1
|
Zhong C, Gao X, Chen Q, Guan B, Wu W, Ma Z, Tao M, Liu X, Ding Y, Fei Y, Liu Y, Lu B, Li Z. R406 and its structural analogs reduce SNCA/α-synuclein levels via autophagic degradation. Autophagy 2025:1-17. [PMID: 40143425 DOI: 10.1080/15548627.2025.2483886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 02/17/2025] [Accepted: 02/21/2025] [Indexed: 03/28/2025] Open
Abstract
The presence of neuronal Lewy bodies mainly composed of SNCA/α-synuclein aggregations is a pathological feature of Parkinson disease (PD), whereas reducing SNCA protein levels may slow the progression of this disease. We hypothesized that compounds enhancing SNCA's interaction with MAP1LC3/LC3 May increase its macroautophagic/autophagic degradation. Here, we conducted small molecule microarray (SMM)-based screening to identify such compounds and revealed that the compound R406 could decrease SNCA protein levels in an autophagy-dependent manner. We further validated the proposed mechanism, in which knockdown of essential gene ATG5 for autophagy formation and using the autophagy inhibitor chloroquine (CQ) blocked the effect of R406. Additionally, R406 also reduced the levels of phosphorylated serine 129 of SNCA (p-S129-SNCA) in SNCA preformed fibrils (PFFs)-induced cellular models and rescued neuron degeneration. Importantly, we confirmed that R406 could alleviate PD-relevant disease phenotypes in human SNCA PFFs-induced cellular models and PD patient-derived organoid models. Taken together, we demonstrated the possibility of lowering SNCA levels by enhancing its autophagic degradation by compounds increasing SNCA-LC3 interactions.Abbreviations: ATTEC: autophagy-tethering compounds; BafA1: bafilomycin A1; BiFC: bimolecular fluorescence complementation; CQ: chloroquine; hMOs: human midbrain organoids; iPSC: induced pluripotent stem cells; MBP: maltose-binding protein; mHTT: mutant huntingtin; OI-RD: oblique-incidence reflectivity difference; PFFs: preformed fibrils; p-S129-SNCA: phosphorylated serine 129 of SNCA; PD: Parkinson disease; ROS: reactive oxygen species; siRNA: small interfering RNA; SMM: small molecule microarray; SNCA: synuclein alpha; SYK: spleen associated tyrosine kinase.
Collapse
Affiliation(s)
- Chao Zhong
- The State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Huashan Hospital, School of Life Sciences, The Institutes of Brain Science, Fudan University, Shanghai, China
| | - Xiaoge Gao
- The State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Huashan Hospital, School of Life Sciences, The Institutes of Brain Science, Fudan University, Shanghai, China
| | - Qi Chen
- Institute for Stem Cell and Neural Regeneration, School of Pharmacy, State Key Laboratory of Reproductive Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Bowen Guan
- The State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Huashan Hospital, School of Life Sciences, The Institutes of Brain Science, Fudan University, Shanghai, China
| | - Wanli Wu
- The State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Huashan Hospital, School of Life Sciences, The Institutes of Brain Science, Fudan University, Shanghai, China
| | - Zhiqiang Ma
- The State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Huashan Hospital, School of Life Sciences, The Institutes of Brain Science, Fudan University, Shanghai, China
| | - Mengdan Tao
- Institute for Stem Cell and Neural Regeneration, School of Pharmacy, State Key Laboratory of Reproductive Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Xihuan Liu
- The State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Huashan Hospital, School of Life Sciences, The Institutes of Brain Science, Fudan University, Shanghai, China
| | - Yu Ding
- The State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Huashan Hospital, School of Life Sciences, The Institutes of Brain Science, Fudan University, Shanghai, China
| | - Yiyan Fei
- Department of Optical Science and Engineering, Shanghai Engineering Research Center of Ultra-Precision Optical Manufacturing, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Fudan University, Shanghai, China
| | - Yan Liu
- Institute for Stem Cell and Neural Regeneration, School of Pharmacy, State Key Laboratory of Reproductive Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Boxun Lu
- The State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Huashan Hospital, School of Life Sciences, The Institutes of Brain Science, Fudan University, Shanghai, China
| | - Zhaoyang Li
- The State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Huashan Hospital, School of Life Sciences, The Institutes of Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
2
|
Gu X, Chen C, Chen Y, Zeng C, Lin Y, Guo R, Xu S, Lin C. Bioinformatics approach reveals the critical role of inflammation-related genes in age-related hearing loss. Sci Rep 2025; 15:2687. [PMID: 39837906 PMCID: PMC11751394 DOI: 10.1038/s41598-024-83428-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 12/16/2024] [Indexed: 01/23/2025] Open
Abstract
Age-related hearing loss (ARHL) is the most prevalent sensory impairment in the elderly. However, the pathogenesis of ARHL remains unclear. This study was aimed to explore the potential inflammation-related genes of ARHL and suggest novel therapeutic targets for this condition. Initially, a total of 105 Inflammatory related differentially expressed genes (IRDEGs) were obtained by overlapping the differentially expressed genes from the GSE49522 and GSE49543 datasets with Inflammatory related genes. The IRDEGs were mainly enriched in MAPK, PI3K-Akt, Hippo and JAK-STAT pathways by analysis of Gene Ontology and Kyoto Encyclopedia of Genes and Genomes. We then identified 10 key IRDEGs including Alox5ap, Chil1, Clec7a, Dysf, Fcgr3, etc. using Least absolute shrinkage and selection operator regression analysis and converted them into human genes. The ROC curve indicated that Alox5ap expression presented a high accuracy in distinguishing between different groups. By CIBERSORT algorithm, 8 humanized key IRDEGs were correlated with the infiltration abundance of 3 immune cells. Finally, it showed that the Alox5ap expression was significantly more effective compared to other variables in the diagnostic model of ARHL. This study suggests that inflammation might play a role in the development of ARHL, providing a deeper understanding of the underlying causes of this disease.
