1
|
Jüschke C, Klopstock T, Catarino CB, Owczarek-Lipska M, Wissinger B, Neidhardt J. Autosomal dominant optic atrophy: A novel treatment for OPA1 splice defects using U1 snRNA adaption. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 26:1186-1197. [PMID: 34853716 PMCID: PMC8604756 DOI: 10.1016/j.omtn.2021.10.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 06/03/2021] [Accepted: 10/19/2021] [Indexed: 11/15/2022]
Abstract
Autosomal dominant optic atrophy (ADOA) is frequently caused by mutations in the optic atrophy 1 (OPA1) gene, with haploinsufficiency being the major genetic pathomechanism. Almost 30% of the OPA1-associated cases suffer from splice defects. We identified a novel OPA1 mutation, c.1065+5G>A, in patients with ADOA. In patient-derived fibroblasts, the mutation led to skipping of OPA1 exon 10, reducing the OPA1 protein expression by approximately 50%. We developed a molecular treatment to correct the splice defect in OPA1 using engineered U1 splice factors retargeted to different locations in OPA1 exon 10 or intron 10. The strongest therapeutic effect was detected when U1 binding was engineered to bind to intron 10 at position +18, a position predicted by bioinformatics to be a promising binding site. We were able to significantly silence the effect of the mutation (skipping of exon 10) and simultaneously increase the expression level of normal transcripts. Retargeting U1 to the canonical splice donor site did not lead to a detectable splice correction. This proof-of-concept study indicates for the first time the feasibility of splice mutation correction as a treatment option for ADOA. Increasing the amount of correctly spliced OPA1 transcripts may suffice to overcome the haploinsufficiency.
Collapse
Affiliation(s)
- Christoph Jüschke
- Human Genetics, Faculty of Medicine and Health Sciences, University of Oldenburg, 26129 Oldenburg, Germany
| | - Thomas Klopstock
- Friedrich-Baur Institute, Department of Neurology, University Hospital, LMU Munich, University of Munich, 80336 Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
| | - Claudia B. Catarino
- Friedrich-Baur Institute, Department of Neurology, University Hospital, LMU Munich, University of Munich, 80336 Munich, Germany
| | - Marta Owczarek-Lipska
- Human Genetics, Faculty of Medicine and Health Sciences, University of Oldenburg, 26129 Oldenburg, Germany
- Research Center Neurosensory Science, University of Oldenburg, 26129 Oldenburg, Germany
| | - Bernd Wissinger
- Institute for Ophthalmic Research, Center for Ophthalmology, University of Tübingen, 72076 Tübingen, Germany
| | - John Neidhardt
- Human Genetics, Faculty of Medicine and Health Sciences, University of Oldenburg, 26129 Oldenburg, Germany
- Research Center Neurosensory Science, University of Oldenburg, 26129 Oldenburg, Germany
- Joint Research Training Group of the Faculty of Medicine and Health Sciences, University of Oldenburg, 26129 Oldenburg, Germany and University Medical Center Groningen, 9700 RB Groningen, the Netherlands
- Correspondence: John Neidhardt, Human Genetics, Faculty of Medicine and Health Sciences, University of Oldenburg, Ammerländer Heerstrasse 114-118, 26129 Oldenburg, Germany.
| |
Collapse
|
2
|
Shinkuma S. Advances in gene therapy and their application to skin diseases: A review. J Dermatol Sci 2021; 103:2-9. [PMID: 34049771 DOI: 10.1016/j.jdermsci.2021.05.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 05/18/2021] [Accepted: 05/18/2021] [Indexed: 10/21/2022]
Abstract
With recent advances in genetic engineering technology, gene therapy is now being considered as a treatment not only for congenital diseases but also acquired diseases, such as cancer. Gene therapeutic agents for hereditary immune disorders, haemophilia, retinal diseases, neurodegenerative diseases, and lymphoma have been approved in the United States and Europe. In the field of dermatology, clinical trials of gene therapy have been conducted, because the skin is an easily accessible organ that represents an attractive tissue for gene therapy. In recent years, gene therapy has been attempted for a variety of skin diseases, such as genodermatoses (including epidermolysis bullosa and Netherton syndrome), cutaneous lymphoma, and malignant melanoma. As a result, it is difficult to grasp the current status of gene therapy in dermatology. This review focuses on each of the gene-transfer techniques currently in use and describes the current status of gene therapy for skin diseases using each technology.
Collapse
Affiliation(s)
- Satoru Shinkuma
- Department of Dermatology, Nara Medical University School of Medicine, Kashihara, Japan.
| |
Collapse
|
3
|
Breuel S, Vorm M, Bräuer AU, Owczarek-Lipska M, Neidhardt J. Combining Engineered U1 snRNA and Antisense Oligonucleotides to Improve the Treatment of a BBS1 Splice Site Mutation. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 18:123-130. [PMID: 31541798 PMCID: PMC6796732 DOI: 10.1016/j.omtn.2019.08.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 06/14/2019] [Accepted: 08/01/2019] [Indexed: 12/23/2022]
Abstract
Manipulation of pre-mRNA processing is a promising approach toward overcoming disease-causing mutations and treating human diseases. We show that a combined treatment applying two splice-manipulating technologies improves therapeutic efficacies to correct mutation-induced splice defects. Previously, we identified a family affected by retinitis pigmentosa caused by the homozygous BBS1 splice donor site mutation c.479G > A. The mutation leads to both exon 5 skipping and intron 5 retention. We developed a therapeutic approach applying lentivirus-mediated gene delivery of engineered U1 small nuclear RNA (U1), which resulted in increased levels of correctly spliced BBS1. Herein, we show that the therapeutic effect of the engineered U1 efficiently reverted exon skipping but failed to reduce the intron retention. To complement the engineered U1 treatment, we identified four different antisense oligonucleotides (AONs) that block intron 5 retention in BBS1 transcripts. A treatment using engineered U1 in combination with AONs showed the highest therapeutic efficacy and increased the amount of correctly spliced BBS1 transcripts. We did not detect elevated levels of apoptotic cell death in AON-treated cell lines. In conclusion, engineered U1 or AONs provide efficient therapies with complementary effects and can be combined to increase efficacy of therapeutic approaches to correct splice defects.
Collapse
Affiliation(s)
- Saskia Breuel
- Human Genetics, Faculty of Medicine and Health Sciences, University of Oldenburg, Oldenburg, Germany
| | - Mariann Vorm
- Human Genetics, Faculty of Medicine and Health Sciences, University of Oldenburg, Oldenburg, Germany
| | - Anja U Bräuer
- Anatomy, Faculty of Medicine and Health Sciences, University of Oldenburg, Oldenburg, Germany; Research Center Neurosensory Science, University of Oldenburg, Germany
| | - Marta Owczarek-Lipska
- Human Genetics, Faculty of Medicine and Health Sciences, University of Oldenburg, Oldenburg, Germany
| | - John Neidhardt
- Human Genetics, Faculty of Medicine and Health Sciences, University of Oldenburg, Oldenburg, Germany; Research Center Neurosensory Science, University of Oldenburg, Germany; Joint research training group of the Faculty of Medicine and Health Sciences, University of Oldenburg, Germany and the University Medical Center Groningen, Groningen, Netherlands.
| |
Collapse
|
4
|
Zhang C, Peng Y, Hublitz P, Zhang H, Dong T. Genetic abrogation of immune checkpoints in antigen-specific cytotoxic T-lymphocyte as a potential alternative to blockade immunotherapy. Sci Rep 2018; 8:5549. [PMID: 29615718 PMCID: PMC5882910 DOI: 10.1038/s41598-018-23803-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 03/20/2018] [Indexed: 12/31/2022] Open
Abstract
T cell function can be compromised during chronic infections or through continuous exposure to tumor antigens by the action of immune checkpoint receptors, such as programmed cell death protein 1 (PD-1). Systemic administration of blocking antibodies against the PD-1 pathway can restore T cell function, and has been approved for the treatment of several malignancies, although there is a risk of adverse immune-related side-effects. We have developed a method for generating gene knockouts in human antigen (Ag)-specific cytotoxic T-Lymphocyte (CTLs) using clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) genome editing. Using this method, we generated several transduced CD4+ or CD8+ antigen-specific polyclonal CTL lines and clones, and validated gene modifications of the PD-1 gene. We compared these T-cell lines and clones with control groups in the presence of programmed death-ligand 1 (PD-L1) and observed improved effector functions in the PD1-disrupted cell group. Overall, we have developed a versatile tool for functional genomics in human antigen-specific CTL studies. Furthermore, we provide an alternative strategy for current cell-based immunotherapy that will minimize the side effects caused by antibody blockade therapy.
