1
|
Xu M, Sun X, Wu X, Qi Y, Li H, Nie J, Yang Z, Tian Z. Chloroplast protein StFC-II was manipulated by a Phytophthora effector to enhance host susceptibility. HORTICULTURE RESEARCH 2024; 11:uhae149. [PMID: 38994450 PMCID: PMC11237190 DOI: 10.1093/hr/uhae149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 05/21/2024] [Indexed: 07/13/2024]
Abstract
Oomycete secretes a range of RxLR effectors into host cells to manipulate plant immunity by targeting proteins from several organelles. In this study, we report that chloroplast protein StFC-II is hijacked by a pathogen effector to enhance susceptibility. Phytophthora infestans RxLR effector Pi22922 is activated during the early stages of P. infestans colonization. Stable overexpression of Pi22922 in plants suppresses flg22-triggered reactive oxygen species (ROS) burst and enhances leaf colonization by P. infestans. A potato ferrochelatase 2 (FC-II, a nuclear-encoded chloroplast-targeted protein), a key enzyme for heme biosynthesis in chloroplast, was identified as a target of Pi22922 in the cytoplasm. The pathogenicity of Pi22922 in plants is partially dependent on FC-II. Overexpression of StFC-II decreases resistance of potato and Nicotiana benthamiana against P. infestans, and silencing of NbFC-II in N. benthamiana reduces P. infestans colonization. Overexpression of StFC-II increases heme content and reduces chlorophyll content and photosynthetic efficiency in potato leaves. Moreover, ROS accumulation both in chloroplast and cytoplasm is attenuated and defense-related genes are down-regulated in StFC-II overexpression transgenic potato and N. benthamiana leaves. Pi22922 inhibits E3 ubiquitin ligase StCHIP-mediated StFC-II degradation in the cytoplasm and promotes its accumulation in chloroplasts. In summary, this study characterizes a new mechanism that an oomycete RxLR effector suppresses host defenses by promoting StFC-II accumulation in chloroplasts, thereby compromising the host immunity and promoting susceptibility.
Collapse
Affiliation(s)
- Meng Xu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University (HZAU), Wuhan 430070, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Wuhan 430070, China
- Potato Engineering and Technology Research Center of Hubei Province (HZAU), Wuhan 430070, China
| | - Xinyuan Sun
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University (HZAU), Wuhan 430070, China
- Potato Engineering and Technology Research Center of Hubei Province (HZAU), Wuhan 430070, China
- Hubei Hongshan Laboratory (HZAU), Wuhan 430070, China
| | - Xinya Wu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University (HZAU), Wuhan 430070, China
- Potato Engineering and Technology Research Center of Hubei Province (HZAU), Wuhan 430070, China
- Hubei Hongshan Laboratory (HZAU), Wuhan 430070, China
| | - Yetong Qi
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University (HZAU), Wuhan 430070, China
- Potato Engineering and Technology Research Center of Hubei Province (HZAU), Wuhan 430070, China
- Hubei Hongshan Laboratory (HZAU), Wuhan 430070, China
| | - Hongjun Li
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University (HZAU), Wuhan 430070, China
- Potato Engineering and Technology Research Center of Hubei Province (HZAU), Wuhan 430070, China
- Hubei Hongshan Laboratory (HZAU), Wuhan 430070, China
| | - Jiahui Nie
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University (HZAU), Wuhan 430070, China
- Potato Engineering and Technology Research Center of Hubei Province (HZAU), Wuhan 430070, China
- Hubei Hongshan Laboratory (HZAU), Wuhan 430070, China
| | - Zhu Yang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University (HZAU), Wuhan 430070, China
- Potato Engineering and Technology Research Center of Hubei Province (HZAU), Wuhan 430070, China
- Hubei Hongshan Laboratory (HZAU), Wuhan 430070, China
| | - Zhendong Tian
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University (HZAU), Wuhan 430070, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Wuhan 430070, China
- Potato Engineering and Technology Research Center of Hubei Province (HZAU), Wuhan 430070, China
- Hubei Hongshan Laboratory (HZAU), Wuhan 430070, China
| |
Collapse
|
2
|
Muti RM, Barrett CF, Sinn BT. Evolution of Whirly1 in the angiosperms: sequence, splicing, and expression in a clade of early transitional mycoheterotrophic orchids. FRONTIERS IN PLANT SCIENCE 2024; 15:1241515. [PMID: 39006962 PMCID: PMC11239579 DOI: 10.3389/fpls.2024.1241515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 06/07/2024] [Indexed: 07/16/2024]
Abstract
The plastid-targeted transcription factor Whirly1 (WHY1) has been implicated in chloroplast biogenesis, plastid genome stability, and fungal defense response, which together represent characteristics of interest for the study of autotrophic losses across the angiosperms. While gene loss in the plastid and nuclear genomes has been well studied in mycoheterotrophic plants, the evolution of the molecular mechanisms impacting genome stability is completely unknown. Here, we characterize the evolution of WHY1 in four early transitional mycoheterotrophic orchid species in the genus Corallorhiza by synthesizing the results of phylogenetic, transcriptomic, and comparative genomic analyses with WHY1 genomic sequences sampled from 21 orders of angiosperms. We found an increased number of non-canonical WHY1 isoforms assembled from all but the greenest Corallorhiza species, including intron retention in some isoforms. Within Corallorhiza, phylotranscriptomic analyses revealed the presence of tissue-specific differential expression of WHY1 in only the most photosynthetically capable species and a coincident increase in the number of non-canonical WHY1 isoforms assembled from fully mycoheterotrophic species. Gene- and codon-level tests of WHY1 selective regimes did not infer significant signal of either relaxed selection or episodic diversifying selection in Corallorhiza but did so for relaxed selection in the late-stage full mycoheterotrophic orchids Epipogium aphyllum and Gastrodia elata. Additionally, nucleotide substitutions that most likely impact the function of WHY1, such as nonsense mutations, were only observed in late-stage mycoheterotrophs. We propose that our findings suggest that splicing and expression changes may precede the selective shifts we inferred for late-stage mycoheterotrophic species, which therefore does not support a primary role for WHY1 in the transition to mycoheterotrophy in the Orchidaceae. Taken together, this study provides the most comprehensive view of WHY1 evolution across the angiosperms to date.
Collapse
Affiliation(s)
- Rachel M. Muti
- Department of Biology and Earth Science, Otterbein University, Westerville, OH, United States
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA, United States
| | - Craig F. Barrett
- Department of Biology, West Virginia University, Morgantown, WV, United States
| | - Brandon T. Sinn
- Department of Biology and Earth Science, Otterbein University, Westerville, OH, United States
- Faculty of Biology, University of Latvia, Riga, Latvia
| |
Collapse
|
3
|
Ballabani G, Forough M, Kessler F, Shanmugabalaji V. The journey of preproteins across the chloroplast membrane systems. Front Physiol 2023; 14:1213866. [PMID: 37324391 PMCID: PMC10267391 DOI: 10.3389/fphys.2023.1213866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 05/22/2023] [Indexed: 06/17/2023] Open
Abstract
The photosynthetic capacity of chloroplasts is vital for autotrophic growth in algae and plants. The origin of the chloroplast has been explained by the endosymbiotic theory that proposes the engulfment of a cyanobacterium by an ancestral eukaryotic cell followed by the transfer of many cyanobacterial genes to the host nucleus. As a result of the gene transfer, the now nuclear-encoded proteins acquired chloroplast targeting peptides (known as transit peptides; transit peptide) and are translated as preproteins in the cytosol. Transit peptides contain specific motifs and domains initially recognized by cytosolic factors followed by the chloroplast import components at the outer and inner envelope of the chloroplast membrane. Once the preprotein emerges on the stromal side of the chloroplast protein import machinery, the transit peptide is cleaved by stromal processing peptidase. In the case of thylakoid-localized proteins, cleavage of the transit peptides may expose a second targeting signal guiding the protein to the thylakoid lumen or allow insertion into the thylakoid membrane by internal sequence information. This review summarizes the common features of targeting sequences and describes their role in routing preproteins to and across the chloroplast envelope as well as the thylakoid membrane and lumen.
Collapse
Affiliation(s)
| | | | - Felix Kessler
- *Correspondence: Felix Kessler, ; Venkatasalam Shanmugabalaji,
| | | |
Collapse
|
4
|
Caspari OD, Garrido C, Law CO, Choquet Y, Wollman FA, Lafontaine I. Converting antimicrobial into targeting peptides reveals key features governing protein import into mitochondria and chloroplasts. PLANT COMMUNICATIONS 2023:100555. [PMID: 36733255 PMCID: PMC10363480 DOI: 10.1016/j.xplc.2023.100555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/18/2023] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
We asked what peptide features govern targeting to the mitochondria versus the chloroplast, using antimicrobial peptides as a starting point. This approach was inspired by the endosymbiotic hypothesis that organelle-targeting peptides derive from antimicrobial amphipathic peptides delivered by the host cell, to which organelle progenitors became resistant. To explore the molecular changes required to convert antimicrobial into targeting peptides, we expressed a set of 13 antimicrobial peptides in Chlamydomonas reinhardtii. Peptides were systematically modified to test distinctive features of mitochondrion- and chloroplast-targeting peptides, and we assessed their targeting potential by following the intracellular localization and maturation of a Venus fluorescent reporter used as a cargo protein. Mitochondrial targeting can be achieved by some unmodified antimicrobial peptide sequences. Targeting to both organelles is improved by replacing lysines with arginines. Chloroplast targeting is enabled by the presence of flanking unstructured sequences, additional constraints consistent with chloroplast endosymbiosis having occurred in a cell that already contained mitochondria. If indeed targeting peptides evolved from antimicrobial peptides, then required modifications imply a temporal evolutionary scenario with an early exchange of cationic residues and a late acquisition of chloroplast-specific motifs.
Collapse
Affiliation(s)
- Oliver D Caspari
- UMR7141 (CNRS/Sorbonne Université), Institut de Biologie Physico-Chimique, 13 Rue Pierre et Marie Curie, 75005 Paris, France.
| | - Clotilde Garrido
- UMR7141 (CNRS/Sorbonne Université), Institut de Biologie Physico-Chimique, 13 Rue Pierre et Marie Curie, 75005 Paris, France
| | - Chris O Law
- Centre for Microscopy and Cellular Imaging, Biology Department Loyola Campus of Concordia University, 7141 Sherbrooke W., Montréal, QC H4B 1R6, Canada
| | - Yves Choquet
- UMR7141 (CNRS/Sorbonne Université), Institut de Biologie Physico-Chimique, 13 Rue Pierre et Marie Curie, 75005 Paris, France
| | - Francis-André Wollman
- UMR7141 (CNRS/Sorbonne Université), Institut de Biologie Physico-Chimique, 13 Rue Pierre et Marie Curie, 75005 Paris, France
| | - Ingrid Lafontaine
- UMR7141 (CNRS/Sorbonne Université), Institut de Biologie Physico-Chimique, 13 Rue Pierre et Marie Curie, 75005 Paris, France.
| |
Collapse
|
5
|
Caspari OD. Transit Peptides Often Require Downstream Unstructured Sequence for Efficient Chloroplast Import in Chlamydomonas reinhardtii. FRONTIERS IN PLANT SCIENCE 2022; 13:825797. [PMID: 35646025 PMCID: PMC9133816 DOI: 10.3389/fpls.2022.825797] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 04/27/2022] [Indexed: 06/15/2023]
Abstract
The N-terminal sequence stretch that defines subcellular targeting for most nuclear encoded chloroplast proteins is usually considered identical to the sequence that is cleaved upon import. Yet here this study shows that for eight out of ten tested Chlamydomonas chloroplast transit peptides, significant additional sequence stretches past the cleavage site are required to enable efficient chloroplast import of heterologous cargo proteins. Analysis of Chlamydomonas cTPs with known cleavage sites and replacements of native post-cleavage residues with alternative sequences points to a role for unstructured sequence at mature protein N-termini.
Collapse
|
6
|
Williams AM, Carter OG, Forsythe ES, Mendoza HK, Sloan DB. Gene duplication and rate variation in the evolution of plastid ACCase and Clp genes in angiosperms. Mol Phylogenet Evol 2022; 168:107395. [PMID: 35033670 PMCID: PMC9673162 DOI: 10.1016/j.ympev.2022.107395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 11/16/2021] [Accepted: 12/13/2021] [Indexed: 11/19/2022]
Abstract
While the chloroplast (plastid) is known for its role in photosynthesis, it is also involved in many other metabolic pathways essential for plant survival. As such, plastids contain an extensive suite of enzymes required for non-photosynthetic processes. The evolution of the associated genes has been especially dynamic in flowering plants (angiosperms), including examples of gene duplication and extensive rate variation. We examined the role of ongoing gene duplication in two key plastid enzymes, the acetyl-CoA carboxylase (ACCase) and the caseinolytic protease (Clp), responsible for fatty acid biosynthesis and protein turnover, respectively. In plants, there are two ACCase complexes-a homomeric version present in the cytosol and a heteromeric version present in the plastid. Duplications of the nuclear-encoded homomeric ACCase gene and retargeting of one resultant protein to the plastid have been previously reported in multiple species. We find that these retargeted homomeric ACCase proteins exhibit elevated rates of sequence evolution, consistent with neofunctionalization and/or relaxation of selection. The plastid Clp complex catalytic core is composed of nine paralogous proteins that arose via ancient gene duplication in the cyanobacterial/plastid lineage. We show that further gene duplication occurred more recently in the nuclear-encoded core subunits of this complex, yielding additional paralogs in many species of angiosperms. Moreover, in six of eight cases, subunits that have undergone recent duplication display increased rates of sequence evolution relative to those that have remained single copy. We also compared substitution patterns between pairs of Clp core paralogs to gain insight into post-duplication evolutionary routes. These results show that gene duplication and rate variation continue to shape the plastid proteome.