Collapse
Affiliation(s)
- Xi Gu
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Otorhinolaryngology Head and Neck Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Institute of Otolaryngology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Chenyu Chen
- ENT Institute, Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, China
- NHC Key Laboratory of Hearing Medicine, Shanghai, China
| | - Yuqing Chen
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Otorhinolaryngology Head and Neck Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Institute of Otolaryngology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Chaojun Zeng
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Otorhinolaryngology Head and Neck Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Institute of Otolaryngology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Yanchun Lin
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Otorhinolaryngology Head and Neck Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Institute of Otolaryngology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Ruosi Guo
- Fujian Medical University, Fuzhou, China
| | - Shujin Xu
- Fujian Medical University, Fuzhou, China
| | - Chang Lin
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China.
- Department of Otorhinolaryngology Head and Neck Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China.
- Fujian Institute of Otolaryngology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
3
|
Hamasy A, Hussain A, Mohammad DK, Wang Q, Sfetcovici MG, Nore BF, Mohamed AJ, Zain R, Smith CIE. Differential regulatory effects of the N-terminal region in SYK-fusion kinases reveal unique activation-inducible nuclear translocation of ITK-SYK. Sci Rep 2025; 15:814. [PMID: 39755731 PMCID: PMC11700165 DOI: 10.1038/s41598-024-83962-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 12/18/2024] [Indexed: 01/06/2025] Open
Abstract
ITK-SYK and TEL-SYK (also known as ETV6-SYK) are human tumor-causing chimeric proteins containing the kinase region of SYK, and the membrane-targeting, N-terminal, PH-TH domain-doublet of ITK or the dimerizing SAM-PNT domain of TEL, respectively. ITK-SYK causes peripheral T cell lymphoma, while TEL-SYK was reported in myelodysplastic syndrome. BTK is a kinase highly related to ITK and to further delineate the role of the N-terminus, we generated the corresponding fusion-kinase BTK-SYK. By generating and analyzing these fusion kinases, we aim to understand the contribution of N-terminal domains to their distinct cellular behavior and oncogenic properties. The fusion kinases were found to behave differently. TEL-SYK showed stronger oncogenic capacity when compared with ITK-SYK and BTK-SYK. Furthermore, ITK-SYK and BTK-SYK triggered IL-3-independent growth of BAF3 pro-B cells. In contrast to BTK-SYK and TEL-SYK, which predominantly localized in perinuclear region and cytoplasm respectively, ITK-SYK exhibits a more diverse cellular distribution, being present in the nucleus, cytoplasm and membrane-bound compartments. Notably, we observed that ITK-SYK undergoes activation-mediated nuclear translocation, a phenomenon that is uncommon among kinases. This unique feature of ITK-SYK is therefore of particular interest due to its potential connection to its transforming capability.
Collapse
Affiliation(s)
- Abdulrahman Hamasy
- Department of Laboratory Medicine, Karolinska Institutet, ANA Futura, Alfred Nobels Allé 8, Floor 8, 14152, Huddinge, Sweden.
- Department of Clinical Analysis, College of Pharmacy, Hawler Medical University, Erbil, Kurdistan Region, Iraq.
| | - Alamdar Hussain
- Center for Hematology and Regenerative Medicine (HERM), Department of Medicine Huddinge, Karolinska Institutet, 141 83, Stockholm, Sweden
| | - Dara K Mohammad
- Center for Hematology and Regenerative Medicine (HERM), Department of Medicine Huddinge, Karolinska Institutet, 141 83, Stockholm, Sweden
- College of Agricultural Engineering Sciences, Salahaddin University-Erbil, Erbil, Kurdistan Region, 44002, Iraq
| | - Qing Wang
- Department of Laboratory Medicine, Karolinska Institutet, ANA Futura, Alfred Nobels Allé 8, Floor 8, 14152, Huddinge, Sweden
| | - Manuela Gustafsson Sfetcovici
- Department of Laboratory Medicine, Karolinska Institutet, ANA Futura, Alfred Nobels Allé 8, Floor 8, 14152, Huddinge, Sweden
| | - Beston F Nore
- Department of Laboratory Medicine, Karolinska Institutet, ANA Futura, Alfred Nobels Allé 8, Floor 8, 14152, Huddinge, Sweden
- Department of Biomedical Science, Komar University of Science and Technology (KUST), Qliasan St, Sulaymaniyah City, Kurdistan Region, 46002, Iraq
| | - Abdalla J Mohamed
- Department of Laboratory Medicine, Karolinska Institutet, ANA Futura, Alfred Nobels Allé 8, Floor 8, 14152, Huddinge, Sweden
- Department of Basic Medical and Dental Sciences, Faculty of Dentistry, Zarqa University, Zarqa, Jordan
| | - Rula Zain
- Department of Laboratory Medicine, Karolinska Institutet, ANA Futura, Alfred Nobels Allé 8, Floor 8, 14152, Huddinge, Sweden
- Karolinska ATMP Center, Karolinska Institutet, Karolinska University Hospital, 171 76, Stockholm, Sweden
- Centre for Rare Diseases, Department of Clinical Genetics and Genomics, Karolinska University Hospital, Stockholm, Sweden
| | - C I Edvard Smith
- Department of Laboratory Medicine, Karolinska Institutet, ANA Futura, Alfred Nobels Allé 8, Floor 8, 14152, Huddinge, Sweden.