Collapse
Affiliation(s)
- Chi Zhang
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, Oxford University, Oxford, OX3 9DS, UK
| | - Yanchun Peng
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, Oxford University, Oxford, OX3 9DS, UK.,Center for Translational Immunology, Chinese Academy of Medical Science Oxford Institute, Nuffield Department of Medicine, Oxford University, Oxford, OX3 7BN, UK
| | - Philip Hublitz
- Genome Engineering Department, Weatherall Institute of Molecular Medicine, Oxford University, Oxford, OX3 9DS, UK
| | - Haokang Zhang
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, Oxford University, Oxford, OX3 9DS, UK
| | - Tao Dong
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, Oxford University, Oxford, OX3 9DS, UK. .,Center for Translational Immunology, Chinese Academy of Medical Science Oxford Institute, Nuffield Department of Medicine, Oxford University, Oxford, OX3 7BN, UK.
| |
Collapse
|
5
|
Hosseini A, Estiri H, Akhavan Niaki H, Alizadeh A, Abdolhossein Zadeh B, Ghaderian SMH, Farjadfar A, Fallah A. Multiple Sclerosis Gene Therapy with Recombinant Viral Vectors: Overexpression of IL-4, Leukemia Inhibitory Factor, and IL-10 in Wharton's Jelly Stem Cells Used in EAE Mice Model. CELL JOURNAL 2017; 19:361-374. [PMID: 28836399 PMCID: PMC5570402 DOI: 10.22074/cellj.2017.4497] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Accepted: 09/07/2016] [Indexed: 12/15/2022]
Abstract
OBJECTIVES Immunotherapy and gene therapy play important roles in modern medicine. The aim of this study is to evaluate the overexpression of interleukin-4 (IL-4), IL-10 and leukemia inhibitory factor (LIF) in Wharton's jelly stem cells (WJSCs) in the experimental autoimmune encephalomyelitis (EAE) mice model. MATERIALS AND METHODS In this experimental study, a DNA construction containing IL- 4, IL-10 and LIF was assembled to make a polycistronic vector (as the transfer vector). Transfer and control vectors were co-transfected into Human Embryonic Kidney 293 (HEK-293T) cells with helper plasmids which produced recombinant lentiviral viruses (rLV). WJSCs were transduced with rLV to make recombinant WJSC (rWJSC). In vitro protein and mRNA overexpression of IL-4, LIF, and IL-10 were evaluated using quantitative polymerase chain reaction (qPCR), enzyme-linked immunosorbent assay (ELISA) and western blot (WB) analysis. EAE was induced in mice by MOG-CFA and pertussis toxin. EAE mice were injected twice with 2×105 rWJSCs. The in vivo level of IL-4, LIF, IL-10 cytokines and IL-17 were measured by ELISA. Brain tissues were analyzed histologically for evaluation of EAE lesions. RESULTS Isolated WJSCs were performed to characterize by in vitro differentiation and surface markers were analyzed by flow cytometry method. Cloning of a single lentiviral vector with five genes was done successfully. Transfection of transfer and control vectors were processed based on CaPO4 method with >90% efficiency. Recombinant viruses were produced and results of titration showed 2-3×107 infection-unit/ml. WJSCs were transduced using recombinant viruses. IL-4, IL-10 and LIF overexpression were confirmed by ELISA, WB and qPCR. The EAE mice treated with rWJSC showed reduction of Il-17, and brain lesions as well as brain cellular infiltration, in vivo. Weights and physical activity were improved in gene-treated group. CONCLUSIONS These results showed that gene therapy using anti-inflammatory cytokines can be a promising approach against multiple sclerosis (MS). In addition, considering the immunomodulatory potential of WJSCs, an approach using a combination of WJSCs and gene therapy will enhance the treatment efficacy.
Collapse
Affiliation(s)
- Ahmad Hosseini
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Cell Biology and Anatomical Science, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Hajar Estiri
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Iranian Institute of Cell and Gene Therapy, Tehran, Iran
| | - Haleh Akhavan Niaki
- Cellular and Molecular Biology Research Center, Babol University of Medical Sciences, Babol, Iran.,Department of Genetics, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Akram Alizadeh
- Cellular and Molecular Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Baharak Abdolhossein Zadeh
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Akbar Farjadfar
- Department of Biotechnology, Fasa University of Medical Sciences, Fasa, Iran
| | - Ali Fallah
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.,BioViva USA Inc, Bainbridge Island WA, USA
| |
Collapse
|
6
|
Optimization of methods for the genetic modification of human T cells. Immunol Cell Biol 2015; 93:896-908. [PMID: 26027856 PMCID: PMC4659746 DOI: 10.1038/icb.2015.59] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 05/06/2015] [Accepted: 05/13/2015] [Indexed: 12/18/2022]
Abstract
CD4+ T cells are critical in the fight against parasitic, bacterial, and viral infections, but are also involved in many autoimmune and pathological disorders. Studies of protein function in human T cells are confined to techniques such as RNAi due to ethical reasons and relative simplicity of these methods. However, introduction of RNAi or genes into primary human T cells is often hampered by toxic effects from transfection or transduction methods that yield cell numbers inadequate for downstream assays. Additionally, the efficiency of recombinant DNA expression is frequently low due to multiple factors including efficacy of the method and strength of the targeting RNAs. Here, we describe detailed protocols that will aid in the study of primary human CD4+ T cells. First, we describe a method for development of effective microRNA/shRNAs using available online algorithms. Second, we illustrate an optimized protocol for high efficacy retroviral or lentiviral transduction of human T cell lines. Importantly, we demonstrate that activated primary human CD4+ T cells can be transduced efficiently with lentiviruses, with a highly activated population of T cells receiving the largest number of copies of integrated DNA. We also illustrate a method for efficient lentiviral transduction of hard-to-transduce un-activated primary human CD4+ T cells. These protocols will significantly assist in understanding the activation and function of human T cells and will ultimately aid in the development or improvement of current drugs that target human CD4+ T cells.
Collapse
|
7
|
Kang WS, Kwon JS, Kim HB, Jeong HY, Kang HJ, Jeong MH, Cho JG, Park JC, Kim YS, Ahn Y. A macrophage-specific synthetic promoter for therapeutic application of adiponectin. Gene Ther 2014; 21:353-62. [PMID: 24500526 PMCID: PMC3975813 DOI: 10.1038/gt.2014.3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 11/19/2013] [Accepted: 12/16/2013] [Indexed: 11/09/2022]
Abstract
Foam cell formation from macrophage is a major cause of atherosclerosis. An efficient macrophage-specific promoter is required for the targeting to macrophages. In this study, we develop a macrophage-specific synthetic promoter for the therapeutic application of adiponectin (APN), an antiatherogenic gene. Synthetic promoter-146 (SP146), registered on the NCBI website (http://www.ncbi.nlm.nih.gov/nuccore/DQ107383), was tested for promoter activities in two non-macrophage cell lines (293 T, HeLa) and a macrophage cell line (RAW264.7, bone marrow-derived macrophages). To enforce macrophage specificity, partial elements of p47(phox) including the PU.1 site with various lengths (-C1, -C2 and -C3) were inserted next to the synthetic promoters. SP146-C1 showed the highest specificity and efficacy in RAW264.7 cells and was selected for development of an APN-carrying macrophage-specific promoter. Green fluorescent protein (GFP)- or APN-expressing lentivirus under SP146-C1 (Lenti-SP-GFP or Lenti-SP-APN, respectively) showed the highest expression efficacy in RAW264.7 cells compared with the non-macrophage cell lines. APN overexpression in RAW264.7 cells successfully inhibited intracellular lipid accumulation, and atherosclerotic lesions and lipid accumulation were significantly reduced by Lenti-SP-APN in ApoE-/- atherosclerosis mice. In conclusion, the synthetic promoter SP146-C1, combined with a p47(phox) promoter element, was successfully developed to target macrophage, and macrophage-specific introduction of APN under SP146-C1 was shown to ameliorate the atherosclerotic pathology.