Collapse
Affiliation(s)
- Alissa M Williams
- Department of Biology, Colorado State University, Fort Collins, CO 80523, United States; Program in Cell and Molecular Biology, Colorado State University, Fort Collins, CO 80523, United States.
| | - Olivia G Carter
- Department of Biology, Colorado State University, Fort Collins, CO 80523, United States
| | - Evan S Forsythe
- Department of Biology, Colorado State University, Fort Collins, CO 80523, United States
| | - Hannah K Mendoza
- Department of Biology, Colorado State University, Fort Collins, CO 80523, United States
| | - Daniel B Sloan
- Department of Biology, Colorado State University, Fort Collins, CO 80523, United States
| |
Collapse
|
7
|
New Insights into the Chloroplast Outer Membrane Proteome and Associated Targeting Pathways. Int J Mol Sci 2022; 23:ijms23031571. [PMID: 35163495 PMCID: PMC8836251 DOI: 10.3390/ijms23031571] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/24/2022] [Accepted: 01/27/2022] [Indexed: 12/04/2022] Open
Abstract
Plastids are a dynamic class of organelle in plant cells that arose from an ancient cyanobacterial endosymbiont. Over the course of evolution, most genes encoding plastid proteins were transferred to the nuclear genome. In parallel, eukaryotic cells evolved a series of targeting pathways and complex proteinaceous machinery at the plastid surface to direct these proteins back to their target organelle. Chloroplasts are the most well-characterized plastids, responsible for photosynthesis and other important metabolic functions. The biogenesis and function of chloroplasts rely heavily on the fidelity of intracellular protein trafficking pathways. Therefore, understanding these pathways and their regulation is essential. Furthermore, the chloroplast outer membrane proteome remains relatively uncharted territory in our understanding of protein targeting. Many key players in the cytosol, receptors at the organelle surface, and insertases that facilitate insertion into the chloroplast outer membrane remain elusive for this group of proteins. In this review, we summarize recent advances in the understanding of well-characterized chloroplast outer membrane protein targeting pathways as well as provide new insights into novel targeting signals and pathways more recently identified using a bioinformatic approach. As a result of our analyses, we expand the known number of chloroplast outer membrane proteins from 117 to 138.
Collapse
|
8
|
Heidorn-Czarna M, Maziak A, Janska H. Protein Processing in Plant Mitochondria Compared to Yeast and Mammals. FRONTIERS IN PLANT SCIENCE 2022; 13:824080. [PMID: 35185991 PMCID: PMC8847149 DOI: 10.3389/fpls.2022.824080] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 01/12/2022] [Indexed: 05/02/2023]
Abstract
Limited proteolysis, called protein processing, is an essential post-translational mechanism that controls protein localization, activity, and in consequence, function. This process is prevalent for mitochondrial proteins, mainly synthesized as precursor proteins with N-terminal sequences (presequences) that act as targeting signals and are removed upon import into the organelle. Mitochondria have a distinct and highly conserved proteolytic system that includes proteases with sole function in presequence processing and proteases, which show diverse mitochondrial functions with limited proteolysis as an additional one. In virtually all mitochondria, the primary processing of N-terminal signals is catalyzed by the well-characterized mitochondrial processing peptidase (MPP). Subsequently, a second proteolytic cleavage occurs, leading to more stabilized residues at the newly formed N-terminus. Lately, mitochondrial proteases, intermediate cleavage peptidase 55 (ICP55) and octapeptidyl protease 1 (OCT1), involved in proteolytic cleavage after MPP and their substrates have been described in the plant, yeast, and mammalian mitochondria. Mitochondrial proteins can also be processed by removing a peptide from their N- or C-terminus as a maturation step during insertion into the membrane or as a regulatory mechanism in maintaining their function. This type of limited proteolysis is characteristic for processing proteases, such as IMP and rhomboid proteases, or the general mitochondrial quality control proteases ATP23, m-AAA, i-AAA, and OMA1. Identification of processing protease substrates and defining their consensus cleavage motifs is now possible with the help of large-scale quantitative mass spectrometry-based N-terminomics, such as combined fractional diagonal chromatography (COFRADIC), charge-based fractional diagonal chromatography (ChaFRADIC), or terminal amine isotopic labeling of substrates (TAILS). This review summarizes the current knowledge on the characterization of mitochondrial processing peptidases and selected N-terminomics techniques used to uncover protease substrates in the plant, yeast, and mammalian mitochondria.
Collapse
|
9
|
Jeong J, Hwang I, Lee DW. Functional Organization of Sequence Motifs in Diverse Transit Peptides of Chloroplast Proteins. Front Physiol 2021; 12:795156. [PMID: 34880786 PMCID: PMC8645953 DOI: 10.3389/fphys.2021.795156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 10/28/2021] [Indexed: 11/17/2022] Open
Abstract
Although the chloroplasts in plants are characterized by an inherent genome, the chloroplast proteome is composed of proteins encoded by not only the chloroplast genome but also the nuclear genome. Nuclear-encoded chloroplast proteins are synthesized on cytosolic ribosomes and post-translationally targeted to the chloroplasts. In the latter process, an N-terminal cleavable transit peptide serves as a targeting signal required for the import of nuclear-encoded chloroplast interior proteins. This import process is mediated via an interaction between the sequence motifs in transit peptides and the components of the TOC/TIC (translocon at the outer/inner envelope of chloroplasts) translocons. Despite a considerable diversity in primary structures, several common features have been identified among transit peptides, including N-terminal moderate hydrophobicity, multiple proline residues dispersed throughout the transit peptide, preferential usage of basic residues over acidic residues, and an absence of N-terminal arginine residues. In this review, we will recapitulate and discuss recent progress in our current understanding of the functional organization of sequence elements commonly present in diverse transit peptides, which are essential for the multi-step import of chloroplast proteins.
Collapse
Affiliation(s)
- Jinseung Jeong
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju, South Korea
| | - Inhwan Hwang
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, South Korea
| | - Dong Wook Lee
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju, South Korea.,Department of Bioenergy Science and Technology, Chonnam National University, Gwangju, South Korea
| |
Collapse
|
10
|
Gross LE, Klinger A, Spies N, Ernst T, Flinner N, Simm S, Ladig R, Bodensohn U, Schleiff E. Insertion of plastidic β-barrel proteins into the outer envelopes of plastids involves an intermembrane space intermediate formed with Toc75-V/OEP80. THE PLANT CELL 2021; 33:1657-1681. [PMID: 33624803 PMCID: PMC8254496 DOI: 10.1093/plcell/koab052] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/03/2021] [Indexed: 06/12/2023]
Abstract
The insertion of organellar membrane proteins with the correct topology requires the following: First, the proteins must contain topogenic signals for translocation across and insertion into the membrane. Second, proteinaceous complexes in the cytoplasm, membrane, and lumen of organelles are required to drive this process. Many complexes required for the intracellular distribution of membrane proteins have been described, but the signals and components required for the insertion of plastidic β-barrel-type proteins into the outer membrane are largely unknown. The discovery of common principles is difficult, as only a few plastidic β-barrel proteins exist. Here, we provide evidence that the plastidic outer envelope β-barrel proteins OEP21, OEP24, and OEP37 from pea (Pisum sativum) and Arabidopsis thaliana contain information defining the topology of the protein. The information required for the translocation of pea proteins across the outer envelope membrane is present within the six N-terminal β-strands. This process requires the action of translocon of the outer chloroplast (TOC) membrane. After translocation into the intermembrane space, β-barrel proteins interact with TOC75-V, as exemplified by OEP37 and P39, and are integrated into the membrane. The membrane insertion of plastidic β-barrel proteins is affected by mutation of the last β-strand, suggesting that this strand contributes to the insertion signal. These findings shed light on the elements and complexes involved in plastidic β-barrel protein import.
Collapse
Affiliation(s)
- Lucia E Gross
- Department of Molecular Cell Biology of Plants, Goethe University, Max-von-Laue Str. 9; D-60438 Frankfurt, Germany
| | - Anna Klinger
- Department of Molecular Cell Biology of Plants, Goethe University, Max-von-Laue Str. 9; D-60438 Frankfurt, Germany
| | - Nicole Spies
- Department of Molecular Cell Biology of Plants, Goethe University, Max-von-Laue Str. 9; D-60438 Frankfurt, Germany
| | - Theresa Ernst
- Department of Molecular Cell Biology of Plants, Goethe University, Max-von-Laue Str. 9; D-60438 Frankfurt, Germany
| | - Nadine Flinner
- Department of Molecular Cell Biology of Plants, Goethe University, Max-von-Laue Str. 9; D-60438 Frankfurt, Germany
| | - Stefan Simm
- Department of Molecular Cell Biology of Plants, Goethe University, Max-von-Laue Str. 9; D-60438 Frankfurt, Germany
- Frankfurt Institute for Advanced Studies, D-60438 Frankfurt, Germany
| | - Roman Ladig
- Department of Molecular Cell Biology of Plants, Goethe University, Max-von-Laue Str. 9; D-60438 Frankfurt, Germany
| | - Uwe Bodensohn
- Department of Molecular Cell Biology of Plants, Goethe University, Max-von-Laue Str. 9; D-60438 Frankfurt, Germany
| | - Enrico Schleiff
- Department of Molecular Cell Biology of Plants, Goethe University, Max-von-Laue Str. 9; D-60438 Frankfurt, Germany
- Frankfurt Institute for Advanced Studies, D-60438 Frankfurt, Germany
| |
Collapse
|
11
|
Ma SH, Kim HM, Park SH, Park SY, Mai TD, Do JH, Koo Y, Joung YH. The ten amino acids of the oxygen-evolving enhancer of tobacco is sufficient as the peptide residues for protein transport to the chloroplast thylakoid. PLANT MOLECULAR BIOLOGY 2021; 105:513-523. [PMID: 33393067 PMCID: PMC7892526 DOI: 10.1007/s11103-020-01106-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 12/10/2020] [Indexed: 06/12/2023]
Abstract
KEY MESSAGE The thylakoid transit peptide of tobacco oxygen-evolving enhancer protein contains a minimal ten amino acid sequences for thylakoid lumen transports. This ten amino acids do not contain twin-arginine, which is required for typical chloroplast lumen translocation. Chloroplasts are intracellular organelles responsible for photosynthesis to produce organic carbon for all organisms. Numerous proteins must be transported from the cytosol to chloroplasts to support photosynthesis. This transport is facilitated by chloroplast transit peptides (TPs). Four chloroplast thylakoid lumen TPs were isolated from Nicotiana tabacum and were functionally analyzed as thylakoid lumen TPs. Typical chloroplast stroma-transit peptides and thylakoid lumen transit peptides (tTPs) are found in N. tabacum transit peptides (NtTPs) and the functions of these peptides are confirmed with TP-GFP fusion proteins under fluorescence microscopy and chloroplast fractionation, followed by Western blot analysis. During the functional analysis of tTPs, we uncovered the minimum 10 amino acid sequence is sufficient for thylakoid lumen transport. These ten amino acids can efficiently translocate GFP protein, even if they do not contain the twin-arginine residues required for the twin-arginine translocation (Tat) pathway, which is a typical thylakoid lumen transport. Further, thylakoid lumen transporting processes through the Tat pathway was examined by analyzing tTP sequence functions and we demonstrate that the importance of hydrophobic core for the tTP cleavage and target protein translocation.
Collapse
Affiliation(s)
- Sang Hoon Ma
- School of Biological Science and Technology, Chonnam National University, Gwangju, 61186, South Korea
| | - Hyun Min Kim
- School of Biological Science and Technology, Chonnam National University, Gwangju, 61186, South Korea
| | - Se Hee Park
- School of Biological Science and Technology, Chonnam National University, Gwangju, 61186, South Korea
| | - Seo Young Park
- School of Biological Science and Technology, Chonnam National University, Gwangju, 61186, South Korea
| | - Thanh Dat Mai
- School of Biological Science and Technology, Chonnam National University, Gwangju, 61186, South Korea
| | - Ju Hui Do
- School of Biological Science and Technology, Chonnam National University, Gwangju, 61186, South Korea
| | - Yeonjong Koo
- Department of Agricultural Chemistry, Chonnam National University, Gwangju, 61186, South Korea.
| | - Young Hee Joung
- School of Biological Science and Technology, Chonnam National University, Gwangju, 61186, South Korea.
| |
Collapse
|
12
|
Diederichs KA, Buchanan SK, Botos I. Building Better Barrels - β-barrel Biogenesis and Insertion in Bacteria and Mitochondria. J Mol Biol 2021; 433:166894. [PMID: 33639212 PMCID: PMC8292188 DOI: 10.1016/j.jmb.2021.166894] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 02/18/2021] [Accepted: 02/18/2021] [Indexed: 01/20/2023]
Abstract
β-barrel proteins are folded and inserted into outer membranes by multi-subunit protein complexes that are conserved across different types of outer membranes. In Gram-negative bacteria this complex is the barrel-assembly machinery (BAM), in mitochondria it is the sorting and assembly machinery (SAM) complex, and in chloroplasts it is the outer envelope protein Oep80. Mitochondrial β-barrel precursor proteins are translocated from the cytoplasm to the intermembrane space by the translocase of the outer membrane (TOM) complex, and stabilized by molecular chaperones before interaction with the assembly machinery. Outer membrane bacterial BamA interacts with four periplasmic accessory proteins, whereas mitochondrial Sam50 interacts with two cytoplasmic accessory proteins. Despite these major architectural differences between BAM and SAM complexes, their core proteins, BamA and Sam50, seem to function the same way. Based on the new SAM complex structures, we propose that the mitochondrial β-barrel folding mechanism follows the budding model with barrel-switching aiding in the release of new barrels. We also built a new molecular model for Tom22 interacting with Sam37 to identify regions that could mediate TOM-SAM supercomplex formation.
Collapse
Affiliation(s)
- Kathryn A Diederichs
- Laboratory of Molecular Biology, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Susan K Buchanan
- Laboratory of Molecular Biology, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Istvan Botos
- Laboratory of Molecular Biology, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA.
| |
Collapse
|
13
|
Imai K, Nakai K. Tools for the Recognition of Sorting Signals and the Prediction of Subcellular Localization of Proteins From Their Amino Acid Sequences. Front Genet 2020; 11:607812. [PMID: 33324450 PMCID: PMC7723863 DOI: 10.3389/fgene.2020.607812] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 11/03/2020] [Indexed: 12/13/2022] Open
Abstract
At the time of translation, nascent proteins are thought to be sorted into their final subcellular localization sites, based on the part of their amino acid sequences (i.e., sorting or targeting signals). Thus, it is interesting to computationally recognize these signals from the amino acid sequences of any given proteins and to predict their final subcellular localization with such information, supplemented with additional information (e.g., k-mer frequency). This field has a long history and many prediction tools have been released. Even in this era of proteomic atlas at the single-cell level, researchers continue to develop new algorithms, aiming at accessing the impact of disease-causing mutations/cell type-specific alternative splicing, for example. In this article, we overview the entire field and discuss its future direction.