- Karolinska ATMP Center, Karolinska Institutet, Karolinska University Hospital, 171 76, Stockholm, Sweden.
| |
Collapse
|
4
|
Sastri KT, Gupta NV, Kannan A, Dutta S, Ali M Osmani R, V B, Ramkishan A, S S. The next frontier in multiple sclerosis therapies: Current advances and evolving targets. Eur J Pharmacol 2024; 985:177080. [PMID: 39491741 DOI: 10.1016/j.ejphar.2024.177080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 10/11/2024] [Accepted: 10/28/2024] [Indexed: 11/05/2024]
Abstract
Recent advancements in research have significantly enhanced our comprehension of the intricate immune components that contribute to multiple sclerosis (MS) pathogenesis. By conducting an in-depth analysis of complex molecular interactions involved in the immunological cascade of the disease, researchers have successfully identified novel therapeutic targets, leading to the development of innovative therapies. Leveraging pioneering technologies in proteomics, genomics, and the assessment of environmental factors has expedited our understanding of the vulnerability and impact of these factors on the progression of MS. Furthermore, these advances have facilitated the detection of significant biomarkers for evaluating disease activity. By integrating these findings, researchers can design novel molecules to identify new targets, paving the way for improved treatments and enhanced patient care. Our review presents recent discoveries regarding the pathogenesis of MS, highlights their genetic implications, and proposes an insightful approach for engaging with newer therapeutic targets in effectively managing this debilitating condition.
Collapse
Affiliation(s)
- K Trideva Sastri
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Shivarathreeshwara Nagara, Bannimantap, Mysuru, India.
| | - N Vishal Gupta
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Shivarathreeshwara Nagara, Bannimantap, Mysuru, India.
| | - Anbarasu Kannan
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysuru, India
| | - Suman Dutta
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
| | - Riyaz Ali M Osmani
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Shivarathreeshwara Nagara, Bannimantap, Mysuru, India
| | - Balamuralidhara V
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Shivarathreeshwara Nagara, Bannimantap, Mysuru, India
| | - A Ramkishan
- Deputy Drugs Controller (India), Central Drugs Standard Control Organization, Directorate General of Health Services, Ministry of Health & Family Welfare, Government of India, India
| | | |
Collapse
|
5
|
Dangelmaier C, Vari HR, Vajipayajula DN, Elzoheiry M, Wright M, Iyer A, Tsygankov AY, Kunapuli SP. Phosphorylation of (Ser 291) in the linker insert of Syk negatively regulates ITAM signaling in platelets. Platelets 2024; 35:2369766. [PMID: 38904212 PMCID: PMC11322839 DOI: 10.1080/09537104.2024.2369766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Receptor-induced tyrosine phosphorylation of spleen tyrosine kinase (Syk) has been studied extensively in hematopoietic cells. Metabolic mapping and high-resolution mass spectrometry, however, indicate that one of the most frequently detected phosphorylation sites encompassed S297 (S291 in mice) located within the linker B region of Syk. It has been reported that Protein kinase C (PKC) phosphorylates Syk S297, thus influencing Syk activity. However, conflicting studies suggest that this phosphorylation enhances as well as reduces Syk activity. To clarify the function of this site, we generated Syk S291A knock-in mice. We used platelets as a model system as they possess Glycoprotein VI (GPVI), a receptor containing an immunoreceptor tyrosine-based activation motif (ITAM) which transduces signals through Syk. Our analysis of the homozygous mice indicated that the knock-in platelets express only one isoform of Syk, while the wild-type expresses two isoforms at 69 and 66 kDa. When the GPVI receptor was activated with collagen-related peptide (CRP), we observed an increase in functional responses and phosphorylations in Syk S291A platelets. This potentiation did not occur with AYPGKF or 2-MeSADP, although they also activate PKC isoforms. Although there was potentiation of platelet functional responses, there was no difference in tail bleeding times. However, the time to occlusion in the FeCl3 injury model was enhanced. These data indicate that the effects of Syk S291 phosphorylation represent a significant outcome on platelet activation and signaling in vitro but also reveals its multifaceted nature demonstrated by the differential effects on physiological responses in vivo.
Collapse
Affiliation(s)
- Carol Dangelmaier
- Sol Sherry Thrombosis Research Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Hymavathi Reddy Vari
- Sol Sherry Thrombosis Research Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Dhruv N Vajipayajula
- Sol Sherry Thrombosis Research Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Manal Elzoheiry
- Sol Sherry Thrombosis Research Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Monica Wright
- Sol Sherry Thrombosis Research Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Ashvin Iyer
- Sol Sherry Thrombosis Research Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Alexander Y Tsygankov
- Sol Sherry Thrombosis Research Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Satya P Kunapuli
- Sol Sherry Thrombosis Research Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| |
Collapse
|
6
|
Almasry Y, Alodhaibi I, Nammor T, Lerman A, Lerman LO, Zhu XY. Kidney injury: the spleno-renal connection and splenic tyrosine kinase. J Nephrol 2024; 37:2151-2160. [PMID: 39388044 PMCID: PMC11872174 DOI: 10.1007/s40620-024-02121-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 09/17/2024] [Indexed: 10/15/2024]
Abstract
Kidney injury is a major medical burden and one of the most common reasons for hospitalization and poor life quality. Kidney injury can include acute kidney injury, chronic kidney disease, and immune-mediated kidney diseases most of which have no definitive therapy. The spleen is a secondary lymphoid organ in the reticuloendothelial system that plays an important role in protecting the body from various diseases. Notably, spleen tyrosine kinase, a non-receptor tyrosine kinase, is a crucial player that aids in immunity and protection and is highly expressed in the kidney and hematopoietic cells. It has been shown that alterations in spleen tyrosine kinase function or expression could lead to a wide range of diseases and abnormalities. Over the past decade, the role of spleen and spleen tyrosine kinase in multiple kidney diseases has emerged. Evidence suggests that modulating the spleno-renal connection through activation of the cholinergic anti-inflammatory pathway can be a promising strategy for protecting against kidney injury. Imitating the protective function of the spleen through interleukin-10-extracellular vesicles can also be of therapeutic value. In addition, evidence showed that inhibition of the spleen tyrosine kinase leads to amelioration of the kidney injury. However, further exploration and long-term studies are needed to unravel the spleno-renal connection, as well as the efficacy of spleen tyrosine kinase inhibitors, before they can be used as means for treatment of kidney injury.