Collapse
Affiliation(s)
- W S Kang
- 1] Research Laboratory of Cardiovascular Regeneration, Chonnam National University Hospital, Gwangju, Korea [2] Center of Molecular Medicine, Graduate School, Chonnam National University, Gwangju, Korea
| | - J S Kwon
- 1] Research Laboratory of Cardiovascular Regeneration, Chonnam National University Hospital, Gwangju, Korea [2] Heart Research Center, Chonnam National University Hospital, Gwangju, Korea
| | - H B Kim
- Research Laboratory of Cardiovascular Regeneration, Chonnam National University Hospital, Gwangju, Korea
| | - H-Y Jeong
- Research Laboratory of Cardiovascular Regeneration, Chonnam National University Hospital, Gwangju, Korea
| | - H J Kang
- Research Laboratory of Cardiovascular Regeneration, Chonnam National University Hospital, Gwangju, Korea
| | - M H Jeong
- 1] Heart Research Center, Chonnam National University Hospital, Gwangju, Korea [2] Department of Cardiology, Chonnam National University Hospital, Gwangju, Korea
| | - J G Cho
- Department of Cardiology, Chonnam National University Hospital, Gwangju, Korea
| | - J C Park
- Department of Cardiology, Chonnam National University Hospital, Gwangju, Korea
| | - Y S Kim
- 1] Research Laboratory of Cardiovascular Regeneration, Chonnam National University Hospital, Gwangju, Korea [2] Heart Research Center, Chonnam National University Hospital, Gwangju, Korea
| | - Y Ahn
- 1] Research Laboratory of Cardiovascular Regeneration, Chonnam National University Hospital, Gwangju, Korea [2] Heart Research Center, Chonnam National University Hospital, Gwangju, Korea [3] Department of Cardiology, Chonnam National University Hospital, Gwangju, Korea
| |
Collapse
|
8
|
|
9
|
Abstract
Retroviruses are useful tools for the efficient delivery of genes to mammalian cells, owing to their ability to stably integrate into the host cell genome. Over the past few decades, retroviral vectors have been used in gene therapy clinical trials for the treatment of a number of inherited diseases and cancers. The earliest retrovirus vectors were based on simple oncogenic gammaretroviruses such as Moloney murine leukemia virus (MMLV) which, when pseudotyped with envelope proteins from other viruses such as the gibbon ape leukemia virus envelope protein (GALV) or vesicular stomatitis virus G protein (VSV-G), can efficiently introduce genes to a wide range of host cells. However, gammaretroviral vectors have the disadvantage that they are unable to efficiently transduce nondividing or slowly dividing cells. As a result, specific protocols have been developed to activate cells through the use of growth factors and cytokines. In the case of hematopoietic stem cells, activation has to be carefully controlled so that pluripotency is maintained. For many applications, gammaretroviral vectors are being superseded by lentiviral vectors based on human immunodeficiency virus type-1 (HIV-1) which has additional accessory proteins that enable integration in the absence of cell division. In addition, retroviral and lentiviral vector design has evolved to address a number of safety concerns. These include separate expression of the viral genes in trans to prevent recombination events leading to the generation of replication-competent viruses. Further, the development of self-inactivating (SIN) vectors reduces the potential for transactivation of neighboring genes and allows the incorporation of regulatory elements that may target gene expression more physiologically to particular cell types.
Collapse
|
10
|
Abstract
Cell systems have recently emerged as biological drug carriers, as an interesting alternative to other systems such as micro- and nano-particles. Different cells, such as carrier erythrocytes, bacterial ghosts and genetically engineered stem and dendritic cells have been used. They provide sustained release and specific delivery of drugs, enzymatic systems and genetic material to certain organs and tissues. Cell systems have potential applications for the treatment of cancer, HIV, intracellular infections, cardiovascular diseases, Parkinson’s disease or in gene therapy. Carrier erythrocytes containing enzymes such us L-asparaginase, or drugs such as corticosteroids have been successfully used in humans. Bacterial ghosts have been widely used in the field of vaccines and also with drugs such as doxorubicin. Genetically engineered stem cells have been tested for cancer treatment and dendritic cells for immunotherapeutic vaccines. Although further research and more clinical trials are necessary, cell-based platforms are a promising strategy for drug delivery.
Collapse
|
11
|
Zakas PM, Spencer HT, Doering CB. Engineered Hematopoietic Stem Cells as Therapeutics for Hemophilia A. ACTA ACUST UNITED AC 2012; 1. [PMID: 25383239 DOI: 10.4172/2157-7412.s1-003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Philip M Zakas
- Graduate Program in Molecular and Systems Pharmacology, Graduate Division of Biological and Biomedical Sciences, Emory University
| | - H Trent Spencer
- Aflac Cancer Center and Blood Disorders Service, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia
| | - Christopher B Doering
- Aflac Cancer Center and Blood Disorders Service, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
12
|
A novel pancreatropic coxsackievirus vector expressing glucagon-like peptide 1 reduces hyperglycemia in streptozotocin-treated mice. J Virol 2011; 85:12759-68. [PMID: 21937637 DOI: 10.1128/jvi.00661-11] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
A coxsackievirus vector, vCVB(dm) (v stands for vector, CVB stands for group B coxsackievirus, and dm stands for double mutant), has been produced from a unique strain of coxsackievirus B3 (CVB3) containing 2 mutations that confer the property of highly selective pancreatropism. This vector has been tested as a delivery vehicle for glucagon-like peptide 1 (GLP-1), a peptide that enhances pancreatic regeneration following tissue damage. vCVB(dm) is a live vector comprising the entire plus-strand RNA genome with a multiple cloning site (MCS) inserted between the P1 and P2 gene regions. The MCS is flanked by sequences encoding the cleavage site for viral protease 2Apro that processes the polyprotein to release the incorporated gene. Our studies show that this vector selectively delivers GLP-1 to the pancreas where it is expressed in foci scattered throughout the acinar tissue for 4 or 5 days. Moreover, expression is associated with new beta cell clusters in juxtaposition to vector-infected cells. Inoculation of streptozotocin (STZ)-treated mice with vCVB(dm)GLP-1 was found to suppress development of hyperglycemia and increase insulin production relative to mice treated with STZ alone or with empty vector. This vector has the advantage of exclusively targeting pancreas and has potential use for short-term gene delivery to this tissue. The lack of viral integration provides a significant safety feature, making this vector a possible option for use as a therapeutic tool for pancreas-related diseases, including type 1 and 2 diabetes, pancreatitis, and pancreatic cancer.
Collapse
|
13
|
Schmid F, Glaus E, Barthelmes D, Fliegauf M, Gaspar H, Nürnberg G, Nürnberg P, Omran H, Berger W, Neidhardt J. U1 snRNA-mediated gene therapeutic correction of splice defects caused by an exceptionally mild BBS mutation. Hum Mutat 2011; 32:815-24. [DOI: 10.1002/humu.21509] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
14
|
Hendriks RW, Bredius RG, Pike-Overzet K, Staal FJ. Biology and novel treatment options for XLA, the most common monogenetic immunodeficiency in man. Expert Opin Ther Targets 2011; 15:1003-21. [PMID: 21635151 DOI: 10.1517/14728222.2011.585971] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION X-linked agammaglobulinemia (XLA) is the most common primary immunodeficiency in man, and is caused by a single genetic defect. Inactivating mutations in the Bruton's tyrosine kinase (BTK) gene are invariably the cause of XLA,. XLA is characterized by a differentiation arrest at the pre-B cell stage, the absence of immunoglobulins and recurrent bacterial infections, making it an insidious disease that gradually disables the patient, and can result in death due to chronic lung disease. Current treatment involves prophylactic antibiotics and immunoglobulin infusions, which are non-curative. This disease is a good candidate for curative hematopoietic stem cell (HSC)-based gene therapy, which could correct the B cell and myeloid deficiencies. AREAS COVERED This paper reviews the basic biology of BTK in B cell development, the clinical features of XLA, and the possibilities of gene therapy for XLA, covering the literature from 1995 to 2010. EXPERT OPINION Work from various laboratories demonstrates the feasibility of using gene-corrected HSCs to complement the immune defects of Btk-deficiency in mice. We propose that it is timely to start clinical programs to develop stem cell based therapy for XLA, using gene-corrected autologous HSC.
Collapse
Affiliation(s)
- Rudi W Hendriks
- Department of Pulmonary Medicine, Erasmus MC, Rotterdam, The Netherlands
| | | | | | | |
Collapse
|
15
|
Gene therapeutic approach using mutation-adapted U1 snRNA to correct a RPGR splice defect in patient-derived cells. Mol Ther 2011; 19:936-41. [PMID: 21326217 DOI: 10.1038/mt.2011.7] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Retinitis pigmentosa (RP) is a disease that primarily affects the peripheral retina and ultimately causes visual impairment. X-chromosomal forms of RP are frequently caused by mutations in the retinitis pigmentosa GTPase regulator (RPGR) gene. We show that the novel splice donor site (SDS) mutation c.1245+3A>T in intron 10 of RPGR cosegregates with RP in a five-generation Caucasian family. The mutation causes in-frame skipping of exon 10 from RPGR transcripts in patient-derived primary fibroblasts. To correct the splice defect, we developed a gene therapeutic approach using mutation-adapted U1 small nuclear RNA (U1). U1 is required for SDS recognition of pre-mRNAs and initiates the splice process. The mutation described herein interferes with the recognition of the SDS by U1. To overcome the deleterious effects of the mutation, we generated four U1 isoforms with increasing complementarity to the SDS. Lentiviral particles were used to transduce patient-derived fibroblasts with these U1 variants. Full complementarity of U1 corrects the splice defect partially and increases recognition of the mutant SDS. The therapeutic effect is U1-concentration dependent as we show for endogenously expressed RPGR transcripts in patient-derived cells. U1-based gene therapeutic approaches constitute promising technologies to treat SDS mutations in inherited diseases including X-linked RP.