Collapse
Affiliation(s)
- Kenichiro Imai
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan
| | - Kenta Nakai
- The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
14
|
Eseverri Á, Baysal C, Medina V, Capell T, Christou P, Rubio LM, Caro E. Transit Peptides From Photosynthesis-Related Proteins Mediate Import of a Marker Protein Into Different Plastid Types and Within Different Species. FRONTIERS IN PLANT SCIENCE 2020; 11:560701. [PMID: 33101328 PMCID: PMC7545105 DOI: 10.3389/fpls.2020.560701] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 09/07/2020] [Indexed: 06/01/2023]
Abstract
Nucleus-encoded plastid proteins are synthesized as precursors with N-terminal targeting signals called transit peptides (TPs), which mediate interactions with the translocon complexes at the outer (TOC) and inner (TIC) plastid membranes. These complexes exist in multiple isoforms in higher plants and show differential specificity and tissue abundance. While some show specificity for photosynthesis-related precursor proteins, others distinctly recognize nonphotosynthetic and housekeeping precursor proteins. Here we used TPs from four Arabidopsis thaliana proteins, three related to photosynthesis (chlorophyll a/b binding protein, Rubisco activase) and photo-protection (tocopherol cyclase) and one involved in the assimilation of ammonium into amino-acids, and whose expression is most abundant in the root (ferredoxin dependent glutamate synthase 2), to determine whether they were able to mediate import of a nuclear-encoded marker protein into plastids of different tissues of a dicot and a monocot species. In A. thaliana, import and processing efficiency was high in all cases, while TP from the rice Rubisco small chain 1, drove very low import in Arabidopsis tissues. Noteworthy, our results show that Arabidopsis photosynthesis TPs also mediate plastid import in rice callus, and in leaf and root tissues with almost a 100% efficiency, providing new biotechnological tools for crop improvement strategies based on recombinant protein accumulation in plastids by the expression of nuclear-encoded transgenes.
Collapse
Affiliation(s)
- Álvaro Eseverri
- Centre for Plant Biotechnology and Genomics, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Pozuelo de Alarcón, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain
| | - Can Baysal
- Department of Plant Production and Forestry Science, University of Lleida-Agrotecnio Center, Lleida, Spain
| | - Vicente Medina
- Department of Plant Production and Forestry Science, University of Lleida-Agrotecnio Center, Lleida, Spain
| | - Teresa Capell
- Department of Plant Production and Forestry Science, University of Lleida-Agrotecnio Center, Lleida, Spain
| | - Paul Christou
- Department of Plant Production and Forestry Science, University of Lleida-Agrotecnio Center, Lleida, Spain
- ICREA, Catalan Institute for Research and Advanced Studies, Barcelona, Spain
| | - Luis M. Rubio
- Centre for Plant Biotechnology and Genomics, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Pozuelo de Alarcón, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain
| | - Elena Caro
- Centre for Plant Biotechnology and Genomics, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Pozuelo de Alarcón, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain
| |
Collapse
|
15
|
Christian RW, Hewitt SL, Nelson G, Roalson EH, Dhingra A. Plastid transit peptides-where do they come from and where do they all belong? Multi-genome and pan-genomic assessment of chloroplast transit peptide evolution. PeerJ 2020; 8:e9772. [PMID: 32913678 PMCID: PMC7456531 DOI: 10.7717/peerj.9772] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 07/30/2020] [Indexed: 01/22/2023] Open
Abstract
Subcellular relocalization of proteins determines an organism's metabolic repertoire and thereby its survival in unique evolutionary niches. In plants, the plastid and its various morphotypes import a large and varied number of nuclear-encoded proteins to orchestrate vital biochemical reactions in a spatiotemporal context. Recent comparative genomics analysis and high-throughput shotgun proteomics data indicate that there are a large number of plastid-targeted proteins that are either semi-conserved or non-conserved across different lineages. This implies that homologs are differentially targeted across different species, which is feasible only if proteins have gained or lost plastid targeting peptides during evolution. In this study, a broad, multi-genome analysis of 15 phylogenetically diverse genera and in-depth analyses of pangenomes from Arabidopsis and Brachypodium were performed to address the question of how proteins acquire or lose plastid targeting peptides. The analysis revealed that random insertions or deletions were the dominant mechanism by which novel transit peptides are gained by proteins. While gene duplication was not a strict requirement for the acquisition of novel subcellular targeting, 40% of novel plastid-targeted genes were found to be most closely related to a sequence within the same genome, and of these, 30.5% resulted from alternative transcription or translation initiation sites. Interestingly, analysis of the distribution of amino acids in the transit peptides of known and predicted chloroplast-targeted proteins revealed monocot and eudicot-specific preferences in residue distribution.
Collapse
Affiliation(s)
- Ryan W. Christian
- Molecular Plant Sciences, Washington State University, Pullman, WA, USA
| | - Seanna L. Hewitt
- Molecular Plant Sciences, Washington State University, Pullman, WA, USA
| | - Grant Nelson
- Molecular Plant Sciences, Washington State University, Pullman, WA, USA
| | - Eric H. Roalson
- Molecular Plant Sciences, Washington State University, Pullman, WA, USA
- School of Biological Sciences, Washington State University, Pullman, WA, USA
| | - Amit Dhingra
- Molecular Plant Sciences, Washington State University, Pullman, WA, USA
- Department of Horticulture, Washington State University, Pullman, WA, USA
| |
Collapse
|
16
|
Adegbaju MS, Morenikeji OB, Borrego EJ, Hudson AO, Thomas BN. Differential Evolution of α-Glucan Water Dikinase (GWD) in Plants. PLANTS 2020; 9:plants9091101. [PMID: 32867090 PMCID: PMC7569903 DOI: 10.3390/plants9091101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/13/2020] [Accepted: 08/22/2020] [Indexed: 11/16/2022]
Abstract
The alpha-glucan water dikinase (GWD) enzyme catalyzes starch phosphorylation, an integral step in transitory starch degradation. The high phosphate content in stored starch has great industrial value, due to its physio–chemical properties making it more versatile, although the phosphate content of stored starch varies depending on the botanical source. In this study, we used various computational approaches to gain insights into the evolution of the GWD protein in 48 plant species with possible roles in enzyme function and alteration of phosphate content in their stored starch. Our analyses identified deleterious mutations, particularly in the highly conserved 5 aromatic amino acid residues in the dual tandem carbohydrate binding modules (CBM-45) of GWD protein in C. zofingiensis, G. hirsutum, A. protothecoides, P. miliaceum, and C. reinhardtii. These findings will inform experimental designs for simultaneous repression of genes coding for GWD and the predicted interacting proteins to elucidate the role this enzyme plays in starch degradation. Our results reveal significant diversity in the evolution of GWD enzyme across plant species, which may be evolutionarily advantageous according to the varying needs for phosphorylated stored starch between plants and environments.
Collapse
Affiliation(s)
- Muyiwa S. Adegbaju
- Institute for Plant Biotechnology, Stellenbosch University, Stellenbosch 7600, South Africa;
| | - Olanrewaju B. Morenikeji
- Department of Biomedical Sciences, College of Health Science and Technology, Rochester Institute of Technology, Rochester, NY 14623, USA;
- Department of Biology, Hamilton College, Clinton, NY 14623, USA
| | - Eli J. Borrego
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, NY 14623, USA; (E.J.B.); (A.O.H.)
| | - André O. Hudson
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, NY 14623, USA; (E.J.B.); (A.O.H.)
| | - Bolaji N. Thomas
- Department of Biomedical Sciences, College of Health Science and Technology, Rochester Institute of Technology, Rochester, NY 14623, USA;
- Correspondence: ; Tel.: +1-(585)-475-6382; Fax: +1-(585)-475-5809
| |
Collapse
|
17
|
Evidence Supporting an Antimicrobial Origin of Targeting Peptides to Endosymbiotic Organelles. Cells 2020; 9:cells9081795. [PMID: 32731621 PMCID: PMC7463930 DOI: 10.3390/cells9081795] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/24/2020] [Accepted: 07/24/2020] [Indexed: 12/15/2022] Open
Abstract
Mitochondria and chloroplasts emerged from primary endosymbiosis. Most proteins of the endosymbiont were subsequently expressed in the nucleo-cytosol of the host and organelle-targeted via the acquisition of N-terminal presequences, whose evolutionary origin remains enigmatic. Using a quantitative assessment of their physico-chemical properties, we show that organelle targeting peptides, which are distinct from signal peptides targeting other subcellular compartments, group with a subset of antimicrobial peptides. We demonstrate that extant antimicrobial peptides target a fluorescent reporter to either the mitochondria or the chloroplast in the green alga Chlamydomonas reinhardtii and, conversely, that extant targeting peptides still display antimicrobial activity. Thus, we provide strong computational and functional evidence for an evolutionary link between organelle-targeting and antimicrobial peptides. Our results support the view that resistance of bacterial progenitors of organelles to the attack of host antimicrobial peptides has been instrumental in eukaryogenesis and in the emergence of photosynthetic eukaryotes.
Collapse
|
18
|
Silva N, Ivamoto-Suzuki ST, Camargo PO, Rosa RS, Pereira LFP, Domingues DS. Low-Copy Genes in Terpenoid Metabolism: The Evolution and Expression of MVK and DXR Genes in Angiosperms. PLANTS 2020; 9:plants9040525. [PMID: 32325804 PMCID: PMC7238024 DOI: 10.3390/plants9040525] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 04/10/2020] [Accepted: 04/15/2020] [Indexed: 11/16/2022]
Abstract
Terpenoids are a diverse class of metabolites that impact plant metabolism in response to environmental cues. They are synthesized either via a predominantly cytosolic (MVA) pathway or a plastidic pathway (MEP). In Arabidopsis, several enzymes from the MVA and MEP pathways are encoded by gene families, excluding MVK and DXR, which are single-copy genes. In this study, we assess the diversity, evolution and expression of DXR and MVK genes in selected angiosperms and Coffea arabica in particular. Evolutionary analysis revealed that DXR and MVK underwent purifying selection, but the selection effect for DXR was stronger than it was for MVK. Digital gene expression (DGE) profile analysis of six species revealed that expression levels of MVK in flowers and roots were high, whereas for DXR peak values were observed in leaves. In C. arabica, both genes were highly expressed in flowers, and CaDXR was upregulated in response to methyl jasmonate. C. arabica DGE data were validated by assessing gene expression in selected organs, and by plants treated with hexanoic acid (Hx) using RT-qPCR. MVK expression was upregulated in roots treated with Hx. CaDXR was downregulated in leaves by Hx treatment in a genotype-specific manner, indicating a differential response to priming.
Collapse
Affiliation(s)
- Natacha Silva
- Departamento de Biodiversidade, Instituto de Biociências, Universidade Estadual Paulista, UNESP, 13506-900 Rio Claro-SP, Brazil (S.T.I.-S.)
| | - Suzana Tiemi Ivamoto-Suzuki
- Departamento de Biodiversidade, Instituto de Biociências, Universidade Estadual Paulista, UNESP, 13506-900 Rio Claro-SP, Brazil (S.T.I.-S.)
| | - Paula Oliveira Camargo
- Departamento de Biodiversidade, Instituto de Biociências, Universidade Estadual Paulista, UNESP, 13506-900 Rio Claro-SP, Brazil (S.T.I.-S.)
| | - Raíssa Scalzoni Rosa
- Departamento de Biodiversidade, Instituto de Biociências, Universidade Estadual Paulista, UNESP, 13506-900 Rio Claro-SP, Brazil (S.T.I.-S.)
| | - Luiz Filipe Protasio Pereira
- Laboratório de Biotecnologia Vegetal, Empresa Brasileira de Pesquisa Agropecuária (Embrapa-Café), 86047-902 Londrina-PR, Brazil;
| | - Douglas Silva Domingues
- Departamento de Biodiversidade, Instituto de Biociências, Universidade Estadual Paulista, UNESP, 13506-900 Rio Claro-SP, Brazil (S.T.I.-S.)
- Correspondence: ; Tel.: +55-(19)-3526-4207
| |
Collapse
|
19
|
Abstract
The past several decades have witnessed tremendous growth in the protein targeting, transport and translocation field. Major advances were made during this time period. Now the molecular details of the targeting factors, receptors and the membrane channels that were envisioned in Blobel's Signal Hypothesis in the 1970s have been revealed by powerful structural methods. It is evident that there is a myriad of cytosolic and membrane associated systems that accurately sort and target newly synthesized proteins to their correct membrane translocases for membrane insertion or protein translocation. Here we will describe the common principles for protein transport in prokaryotes and eukaryotes.
Collapse
|
20
|
Cataldo VF, Arenas N, Salgado V, Camilo C, Ibáñez F, Agosin E. Heterologous production of the epoxycarotenoid violaxanthin in Saccharomyces cerevisiae. Metab Eng 2020; 59:53-63. [PMID: 32001334 DOI: 10.1016/j.ymben.2020.01.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 12/16/2019] [Accepted: 01/18/2020] [Indexed: 12/28/2022]
Abstract
Microbial production of carotenoids has mainly focused towards a few products, such as β-carotene, lycopene and astaxanthin. However, other less explored carotenoids, like violaxanthin, have also shown unique properties and promissory applications. Violaxanthin is a plant-derived epoxidated carotenoid with strong antioxidant activity and a key precursor of valuable compounds, such as fucoxanthin and β-damascenone. In this study, we report for the first time the heterologous production of epoxycarotenoids in yeast. We engineered the yeast Saccharomyces cerevisiae following multi-level strategies for the efficient accumulation of violaxanthin. Starting from a β-carotenogenic yeast strain, we first evaluated the performance of several β-carotene hydroxylases (CrtZ), and zeaxanthin epoxidases (ZEP) from different species, together with their respective N-terminal truncated variants. The combined expression of CrtZ from Pantoea ananatis and truncated ZEP of Haematococcus lacustris showed the best performance and led to a yield of 1.6 mg/gDCW of violaxanthin. Further improvement of the epoxidase activity was achieved by promoting the transfer of reducing equivalents to ZEP by expressing several redox partner systems. The co-expression of the plant truncated ferredoxin-3, and truncated root ferredoxin oxidoreductase-1 resulted in a 2.2-fold increase in violaxanthin yield (3.2 mg/gDCW). Finally, increasing gene copy number of carotenogenic genes enabled reaching a final production of 7.3 mg/gDCW in shake flask cultures and batch bioreactors, which is the highest yield of microbially produced violaxanthin reported to date.