Collapse
Affiliation(s)
- Yazan Almasry
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, 55901, USA
- College of Medicine, Alfaisal University, 11543, Riyadh, Saudi Arabia
| | - Ibrahim Alodhaibi
- College of Medicine, Alfaisal University, 11543, Riyadh, Saudi Arabia
- Department of Hematology and Oncology, Mayo Clinic, Rochester, MN, 55901, USA
| | - Talah Nammor
- College of Medicine, Alfaisal University, 11543, Riyadh, Saudi Arabia
- Department of Urology, Mayo Clinic, Rochester, MN, 55901, USA
| | - Amir Lerman
- Department of Cardiology, Mayo Clinic, Rochester, MN, 55901, USA
| | - Lilach O Lerman
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, 55901, USA
| | - Xiang-Yang Zhu
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, 55901, USA.
| |
Collapse
|
7
|
Samanta S, Sk MF, Koirala S, Kar P. Dynamic Interplay of Loop Motions Governs the Molecular Level Regulatory Dynamics in Spleen Tyrosine Kinase: Insights from Molecular Dynamics Simulations. J Phys Chem B 2024; 128:10565-10580. [PMID: 39432460 DOI: 10.1021/acs.jpcb.4c03217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
The spleen tyrosine kinase (Syk) is a key regulator in immune cell signaling and is linked to various mechanisms in cancer and neurodegenerative diseases. Although most computational research on Syk focuses on novel drug design, the molecular-level regulatory dynamics remain unexplored. In this study, we utilized 5 × 1 μs all-atom molecular dynamics simulations of the Syk kinase domain, examining it in combinations of activation segment phosphorylated/unphosphorylated (at Tyr525, Tyr526) and the "DFG"-Asp protonated/deprotonated (at Asp512) states to investigate conformational variations and regulatory dynamics of various loops and motifs within the kinase domain. Our findings revealed that the formation and disruption of several electrostatic interactions among residues within and near the activation segment likely influenced its dynamics. The protein structure network analysis indicated that the N-terminal and C-terminal anchors were stabilized by connections with the nearby stable helical regions. The P-loop showed conformational variation characterized by movements toward and away from the conserved "HRD"-motif. Additionally, there was a significant correlation between the movement of the β3-αC loop and the P-loop, which controls the dimensions of the adenine-binding cavity of the C-spine region. Overall, understanding these significant motions of the Syk kinase domain enhances our knowledge of its functional regulatory mechanism and can guide future research.
Collapse
Affiliation(s)
- Sunanda Samanta
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore, MP 453552, India
| | - Md Fulbabu Sk
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore, MP 453552, India
| | - Suman Koirala
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore, MP 453552, India
| | - Parimal Kar
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore, MP 453552, India
| |
Collapse
|
8
|
Nakayama T, Saito R, Furuya S, Higuchi Y, Matsuoka K, Takahashi K, Maruyama S, Shoda K, Takiguchi K, Shiraishi K, Kawaguchi Y, Amemiya H, Kawaida H, Tsukiji N, Shirai T, Suzuki-Inoue K, Ichikawa D. Molecular mechanisms driving the interactions between platelet and gastric cancer cells during peritoneal dissemination. Oncol Lett 2024; 28:498. [PMID: 39211304 PMCID: PMC11358723 DOI: 10.3892/ol.2024.14631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
Platelets (PLTs) facilitate tumor progression and the spread of metastasis. They also interact with cancer cells in various cancer types. Furthermore, PLTs form complexes with gastric cancer (GC) cells via direct contact and promote their malignant behaviors. The objective of the present study was to explore the molecular mechanisms driving these interactions and to evaluate the potential for preventing peritoneal dissemination by inhibiting PLT activation in GC cells. The present study examined the roles of PLT activation pathways in the increased malignancy of GC cells facilitated by PLT-cancer cells. Transforming growth factor-β receptor kinase inhibitor (TRKI), Src family kinase inhibitor (PP2) and Syk inhibitor (R406) were used to identify the molecules influencing these interactions. Their therapeutic effects were verified via cell experiments and validated using a mouse GC peritoneal dissemination model. Notably, only the PLT activation pathway-related inhibitors TRKI and PP2, but not R406, inhibited the PLT-enhanced migration and invasion of GC cells. In vivo analyses revealed that PLT-enhanced peritoneal dissemination was suppressed by PP2. Overall, the present study revealed the important role of the Srk family in the interactions between PLTs and GC cells, suggesting kinase inhibitors as promising therapeutic agents to mitigate the progression of peritoneal metastasis in patients with GC.