Collapse
|
16
|
Doering CB, Archer D, Spencer HT. Delivery of nucleic acid therapeutics by genetically engineered hematopoietic stem cells. Adv Drug Deliv Rev 2010; 62:1204-12. [PMID: 20869414 PMCID: PMC2991563 DOI: 10.1016/j.addr.2010.09.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Revised: 08/17/2010] [Accepted: 09/08/2010] [Indexed: 01/02/2023]
Abstract
Several populations of adult human stem cells have been identified, but only a few of these are in routine clinical use. The hematopoietic stem cell (HSC) is arguably the most well characterized and the most routinely transplanted adult stem cell. Although details regarding several aspects of this cell's phenotype are not well understood, transplant of HSCs has advanced to become the standard of care for the treatment of a range of monogenic diseases and several types of cancer. It has also proven to be an excellent target for genetic manipulation, and clinical trials have already demonstrated the usefulness of targeting this cell as a means of delivering nucleic acid therapeutics for the treatment of several previously incurable diseases. It is anticipated that additional clinical trials will soon follow, such as genetically engineering HSCs with vectors to treat monogenic diseases such as hemophilia A. In addition to the direct targeting of HSCs, induced pluripotent stem (iPS) cells have the potential to replace virtually any engineered stem cell therapeutic, including HSCs. We now know that for the broad use of genetically modified HSCs for the treatment of non-lethal diseases, e.g. hemophilia A, we must be able to regulate the introduction of nucleic acid sequences into these target cells. We can begin to refine transduction protocols to provide safer approaches to genetically manipulate HSCs and strategies are being developed to improve the overall safety of gene transfer. This review focuses on recent advances in the systemic delivery of nucleic acid therapeutics using genetically modified stem cells, specifically focusing on i) the use of retroviral vectors to genetically modify HSCs, ii) the expression of fVIII from hematopoietic stem cells for the treatment of hemophilia A, and iii) the use of genetically engineered hematopoietic cells generated from iPS cells as treatment for disorders of hematopoiesis.
Collapse
Affiliation(s)
- Christopher B Doering
- Aflac Cancer Center and Blood Disorders Service, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | | | | |
Collapse
|
17
|
Subramanya S, Kim SS, Manjunath N, Shankar P. RNA interference-based therapeutics for human immunodeficiency virus HIV-1 treatment: synthetic siRNA or vector-based shRNA? Expert Opin Biol Ther 2010; 10:201-13. [PMID: 20088715 PMCID: PMC3745298 DOI: 10.1517/14712590903448158] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
IMPORTANCE OF THE FIELD Despite the clinical benefits of highly active antiretroviral therapy (HAART), the prospect of life-long antiretroviral treatment poses significant problems, which has spurred interest in developing new drugs and strategies to treat HIV infection and eliminate persistent viral reservoirs. RNAi has emerged as a therapeutic possibility for HIV. AREAS COVERED IN THIS REVIEW We discuss progress in overcoming hurdles to translating transient and stable RNAi enabling technologies to clinical application for HIV; covering the past 2 - 3 years. WHAT THE READER WILL GAIN HIV inhibition can be achieved by transfection of chemically or enzymatically synthesized siRNAs or by DNA-based vector systems expressing short hairpin RNAs (shRNAs) that are processed intracellularly into siRNA. We compare these approaches, focusing on technical and safety issues that will guide the choice of strategy for clinical use. TAKE HOME MESSAGE Introduction of synthetic siRNA into cells or its stable endogenous production using vector-driven shRNA have been shown to suppress HIV replication in vitro and, in some instances, in vivo. Each method has advantages and limitations in terms of ease of delivery, duration of silencing, emergence of escape mutants and potential toxicity. Both appear to have potential as future therapeutics for HIV, once the technical and safety issues of each approach are overcome.
Collapse
Affiliation(s)
- Sandesh Subramanya
- Department of Biomedical Sciences, Center of Excellence for Infectious Diseases, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX 79905
| | - Sang-Soo Kim
- Department of Biomedical Sciences, Center of Excellence for Infectious Diseases, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX 79905
| | - N Manjunath
- Department of Biomedical Sciences, Center of Excellence for Infectious Diseases, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX 79905
| | - Premlata Shankar
- Department of Biomedical Sciences, Center of Excellence for Infectious Diseases, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX 79905
| |
Collapse
|
18
|
Improvement of the survival of human autologous fat transplantation by using VEGF-transfected adipose-derived stem cells. Plast Reconstr Surg 2010; 124:1437-1446. [PMID: 20009828 DOI: 10.1097/prs.0b013e3181babbb6] [Citation(s) in RCA: 159] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND The efficacy of autologous fat transplantation is reduced by fat absorption and fibrosis due to fat necrosis. Enhanced transplant neovascularization early after transplantation may reduce these outcomes. The authors asked whether cell and concomitant gene therapy using adipose-derived stem cells transduced with vascular endothelial growth factor (VEGF) improves fat transplant neovascularization and survival. METHODS Human adipose-derived stem cells were expanded ex vivo for three passages, labeled with 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine (DiI), and transduced with VEGF or left untransduced. Human fat tissues were then mixed with the DiI-labeled VEGF-transduced adipose-derived stem cells, the DiI-labeled adipose-derived stem cells, the known vascularization-promoting agent insulin, or medium alone, and 18 nude mice were injected subcutaneously with all four preparations, with each of the four designated spots receiving one of these four mixtures in a random fashion. Six months later, transplanted tissue volume and histology were evaluated and neovascularization was quantified by counting the capillaries. RESULTS Control transplant survival was 27.1 +/- 8.2 percent, but mixture with the VEGF-transduced and VEGF-untransduced stem cells significantly increased transplant survival (74.1 +/- 12.6 percent and 60.1 +/- 17.6 percent, respectively). Insulin was less effective (37.7 +/- 6.9 percent). Histological analysis revealed both types of transplants consisted predominantly of adipose tissue, unlike the control transplants, and had significantly less fat necrosis and fibrosis. The VEGF-transduced, adipose-derived stem cell-treated transplants had significantly higher capillary density than the other transplants and bore DiI-double-positive and CD31-double-positive cells (i.e., adipose-derived stem cell-derived endothelial cells). CONCLUSION Adipose-derived stem cells together with VEGF transduction can enhance the survival and quality of transplanted fat tissues.
Collapse
|
19
|
The evolution of gene therapy in X-linked severe combined immunodeficiency. Ann Allergy Asthma Immunol 2009; 102:357-62; quiz 363-5, 402. [PMID: 19492655 DOI: 10.1016/s1081-1206(10)60504-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
OBJECTIVES To review the evolution of gene therapy in infants with X-linked severe combined immunodeficiency (XL-SCID) and to evaluate the current challenges facing this evolving field. DATA SOURCES The MEDLINE, OVID, CINAHL, and HealthSTAR databases were searched to identify pertinent articles using the following keywords: gene therapy, XL-SCID, bone marrow transplant, and viral vectors. STUDY SELECTION Journal articles were selected for their relevance to human gene therapy in patients with XL-SCID. RESULTS Gene therapy with a retrovirus-derived vector has been used to treat 20 patients with XL-SCID internationally. Although most patients derived improvements in T- and B-cell immune numbers and function, severe adverse effects have occurred. After gene therapy, 5 of the 20 patients developed leukemia. This outcome has been associated with insertion of the corrected gene near the T-cell proto-oncogene LMO2. One of the 5 patients subsequently died. CONCLUSIONS Within the past decade, effective improvements in vectorology and cell culture conditions have resulted in clinical success in some infants with SCID and have revived interest after many years of setbacks. However, clinical success and significant adverse events have been reported in patients with XL-SCID who have undergone gene therapy using a retroviral vector. As extensive research into improving safety through vector development and monitoring of gene therapy continues, further progress in gene therapy development can be anticipated.
Collapse
|
20
|
Chinen J, Candotti F. Gene transfer therapy of immunologic diseases. Clin Immunol 2008. [DOI: 10.1016/b978-0-323-04404-2.10086-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
21
|
Ryser MF, Roesler J, Gentsch M, Brenner S. Gene therapy for chronic granulomatous disease. Expert Opin Biol Ther 2007; 7:1799-809. [PMID: 18034646 DOI: 10.1517/14712598.7.12.1799] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Patients with chronic granulomatous disease (CGD) cannot generate reactive oxygen metabolites, and suffer from severe recurrent infections and dysregulated inflammation. Haematopoietic stem cell transplantation is the only established option for definitive cure for patients with a suitable donor and is indicated when conventional prophylaxis and therapy with antimicrobial medication fail. Gene therapy has the potential to cure CGD, and several clinical trials have been conducted since 1997. Whereas initial studies resulted in low and short-term engraftment of CGD-corrected cells, recent trials demonstrated clinical benefit when engraftment was enhanced by busulfan conditioning prior to infusion of gene-corrected cells. However, the progress in gene therapy has been hampered by the appearance of insertional mutagenesis causing leukaemia in a trial for patients with X-linked severe combined immunodeficiency and by the emergence of dominant clones in a recent trial for the X-linked form of CGD. These findings stimulated the development of modified vector systems that demonstrate reduced genotoxicity in vitro and in animal models. New gene therapy protocols that allow efficient gene transfer and durable expression but limit the risk for insertional mutagenesis are envisioned to become an important therapeutic option for patients with CGD.