Collapse
Affiliation(s)
- Vicente F Cataldo
- Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile, Postal Address: Av. Vicuña Mackenna 4860, 7820436, Santiago, Chile
| | - Natalia Arenas
- Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile, Postal Address: Av. Vicuña Mackenna 4860, 7820436, Santiago, Chile
| | - Valeria Salgado
- Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile, Postal Address: Av. Vicuña Mackenna 4860, 7820436, Santiago, Chile
| | - Conrado Camilo
- Centro de Aromas y Sabores, DICTUC S.A., Santiago, Chile, Postal Address: Av. Vicuña Mackenna 4860, 7820436, Santiago, Chile
| | - Francisco Ibáñez
- Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile, Postal Address: Av. Vicuña Mackenna 4860, 7820436, Santiago, Chile
| | - Eduardo Agosin
- Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile, Postal Address: Av. Vicuña Mackenna 4860, 7820436, Santiago, Chile; Centro de Aromas y Sabores, DICTUC S.A., Santiago, Chile, Postal Address: Av. Vicuña Mackenna 4860, 7820436, Santiago, Chile.
| |
Collapse
|
21
|
Chen L, Wang X, Wang L, Fang Y, Pan X, Gao X, Zhang W. Functional characterization of chloroplast transit peptide in the small subunit of Rubisco in maize. JOURNAL OF PLANT PHYSIOLOGY 2019; 237:12-20. [PMID: 30999073 DOI: 10.1016/j.jplph.2019.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 04/04/2019] [Accepted: 04/04/2019] [Indexed: 06/09/2023]
Abstract
Functions of domains or motifs, which are encoded by the transit peptide (TP) of the precursor of the small subunit of Rubisco (prSSU), have been investigated intensively in dicots. Functional characterization of the prSSU TP, however, is still understudied in maize. In this study, we found that the TP of maize prSSU1 did not function fully in chloroplast targeting in Arabidopsis or vice versa, indicating the divergent function of TPs in chloroplast targeting between maize and Arabidopsis. Through deletion or substitution assays, we found that the N-terminal region of maize or Arabidopsis prSSU1 was necessary and sufficient for importing specifically the fused-green fluorescent protein (GFP) into each corresponding chloroplast. Finally, we found that the first-five amino acids and MM motif in the N-terminal domain of the maize TP played an essential role in maize chloroplast targeting. Thus, our analyses demonstrate that the N-terminal domain of the prSSU1 TP is the key determinant in chloroplast targeting between maize and Arabidopsis. Our study highlights the unique properties of the maize prSSU1 TP in chloroplast targeting, thus helping to understand the role of N-terminal domain in chloroplast targeting across species. It will help to manipulate chloroplast transit peptides (cTPs) for crop bioengineering.
Collapse
Affiliation(s)
- Lifen Chen
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, JiangSu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu, 210095, China
| | - Ximeng Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, JiangSu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu, 210095, China
| | - Lei Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, JiangSu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu, 210095, China
| | - Yuan Fang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, JiangSu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu, 210095, China
| | - Xiucai Pan
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, JiangSu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu, 210095, China
| | - Xiquan Gao
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, JiangSu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu, 210095, China
| | - Wenli Zhang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, JiangSu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu, 210095, China.
| |
Collapse
|
22
|
Bölter B. En route into chloroplasts: preproteins' way home. PHOTOSYNTHESIS RESEARCH 2018; 138:263-275. [PMID: 29943212 DOI: 10.1007/s11120-018-0542-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 06/20/2018] [Indexed: 06/08/2023]
Abstract
Chloroplasts are the characteristic endosymbiotic organelles of plant cells which during the course of evolution lost most of their genetic information to the nucleus. Thus, they critically depend on the host cell for allocation of nearly their complete protein supply. This includes gene expression, translation, protein targeting, and transport-all of which need to be tightly regulated and perfectly coordinated to accommodate the cells' needs. To this end, multiple signaling pathways have been implemented that interchange information between the different cellular compartments. One of the most complex and energy consuming processes is the translocation of chloroplast-destined proteins into their target organelle. It is a concerted effort from chaperones, receptor proteins, channels, and regulatory elements to ensure correct targeting, efficient transport, and subsequent folding. Although we have discovered and learned a lot about protein import into chloroplasts in the last decades, there are still many open questions and debates about the roles of individual proteins as well as the mechanistic details. In this review, I will summarize and discuss the published data with a focus on the translocation complex in the chloroplast inner envelope membrane.
Collapse
Affiliation(s)
- Bettina Bölter
- Department Biologie I, Botanik, Ludwig-Maximilians-Universität, Planegg-Martinsried, Germany.
| |
Collapse
|
23
|
Savojardo C, Martelli PL, Fariselli P, Casadio R. SChloro: directing Viridiplantae proteins to six chloroplastic sub-compartments. Bioinformatics 2018; 33:347-353. [PMID: 28172591 PMCID: PMC5408801 DOI: 10.1093/bioinformatics/btw656] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 06/21/2016] [Accepted: 10/12/2016] [Indexed: 12/12/2022] Open
Abstract
Motivation Chloroplasts are organelles found in plants and involved in several important cell processes. Similarly to other compartments in the cell, chloroplasts have an internal structure comprising several sub-compartments, where different proteins are targeted to perform their functions. Given the relation between protein function and localization, the availability of effective computational tools to predict protein sub-organelle localizations is crucial for large-scale functional studies. Results In this paper we present SChloro, a novel machine-learning approach to predict protein sub-chloroplastic localization, based on targeting signal detection and membrane protein information. The proposed approach performs multi-label predictions discriminating six chloroplastic sub-compartments that include inner membrane, outer membrane, stroma, thylakoid lumen, plastoglobule and thylakoid membrane. In comparative benchmarks, the proposed method outperforms current state-of-the-art methods in both single- and multi-compartment predictions, with an overall multi-label accuracy of 74%. The results demonstrate the relevance of the approach that is eligible as a good candidate for integration into more general large-scale annotation pipelines of protein subcellular localization. Availability and Implementation The method is available as web server at http://schloro.biocomp.unibo.it Contact gigi@biocomp.unibo.it.
Collapse
Affiliation(s)
- Castrense Savojardo
- Biocomputing Group, BiGeA - CIG, Interdepartmental Center «Luigi Galvani» for Integrated Studies of Bioinformatics, Biophysics and Biocomplexity, University of Bologna, Bologna, Italy
| | - Pier Luigi Martelli
- Biocomputing Group, BiGeA - CIG, Interdepartmental Center «Luigi Galvani» for Integrated Studies of Bioinformatics, Biophysics and Biocomplexity, University of Bologna, Bologna, Italy
| | - Piero Fariselli
- Department of Comparative Biomedicine and Food Science (BCA), University of Padova, Padova, Italy
| | - Rita Casadio
- Biocomputing Group, BiGeA - CIG, Interdepartmental Center «Luigi Galvani» for Integrated Studies of Bioinformatics, Biophysics and Biocomplexity, University of Bologna, Bologna, Italy.,Interdepartmental Center «Giorgio Prodi» for Cancer Research, University of Bologna, Bologna, Italy
| |
Collapse
|
24
|
Yadav K, Patel P, Srivastava AK, Ganapathi TR. Overexpression of native ferritin gene MusaFer1 enhances iron content and oxidative stress tolerance in transgenic banana plants. PLoS One 2017; 12:e0188933. [PMID: 29190821 PMCID: PMC5708808 DOI: 10.1371/journal.pone.0188933] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 11/15/2017] [Indexed: 11/30/2022] Open
Abstract
Iron is an indispensable element for plant growth and defense and hence it is essential to improve the plant's ability to accumulate iron. Besides, it is also an important aspect for human health. In view of this, we attempted to increase the iron content in banana cultivar Rasthali using MusaFer1 as a candidate gene. Initially, the expression of all five genes of the MusaFer family (MusaFer1-5) was quantified under iron-excess and -deficient conditions. The supplementation of 250 and 350 μM iron enhanced expression of all MusaFer genes; however, MusaFer1 was increased maximally by 2- and 4- fold in leaves and roots respectively. Under iron deficient condition, all five MusaFer genes were downregulated, indicating their iron dependent regulation. In MusaFer1 overexpressing lines, iron content was increased by 2- and 3-fold in leaves and roots respectively, as compared with that of untransformed lines. The increased iron was mainly localized in the epidermal regions of petiole. The analysis of MusaFer1 promoter indicated that it might control the expression of iron metabolism related genes and also other genes of MusaFer family. MusaFer1 overexpression led to downregulated expression of MusaFer3, MusaFer4 and MusaFer5 in transgenic leaves which might be associated with the plant's compensatory mechanism in response to iron flux. Other iron metabolism genes like Ferric reductase (FRO), transporters (IRT, VIT and YSL) and chelators (NAS, DMAS and NAAT) were also differentially expressed in transgenic leaf and root, suggesting the multifaceted impact of MusaFer1 towards iron uptake and organ distribution. Additionally, MusaFer1 overexpression increased plant tolerance against methyl viologen and excess iron which was quantified in terms of photosynthetic efficiency and malondialdehyde content. Thus, the study not only broadens our understanding about iron metabolism but also highlights MusaFer1 as a suitable candidate gene for iron fortification in banana.
Collapse
Affiliation(s)
- Karuna Yadav
- Plant Cell Culture Technology Section, Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India
| | - Prashanti Patel
- Plant Cell Culture Technology Section, Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India
| | - Ashish Kumar Srivastava
- Plant Stress Physiology and Biotechnology Section, Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India
| | - T. R. Ganapathi
- Plant Cell Culture Technology Section, Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India
| |
Collapse
|
25
|
Massive Protein Import into the Early-Evolutionary-Stage Photosynthetic Organelle of the Amoeba Paulinella chromatophora. Curr Biol 2017; 27:2763-2773.e5. [DOI: 10.1016/j.cub.2017.08.010] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 07/12/2017] [Accepted: 08/03/2017] [Indexed: 01/03/2023]
|
26
|
The POTRA domains of Toc75 exhibit chaperone-like function to facilitate import into chloroplasts. Proc Natl Acad Sci U S A 2017; 114:E4868-E4876. [PMID: 28559331 DOI: 10.1073/pnas.1621179114] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Protein trafficking across membranes is an essential function in cells; however, the exact mechanism for how this occurs is not well understood. In the endosymbionts, mitochondria and chloroplasts, the vast majority of proteins are synthesized in the cytoplasm as preproteins and then imported into the organelles via specialized machineries. In chloroplasts, protein import is accomplished by the TOC (translocon on the outer chloroplast membrane) and TIC (translocon on the inner chloroplast membrane) machineries in the outer and inner envelope membranes, respectively. TOC mediates initial recognition of preproteins at the outer membrane and includes a core membrane channel, Toc75, and two receptor proteins, Toc33/34 and Toc159, each containing GTPase domains that control preprotein binding and translocation. Toc75 is predicted to have a β-barrel fold consisting of an N-terminal intermembrane space (IMS) domain and a C-terminal 16-stranded β-barrel domain. Here we report the crystal structure of the N-terminal IMS domain of Toc75 from Arabidopsis thaliana, revealing three tandem polypeptide transport-associated (POTRA) domains, with POTRA2 containing an additional elongated helix not observed previously in other POTRA domains. Functional studies show an interaction with the preprotein, preSSU, which is mediated through POTRA2-3. POTRA2-3 also was found to have chaperone-like activity in an insulin aggregation assay, which we propose facilitates preprotein import. Our data suggest a model in which the POTRA domains serve as a binding site for the preprotein as it emerges from the Toc75 channel and provide a chaperone-like activity to prevent misfolding or aggregation as the preprotein traverses the intermembrane space.
Collapse
|
27
|
An optimized transit peptide for effective targeting of diverse foreign proteins into chloroplasts in rice. Sci Rep 2017; 7:46231. [PMID: 28397859 PMCID: PMC5387683 DOI: 10.1038/srep46231] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 03/14/2017] [Indexed: 11/29/2022] Open
Abstract
Various chloroplast transit peptides (CTP) have been used to successfully target some foreign proteins into chloroplasts, but for other proteins these same CTPs have reduced localization efficiencies or fail completely. The underlying cause of the failures remains an open question, and more effective CTPs are needed. In this study, we initially observed that two E.coli enzymes, EcTSR and EcGCL, failed to be targeted into rice chloroplasts by the commonly-used rice rbcS transit peptide (rCTP) and were subsequently degraded. Further analyses revealed that the N-terminal unfolded region of cargo proteins is critical for their localization capability, and that a length of about 20 amino acids is required to attain the maximum localization efficiency. We considered that the unfolded region may alleviate the steric hindrance produced by the cargo protein, by functioning as a spacer to which cytosolic translocators can bind. Based on this inference, an optimized CTP, named RC2, was constructed. Analyses showed that RC2 can more effectively target diverse proteins, including EcTSR and EcGCL, into rice chloroplasts. Collectively, our results provide further insight into the mechanism of CTP-mediated chloroplastic localization, and more importantly, RC2 can be widely applied in future chloroplastic metabolic engineering, particularly for crop plants.
