mediated apoptosis in Jurkat cells. The 22-kDa ALG-2 protein is cleaved and becomes a 19-kDa protein after Fas activation. The appearance of 19-kDa ALG-2 protein increases for 4 h after treatment with 200 ng/ml of anti-Fas Ab treatment and gradually degrades afterward. Confocal microscopic analysis showed that ALG-2 translocated from the plasma membrane to the cytosol during Fas-mediated apoptosis. Therefore, we examined if ALG-2 interacts with Fas. The protein-protein interaction of ALG-2 with Fas was demonstrated using yeast two-hybrid assays as well as in vitro GST pull-down assay. Endogenous ALG-2 was immunoprecipitated with anti-Fas Ab in Jurkat cells without Fas activation. However, the endogenous ALG-2 was no longer immunoprecipitated with anti-Fas Ab 2 h after anti-Fas Ab treatment. This study, for the first time, presents a direct molecular connection of ALG-2 to apoptosis by its direct interaction with Fas, and enlists ALG-2 as a new member of posttranslationally modified proteins during Fas-mediated apoptotic process.
Collapse
Affiliation(s)
- Y S Jung
- Research Center for Biomedicinal Resources and Division of Life Science, PaiChai University, Taejon, Korea 302-735
| | | | | | | | | | | |
Collapse
|
22
|
Wu Y, Pan S, Che S, He G, Nelman-Gonzalez M, Weil MM, Kuang J. Overexpression of Hp95 induces G1 phase arrest in confluent HeLa cells. Differentiation 2001; 67:139-53. [PMID: 11683497 DOI: 10.1046/j.1432-0436.2001.670406.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Xp95, a protein recently identified in Xenopus laevis, is potentially involved in progesterone-induced Xenopus oocyte maturation. In this study, we cloned a human homologue of Xp95, designated Hp95, and examined the effect of its overexpression on the growth properties of human malignant HeLa cells which have lost the contact inhibition of cell proliferation. We observed that although HeLa cells did not undergo G1 phase arrest at any stage after confluence, they were able to downregulate their G1 phase CDK activities in response to confluence. When Hp95 was overexpressed in HeLa cells by transfection with a constitutive or an inducible expression vector containing a full-length Hp95 transgene, HeLa cells became able to undergo G1 phase arrest and form a monolayer culture after confluence. However, the G1 phase CDK activities in these Hp95 overexpressing cells were not inhibited further as compared to control cells after confluence. These results indicate that the defects in HeLa cells that cause the loss of contact inhibition of cell proliferation are in components downstream of the G1 phase CDKs and that overexpression of Hp95 counteracts some of these defects.
Collapse
Affiliation(s)
- Y Wu
- Department of Experimental Therapeutics, The University of Texas, M. D. Anderson Cancer Center, Houston 77030, USA
| | | | | | | | | | | | | |
Collapse
|