Collapse
Affiliation(s)
- Takashi Nakayama
- First Department of Surgery, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| | - Ryo Saito
- First Department of Surgery, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| | - Shinji Furuya
- First Department of Surgery, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| | - Yudai Higuchi
- First Department of Surgery, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| | - Koichi Matsuoka
- First Department of Surgery, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| | - Kazunori Takahashi
- First Department of Surgery, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| | - Suguru Maruyama
- First Department of Surgery, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| | - Katsutoshi Shoda
- First Department of Surgery, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| | - Koichi Takiguchi
- First Department of Surgery, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| | - Kensuke Shiraishi
- First Department of Surgery, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| | - Yoshihiko Kawaguchi
- First Department of Surgery, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| | - Hidetake Amemiya
- First Department of Surgery, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| | - Hiromichi Kawaida
- First Department of Surgery, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| | - Nagaharu Tsukiji
- Department of Clinical and Laboratory Medicine, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| | - Toshiaki Shirai
- Department of Clinical and Laboratory Medicine, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| | - Katsue Suzuki-Inoue
- Department of Clinical and Laboratory Medicine, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| | - Daisuke Ichikawa
- First Department of Surgery, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| |
Collapse
|
9
|
Yang Y, Zhang M, Cai F, Ma G, Zhang RP, Yin Y, Deng J. CLEC4D as a Novel Prognostic Marker Boosts the Proliferation and Migration of Gastric Cancer via the NF-κB/AKT Signaling Pathway. Int J Gen Med 2024; 17:1923-1935. [PMID: 38736669 PMCID: PMC11088047 DOI: 10.2147/ijgm.s458228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 04/29/2024] [Indexed: 05/14/2024] Open
Abstract
Purpose The functions of C-type lectin domain family 4 member D (CLEC4D), one member of the C-type lectin/C-type lectin-like domain superfamily, in immunity have been well described, but its roles in cancer biology remain largely unknown. Patients and Methods This study aims to explore the role of CLEC4D in gastric cancer (GC). Bioinformatics preliminarily analyzed the expression of CLEC4D in gastric cancer. Immunohistochemical staining was used to detect the expression level and clinical pathological characteristics of CLEC4D in gastric cancer. The biological function of CLEC4D in gastric cancer cell lines was verified through in vitro and in vivo experiments. Results In this study, CLEC4D expression was found to be markedly increased in gastric cancer (GC) tissues compared with matched normal gastric tissues, and high CLEC4D expression independently predicted unfavorable overall survival in patients with GC. Knockdown of CLEC4D markedly inhibited GC cell proliferation and migration. Mechanistically, CLEC4D knockdown deactivated the Akt and NF-κB signaling pathways in GC cells. Conclusion Together, these results demonstrate that aberrantly increased CLEC4D expression promotes cancer phenotypes via the Akt and NF-κB signaling pathways in GC cells.
Collapse
Affiliation(s)
- Yang Yang
- Department of Gastric Surgery, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, People’s Republic of China
- Department of Anesthesiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, People’s Republic of China
- Tianjin Key Laboratory of Digestive Cancer, Tianjin, 300060, People’s Republic of China
- Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, People’s Republic of China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, 300060, People’s Republic of China
| | - Mengmeng Zhang
- Department of Gastric Surgery, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, People’s Republic of China
- Tianjin Key Laboratory of Digestive Cancer, Tianjin, 300060, People’s Republic of China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, 300060, People’s Republic of China
| | - Fenglin Cai
- Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin, 300070, People’s Republic of China
| | - Gang Ma
- Department of Gastric Surgery, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, People’s Republic of China
- Tianjin Key Laboratory of Digestive Cancer, Tianjin, 300060, People’s Republic of China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, 300060, People’s Republic of China
| | - Ru-Peng Zhang
- Department of Gastric Surgery, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, People’s Republic of China
- Tianjin Key Laboratory of Digestive Cancer, Tianjin, 300060, People’s Republic of China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, 300060, People’s Republic of China
| | - Yiqing Yin
- Department of Anesthesiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, People’s Republic of China
- Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, People’s Republic of China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, 300060, People’s Republic of China
| | - Jingyu Deng
- Department of Gastric Surgery, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, People’s Republic of China
- Tianjin Key Laboratory of Digestive Cancer, Tianjin, 300060, People’s Republic of China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, 300060, People’s Republic of China
| |
Collapse
|
10
|
Sadakata M, Fujii K, Kaneko R, Hosoya E, Sugimoto H, Kawabata-Iwakawa R, Kasamatsu T, Hongo S, Koshidaka Y, Takase A, Iijima T, Takao K, Sadakata T. Maternal immunoglobulin G affects brain development of mouse offspring. J Neuroinflammation 2024; 21:114. [PMID: 38698428 PMCID: PMC11064405 DOI: 10.1186/s12974-024-03100-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/14/2024] [Indexed: 05/05/2024] Open
Abstract
Maternal immunoglobulin (Ig)G is present in breast milk and has been shown to contribute to the development of the immune system in infants. In contrast, maternal IgG has no known effect on early childhood brain development. We found maternal IgG immunoreactivity in microglia, which are resident macrophages of the central nervous system of the pup brain, peaking at postnatal one week. Strong IgG immunoreactivity was observed in microglia in the corpus callosum and cerebellar white matter. IgG stimulation of primary cultured microglia activated the type I interferon feedback loop by Syk. Analysis of neonatal Fc receptor knockout (FcRn KO) mice that could not take up IgG from their mothers revealed abnormalities in the proliferation and/or survival of microglia, oligodendrocytes, and some types of interneurons. Moreover, FcRn KO mice also exhibited abnormalities in social behavior and lower locomotor activity in their home cages. Thus, changes in the mother-derived IgG levels affect brain development in offsprings.