Collapse
|
28
|
Wimmer D, Bohnhorst P, Shekhar V, Hwang I, Offermann S. Transit peptide elements mediate selective protein targeting to two different types of chloroplasts in the single-cell C4 species Bienertia sinuspersici. Sci Rep 2017; 7:41187. [PMID: 28112241 PMCID: PMC5253730 DOI: 10.1038/srep41187] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 12/16/2016] [Indexed: 01/23/2023] Open
Abstract
Bienertia sinuspersici is a terrestrial plant that performs C4 photosynthesis within individual cells through operating a carbon concentrating mechanism between different subcellular domains including two types of chloroplasts. It is currently unknown how differentiation of two highly specialized chloroplasts within the same cell occurs as no similar cases have been reported. Here we show that this differentiation in photosynthetic cells of B. sinuspersici is enabled by a transit peptide (TP) mediated selective protein targeting mechanism. Mutations in the TPs cause loss of selectivity but not general loss of chloroplast import, indicating the mechanism operates by specifically blocking protein accumulation in one chloroplast type. Hybrid studies indicate that this selectivity is transferable to transit peptides of plants which perform C4 by cooperative function of chloroplasts between two photosynthetic cells. Codon swap experiments as well as introducing an artificial bait mRNA show that RNA affects are not crucial for the sorting process. In summary, our analysis shows how the mechanism of subcellular targeting to form two types of chloroplast within the same cell can be achieved. This information is not only crucial for understanding single-cell C4 photosynthesis; it provides new insights in control of subcellular protein targeting in cell biology.
Collapse
Affiliation(s)
- Diana Wimmer
- Institute for Botany, Leibniz University Hannover, Herrenhaeuser Strasse 2, Hannover 30419, Germany
| | - Philipp Bohnhorst
- Institute for Botany, Leibniz University Hannover, Herrenhaeuser Strasse 2, Hannover 30419, Germany
| | - Vinay Shekhar
- Faculty of Biology, Department Biology I – Botany, Ludwig-Maximilians-University Muenchen, Grosshaderner Strasse 2-4, 82152 Planegg-Martinsried, Germany
| | - Inhwan Hwang
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang 790–784, Korea
| | - Sascha Offermann
- Institute for Botany, Leibniz University Hannover, Herrenhaeuser Strasse 2, Hannover 30419, Germany
| |
Collapse
|
29
|
Sjuts I, Soll J, Bölter B. Import of Soluble Proteins into Chloroplasts and Potential Regulatory Mechanisms. FRONTIERS IN PLANT SCIENCE 2017; 8:168. [PMID: 28228773 PMCID: PMC5296341 DOI: 10.3389/fpls.2017.00168] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 01/26/2017] [Indexed: 05/20/2023]
Abstract
Chloroplasts originated from an endosymbiotic event in which a free-living cyanobacterium was engulfed by an ancestral eukaryotic host. During evolution the majority of the chloroplast genetic information was transferred to the host cell nucleus. As a consequence, proteins formerly encoded by the chloroplast genome are now translated in the cytosol and must be subsequently imported into the chloroplast. This process involves three steps: (i) cytosolic sorting procedures, (ii) binding to the designated receptor-equipped target organelle and (iii) the consecutive translocation process. During import, proteins have to overcome the two barriers of the chloroplast envelope, namely the outer envelope membrane (OEM) and the inner envelope membrane (IEM). In the majority of cases, this is facilitated by two distinct multiprotein complexes, located in the OEM and IEM, respectively, designated TOC and TIC. Plants are constantly exposed to fluctuating environmental conditions such as temperature and light and must therefore regulate protein composition within the chloroplast to ensure optimal functioning of elementary processes such as photosynthesis. In this review we will discuss the recent models of each individual import stage with regard to short-term strategies that plants might use to potentially acclimate to changes in their environmental conditions and preserve the chloroplast protein homeostasis.
Collapse
Affiliation(s)
- Inga Sjuts
- Department Biologie I-Botanik, Ludwig-Maximilians-UniversitätPlanegg-Martinsried, Germany
| | - Jürgen Soll
- Department Biologie I-Botanik, Ludwig-Maximilians-UniversitätPlanegg-Martinsried, Germany
- Munich Center for Integrated Protein Science CiPSM, Ludwig-Maximilians-UniversitätMunich, Germany
| | - Bettina Bölter
- Department Biologie I-Botanik, Ludwig-Maximilians-UniversitätPlanegg-Martinsried, Germany
- Munich Center for Integrated Protein Science CiPSM, Ludwig-Maximilians-UniversitätMunich, Germany
- *Correspondence: Bettina Bölter,
| |
Collapse
|
30
|
|
31
|
Wollman FA. An antimicrobial origin of transit peptides accounts for early endosymbiotic events. Traffic 2016; 17:1322-1328. [DOI: 10.1111/tra.12446] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 09/07/2016] [Accepted: 09/08/2016] [Indexed: 12/11/2022]
|
32
|
Holbrook K, Subramanian C, Chotewutmontri P, Reddick LE, Wright S, Zhang H, Moncrief L, Bruce BD. Functional Analysis of Semi-conserved Transit Peptide Motifs and Mechanistic Implications in Precursor Targeting and Recognition. MOLECULAR PLANT 2016; 9:1286-1301. [PMID: 27378725 DOI: 10.1016/j.molp.2016.06.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 05/13/2016] [Accepted: 06/07/2016] [Indexed: 05/17/2023]
Abstract
Over 95% of plastid proteins are nuclear-encoded as their precursors containing an N-terminal extension known as the transit peptide (TP). Although highly variable, TPs direct the precursors through a conserved, posttranslational mechanism involving translocons in the outer (TOC) and inner envelope (TOC). The organelle import specificity is mediated by one or more components of the Toc complex. However, the high TP diversity creates a paradox on how the sequences can be specifically recognized. An emerging model of TP design is that they contain multiple loosely conserved motifs that are recognized at different steps in the targeting and transport process. Bioinformatics has demonstrated that many TPs contain semi-conserved physicochemical motifs, termed FGLK. In order to characterize FGLK motifs in TP recognition and import, we have analyzed two well-studied TPs from the precursor of RuBisCO small subunit (SStp) and ferredoxin (Fdtp). Both SStp and Fdtp contain two FGLK motifs. Analysis of large set mutations (∼85) in these two motifs using in vitro, in organello, and in vivo approaches support a model in which the FGLK domains mediate interaction with TOC34 and possibly other TOC components. In vivo import analysis suggests that multiple FGLK motifs are functionally redundant. Furthermore, we discuss how FGLK motifs are required for efficient precursor protein import and how these elements may permit a convergent function of this highly variable class of targeting sequences.
Collapse
Affiliation(s)
- Kristen Holbrook
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Chitra Subramanian
- Graduate Program in Plant Physiology and Genetics, University of Tennessee, Knoxville, TN 37996, USA
| | | | - L Evan Reddick
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Sarah Wright
- Department of Botany, University of Tennessee, Knoxville, TN 37996, USA
| | - Huixia Zhang
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Lily Moncrief
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Barry D Bruce
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA; Graduate Program in Plant Physiology and Genetics, University of Tennessee, Knoxville, TN 37996, USA; Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN 37996, USA.
| |
Collapse
|
33
|
Chakraborty A. Understanding the biology of the Plasmodium falciparum apicoplast; an excellent target for antimalarial drug development. Life Sci 2016; 158:104-10. [DOI: 10.1016/j.lfs.2016.06.030] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 06/28/2016] [Accepted: 06/30/2016] [Indexed: 11/29/2022]
|
34
|
Petre B, Lorrain C, Saunders DG, Win J, Sklenar J, Duplessis S, Kamoun S. Rust fungal effectors mimic host transit peptides to translocate into chloroplasts. Cell Microbiol 2015; 18:453-65. [DOI: 10.1111/cmi.12530] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 09/22/2015] [Accepted: 09/29/2015] [Indexed: 02/06/2023]
Affiliation(s)
- Benjamin Petre
- The Sainsbury Laboratory; Norwich Research Park; Norwich NR4 7UH UK
- INRA, UMR 1136 Interactions Arbres/Microorganismes; Centre INRA Nancy Lorraine; Champenoux 54280 France
- Université de Lorraine; UMR 1136 Interactions Arbres/Microorganismes, Faculté des Sciences et Technologies; Vandoeuvre-lès-Nancy 54506 France
| | - Cécile Lorrain
- The Sainsbury Laboratory; Norwich Research Park; Norwich NR4 7UH UK
- INRA, UMR 1136 Interactions Arbres/Microorganismes; Centre INRA Nancy Lorraine; Champenoux 54280 France
- Université de Lorraine; UMR 1136 Interactions Arbres/Microorganismes, Faculté des Sciences et Technologies; Vandoeuvre-lès-Nancy 54506 France
| | - Diane G.O. Saunders
- The Sainsbury Laboratory; Norwich Research Park; Norwich NR4 7UH UK
- The Genome Analysis Centre; Norwich Research Park; Norwich NR4 7UH UK
- The John Innes Centre; Norwich Research Park; Norwich NR4 7UH UK
| | - Joe Win
- The Sainsbury Laboratory; Norwich Research Park; Norwich NR4 7UH UK
| | - Jan Sklenar
- The Sainsbury Laboratory; Norwich Research Park; Norwich NR4 7UH UK
| | - Sébastien Duplessis
- INRA, UMR 1136 Interactions Arbres/Microorganismes; Centre INRA Nancy Lorraine; Champenoux 54280 France
- Université de Lorraine; UMR 1136 Interactions Arbres/Microorganismes, Faculté des Sciences et Technologies; Vandoeuvre-lès-Nancy 54506 France
| | - Sophien Kamoun
- The Sainsbury Laboratory; Norwich Research Park; Norwich NR4 7UH UK
| |
Collapse
|
35
|
Kunze M, Berger J. The similarity between N-terminal targeting signals for protein import into different organelles and its evolutionary relevance. Front Physiol 2015; 6:259. [PMID: 26441678 PMCID: PMC4585086 DOI: 10.3389/fphys.2015.00259] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 09/04/2015] [Indexed: 12/04/2022] Open
Abstract
The proper distribution of proteins between the cytosol and various membrane-bound compartments is crucial for the functionality of eukaryotic cells. This requires the cooperation between protein transport machineries that translocate diverse proteins from the cytosol into these compartments and targeting signal(s) encoded within the primary sequence of these proteins that define their cellular destination. The mechanisms exerting protein translocation differ remarkably between the compartments, but the predominant targeting signals for mitochondria, chloroplasts and the ER share the N-terminal position, an α-helical structural element and the removal from the core protein by intraorganellar cleavage. Interestingly, similar properties have been described for the peroxisomal targeting signal type 2 mediating the import of a fraction of soluble peroxisomal proteins, whereas other peroxisomal matrix proteins encode the type 1 targeting signal residing at the extreme C-terminus. The structural similarity of N-terminal targeting signals poses a challenge to the specificity of protein transport, but allows the generation of ambiguous targeting signals that mediate dual targeting of proteins into different compartments. Dual targeting might represent an advantage for adaptation processes that involve a redistribution of proteins, because it circumvents the hierarchy of targeting signals. Thus, the co-existence of two equally functional import pathways into peroxisomes might reflect a balance between evolutionary constant and flexible transport routes.
Collapse
Affiliation(s)
- Markus Kunze
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna Vienna, Austria
| | - Johannes Berger
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna Vienna, Austria
| |
Collapse
|
36
|
Lee DW, Woo S, Geem KR, Hwang I. Sequence Motifs in Transit Peptides Act as Independent Functional Units and Can Be Transferred to New Sequence Contexts. PLANT PHYSIOLOGY 2015; 169:471-84. [PMID: 26149569 PMCID: PMC4577419 DOI: 10.1104/pp.15.00842] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 07/02/2015] [Indexed: 05/04/2023]
Abstract
A large number of nuclear-encoded proteins are imported into chloroplasts after they are translated in the cytosol. Import is mediated by transit peptides (TPs) at the N termini of these proteins. TPs contain many small motifs, each of which is critical for a specific step in the process of chloroplast protein import; however, it remains unknown how these motifs are organized to give rise to TPs with diverse sequences. In this study, we generated various hybrid TPs by swapping domains between Rubisco small subunit (RbcS) and chlorophyll a/b-binding protein, which have highly divergent sequences, and examined the abilities of the resultant TPs to deliver proteins into chloroplasts. Subsequently, we compared the functionality of sequence motifs in the hybrid TPs with those of wild-type TPs. The sequence motifs in the hybrid TPs exhibited three different modes of functionality, depending on their domain composition, as follows: active in both wild-type and hybrid TPs, active in wild-type TPs but inactive in hybrid TPs, and inactive in wild-type TPs but active in hybrid TPs. Moreover, synthetic TPs, in which only three critical motifs from RbcS or chlorophyll a/b-binding protein TPs were incorporated into an unrelated sequence, were able to deliver clients to chloroplasts with a comparable efficiency to RbcS TP. Based on these results, we propose that diverse sequence motifs in TPs are independent functional units that interact with specific translocon components at various steps during protein import and can be transferred to new sequence contexts.
Collapse
Affiliation(s)
- Dong Wook Lee
- Division of Integrative Biosciences and Biotechnology (D.W.L., S.W., I.H.) and Department of Life Sciences (K.R.G., I.H.), Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Seungjin Woo
- Division of Integrative Biosciences and Biotechnology (D.W.L., S.W., I.H.) and Department of Life Sciences (K.R.G., I.H.), Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Kyoung Rok Geem
- Division of Integrative Biosciences and Biotechnology (D.W.L., S.W., I.H.) and Department of Life Sciences (K.R.G., I.H.), Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Inhwan Hwang
- Division of Integrative Biosciences and Biotechnology (D.W.L., S.W., I.H.) and Department of Life Sciences (K.R.G., I.H.), Pohang University of Science and Technology, Pohang 790-784, Korea
| |
Collapse
|
37
|
Ye W, Spånning E, Glaser E, Mäler L. Interaction of the dual targeting peptide of Thr-tRNA synthetase with the chloroplastic receptor Toc34 in Arabidopsis thaliana. FEBS Open Bio 2015; 5:405-12. [PMID: 26101739 PMCID: PMC4430637 DOI: 10.1016/j.fob.2015.04.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 04/27/2015] [Accepted: 04/27/2015] [Indexed: 11/23/2022] Open
Abstract
The mechanism of dual targeting of proteins to mitochondria and chloroplasts is poorly understood. The interaction between a dually targeted peptide and the chloroplastic receptor Toc34 was examined. The interaction between AtThrRS-dTP(2–60) and AtToc34 involves residues throughout the entire targeting peptide sequence. The interaction of AtThrRS-dTP(2–60) with AtToc34 is different to the interaction with AtTom20.