Collapse
Affiliation(s)
- Martin F Ryser
- University Clinic Carl Gustav Carus Dresden, Department of Pediatrics, Building 21, Fetscher Street 74 , 01307 Dresden, Germany
| | | | | | | |
Collapse
|
22
|
Debebe Z, Ammosova T, Jerebtsova M, Kurantsin-Mills J, Niu X, Charles S, Richardson DR, Ray PE, Gordeuk VR, Nekhai S. Iron chelators ICL670 and 311 inhibit HIV-1 transcription. Virology 2007; 367:324-33. [PMID: 17631934 PMCID: PMC2077891 DOI: 10.1016/j.virol.2007.06.011] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2007] [Revised: 03/28/2007] [Accepted: 06/07/2007] [Indexed: 01/18/2023]
Abstract
HIV-1 replication is induced by an excess of iron and iron chelation by desferrioxamine (DFO) inhibits viral replication by reducing proliferation of infected cells. Treatment of cells with DFO and 2-hydroxy-1-naphthylaldehyde isonicotinoyl hydrazone (311) inhibit expression of proteins that regulate cell-cycle progression, including cycle-dependent kinase 2 (CDK2). Our recent studies showed that CDK2 participates in HIV-1 transcription and viral replication suggesting that inhibition of CDK2 by iron chelators might also affect HIV-1 transcription. Here we evaluated the effect of a clinically approved orally effective iron chelator, 4-[3,5-bis-(hydroxyphenyl)-1,2,4-triazol-1-yl]-benzoic acid (ICL670) and 311 on HIV-1 transcription. Both ICL670 and 311 inhibited Tat-induced HIV-1 transcription in CEM-T cells, 293T and HeLa cells. Neither ICL670 nor 311 induced cytotoxicity at concentrations that inhibited HIV-1 transcription. The chelators decreased cellular activity of CDK2 and reduced HIV-1 Tat phosphorylation by CDK2. Neither ICL670A or 311 decreased CDK9 protein level but significantly reduced association of CDK9 with cyclin T1 and reduced phosphorylation of Ser-2 residues of RNA polymerase II C-terminal domain. In conclusion, our findings add to the evidence that iron chelators can inhibit HIV-1 transcription by deregulating CDK2 and CDK9. Further consideration should be given to the development of iron chelators for future anti-retroviral therapeutics.
Collapse
Affiliation(s)
- Zufan Debebe
- Center for Sickle Cell Disease, Howard University College of Medicine, Washington, DC 20060, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
Lentiviral vectors offer unique versatility and robustness as vehicles for gene delivery. They can transduce a wide range of cell types and integrate into the host genome in both dividing and post-mitotic cells, resulting in long-term expression of the transgene both in vitro and in vivo. This protocol describes how lentiviral vectors can be produced, purified and titrated. High titer suspensions can be routinely prepared with relative ease: a low-titer (10(6) viral particles/ml) unpurified preparation can be obtained 3 d after transfecting cells with lentiviral vector and packaging plasmids; a high-titer (10(9) viral particles/ml) purified preparation requires 2 more days.
Collapse
Affiliation(s)
- Gustavo Tiscornia
- The Salk Institute for Biological Studies, Laboratory of Genetics, 10010 North Torrey Pines Road, La Jolla, California 92037, USA
| | | | | |
Collapse
|
24
|
Abstract
In the last years, different non-biological and biological carrier systems have been developed for anti-HIV1 therapy. Liposomes are excellent potential anti-HIV1 carriers that have been tested with drugs, antisense oligonucleotides, ribozymes and therapeutic genes. Nanoparticles and low-density lipoproteins (LDLs) are cell-specific transporters of drugs against macrophage-specific infections such as HIV1. Through a process of protein transduction, cell-permeable peptides of natural origin or designed artificially allow the delivery of drugs and genetic material inside the cell. Erythrocyte ghosts and bacterial ghosts are a promising delivery system for therapeutic peptides and HIV vaccines. Of interest are the advances made in the field of HIV gene therapy by the use of autologous haematopoietic stem cells and viral vectors for HIV vaccines. Although important milestones have been reached in the development of carrier systems for the treatment of HIV, especially in the field of gene therapy, further clinical trials are required so that the efficiency and safety of these new systems can be guaranteed in HIV patients.
Collapse
Affiliation(s)
- José M Lanao
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Salamanca, Salamanca, Spain.
| | | | | |
Collapse
|
25
|
He W, Qiang M, Ma W, Valente AJ, Quinones MP, Wang W, Reddick RL, Xiao Q, Ahuja SS, Clark RA, Freeman GL, Li S. Development of a synthetic promoter for macrophage gene therapy. Hum Gene Ther 2006; 17:949-59. [PMID: 16972763 DOI: 10.1089/hum.2006.17.949] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Macrophages have the potential to deliver therapeutic genes to many target tissues. Macrophage-specific synthetic promoters (SPs) generated by random ligation of myeloid/macrophage cis elements had activity up to 100-fold that of a native macrophage promoter in macrophage cell lines, but were minimally active in nonmyeloid cells. Mouse bone marrow cells (BMCs) transduced ex vivo with lentivectors expressing green fluorescent protein (GFP) driven either by an SP (SP-GFP) or a cytomegalovirus (CMV) promoter (CMV-GFP) were used for syngeneic transplantation of lethally irradiated mice. Blood leukocytes showed stable GFP expression for up to 15 months after transplantation. SP-GFP expression was selective for CD11b+ macrophages, whereas CMV-GFP expression was observed in erythrocytes, as well as in both CD11b+ and CD11b- leukocytes. Furthermore, SP-GFP expression was much stronger than CMV-GFP expression in CD11b+ macrophages. apoE-/- BMCs transduced with the lentiviral vector encoding human apoE were used to transplant apoE-/- mice. Macrophage expression of apoE from 10 to 26 weeks of age significantly reduced atherosclerotic lesions in recipient apoE-/- mice. Thus, the novel SPs, especially when combined with lentivectors, are useful for macrophage-specific delivery of therapeutic genes.
Collapse
Affiliation(s)
- Weijing He
- Department of Medicine, University of Texas Health Science Center at San Antonio, and South Texas Veterans Health Care System, Audie L. Murphy Division, San Antonio, TX 78229-3900, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Epie N, Ammosova T, Turner W, Nekhai S. Inhibition of PP2A by LIS1 increases HIV-1 gene expression. Retrovirology 2006; 3:65. [PMID: 17018134 PMCID: PMC1615876 DOI: 10.1186/1742-4690-3-65] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2006] [Accepted: 10/02/2006] [Indexed: 01/29/2023] Open
Abstract
Background Lissencephaly is a severe brain malformation in part caused by mutations in the LIS1 gene. LIS1 interacts with microtubule-associated proteins, and enhances transport of microtubule fragments. Previously we showed that LIS1 interacts with HIV-1 Tat protein and that this interaction was mediated by WD40 domains of LIS1. In the present study, we analyze the effect of LIS1 on Tat-mediated transcription of HIV-1 LTR. Results Tat-mediated HIV-1 transcription was upregulated in 293 cells transfected with LIS1 expression vector. The WD5 but not the N-terminal domain of LIS1 increases Tat-dependent HIV-1 transcription. The effect of LIS1 was similar to the effect of okadaic acid, an inhibitor of protein phosphatase 2A (PP2A). We then analyzed the effect of LIS1 on the activity of PP2A in vitro. We show that LIS1 and its isolated WD5 domain but not the N-terminal domain of LIS1 blocks PP2A activity. Conclusion Our results show that inhibition of PP2A by LIS1 induces HIV-1 transcription. Our results also point to a possibility that LIS1 might function in the cells as a yet unrecognized regulatory subunit of PP2A.
Collapse
Affiliation(s)
- Nicolas Epie
- Center for Sickle Cell Disease, Howard University College of Medicine, 520 W Street N.W., Washington, DC 20059, USA
- Department of Microbiology, Howard University College of Medicine, 520 W Street N.W., Washington, DC 20059, USA
| | - Tatyana Ammosova
- Center for Sickle Cell Disease, Howard University College of Medicine, 520 W Street N.W., Washington, DC 20059, USA
| | - Willie Turner
- Department of Microbiology, Howard University College of Medicine, 520 W Street N.W., Washington, DC 20059, USA
| | - Sergei Nekhai
- Center for Sickle Cell Disease, Howard University College of Medicine, 520 W Street N.W., Washington, DC 20059, USA
- Department of Biochemistry and Molecular Biology, Howard University College of Medicine, 520 W Street N.W., Washington, DC 20059, USA
| |
Collapse
|
27
|
He W, Qiang M, Ma W, Valente AJ, Quinones MP, Wang W, Reddick RL, Xiao Q, Ahuja SS, Clark RA, Freeman GL, Li S. Development of a Synthetic Promoter for Macrophage Gene Therapy. Hum Gene Ther 2006. [DOI: 10.1089/hum.2006.17.ft-240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
28
|
Abstract
PURPOSE OF REVIEW Standard therapies for patients with severe primary immunodeficiencies include bone marrow transplantation and, for adenosine deaminase deficiency, enzyme replacement. In the last decade, gene therapy has been developed as an alternative for these conditions. We summarize the recent advances in gene therapy for primary immunodeficiencies and discuss the unexpected occurrence of leukemia in a gene therapy trial for X-linked severe combined immunodeficiency. RECENT FINDINGS Eight of 10 infants with X-linked severe combined immunodeficiency who received autologous hematopoietic stem cells transduced with a retroviral vector carrying the IL2RG complementary DNA achieved immune reconstitution. However, the two youngest patients developed leukemic expansions of gene-corrected cells. The first case had proliferation of a gamma delta T cell clone, and the second case had three alpha beta T cell clones derived from a single transduced progenitor. Leukemic cells in both patients aberrantly expressed the LIM domain only-2 transcription factor due to retroviral vector insertions in this locus. After receiving anti-leukemic treatment one patient achieved a lasting remission, but the other relapsed. Four adenosine deaminase deficient severe combined immunodeficiency patients also developed functional immunity after receiving autologous hematopoietic stem cells transduced with the adenosine deaminase gene complementary DNA following submyeloablative chemotherapy. Chronic granulomatous disease, Wiskott-Aldrich syndrome, JAK3 deficiency and RAG2 deficiency are other immunodeficiencies being studied as candidates for gene therapy. SUMMARY Gene therapy is a promising therapeutic option for some primary immunodeficiencies, especially when cells expressing the correct gene have a selective advantage. More clinical trials with closer patient monitoring are under way to define which patients may benefit from this approach, and strategies are being developed to understand and ultimately reduce the risk of leukemia secondary to retroviral vector insertion.