Collapse
Affiliation(s)
- Mizuki Sadakata
- Education and Research Support Center, Gunma University Graduate School of Medicine, Maebashi, Gunma, 371-8511, Japan.
| | - Kazuki Fujii
- Department of Behavioral Physiology, Faculty of Medicine, University of Toyama, Toyama, 930-0194, Japan
- Research Center for Idling Brain Science, University of Toyama, Toyama, 930-0194, Japan
- Life Science Research Center, University of Toyama, Toyama, 930-0194, Japan
| | - Ryosuke Kaneko
- Medical Genetics Research Center, Nara Medical University, Kashihara, Nara, 634-8521, Japan
| | - Emi Hosoya
- Education and Research Support Center, Gunma University Graduate School of Medicine, Maebashi, Gunma, 371-8511, Japan
| | - Hisako Sugimoto
- Education and Research Support Center, Gunma University Graduate School of Medicine, Maebashi, Gunma, 371-8511, Japan
| | - Reika Kawabata-Iwakawa
- Division of Integrated Oncology Research, Gunma University Initiative for Advanced Research (GIAR), Gunma University, Maebashi, Gunma, 371-8511, Japan
| | - Tetsuhiro Kasamatsu
- Department of Medical Technology and Clinical Engineering, Gunma University of Health and Walfare, Maebashi, Gunma, 371-0823, Japan
| | - Shoko Hongo
- Life Science Research Center, University of Toyama, Toyama, 930-0194, Japan
| | - Yumie Koshidaka
- Life Science Research Center, University of Toyama, Toyama, 930-0194, Japan
| | - Akinori Takase
- Medical Science College Office, Tokai University, Isehara, Kanagawa, 259-1193, Japan
| | - Takatoshi Iijima
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, School of Medicine, Tokai University, Isehara, Kanagawa, 259-1193, Japan
| | - Keizo Takao
- Department of Behavioral Physiology, Faculty of Medicine, University of Toyama, Toyama, 930-0194, Japan
- Research Center for Idling Brain Science, University of Toyama, Toyama, 930-0194, Japan
- Life Science Research Center, University of Toyama, Toyama, 930-0194, Japan
| | - Tetsushi Sadakata
- Education and Research Support Center, Gunma University Graduate School of Medicine, Maebashi, Gunma, 371-8511, Japan.
| |
Collapse
|
11
|
Zhang J, Li AM, Kansler ER, Li MO. Cancer immunity by tissue-resident type 1 innate lymphoid cells and killer innate-like T cells. Immunol Rev 2024; 323:150-163. [PMID: 38506480 PMCID: PMC11102320 DOI: 10.1111/imr.13319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Cancer progression can be restrained by tumor-infiltrating lymphocytes in a process termed cancer immunosurveillance. Based on how lymphocytes are activated and recruited to the tumor tissue, cancer immunity is either pre-wired, in which innate lymphocytes and innate-like T cells are directly recruited to and activated in tumors following their differentiation in primary lymphoid organs; or priming-dependent, in which conventional adaptive T cells are first primed by cognate antigens in secondary lymphoid organs before homing to and reactivated in tumors. While priming-dependent cancer immunity has been a focus of cancer immunology research for decades, in part due to historical preconception of cancer theory and tumor model choice as well as clinical success of conventional adaptive T cell-directed therapeutic programs, recent studies have revealed that pre-wired cancer immunity mediated by tissue-resident type 1 innate lymphoid cells (ILC1s) and killer innate-like T cells (ILTCKs) is an integral component of the cancer immunosurveillance process. Herein we review the distinct ontogenies and cancer-sensing mechanisms of ILC1s and ILTCKs in murine genetic cancer models as well as the conspicuously conserved responses in human malignancies. How ILC1s and ILTCKs may be targeted to broaden the scope of cancer immunotherapy beyond conventional adaptive T cells is also discussed.