Organellar proteins synthesized in the cytosol are usually selective for only one destination in a cell but some proteins are localized in more than one compartment, for example in both mitochondria and chloroplasts. The mechanism of dual targeting of proteins to mitochondria and chloroplasts is yet poorly understood. Previously, we observed that the dual targeting peptide of threonyl-tRNA synthetase in Arabidopsis thaliana (AtThrRS-dTP) interacts with the mitochondrial receptor AtTom20 mainly through its N-terminal part. Here we report on the interaction of AtThrRS-dTP with the chloroplastic receptor AtToc34, presenting for the first time the mode of interactions of a dual targeting peptide with both Tom20 and Toc34. By NMR spectroscopy we investigated changes in 15N HSQC spectra of AtThrRS-dTP as a function of AtToc34 concentration. Line broadening shows that the interaction with AtToc34 involves residues along the entire sequence, which is not the case for AtTom20. The N-terminal φχχφφ motif, which plays an important role in AtTom20 recognition, shows no specificity for AtToc34. These results are supported by import competition studies into both mitochondria and chloroplasts, in which the effect of peptides corresponding to different segments of AtThrRS-dTP on in vitro import of organelle specific proteins was examined. This demonstrates that the N-terminal A2-Y29 segment of AtThrRS-dTP is essential for import into both organelles, while the C-terminal L30-P60 part is important for chloroplastic import efficiency. In conclusion, we have demonstrated that the recognition of the dual targeting peptide of AtThr-tRNA synthetase is different for the mitochondrial and chloroplastic receptors.
Collapse
Key Words
- Chloroplasts and mitochondria
- Dual targeting
- HSQC, heteronuclear single-quantum coherence
- NMR
- Protein import
- TIC, translocase of the inner envelope membrane of chloroplasts
- TIM, translocase of the inner mitochondrial membrane
- TOC, translocase of the outer envelope membrane of chloroplasts
- TOM, translocase of the outer mitochondrial membrane
- ThrRS, threonyl tRNA synthetase
- Toc34 receptor
- aaRS, amino acyl-tRNA synthetase
- cTP, chloroplastic targeting peptide
- dTP, dual targeting peptide
- mTP, mitochondrial targeting peptide
Collapse
Affiliation(s)
- Weihua Ye
- Department of Biochemistry and Biophysics, Arrhenius Laboratory, Stockholm University, 106 91 Stockholm, Sweden
| | - Erika Spånning
- Department of Biochemistry and Biophysics, Arrhenius Laboratory, Stockholm University, 106 91 Stockholm, Sweden
| | - Elzbieta Glaser
- Department of Biochemistry and Biophysics, Arrhenius Laboratory, Stockholm University, 106 91 Stockholm, Sweden
| | - Lena Mäler
- Department of Biochemistry and Biophysics, Arrhenius Laboratory, Stockholm University, 106 91 Stockholm, Sweden
| |
Collapse
|
38
|
The TIC complex uncovered: The alternative view on the molecular mechanism of protein translocation across the inner envelope membrane of chloroplasts. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1847:957-67. [PMID: 25689609 DOI: 10.1016/j.bbabio.2015.02.011] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 01/19/2015] [Accepted: 02/07/2015] [Indexed: 12/29/2022]
Abstract
Chloroplasts must import thousands of nuclear-encoded preproteins synthesized in the cytosol through two successive protein translocons at the outer and inner envelope membranes, termed TOC and TIC, respectively, to fulfill their complex physiological roles. The molecular identity of the TIC translocon had long remained controversial; two proteins, namely Tic20 and Tic110, had been proposed to be central to protein translocation across the inner envelope membrane. Tic40 also had long been considered to be another central player in this process. However, recently, a novel 1-megadalton complex consisting of Tic20, Tic56, Tic100, and Tic214 was identified at the chloroplast inner membrane of Arabidopsis and was demonstrated to constitute a general TIC translocon which functions in concert with the well-characterized TOC translocon. On the other hand, direct interaction between this novel TIC transport system and Tic110 or Tic40 was hardly observed. Consequently, the molecular model for protein translocation across the inner envelope membrane of chloroplasts might need to be extensively revised. In this review article, I intend to propose such alternative view regarding the TIC transport system in contradistinction to the classical view. I also would emphasize importance of reevaluation of previous works in terms of with what methods these classical Tic proteins such as Tic110 or Tic40 were picked up as TIC constituents at the very beginning as well as what actual evidence there were to support their direct and specific involvement in chloroplast protein import. This article is part of a Special Issue entitled: Chloroplast Biogenesis.
Collapse
|
39
|
Chotewutmontri P, Bruce BD. Non-native, N-terminal Hsp70 molecular motor recognition elements in transit peptides support plastid protein translocation. J Biol Chem 2015; 290:7602-21. [PMID: 25645915 DOI: 10.1074/jbc.m114.633586] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Previously, we identified the N-terminal domain of transit peptides (TPs) as a major determinant for the translocation step in plastid protein import. Analysis of Arabidopsis TP dataset revealed that this domain has two overlapping characteristics, highly uncharged and Hsp70-interacting. To investigate these two properties, we replaced the N-terminal domains of the TP of the small subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase and its reverse peptide with a series of unrelated peptides whose affinities to the chloroplast stromal Hsp70 have been determined. Bioinformatic analysis indicated that eight out of nine peptides in this series are not similar to the TP N terminus. Using in vivo and in vitro protein import assays, the majority of the precursors containing Hsp70-binding elements were targeted to plastids, whereas none of the chimeric precursors lacking an N-terminal Hsp70-binding element were targeted to the plastids. Moreover, a pulse-chase assay showed that two chimeric precursors with the most uncharged peptides failed to translocate into the stroma. The ability of multiple unrelated Hsp70-binding elements to support protein import verified that the majority of TPs utilize an N-terminal Hsp70-binding domain during translocation and expand the mechanistic view of the import process. This work also indicates that synthetic biology may be utilized to create de novo TPs that exceed the targeting activity of naturally occurring sequences.
Collapse
Affiliation(s)
| | - Barry D Bruce
- From the Graduate School of Genome Science and Technology, Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996
| |
Collapse
|
40
|
Tillmann B, Röth S, Bublak D, Sommer M, Stelzer EHK, Scharf KD, Schleiff E. Hsp90 is involved in the regulation of cytosolic precursor protein abundance in tomato. MOLECULAR PLANT 2015; 8:228-41. [PMID: 25619681 DOI: 10.1016/j.molp.2014.10.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Revised: 09/22/2014] [Accepted: 10/03/2014] [Indexed: 05/09/2023]
Abstract
Cytosolic chaperones are involved in the regulation of cellular protein homeostasis in general. Members of the families of heat stress proteins 70 (Hsp70) and 90 (Hsp90) assist the transport of preproteins to organelles such as chloroplasts or mitochondria. In addition, Hsp70 was described to be involved in the degradation of chloroplast preproteins that accumulate in the cytosol. Because a similar function has not been established for Hsp90, we analyzed the influences of Hsp90 and Hsp70 on the protein abundance in the cellular context using an in vivo system based on mesophyll protoplasts. We observed a differential behavior of preproteins with respect to the cytosolic chaperone-dependent regulation. Some preproteins such as pOE33 show a high dependence on Hsp90, whereas the abundance of preproteins such as pSSU is more strongly dependent on Hsp70. The E3 ligase, C-terminus of Hsp70-interacting protein (Chip), appears to have a more general role in the control of cytosolic protein abundance. We discuss why the different reaction modes are comparable with the cytosolic unfolded protein response.
Collapse
Affiliation(s)
- Bodo Tillmann
- Department of Molecular Cell Biology of Plants, Goethe-University, Max-von-Laue Street 9, 60438 Frankfurt am Main, Germany
| | - Sascha Röth
- Department of Molecular Cell Biology of Plants, Goethe-University, Max-von-Laue Street 9, 60438 Frankfurt am Main, Germany
| | - Daniela Bublak
- Department of Molecular Cell Biology of Plants, Goethe-University, Max-von-Laue Street 9, 60438 Frankfurt am Main, Germany
| | - Manuel Sommer
- Department of Molecular Cell Biology of Plants, Goethe-University, Max-von-Laue Street 9, 60438 Frankfurt am Main, Germany; Buchman Institute for Molecular Life Sciences, Goethe University, Max-von-Laue Street 15, 60438 Frankfurt am Main, Germany; Institute of Cell Biology, Goethe-Universität, Max-von-Laue Straße 9, 60438 Frankfurt am Main, Germany
| | - Ernst H K Stelzer
- Cluster of Excellence 'Macromolecular Complexes', Goethe-University, 60438 Frankfurt am Main, Germany; Center of Membrane Proteomics, Goethe University, Max-von-Laue Street 9, 60438 Frankfurt am Main, Germany; Buchman Institute for Molecular Life Sciences, Goethe University, Max-von-Laue Street 15, 60438 Frankfurt am Main, Germany; Institute of Cell Biology, Goethe-Universität, Max-von-Laue Straße 9, 60438 Frankfurt am Main, Germany
| | - Klaus-Dieter Scharf
- Department of Molecular Cell Biology of Plants, Goethe-University, Max-von-Laue Street 9, 60438 Frankfurt am Main, Germany
| | - Enrico Schleiff
- Department of Molecular Cell Biology of Plants, Goethe-University, Max-von-Laue Street 9, 60438 Frankfurt am Main, Germany; Cluster of Excellence 'Macromolecular Complexes', Goethe-University, 60438 Frankfurt am Main, Germany; Center of Membrane Proteomics, Goethe University, Max-von-Laue Street 9, 60438 Frankfurt am Main, Germany; Buchman Institute for Molecular Life Sciences, Goethe University, Max-von-Laue Street 15, 60438 Frankfurt am Main, Germany.
| |
Collapse
|
41
|
Köhler D, Dobritzsch D, Hoehenwarter W, Helm S, Steiner JM, Baginsky S. Identification of protein N-termini in Cyanophora paradoxa cyanelles: transit peptide composition and sequence determinants for precursor maturation. FRONTIERS IN PLANT SCIENCE 2015; 6:559. [PMID: 26257763 PMCID: PMC4510345 DOI: 10.3389/fpls.2015.00559] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Accepted: 07/07/2015] [Indexed: 05/06/2023]
Abstract
Glaucophyta, rhodophyta, and chloroplastida represent the three main evolutionary lineages that diverged from a common ancestor after primary endosymbiosis. Comparative analyses between members of these three lineages are a rich source of information on ancestral plastid features. We analyzed the composition and the cleavage site of cyanelle transit peptides from the glaucophyte Cyanophora paradoxa by terminal amine labeling of substrates (TAILS), and compared their characteristics to those of representatives of the chloroplastida. Our data show that transit peptide architecture is similar between members of these two lineages. This entails a comparable modular structure, an overrepresentation of serine or alanine and similarities in the amino acid composition around the processing peptidase cleavage site. The most distinctive difference is the overrepresentation of phenylalanine in the N-terminal 1-10 amino acids of cyanelle transit peptides. A quantitative proteome analysis with periplasm-free cyanelles identified 42 out of 262 proteins without the N-terminal phenylalanine, suggesting that the requirement for phenylalanine in the N-terminal region is not absolute. Proteins in this set are on average of low abundance, suggesting that either alternative import pathways are operating specifically for low abundance proteins or that the gene model annotation is incorrect for proteins with fewer EST sequences. We discuss these two possibilities and provide examples for both interpretations.
Collapse
Affiliation(s)
- Daniel Köhler
- Plant Biochemistry, Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, BiozentrumHalle (Saale), Germany
| | - Dirk Dobritzsch
- Plant Biochemistry, Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, BiozentrumHalle (Saale), Germany
| | | | - Stefan Helm
- Plant Biochemistry, Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, BiozentrumHalle (Saale), Germany
| | - Jürgen M. Steiner
- Plant Physiology, Institute of Biology, Martin-Luther-University Halle-WittenbergHalle (Saale), Germany
| | - Sacha Baginsky
- Plant Biochemistry, Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, BiozentrumHalle (Saale), Germany
- *Correspondence: Sacha Baginsky, Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Weinbergweg 22, 06120 Halle (Saale), Germany
| |
Collapse
|
42
|
Simmerman RF, Dave AM, Bruce BD. Structure and function of POTRA domains of Omp85/TPS superfamily. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2014; 308:1-34. [PMID: 24411168 DOI: 10.1016/b978-0-12-800097-7.00001-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The Omp85/TPS (outer-membrane protein of 85 kDa/two-partner secretion) superfamily is a ubiquitous and major class of β-barrel proteins. This superfamily is restricted to the outer membranes of gram-negative bacteria, mitochondria, and chloroplasts. The common architecture, with an N-terminus consisting of repeats of soluble polypeptide-transport-associated (POTRA) domains and a C-terminal β-barrel pore is highly conserved. The structures of multiple POTRA domains and one full-length TPS protein have been solved, yet discovering roles of individual POTRA domains has been difficult. This review focuses on similarities and differences between POTRA structures, emphasizing POTRA domains in autotrophic organisms including plants and cyanobacteria. Unique roles, specific for certain POTRA domains, are examined in the context of POTRA location with respect to their attachment to the β-barrel pore, and their degree of biological dispensability. Finally, because many POTRA domains may have the ability to interact with thousands of partner proteins, possible modes of these interactions are also explored.
Collapse
Affiliation(s)
- Richard F Simmerman
- Department of Biochemistry and Cellular and Molecular Biology, Knoxville, Tennessee, USA
| | - Ashita M Dave
- Department of Biochemistry and Cellular and Molecular Biology, Knoxville, Tennessee, USA
| | - Barry D Bruce
- Department of Biochemistry and Cellular and Molecular Biology, Knoxville, Tennessee, USA; Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA.
| |
Collapse
|
43
|
Murcha MW, Kmiec B, Kubiszewski-Jakubiak S, Teixeira PF, Glaser E, Whelan J. Protein import into plant mitochondria: signals, machinery, processing, and regulation. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:6301-35. [PMID: 25324401 DOI: 10.1093/jxb/eru399] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The majority of more than 1000 proteins present in mitochondria are imported from nuclear-encoded, cytosolically synthesized precursor proteins. This impressive feat of transport and sorting is achieved by the combined action of targeting signals on mitochondrial proteins and the mitochondrial protein import apparatus. The mitochondrial protein import apparatus is composed of a number of multi-subunit protein complexes that recognize, translocate, and assemble mitochondrial proteins into functional complexes. While the core subunits involved in mitochondrial protein import are well conserved across wide phylogenetic gaps, the accessory subunits of these complexes differ in identity and/or function when plants are compared with Saccharomyces cerevisiae (yeast), the model system for mitochondrial protein import. These differences include distinct protein import receptors in plants, different mechanistic operation of the intermembrane protein import system, the location and activity of peptidases, the function of inner-membrane translocases in linking the outer and inner membrane, and the association/regulation of mitochondrial protein import complexes with components of the respiratory chain. Additionally, plant mitochondria share proteins with plastids, i.e. dual-targeted proteins. Also, the developmental and cell-specific nature of mitochondrial biogenesis is an aspect not observed in single-celled systems that is readily apparent in studies in plants. This means that plants provide a valuable model system to study the various regulatory processes associated with protein import and mitochondrial biogenesis.