Collapse
Affiliation(s)
- Javier Chinen
- Genetics and Molecular Biology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
29
|
Rodrigues T, Carvalho A, Roldão A, Carrondo MJT, Alves PM, Cruz PE. Screening anion-exchange chromatographic matrices for isolation of onco-retroviral vectors. J Chromatogr B Analyt Technol Biomed Life Sci 2006; 837:59-68. [PMID: 16697280 DOI: 10.1016/j.jchromb.2006.03.061] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2005] [Revised: 03/01/2006] [Accepted: 03/30/2006] [Indexed: 11/25/2022]
Abstract
The adsorption kinetics of retroviral vectors to several chromatographic media, DEAE FF, Streamlinetrade mark Q XL and CHTtrade mark Ceramic Hydroxyapatite, in batch mode was investigated. The effects of buffer type, pH and operational temperature were studied. A mathematical model describing viral adsorption kinetics that considers viral degradation in solution was developed. The best results, either in terms of speed and extent of adsorbed infectious particles, were obtained with DEAE FF and Streamlinetrade mark Q XL. Fixed-bed chromatography was further investigated using DEAE FF, Q XL and Q FF, for validation of the batch adsorption process. Fixed-bed DEAE FF and Q XL proved to be good candidates for purification of MoMLV derived vectors due to resulting high yields, 53+/-13% and 51+/-7%, respectively, while removing more than 99% of protein and 90% of the DNA contaminants.
Collapse
|
30
|
|
31
|
Pfützner W, Joari MR, Foster RA, Vogel JC. A large preclinical animal model to assess ex vivo skin gene therapy applications. Arch Dermatol Res 2006; 298:16-22. [PMID: 16565820 DOI: 10.1007/s00403-006-0653-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2005] [Revised: 02/20/2006] [Accepted: 02/21/2006] [Indexed: 01/13/2023]
Abstract
Because of its easy accessibility, the skin is a very attractive target for gene therapy purposes. To study potential clinical applications in a preclinical setting, appropriate animal models are needed. Pig skin is very similar to human skin, and a variety of human diseases that are potentially amenable to gene therapy applications also occur in pigs. Only a few studies have analyzed the engraftment of transduced keratinocytes (KC) in pigs, however, with limited success. We describe a porcine model in which pig KC were transduced ex vivo with a retroviral vector encoding a marker gene and subsequently grafted onto the autologous host, utilizing a relatively simple grafting technique. Enhanced transduction efficiency was achieved by an optimized transduction protocol including centrifugation of the retroviral vector at a temperature of 32 degrees C. Transduced KC were then seeded onto acellular dermis, forming a stratified epidermis. Grafting was performed by creating full thickness wounds and placing the skin graft onto the muscle fascia, covered by a protective skin flap for several days. Successful engraftment of transduced KC was demonstrated by immunohistochemistry of biopsies taken at different time points, showing transgene expression in 40-50% of grafted KC. After 4 weeks, KC expressing a foreign marker gene was lost, suggesting a transgene-specific immune response in the immunocompetent pigs and highlighting the potential problems for clinical gene therapy studies when transferring new genetic material into a patient. The model presented here may be used to examine applications of skin gene therapy, where retroviral vectors encoding endogenous pig genes will be expressed in the skin.
Collapse
Affiliation(s)
- Wolfgang Pfützner
- Dermatologische Klinik, Universität München, Frauenlobstrasse 9-11, 80337 Munich, Germany.
| | | | | | | |
Collapse
|
32
|
Trivedi AA, Igarashi T, Compagnone N, Fan X, Hsu JYC, Hall DE, John CM, Noble-Haeusslein LJ. Suitability of allogeneic sertoli cells for ex vivo gene delivery in the injured spinal cord. Exp Neurol 2006; 198:88-100. [PMID: 16387298 DOI: 10.1016/j.expneurol.2005.11.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2005] [Revised: 11/15/2005] [Accepted: 11/15/2005] [Indexed: 01/21/2023]
Abstract
Cell-based gene delivery for gene therapy offers the advantages of long-term stable expression of proteins without the safety concerns associated with viral vectors. However, issues of immune rejection prevent the widespread use of allogeneic cell implants. In this study, we determine if Sertoli cells, known for their immune privileged status, are suitable vehicles for allogeneic cell-based gene delivery into the injured spinal cord. As proof of concept, Sertoli cells were modified with recombinant adenovirus expressing enhanced green fluorescent protein (eGFP) or a human trophic factor, neurotrophin-3 (hNT-3), and eGFP. Genetically modified Sertoli cells retained their immunosuppressive ability in vitro, based upon lymphocyte proliferation assays, and were capable of generating biologically relevant levels of NT-3. Similarly, modified, allogeneic cells, implanted into the acutely injured spinal cord, reduced the early inflammatory response while producing significant levels of hNT-3 for at least 3 days after grafting. Moreover, these cells survived for at least 42 days after implantation in the injured cord. Together, these results demonstrate that Sertoli cells function in immunomodulation, can be engineered to produce bioactive molecules, and show long-term survival after implantation into the hostile environment of the acutely injured spinal cord. Such long-term survival represents an important first step toward developing an optimal cell-based delivery system that generates sustained expression of a therapeutic molecule.
Collapse
Affiliation(s)
- Alpa A Trivedi
- MandalMed, Inc., 2645 Ocean Avenue, Suite 302, San Francisco, CA 94132, USA.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Landázuri N, Le Doux JM. Complexation with chondroitin sulfate C and Polybrene rapidly purifies retrovirus from inhibitors of transduction and substantially enhances gene transfer. Biotechnol Bioeng 2006; 93:146-58. [PMID: 16240439 DOI: 10.1002/bit.20697] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Using amphotropic retrovirus stocks produced by TELCeB6-A cells that encode the Escherichia coli lacZ gene, we found that complexation with chondroitin sulfate C (CSC) and Polybrene (PB) is an effective means to purify retrovirus. Virus stocks contained high levels of inhibitory activity that blocked amphotropic, but not ecotropic, retrovirus transduction. When virus stocks were brought to 80 microg/mL each of CSC and PB, complexes of CSC and PB formed. These complexes incorporated more than 70% of the virus particles but less than 0.4% of all other proteins and no detectable inhibitory activity. Purified virus transduced NIH 3T3 murine fibroblasts 21 to 186-fold more efficiently than virus that was not purified. In addition, virus purification significantly altered the dose response of transduction. When virus that had not been purified was used to transduce cells, the relationship between transduction and virus concentration was highly non-linear. In contrast, when purified virus was used, transduction increased monotonically and was linearly proportional to virus concentration, except when high doses of virus were used. Interestingly, when high doses of virus were used gene transfer reached a maximum plateau level, most likely because particle-associated amphotropic envelope proteins had saturated the cellular receptors for the virus. Our findings illustrate that retrovirus purification increases the maximum number of genes that can be transferred, reduces the amount of virus required to achieve a given level of gene transfer, and reduces uncertainties about the relationship between the amount of virus used and the number of genes transferred.