Collapse
Affiliation(s)
- Jing Zhang
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Albert M. Li
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Emily R. Kansler
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ming O. Li
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Immunology and Microbial Pathogenesis Graduate Program, Weill Cornell Graduate School of Biomedical Sciences, Cornell University, New York, NY, USA
| |
Collapse
|
12
|
Ali T, Anjum F, Choudhury A, Shafie A, Ashour AA, Almalki A, Mohammad T, Hassan MI. Identification of natural product-based effective inhibitors of spleen tyrosine kinase (SYK) through virtual screening and molecular dynamics simulation approaches. J Biomol Struct Dyn 2024; 42:3459-3471. [PMID: 37261484 DOI: 10.1080/07391102.2023.2218938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 05/06/2023] [Indexed: 06/02/2023]
Abstract
Spleen tyrosine kinase (SYK) is a non-receptor tyrosine kinase that plays an essential role in signal transduction across different cell types. In the context of allergy and autoimmune disorders, it is a crucial regulator of immune receptor signaling in inflammatory cells such as B cells, mast cells, macrophages, and neutrophils. Developing SYK kinase inhibitors has gained significant interest for potential therapeutic applications in neurological and cancer-related conditions. The clinical use of the most advanced SYK inhibitor, Fostamatinib, has been limited due to its unwanted side effects. Thus, a more targeted approach to SYK inhibition would provide a more comprehensive treatment window. In this study, we used a virtual screening approach to identify potential SYK inhibitors from natural compounds from the IMPPAT database. We identified two compounds, Isolysergic acid and Michelanugine, which showed strong affinity and specificity for the SYK binding pocket. All-atom molecular dynamics (MD) simulations were also performed to explore the stability, conformational changes, and interaction mechanism of SYK in complexes with the identified compounds. The identified compounds might have the potential to be developed into promising SYK inhibitors for the treatment of various diseases, including autoimmune disorders, cancer, and inflammatory diseases. This work aims to identify potential phytochemicals to develop a new protein kinase inhibitor for treating advanced malignancies by providing an updated understanding of the role of SYK.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Tufail Ali
- Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Farah Anjum
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Arunabh Choudhury
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Alaa Shafie
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Amal Adnan Ashour
- Department of Oral and Maxillofacial Surgery and Diagnostic Sciences, Faculty of Dentistry, Taif University, Taif, Saudi Arabia
| | - Abdulraheem Almalki
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Taj Mohammad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
13
|
Baig MS, Barmpoutsi S, Bharti S, Weigert A, Hirani N, Atre R, Khabiya R, Sharma R, Sarup S, Savai R. Adaptor molecules mediate negative regulation of macrophage inflammatory pathways: a closer look. Front Immunol 2024; 15:1355012. [PMID: 38482001 PMCID: PMC10933033 DOI: 10.3389/fimmu.2024.1355012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 01/22/2024] [Indexed: 04/13/2024] Open
Abstract
Macrophages play a central role in initiating, maintaining, and terminating inflammation. For that, macrophages respond to various external stimuli in changing environments through signaling pathways that are tightly regulated and interconnected. This process involves, among others, autoregulatory loops that activate and deactivate macrophages through various cytokines, stimulants, and other chemical mediators. Adaptor proteins play an indispensable role in facilitating various inflammatory signals. These proteins are dynamic and flexible modulators of immune cell signaling and act as molecular bridges between cell surface receptors and intracellular effector molecules. They are involved in regulating physiological inflammation and also contribute significantly to the development of chronic inflammatory processes. This is at least partly due to their involvement in the activation and deactivation of macrophages, leading to changes in the macrophages' activation/phenotype. This review provides a comprehensive overview of the 20 adaptor molecules and proteins that act as negative regulators of inflammation in macrophages and effectively suppress inflammatory signaling pathways. We emphasize the functional role of adaptors in signal transduction in macrophages and their influence on the phenotypic transition of macrophages from pro-inflammatory M1-like states to anti-inflammatory M2-like phenotypes. This endeavor mainly aims at highlighting and orchestrating the intricate dynamics of adaptor molecules by elucidating the associated key roles along with respective domains and opening avenues for therapeutic and investigative purposes in clinical practice.
Collapse
Affiliation(s)
- Mirza S. Baig
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Indore, India
| | - Spyridoula Barmpoutsi
- Lung Microenvironmental Niche in Cancerogenesis, Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany
- Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
| | - Shreya Bharti
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Indore, India
| | - Andreas Weigert
- Institute of Biochemistry I, Faculty of Medicine, Goethe University Frankfurt, Frankfurt, Germany
- Frankfurt Cancer Institute (FCI), Goethe University Frankfurt, Frankfurt, Germany
| | - Nik Hirani
- MRC Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Rajat Atre
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Indore, India
| | - Rakhi Khabiya
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Indore, India
| | - Rahul Sharma
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Indore, India
| | - Shivmuni Sarup
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Indore, India
| | - Rajkumar Savai
- Lung Microenvironmental Niche in Cancerogenesis, Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany
- Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
- Frankfurt Cancer Institute (FCI), Goethe University Frankfurt, Frankfurt, Germany
| |
Collapse
|
14
|
Mansouri M, ElHaddoumi G, Kandoussi I, Belyamani L, Ibrahimi A, El Hafidi N. Syk protein inhibitors treatment for the allergic symptoms associated with hyper immunoglobulin E syndromes: A focused on a computational approach. Int J Immunopathol Pharmacol 2024; 38:3946320241282030. [PMID: 39241232 PMCID: PMC11380138 DOI: 10.1177/03946320241282030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2024] Open
Abstract
Background: Mutations in the Spleen tyrosine kinase (Syk) protein have significant implications for its function and response to treatments. Understanding these mutations and identifying new inhibitors can lead to more effective therapies for conditions like autosomal dominant hyper-IgE syndrome (AD-HIES) and related immunological disorders. Objective: To investigate the impact of mutations in the Syk protein on its function and response to reference treatments, and to explore new inhibitors tailored to the mutational profile of Syk. Methods: We collected and analyzed mutations affecting the Syk protein to assess their functional impact. We screened 94 deleterious mutations in the kinase domain using molecular docking techniques. A library of 997 compounds with potential inhibitory activity against Syk was filtered based on Lipinski and Veber rules and toxicity assessments. We evaluated the binding affinity of reference inhibitors and 14 eligible compounds against wild-type and mutant Syk proteins. Molecular dynamics simulations were conducted to evaluate the interaction of Syk protein complexes with the reference inhibitor and potential candidate inhibitors. Results: Among the analyzed mutations, 60.5% were identified as deleterious, underscoring their potential impact on cellular processes. Virtual screening identified three potential inhibitors (IDs: 118558008, 118558000, and 118558092) with greater therapeutic potential than reference treatments, meeting all criteria and exhibiting lower IC50 values. Ligand 1 (ID: 118558000) demonstrated the most stable binding, favorable compactness, and extensive interaction with solvents. A 3D pharmacophore model was constructed, identifying structural features common to these inhibitors. Conclusion: This study found that 60.5% of reported mutations affecting the Syk protein are deleterious. Virtual screening revealed three top potential inhibitors, with ligand 1 (ID: 118558000) showing the most stable binding and favorable interactions. These inhibitors hold promise for more effective therapies targeting Syk-mediated signaling pathways. The pharmacophore model provides valuable insights for developing targeted therapies for AD-HIES and related disorders, offering hope for patients suffering from Hyper IgE syndrome with allergic symptoms.