Collapse
Affiliation(s)
- Monika W Murcha
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, 35 Stirling Highway, Crawley, Western Australia, 6009, Australia
| | - Beata Kmiec
- Department of Biochemistry and Biophysics, Stockholm University, Arrhenius Laboratories for Natural Sciences, SE-10691 Stockholm, Sweden
| | - Szymon Kubiszewski-Jakubiak
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, 35 Stirling Highway, Crawley, Western Australia, 6009, Australia
| | - Pedro F Teixeira
- Department of Biochemistry and Biophysics, Stockholm University, Arrhenius Laboratories for Natural Sciences, SE-10691 Stockholm, Sweden
| | - Elzbieta Glaser
- Department of Biochemistry and Biophysics, Stockholm University, Arrhenius Laboratories for Natural Sciences, SE-10691 Stockholm, Sweden
| | - James Whelan
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Life Science, La Trobe University, Bundoora, Victoria, 3086, Australia
| |
Collapse
|
44
|
Siehl DL, Tao Y, Albert H, Dong Y, Heckert M, Madrigal A, Lincoln-Cabatu B, Lu J, Fenwick T, Bermudez E, Sandoval M, Horn C, Green JM, Hale T, Pagano P, Clark J, Udranszky IA, Rizzo N, Bourett T, Howard RJ, Johnson DH, Vogt M, Akinsola G, Castle LA. Broad 4-hydroxyphenylpyruvate dioxygenase inhibitor herbicide tolerance in soybean with an optimized enzyme and expression cassette. PLANT PHYSIOLOGY 2014; 166:1162-76. [PMID: 25192697 PMCID: PMC4226376 DOI: 10.1104/pp.114.247205] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 08/23/2014] [Indexed: 05/04/2023]
Abstract
With an optimized expression cassette consisting of the soybean (Glycine max) native promoter modified for enhanced expression driving a chimeric gene coding for the soybean native amino-terminal 86 amino acids fused to an insensitive shuffled variant of maize (Zea mays) 4-hydroxyphenylpyruvate dioxygenase (HPPD), we achieved field tolerance in transgenic soybean plants to the HPPD-inhibiting herbicides mesotrione, isoxaflutole, and tembotrione. Directed evolution of maize HPPD was accomplished by progressively incorporating amino acids from naturally occurring diversity and novel substitutions identified by saturation mutagenesis, combined at random through shuffling. Localization of heterologously expressed HPPD mimicked that of the native enzyme, which was shown to be dually targeted to chloroplasts and the cytosol. Analysis of the native soybean HPPD gene revealed two transcription start sites, leading to transcripts encoding two HPPD polypeptides. The N-terminal region of the longer encoded peptide directs proteins to the chloroplast, while the short form remains in the cytosol. In contrast, maize HPPD was found almost exclusively in chloroplasts. Evolved HPPD enzymes showed insensitivity to five inhibitor herbicides. In 2013 field trials, transgenic soybean events made with optimized promoter and HPPD variant expression cassettes were tested with three herbicides and showed tolerance to four times the labeled rates of mesotrione and isoxaflutole and two times the labeled rates of tembotrione.
Collapse
Affiliation(s)
- Daniel L Siehl
- DuPont Pioneer, Hayward, California 94545 (D.L.S., Y.T., H.A., Y.D., M.H., A.M., B.L.-C., J.L., T.F., E.B., M.S., C.H., I.A.U., L.A.C.);DuPont Stein-Haskell Research Center, Newark, Delaware 19711 (J.M.G., T.H., P.P., J.C.);DuPont Experimental Station, Wilmington, Delaware 19803 (N.R., T.B., R.J.H.); andDuPont Pioneer, Johnston, Iowa 50131 (D.H.J., M.V., G.A.)
| | - Yumin Tao
- DuPont Pioneer, Hayward, California 94545 (D.L.S., Y.T., H.A., Y.D., M.H., A.M., B.L.-C., J.L., T.F., E.B., M.S., C.H., I.A.U., L.A.C.);DuPont Stein-Haskell Research Center, Newark, Delaware 19711 (J.M.G., T.H., P.P., J.C.);DuPont Experimental Station, Wilmington, Delaware 19803 (N.R., T.B., R.J.H.); andDuPont Pioneer, Johnston, Iowa 50131 (D.H.J., M.V., G.A.)
| | - Henrik Albert
- DuPont Pioneer, Hayward, California 94545 (D.L.S., Y.T., H.A., Y.D., M.H., A.M., B.L.-C., J.L., T.F., E.B., M.S., C.H., I.A.U., L.A.C.);DuPont Stein-Haskell Research Center, Newark, Delaware 19711 (J.M.G., T.H., P.P., J.C.);DuPont Experimental Station, Wilmington, Delaware 19803 (N.R., T.B., R.J.H.); andDuPont Pioneer, Johnston, Iowa 50131 (D.H.J., M.V., G.A.)
| | - Yuxia Dong
- DuPont Pioneer, Hayward, California 94545 (D.L.S., Y.T., H.A., Y.D., M.H., A.M., B.L.-C., J.L., T.F., E.B., M.S., C.H., I.A.U., L.A.C.);DuPont Stein-Haskell Research Center, Newark, Delaware 19711 (J.M.G., T.H., P.P., J.C.);DuPont Experimental Station, Wilmington, Delaware 19803 (N.R., T.B., R.J.H.); andDuPont Pioneer, Johnston, Iowa 50131 (D.H.J., M.V., G.A.)
| | - Matthew Heckert
- DuPont Pioneer, Hayward, California 94545 (D.L.S., Y.T., H.A., Y.D., M.H., A.M., B.L.-C., J.L., T.F., E.B., M.S., C.H., I.A.U., L.A.C.);DuPont Stein-Haskell Research Center, Newark, Delaware 19711 (J.M.G., T.H., P.P., J.C.);DuPont Experimental Station, Wilmington, Delaware 19803 (N.R., T.B., R.J.H.); andDuPont Pioneer, Johnston, Iowa 50131 (D.H.J., M.V., G.A.)
| | - Alfredo Madrigal
- DuPont Pioneer, Hayward, California 94545 (D.L.S., Y.T., H.A., Y.D., M.H., A.M., B.L.-C., J.L., T.F., E.B., M.S., C.H., I.A.U., L.A.C.);DuPont Stein-Haskell Research Center, Newark, Delaware 19711 (J.M.G., T.H., P.P., J.C.);DuPont Experimental Station, Wilmington, Delaware 19803 (N.R., T.B., R.J.H.); andDuPont Pioneer, Johnston, Iowa 50131 (D.H.J., M.V., G.A.)
| | - Brishette Lincoln-Cabatu
- DuPont Pioneer, Hayward, California 94545 (D.L.S., Y.T., H.A., Y.D., M.H., A.M., B.L.-C., J.L., T.F., E.B., M.S., C.H., I.A.U., L.A.C.);DuPont Stein-Haskell Research Center, Newark, Delaware 19711 (J.M.G., T.H., P.P., J.C.);DuPont Experimental Station, Wilmington, Delaware 19803 (N.R., T.B., R.J.H.); andDuPont Pioneer, Johnston, Iowa 50131 (D.H.J., M.V., G.A.)
| | - Jian Lu
- DuPont Pioneer, Hayward, California 94545 (D.L.S., Y.T., H.A., Y.D., M.H., A.M., B.L.-C., J.L., T.F., E.B., M.S., C.H., I.A.U., L.A.C.);DuPont Stein-Haskell Research Center, Newark, Delaware 19711 (J.M.G., T.H., P.P., J.C.);DuPont Experimental Station, Wilmington, Delaware 19803 (N.R., T.B., R.J.H.); andDuPont Pioneer, Johnston, Iowa 50131 (D.H.J., M.V., G.A.)
| | - Tamara Fenwick
- DuPont Pioneer, Hayward, California 94545 (D.L.S., Y.T., H.A., Y.D., M.H., A.M., B.L.-C., J.L., T.F., E.B., M.S., C.H., I.A.U., L.A.C.);DuPont Stein-Haskell Research Center, Newark, Delaware 19711 (J.M.G., T.H., P.P., J.C.);DuPont Experimental Station, Wilmington, Delaware 19803 (N.R., T.B., R.J.H.); andDuPont Pioneer, Johnston, Iowa 50131 (D.H.J., M.V., G.A.)
| | - Ericka Bermudez
- DuPont Pioneer, Hayward, California 94545 (D.L.S., Y.T., H.A., Y.D., M.H., A.M., B.L.-C., J.L., T.F., E.B., M.S., C.H., I.A.U., L.A.C.);DuPont Stein-Haskell Research Center, Newark, Delaware 19711 (J.M.G., T.H., P.P., J.C.);DuPont Experimental Station, Wilmington, Delaware 19803 (N.R., T.B., R.J.H.); andDuPont Pioneer, Johnston, Iowa 50131 (D.H.J., M.V., G.A.)
| | - Marian Sandoval
- DuPont Pioneer, Hayward, California 94545 (D.L.S., Y.T., H.A., Y.D., M.H., A.M., B.L.-C., J.L., T.F., E.B., M.S., C.H., I.A.U., L.A.C.);DuPont Stein-Haskell Research Center, Newark, Delaware 19711 (J.M.G., T.H., P.P., J.C.);DuPont Experimental Station, Wilmington, Delaware 19803 (N.R., T.B., R.J.H.); andDuPont Pioneer, Johnston, Iowa 50131 (D.H.J., M.V., G.A.)
| | - Caroline Horn
- DuPont Pioneer, Hayward, California 94545 (D.L.S., Y.T., H.A., Y.D., M.H., A.M., B.L.-C., J.L., T.F., E.B., M.S., C.H., I.A.U., L.A.C.);DuPont Stein-Haskell Research Center, Newark, Delaware 19711 (J.M.G., T.H., P.P., J.C.);DuPont Experimental Station, Wilmington, Delaware 19803 (N.R., T.B., R.J.H.); andDuPont Pioneer, Johnston, Iowa 50131 (D.H.J., M.V., G.A.)
| | - Jerry M Green
- DuPont Pioneer, Hayward, California 94545 (D.L.S., Y.T., H.A., Y.D., M.H., A.M., B.L.-C., J.L., T.F., E.B., M.S., C.H., I.A.U., L.A.C.);DuPont Stein-Haskell Research Center, Newark, Delaware 19711 (J.M.G., T.H., P.P., J.C.);DuPont Experimental Station, Wilmington, Delaware 19803 (N.R., T.B., R.J.H.); andDuPont Pioneer, Johnston, Iowa 50131 (D.H.J., M.V., G.A.)
| | - Theresa Hale
- DuPont Pioneer, Hayward, California 94545 (D.L.S., Y.T., H.A., Y.D., M.H., A.M., B.L.-C., J.L., T.F., E.B., M.S., C.H., I.A.U., L.A.C.);DuPont Stein-Haskell Research Center, Newark, Delaware 19711 (J.M.G., T.H., P.P., J.C.);DuPont Experimental Station, Wilmington, Delaware 19803 (N.R., T.B., R.J.H.); andDuPont Pioneer, Johnston, Iowa 50131 (D.H.J., M.V., G.A.)
| | - Peggy Pagano
- DuPont Pioneer, Hayward, California 94545 (D.L.S., Y.T., H.A., Y.D., M.H., A.M., B.L.-C., J.L., T.F., E.B., M.S., C.H., I.A.U., L.A.C.);DuPont Stein-Haskell Research Center, Newark, Delaware 19711 (J.M.G., T.H., P.P., J.C.);DuPont Experimental Station, Wilmington, Delaware 19803 (N.R., T.B., R.J.H.); andDuPont Pioneer, Johnston, Iowa 50131 (D.H.J., M.V., G.A.)
| | - Jenna Clark
- DuPont Pioneer, Hayward, California 94545 (D.L.S., Y.T., H.A., Y.D., M.H., A.M., B.L.-C., J.L., T.F., E.B., M.S., C.H., I.A.U., L.A.C.);DuPont Stein-Haskell Research Center, Newark, Delaware 19711 (J.M.G., T.H., P.P., J.C.);DuPont Experimental Station, Wilmington, Delaware 19803 (N.R., T.B., R.J.H.); andDuPont Pioneer, Johnston, Iowa 50131 (D.H.J., M.V., G.A.)
| | - Ingrid A Udranszky
- DuPont Pioneer, Hayward, California 94545 (D.L.S., Y.T., H.A., Y.D., M.H., A.M., B.L.-C., J.L., T.F., E.B., M.S., C.H., I.A.U., L.A.C.);DuPont Stein-Haskell Research Center, Newark, Delaware 19711 (J.M.G., T.H., P.P., J.C.);DuPont Experimental Station, Wilmington, Delaware 19803 (N.R., T.B., R.J.H.); andDuPont Pioneer, Johnston, Iowa 50131 (D.H.J., M.V., G.A.)
| | - Nancy Rizzo
- DuPont Pioneer, Hayward, California 94545 (D.L.S., Y.T., H.A., Y.D., M.H., A.M., B.L.-C., J.L., T.F., E.B., M.S., C.H., I.A.U., L.A.C.);DuPont Stein-Haskell Research Center, Newark, Delaware 19711 (J.M.G., T.H., P.P., J.C.);DuPont Experimental Station, Wilmington, Delaware 19803 (N.R., T.B., R.J.H.); andDuPont Pioneer, Johnston, Iowa 50131 (D.H.J., M.V., G.A.)