Collapse
Affiliation(s)
- Natalia Landázuri
- The Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University, Atlanta, USA
| | | |
Collapse
|
34
|
Papapetrou EP, Zoumbos NC, Athanassiadou A. Genetic modification of hematopoietic stem cells with nonviral systems: past progress and future prospects. Gene Ther 2006; 12 Suppl 1:S118-30. [PMID: 16231044 DOI: 10.1038/sj.gt.3302626] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Serious unwanted complications provoked by retroviral gene transfer into hematopoietic stem cells (HSCs) have recently raised the need for the development and assessment of alternative gene transfer vectors. Within this context, nonviral gene transfer systems are attracting increasing interest. Their main advantages include low cost, ease of handling and large-scale production, large packaging capacity and, most importantly, biosafety. While nonviral gene transfer into HSCs has been restricted in the past by poor transfection efficiency and transient maintenance, in recent years, biotechnological developments are converting nonviral transfer into a realistic approach for genetic modification of cells of hematopoietic origin. Herein we provide an overview of past accomplishments in the field of nonviral gene transfer into hematopoietic progenitor/stem cells and we point at future challenges. We argue that episomally maintained self-replicating vectors combined with physical methods of delivery show the greatest promise among nonviral gene transfer strategies for the treatment of disorders of the hematopoietic system.
Collapse
Affiliation(s)
- E P Papapetrou
- Department of Biology, Faculty of Medicine, University of Patras, Patras, Greece
| | | | | |
Collapse
|
35
|
Chapatte L, Colombetti S, Cerottini JC, Lévy F. Efficient Induction of Tumor Antigen–Specific CD8+ Memory T Cells by Recombinant Lentivectors. Cancer Res 2006; 66:1155-60. [PMID: 16424053 DOI: 10.1158/0008-5472.can-05-2597] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The success of active cancer immunotherapy entails a robust induction of tumor-reactive effector and memory CD8+ T cells. We compared the in vivo immunogenicity of the melanoma-associated antigen Melan-A(26-35) encoded by third-generation recombinant lentivector (rec. lv) or as peptide admixed with a strong adjuvant. Ex vivo analyses of immunized HLA-A2/H-2K(b) mice showed that rec. lv triggered a stronger anti-Melan-A CD8+ T -cell response than peptide vaccine. Importantly, the majority of anti-Melan-A T cells elicited by rec. lv expressed the memory marker CD127 at the peak of the primary response. In those mice, memory T cells were detectable several months after priming and could be activated by recall peptide vaccination. These results show that immunization with rec. lv induces not only a strong antigen-specific CD8+ T -cell response but also a long-lasting T-cell memory against a bona fide tumor-associated antigen.
Collapse
Affiliation(s)
- Laurence Chapatte
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne, Chemin des Boveresses 155, 1066 Epalinges, Switzerland
| | | | | | | |
Collapse
|
36
|
Lucas ML, Seidel NE, Porada CD, Quigley JG, Anderson SM, Malech HL, Abkowitz JL, Zanjani ED, Bodine DM. Improved transduction of human sheep repopulating cells by retrovirus vectors pseudotyped with feline leukemia virus type C or RD114 envelopes. Blood 2005; 106:51-8. [PMID: 15774617 PMCID: PMC1895126 DOI: 10.1182/blood-2004-11-4491] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Gene therapy for hematopoietic diseases has been hampered by the low frequency of transduction of human hematopoietic stem cells (HSCs) with retroviral vectors pseudotyped with amphotropic envelopes. We hypothesized that transduction could be increased by the use of retroviral vectors pseudotyped with envelopes that recognize more abundant cellular receptors. The levels of mRNA encoding the receptors of the feline retroviruses, RD114 and feline leukemia virus type C (FeLV-C), were significantly higher than the level of gibbon ape leukemia virus (GaLV) receptor mRNA in cells enriched for human HSCs (Lin- CD34+ CD38-). We cotransduced human peripheral blood CD34+ cells with equivalent numbers of FeLV-C and GALV or RD114 and GALV-pseudotyped retroviruses for injection into fetal sheep. Analysis of DNA from peripheral blood and bone marrow from recipient sheep demonstrated that FeLV-C- or RD114-pseudotyped vectors were present at significantly higher levels than GALV-pseudotyped vectors. Analysis of individual myeloid colonies demonstrated that retrovirus vectors with FeLV-C and RD114 pseudotypes were present at 1.5 to 1.6 copies per cell and were preferentially integrated near known genes We conclude that the more efficient transduction of human HSCs with either FeLV-C- or RD114-pseudotyped retroviral particles may improve gene transfer in human clinical trials.
Collapse
Affiliation(s)
- M Lee Lucas
- Genetics and Molecular Biology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
O'Rourke JP, Olsen JC, Bunnell BA. Optimization of equine infectious anemia derived vectors for hematopoietic cell lineage gene transfer. Gene Ther 2005; 12:22-9. [PMID: 15550928 DOI: 10.1038/sj.gt.3302350] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Gene transfer into hematopoietic cells may allow correction of a variety of hematopoietic and metabolic disorders. Optimized HIV-1 based lentiviral vectors have been developed for improved gene transfer and transgene expression into hematopoietic cells. However, the use of HIV-1 based vectors for human gene therapy may be limited due to ethical and biosafety issues. We report that vectors based on the non-primate equine infectious anemia virus (EIAV) transduce a variety of human hematopoietic cell lines and primary blood cells. To investigate optimization of gene expression in hematopoietic cells, we compared a variety of post-transcriptional elements and promoters in the context of EIAV vectors. We observed cell specific increase in the number of transgene expressing cells with the different post-transcriptional elements, whereas the use of elongation factor alpha 1 (EFalpha1) promoter resulted in significant increases in both the number of transgene expressing cells and the level of transgene protein in all cell types tested. We then demonstrate increased transduction of hematopoietic cells using a second-generation EIAV vector containing a self-inactivating EIAV LTR and the EIAV central polypurine tract (cppt). These data suggest that optimized EIAV vectors may be a suitable alternative to HIV-1 vectors for use in hematopoietic gene therapy.
Collapse
Affiliation(s)
- J P O'Rourke
- Department of Molecular Medicine, Children's Research Institute, Columbus, OH, USA
| | | | | |
Collapse
|
38
|
|
39
|
D'Amico G, Marin V, Biondi A, Bonamino MH. Potential use of CD40 ligand for immunotherapy of childhood B-cell precursor acute lymphoblastic leukaemia. Best Pract Res Clin Haematol 2004; 17:465-77. [PMID: 15498717 DOI: 10.1016/j.beha.2004.05.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Around 20% of children affected by B-cell precursor acute lymphoblastic leukaemia (BCP-ALL) still experience a recurrence of the disease after diagnosis, despite a significant improvement in the cure rate (80%). Moreover, standard therapies have high and often unacceptable acute and chronic organ toxicity, with an increased risk for secondary malignancies. Therefore, new strategies are needed to improve overall survival and decrease treatment-associated morbidity. Recent in-vitro and in-vivo studies have demonstrated that CD40 engagement improves tumour immunogenicity and, consequently, generates a strong antitumour immune response. The CD40-CD40 ligand (CD40L) system is of pivotal importance in the immune response via interactions between T cells and antigen-presenting cells. The general aim of this chapter is to review the feasibility of developing cellular strategies to increase childhood BCP-ALL immunogenicity, and the potential use of CD40L as a new strategy to induce an antileukaemia immune response in BCP-ALL.
Collapse
Affiliation(s)
- Giovanna D'Amico
- Centro Ricerca M. Tettamanti, Clinica Pediatrica Università Milano-Bicocca, Ospedale San Gerardo, Via Donizetti, 20052 Monza (MI), Italy
| | | | | | | |
Collapse
|
40
|
Abstract
Chronic granulomatous disease (CGD) is a congenital immune deficiency that is a promising therapeutic target for gene replacement into haematopoietic stem cells (HSCs). CGD results from mutations in any one of four genes encoding subunits of the superoxide-generating NADPH oxidase of phagocytes. Life-threatening, recurrent bacterial and fungal infections, as well as inflammatory granulomas, are the hallmarks of the disease. NADPH oxidase activity can be reconstituted by retroviral- or lentiviral-mediated gene transfer to human CGD marrow in vitro and in xenograft transplant models. Gene transfer studies in knockout mouse models that resemble the human disease suggest that correction of oxidase activity in a minority of phagocytes will be of clinical benefit. Phase I clinical studies in unconditioned CGD patients showed transient expression of small numbers of gene-corrected neutrophils. Areas of research at present include efforts to enhance gene transfer rates into repopulating HSCs using vectors that transduce quiescent cells, and to increase the engraftment of genetically corrected HSCs using non-myeloablative conditioning and drug resistance genes for selection.