| | - Timothy Bourett
- DuPont Pioneer, Hayward, California 94545 (D.L.S., Y.T., H.A., Y.D., M.H., A.M., B.L.-C., J.L., T.F., E.B., M.S., C.H., I.A.U., L.A.C.);DuPont Stein-Haskell Research Center, Newark, Delaware 19711 (J.M.G., T.H., P.P., J.C.);DuPont Experimental Station, Wilmington, Delaware 19803 (N.R., T.B., R.J.H.); andDuPont Pioneer, Johnston, Iowa 50131 (D.H.J., M.V., G.A.)
| | - Richard J Howard
- DuPont Pioneer, Hayward, California 94545 (D.L.S., Y.T., H.A., Y.D., M.H., A.M., B.L.-C., J.L., T.F., E.B., M.S., C.H., I.A.U., L.A.C.);DuPont Stein-Haskell Research Center, Newark, Delaware 19711 (J.M.G., T.H., P.P., J.C.);DuPont Experimental Station, Wilmington, Delaware 19803 (N.R., T.B., R.J.H.); andDuPont Pioneer, Johnston, Iowa 50131 (D.H.J., M.V., G.A.)
| | - David H Johnson
- DuPont Pioneer, Hayward, California 94545 (D.L.S., Y.T., H.A., Y.D., M.H., A.M., B.L.-C., J.L., T.F., E.B., M.S., C.H., I.A.U., L.A.C.);DuPont Stein-Haskell Research Center, Newark, Delaware 19711 (J.M.G., T.H., P.P., J.C.);DuPont Experimental Station, Wilmington, Delaware 19803 (N.R., T.B., R.J.H.); andDuPont Pioneer, Johnston, Iowa 50131 (D.H.J., M.V., G.A.)
| | - Mark Vogt
- DuPont Pioneer, Hayward, California 94545 (D.L.S., Y.T., H.A., Y.D., M.H., A.M., B.L.-C., J.L., T.F., E.B., M.S., C.H., I.A.U., L.A.C.);DuPont Stein-Haskell Research Center, Newark, Delaware 19711 (J.M.G., T.H., P.P., J.C.);DuPont Experimental Station, Wilmington, Delaware 19803 (N.R., T.B., R.J.H.); andDuPont Pioneer, Johnston, Iowa 50131 (D.H.J., M.V., G.A.)
| | - Goke Akinsola
- DuPont Pioneer, Hayward, California 94545 (D.L.S., Y.T., H.A., Y.D., M.H., A.M., B.L.-C., J.L., T.F., E.B., M.S., C.H., I.A.U., L.A.C.);DuPont Stein-Haskell Research Center, Newark, Delaware 19711 (J.M.G., T.H., P.P., J.C.);DuPont Experimental Station, Wilmington, Delaware 19803 (N.R., T.B., R.J.H.); andDuPont Pioneer, Johnston, Iowa 50131 (D.H.J., M.V., G.A.)
| | - Linda A Castle
- DuPont Pioneer, Hayward, California 94545 (D.L.S., Y.T., H.A., Y.D., M.H., A.M., B.L.-C., J.L., T.F., E.B., M.S., C.H., I.A.U., L.A.C.);DuPont Stein-Haskell Research Center, Newark, Delaware 19711 (J.M.G., T.H., P.P., J.C.);DuPont Experimental Station, Wilmington, Delaware 19803 (N.R., T.B., R.J.H.); andDuPont Pioneer, Johnston, Iowa 50131 (D.H.J., M.V., G.A.)
| |
Collapse
|
45
|
Masuda T, Yamamoto A, Toyohara H. The iron content and ferritin contribution in fresh, dried, and toasted nori, Pyropia yezoensis. Biosci Biotechnol Biochem 2014; 79:74-81. [PMID: 25315337 DOI: 10.1080/09168451.2014.968087] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Iron is one of the essential trace elements for humans. In this study, the iron contents in fresh, dried, and toasted nori (Pyropia yezoensis) were analyzed. The mean iron content of fresh, dried, and toasted nori were 19.0, 22.6, and 26.2 mg/100 g (dry weight), respectively. These values were superior to other food of plant origin. Furthermore, most of the iron in nori was maintained during processing, such as washing, drying, and toasting. Then, the form of iron in fresh, dried, and toasted nori was analyzed. As a result, an iron storage protein ferritin contributed to iron storage in raw and dried nori, although the precise rate of its contribution is yet to be determined, while ferritin protein cage was degraded in the toasted nori. It is the first report that verified the ferritin contribution to iron storage in such edible macroalgae with commercial importance.
Collapse
Affiliation(s)
- Taro Masuda
- a Laboratory of Food Quality Design and Development, Division of Agronomy and Horticultural Science, Graduate School of Agriculture , Kyoto University , Kyoto , Japan
| | | | | |
Collapse
|
46
|
Hagiwara-Komoda Y, Sugiyama T, Yamashita Y, Onouchi H, Naito S. The N-terminal cleavable pre-sequence encoded in the first exon of cystathionine γ-synthase contains two different functional domains for chloroplast targeting and regulation of gene expression. PLANT & CELL PHYSIOLOGY 2014; 55:1779-1792. [PMID: 25146485 DOI: 10.1093/pcp/pcu110] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Chloroplast transit peptide sequences (cTPs) located in the N-terminal region of nuclear-encoded chloroplast proteins are essential for their sorting, and are generally cleaved from the proteins after their import into the chloroplasts. The Arabidopsis thaliana cystathionine γ-synthase (CGS), the first committed enzyme of methionine biosynthesis, is a nuclear-encoded chloroplast protein. Arabidopsis CGS possesses an N-terminal extension region that is dispensable for enzymatic activity. This N-terminal extension contains the cTP and several functional domains including an MTO1 region, the cis-element for post-transcriptional feedback regulation of CGS1 that codes for CGS. A previous report suggested that the cTP cleavage site of CGS is located upstream of the MTO1 region. However, the region required for protein sorting has not been analyzed. In this study, we carried out functional analyses to elucidate the region required for chloroplast targeting by using a chimeric protein, Ex1:GFP, in which the CGS1 exon 1 coding region containing the N-terminal extension was tagged with green fluorescent protein. The sequence upstream of the MTO1 region was responsible for efficient chloroplast targeting and for avoidance of missorting to the mitochondria. Our data also showed that the major N-terminus of Ex1:GFP is Ala91, which is located immediately downstream of the MTO1 region, and the MTO1 region is not retained in the mature Ex1:GFP accumulated in the chloroplast. These findings suggest that the N-terminal cleavable pre-sequence harbors dual functions in protein sorting and in regulating gene expression. Our study highlights the unique properties of Arabidopsis CGS cTP among chloroplast-targeted proteins.
Collapse
Affiliation(s)
- Yuka Hagiwara-Komoda
- Graduate School of Agriculture, Hokkaido University, Sapporo, 060-8589 Japan These authors contributed equally to this work. Present address: Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657 Japan
| | - Tomoya Sugiyama
- Graduate School of Agriculture, Hokkaido University, Sapporo, 060-8589 Japan These authors contributed equally to this work. Present address: Chugai Pharmaceutical Co., Ltd., API Process Development Department, Tokyo, 115-8543 Japan
| | - Yui Yamashita
- Graduate School of Agriculture, Hokkaido University, Sapporo, 060-8589 Japan Graduate School of Life Science, Hokkaido University, Sapporo, 060-0810 Japan
| | - Hitoshi Onouchi
- Graduate School of Agriculture, Hokkaido University, Sapporo, 060-8589 Japan
| | - Satoshi Naito
- Graduate School of Agriculture, Hokkaido University, Sapporo, 060-8589 Japan Graduate School of Life Science, Hokkaido University, Sapporo, 060-0810 Japan
| |
Collapse
|
47
|
Demarsy E, Lakshmanan AM, Kessler F. Border control: selectivity of chloroplast protein import and regulation at the TOC-complex. FRONTIERS IN PLANT SCIENCE 2014; 5:483. [PMID: 25278954 PMCID: PMC4166117 DOI: 10.3389/fpls.2014.00483] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 09/01/2014] [Indexed: 05/25/2023]
Abstract
Plants have evolved complex and sophisticated molecular mechanisms to regulate their development and adapt to their surrounding environment. Particularly the development of their specific organelles, chloroplasts and other plastid-types, is finely tuned in accordance with the metabolic needs of the cell. The normal development and functioning of plastids require import of particular subsets of nuclear encoded proteins. Most preproteins contain a cleavable sequence at their N terminal (transit peptide) serving as a signal for targeting to the organelle and recognition by the translocation machinery TOC-TIC (translocon of outer membrane complex-translocon of inner membrane complex) spanning the dual membrane envelope. The plastid proteome needs constant remodeling in response to developmental and environmental factors. Therefore selective regulation of preprotein import plays a crucial role in plant development. In this review we describe the diversity of transit peptides and TOC receptor complexes, and summarize the current knowledge and potential directions for future research concerning regulation of the different Toc isoforms.
Collapse
Affiliation(s)
| | | | - Felix Kessler
- *Correspondence: Felix Kessler, Laboratory of Plant Physiology, Université de Neuchâtel, UniMail, Rue Emile Argand 11, 2000 Neuchâtel, Switzerland e-mail:
| |
Collapse
|
48
|
Gile GH, Slamovits CH. Transcriptomic analysis reveals evidence for a cryptic plastid in the colpodellid Voromonas pontica, a close relative of chromerids and apicomplexan parasites. PLoS One 2014; 9:e96258. [PMID: 24797661 PMCID: PMC4010437 DOI: 10.1371/journal.pone.0096258] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 04/06/2014] [Indexed: 12/20/2022] Open
Abstract
Colpodellids are free-living, predatory flagellates, but their close relationship to photosynthetic chromerids and plastid-bearing apicomplexan parasites suggests they were ancestrally photosynthetic. Colpodellids may therefore retain a cryptic plastid, or they may have lost their plastids entirely, like the apicomplexan Cryptosporidium. To find out, we generated transcriptomic data from Voromonas pontica ATCC 50640 and searched for homologs of genes encoding proteins known to function in the apicoplast, the non-photosynthetic plastid of apicomplexans. We found candidate genes from multiple plastid-associated pathways including iron-sulfur cluster assembly, isoprenoid biosynthesis, and tetrapyrrole biosynthesis, along with a plastid-type phosphate transporter gene. Four of these sequences include the 5' end of the coding region and are predicted to encode a signal peptide and a transit peptide-like region. This is highly suggestive of targeting to a cryptic plastid. We also performed a taxon-rich phylogenetic analysis of small subunit ribosomal RNA sequences from colpodellids and their relatives, which suggests that photosynthesis was lost more than once in colpodellids, and independently in V. pontica and apicomplexans. Colpodellids therefore represent a valuable source of comparative data for understanding the process of plastid reduction in humanity's most deadly parasite.
Collapse
Affiliation(s)
- Gillian H. Gile
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Claudio H. Slamovits
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
49
|
Dutta S, Teresinski HJ, Smith MD. A split-ubiquitin yeast two-hybrid screen to examine the substrate specificity of atToc159 and atToc132, two Arabidopsis chloroplast preprotein import receptors. PLoS One 2014; 9:e95026. [PMID: 24736607 PMCID: PMC3988174 DOI: 10.1371/journal.pone.0095026] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 03/22/2014] [Indexed: 11/18/2022] Open
Abstract
Post-translational import of nucleus-encoded chloroplast pre-proteins is critical for chloroplast biogenesis, and the Toc159 family of proteins serve as receptors for the process. Toc159 shares with other members of the family (e.g. Toc132), homologous GTPase (G−) and Membrane (M−) domains, but a highly dissimilar N-terminal acidic (A−) domain. Although there is good evidence that atToc159 and atToc132 from Arabidopsis mediate the initial sorting step, preferentially recognizing photosynthetic and non-photosynthetic preproteins, respectively, relatively few chloroplast preproteins have been assigned as substrates for particular members of the Toc159 family, which has limited the proof for the hypothesis. The current study expands the number of known preprotein substrates for members of the Arabidopsis Toc159 receptor family using a split-ubiquitin membrane-based yeast two-hybrid system using the atToc159 G-domain (Toc159G), atToc132 G-domain (Toc132G) and atToc132 A- plus G-domains (Toc132AG) as baits. cDNA library screening with all three baits followed by pairwise interaction assays involving the 81 chloroplast preproteins identified show that although G-domains of the Toc159 family are sufficient for preprotein recognition, they alone do not confer specificity for preprotein subclasses. The presence of the A-domain fused to atToc132G (Toc132AG) not only positively influences its specificity for non-photosynthetic preproteins, but also negatively regulates the ability of this receptor to interact with a subset of photosynthetic preproteins. Our study not only substantiates the fact that atToc132 can serve as a receptor by directly binding to chloroplast preproteins but also proposes the existence of subsets of preproteins with different but overlapping affinities for more than one member of the Toc159 receptor family.
Collapse
Affiliation(s)
- Siddhartha Dutta
- Department of Biology, Wilfrid Laurier University, Waterloo, Ontario, Canada
| | - Howard J Teresinski
- Department of Biology, Wilfrid Laurier University, Waterloo, Ontario, Canada
| | - Matthew D Smith
- Department of Biology, Wilfrid Laurier University, Waterloo, Ontario, Canada
| |
Collapse
|
50
|
Jarvis P, López-Juez E. Biogenesis and homeostasis of chloroplasts and other plastids. Nat Rev Mol Cell Biol 2014; 14:787-802. [PMID: 24263360 DOI: 10.1038/nrm3702] [Citation(s) in RCA: 442] [Impact Index Per Article: 40.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Chloroplasts are the organelles that define plants, and they are responsible for photosynthesis as well as numerous other functions. They are the ancestral members of a family of organelles known as plastids. Plastids are remarkably dynamic, existing in strikingly different forms that interconvert in response to developmental or environmental cues. The genetic system of this organelle and its coordination with the nucleocytosolic system, the import and routing of nucleus-encoded proteins, as well as organellar division all contribute to the biogenesis and homeostasis of plastids. They are controlled by the ubiquitin-proteasome system, which is part of a network of regulatory mechanisms that integrate plastid development into broader programmes of cellular and organismal development.
Collapse
Affiliation(s)
- Paul Jarvis
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| | | |
Collapse
|