Collapse
MESH Headings
- Animals
- Bone Marrow Cells/enzymology
- Bone Marrow Transplantation
- Cell Line, Transformed/enzymology
- Cell Line, Transformed/transplantation
- Cells, Cultured/enzymology
- Cells, Cultured/transplantation
- Clinical Trials, Phase I as Topic
- Disease Susceptibility
- Dosage Compensation, Genetic
- Genetic Therapy
- Genetic Vectors/genetics
- Genetic Vectors/therapeutic use
- Granulomatous Disease, Chronic/complications
- Granulomatous Disease, Chronic/genetics
- Granulomatous Disease, Chronic/immunology
- Granulomatous Disease, Chronic/therapy
- Hematopoietic Stem Cell Transplantation
- Humans
- Infections/etiology
- Inflammation/etiology
- Mice
- Mice, Knockout
- NADPH Oxidases/deficiency
- NADPH Oxidases/genetics
- Phagocytes/enzymology
- Phagocytosis
- Recurrence
Collapse
Affiliation(s)
- Cecilia N Barese
- Herman B Wells Center for Pediatric Research and Depatment of Padiatrics (Hematology/Oncology), James Whitcomb Riley Hospital for Children, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | |
Collapse
|
41
|
Serafini M, Naldini L, Introna M. Molecular evidence of inefficient transduction of proliferating human B lymphocytes by VSV-pseudotyped HIV-1-derived lentivectors. Virology 2004; 325:413-24. [PMID: 15246279 DOI: 10.1016/j.virol.2004.04.038] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2004] [Revised: 04/05/2004] [Accepted: 04/28/2004] [Indexed: 01/17/2023]
Abstract
Lentiviral vectors are attractive tools to transduce dividing and nondividing cells. Human tonsillar B lymphocytes have been purified and induced to proliferate by the addition of anti-CD40 + IL-4 or anti-CD40 + anti-micro signals and transduced at high MOI with a VSV pseudotyped lentivector carrying the eGFP gene under the control of the PGK promoter. Parallel cultures of PHA-stimulated T lymphocytes containing a comparable amount of cycling cells during the infection reached over 70% eGFP transduction. By contrast, only less than 3% B lymphocytes became eGFP positive after 7 days from transduction. Molecular analysis of the viral life cycle shows that cytoplasmic retrotranscribed cDNA and nuclear 2LTR circles are detectable at lower levels and for a shorter period of time in proliferating B cells with respect to proliferating T lymphocytes. Moreover, FACS-sorted eGFP-positive and negative B cell populations were both positive for the presence of retrotranscribed cDNA and 2LTR circles nuclear forms. By contrast, nested Alu-LTR PCR allowed us to detect an integrated provirus in FACS-sorted eGFP-positive cells only. Together with the demonstration that infection in saturation conditions led to an increase in the percentage of transduced cells (reaching 9%), these findings suggest that in proliferating B lymphocytes, lentiviral transduction is an inefficient process blocked at the early steps of the viral life cycle possibly involving partially saturable restriction factors.
Collapse
Affiliation(s)
- M Serafini
- Istituto di Ricerche Farmacologiche "Mario Negri", 20157, Milan, Italy
| | | | | |
Collapse
|
42
|
Stathopulos PB. Taking the good out of the bad: lentiviral-based gene therapy of the hemoglobinopathies. Biotechnol Adv 2004; 21:513-26. [PMID: 14499152 DOI: 10.1016/s0734-9750(03)00102-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Sickle cell disease and beta-thalassemia are excellent candidates for gene therapy since transfer of a single gene into hematopoietic stem cells should theoretically elicit a therapeutic response. Initial attempts at gene therapy of these hemoglobinopathies have proved unsuccessful due to limitations of available gene transfer vectors. With the extensive research on human immunodeficiency virus-1 due to the acquired immune deficiency syndrome pandemic, researchers have realized that this lentivirus, engineered to be devoid of any pathogenic elements, can be an effective gene transfer vector. This review discusses the gene therapy strategy for the hemoglobinopathies and outlines why lentiviral-derived vectors are particularly suited for this type of application, keeping past failures at gene therapy of these hemoglobinopathies in mind. Development, improvement, and methods for preparation of lentiviral-derived vectors are examined. Recently published results of successful gene therapy treatment of beta-thalassemic and sickle cell diseased mice using lentiviral-derived vectors are described. Finally, criticisms and future directions of lentiviral-based biotechnology are considered.
Collapse
Affiliation(s)
- Peter B Stathopulos
- Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, Canada N2L 3G1.
| |
Collapse
|
43
|
Chinen J, Puck JM. Successes and risks of gene therapy in primary immunodeficiencies. J Allergy Clin Immunol 2004; 113:595-603; quiz 604. [PMID: 15100660 DOI: 10.1016/j.jaci.2004.01.765] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Several primary immunodeficiencies are under consideration for gene therapy approaches because of limitations of current standard treatment. Many primary immunodeficiencies are caused by defects in single genes expressed in blood cells; thus addition of a correct copy of the gene to hematopoietic stem cells (HSCs) can generate immune cells with restored function. HSCs can be removed from a patient, treated outside the body, and reinfused. In the last decade, significant improvements have been made in transferring genes by means of retroviruses to HSCs in vitro, and gene therapy trials for patients with X-linked severe combined immunodeficiency (XSCID) and adenosine deaminase-deficient severe combined immunodeficiency have restored immune competence. Gene therapy is actively being pursued in other immunodeficiency disorders, including chronic granulomatous disease and Wiskott-Aldrich syndrome. However, enthusiasm for the correction of XSCID by means of gene therapy has been tempered by the occurrence of 2 cases of leukemia in gene therapy recipients caused by insertion of the retroviral vector in or near the oncogene LMO2. The likelihood of retroviral insertional mutagenesis was estimated to be very low in the past on the basis of theoretic calculations and the absence of observed malignancies in animal studies and early clinical trials. Emerging new findings on retroviral integration both in the patients with XSCID and experimental animals now indicate that the insertion of retroviral sequences into the genome carries significant risk. Understanding the magnitude of risk is now a priority so that safety can be improved for future gene therapy clinical trials.
Collapse
Affiliation(s)
- Javier Chinen
- Genetics and Molecular Biology Branch, National Human Genome Research Institute, National Institutes of Health, NIH Bldg. 49, 49 Convent Drive, Bethesda, MD 20892, USA
| | | |
Collapse
|
44
|
Mazurier F, Gan OI, McKenzie JL, Doedens M, Dick JE. Lentivector-mediated clonal tracking reveals intrinsic heterogeneity in the human hematopoietic stem cell compartment and culture-induced stem cell impairment. Blood 2004; 103:545-52. [PMID: 14504079 DOI: 10.1182/blood-2003-05-1558] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Abstract
Knowledge of the composition and interrelationship of the various hematopoietic stem cells (HSCs) that comprise the human HSC pool and the consequence of culture on each class is required for effective therapies based on stem cells. Clonal tracking of retrovirally transduced HSCs in nonobese diabetic/severe combined immunodeficient (NOD/SCID) mice revealed heterogeneity in the repopulation capacity of SCID-repopulating cells (SRCs). However, it is impossible to establish whether HSC heterogeneity is intrinsic or whether the culture conditions required for retroviral transduction induce qualitative and quantitative alterations to SRCs. Here, we report establishment of a clonal tracking method that uses lentivectors to transduce HSCs with minimal manipulation during overnight culture without cytokine stimulation. By serial bone marrow (BM) sampling of mice receiving transplants, short-term SRCs (ST-SRCs) and long-term SRCs (LT-SRCs) were identified on the basis of repopulation dynamics demonstrating that their existence is not an experimental artifact but reflects the state of the HSC pool. However, 4 days of culture in conditions previously used for SRC retroviral transduction significantly reduced SRC number as assessed by clonal analysis. These studies provide a foundation to understand the molecular and cellular determinants of human HSC development and to develop therapies targeted to specific HSC classes.
Collapse
Affiliation(s)
- Frederic Mazurier
- Division of Cell and Molecular Biology, University Health Network, Ste 7-700, 620 University Ave, Toronto, ON, Canada M5G 2C1
| | | | | | | | | |
Collapse
|
45
|
|
46
|
Abstract
The techniques that are used to generate transgenic livestock are inefficient and expensive. This, coupled with the fact that most agriculturally relevant traits are complex and controlled by more than one gene, has restricted the use of transgenic technology. New methods for modifying the genome will underpin a resurgence of research using transgenic livestock. This will not only increase our understanding of basic biology in commercial species, but might also lead to the generation of animals that are more resistant to infectious disease.
Collapse
Affiliation(s)
- John Clark
- Department of Gene Expression and Development, Roslin Institute, Roslin, Midlothian EH25 9PS, UK.
| | | |
Collapse
|
47
|
Abstract
Despite the tremendous success of highly active antiretroviral treatment (HAART) introduced nearly 8 years ago for the treatment of human immunodeficiency virus (HIV), innovative therapies, including gene transfer approaches, are still required for nearly half of the general patient population. A number of potential gene therapeutic targets for HIV have been identified and include both viral and cellular genes essential for viral replication. The diverse methods used to inhibit viral replication comprise RNA-based strategies such as ribozymes, RNA decoys, antisense messenger RNAs and small interfering RNA (siRNA) molecules. Other potential anti-HIV genes include dominant negative viral proteins, intracellular antibodies, intrakines and suicide genes, all of which have had a modicum of success in vitro. Cellular targets include CD4+ T cells, macrophages and their progenitors. The greatest gene transfer efficiency has been achieved using retroviral or, more recently, lentiviral vectors. A limited number of Phase I clinical trials suggest that the general method is safe. It is proposed that a national network for HIV gene therapy (similar to the AIDS Clinical Trial Groups) may be the best way to determine which approaches should proceed clinically.
Collapse
Affiliation(s)
- Ananthalakshmi Poluri
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.
| | | | | |
Collapse
|