Collapse
Affiliation(s)
- Mariam Mansouri
- Biotechnology Lab (MedBiotech), Bioinova Research Center, Medical and Pharmacy School, Mohammed V University, Rabat, Morocco
| | - Ghyzlane ElHaddoumi
- Biotechnology Lab (MedBiotech), Bioinova Research Center, Medical and Pharmacy School, Mohammed V University, Rabat, Morocco
| | - Ilham Kandoussi
- Biotechnology Lab (MedBiotech), Bioinova Research Center, Medical and Pharmacy School, Mohammed V University, Rabat, Morocco
| | - Lahcen Belyamani
- Mohammed VI Center of Research and Innovation (CM6), Rabat, Morocco
- Mohammed VI University of Health Sciences (UM6SS), Casablanca, Morocco
- Emergency Department, Military Hospital Mohammed V, Medical and Pharmacy School, Mohammed V University, Rabat, Morocco
| | - Azeddine Ibrahimi
- Biotechnology Lab (MedBiotech), Bioinova Research Center, Medical and Pharmacy School, Mohammed V University, Rabat, Morocco
| | - Naima El Hafidi
- Biotechnology Lab (MedBiotech), Bioinova Research Center, Medical and Pharmacy School, Mohammed V University, Rabat, Morocco
- Mohammed VI Center of Research and Innovation (CM6), Rabat, Morocco
- Division of Pediatric Immunoallergology and Infectious Diseases, Children University Hospital, Ibn Sina University, Rabat, Morocco
| |
Collapse
|
15
|
Kuter DJ, Piatek C, Röth A, Siddiqui A, Numerof RP, Dummer W. Fostamatinib for warm antibody autoimmune hemolytic anemia: Phase 3, randomized, double-blind, placebo-controlled, global study (FORWARD). Am J Hematol 2024; 99:79-87. [PMID: 37929318 DOI: 10.1002/ajh.27144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 09/18/2023] [Accepted: 10/12/2023] [Indexed: 11/07/2023]
Abstract
Warm antibody autoimmune hemolytic anemia (wAIHA) is characterized by hemolysis and symptomatic anemia with no approved treatment options. Fostamatinib is an oral spleen tyrosine kinase inhibitor approved in the US and Europe for treatment of adults with chronic immune thrombocytopenia. In this phase 3 study, patients with an insufficient response to ≥1 prior wAIHA treatment were randomized to fostamatinib or placebo. The primary endpoint was the proportion of patients to achieve a durable hemoglobin (Hgb) response (Hgb ≥10 g/dL and increase from baseline of ≥2 g/dL on 3 consecutive visits) during the 24-week treatment period. Ninety patients were randomized, 45 to each arm. Of the fostamatinib-treated patients, 35.6% achieved a durable Hgb response versus 26.7% on placebo (p = .398). A post hoc analysis revealed a large placebo response in Eastern European patients. Significantly more patients on fostamatinib from North America, Australia and Western Europe exhibited a durable Hgb response compared to placebo (36% vs. 10.7%, p = .030). After censoring for Hgb values impacted by steroid rescue received during screening and excluding 2 placebo patients found to likely not have wAIHA, a reanalysis demonstrated a difference in durable Hgb response between fostamatinib and placebo (15/45 [33.3%] vs. 6/43 [14.0%], p = .0395). At least 1 AE was reported in 42 (93.3%) and 40 (88.9%) patients receiving fostamatinib and placebo, respectively. The most common AEs in the fostamatinib group were diarrhea (26.7%), hypertension (24.4%), and fatigue (15.6%). In this study, fostamatinib demonstrated a clinically meaningful benefit for patients in Western regions, and no new safety signals were identified.
Collapse
Affiliation(s)
- David J Kuter
- Department of Hematology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Caroline Piatek
- Division of Hematology, University of Southern California Norris Comprehensive Cancer Center, Los Angeles, California, USA
| | - Alexander Röth
- Department of Hematology and Stem Cell Transplantation, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Asif Siddiqui
- Department of Development, Rigel Pharmaceuticals, Inc., South San Francisco, California, USA
| | - Robert P Numerof
- Department of Development, Rigel Pharmaceuticals, Inc., South San Francisco, California, USA
| | - Wolfgang Dummer
- Department of Development, Rigel Pharmaceuticals, Inc., South San Francisco, California, USA
| |
Collapse
|
16
|
Wang Z, Qu S, Yuan J, Tian W, Xu J, Tao R, Sun S, Lu T, Tang W, Zhu Y. Review and prospects of targeted therapies for Spleen tyrosine kinase (SYK). Bioorg Med Chem 2023; 96:117514. [PMID: 37984216 DOI: 10.1016/j.bmc.2023.117514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/22/2023]
Abstract
Spleen tyrosine kinase (SYK) is a non-receptor tyrosine kinase. The dysregulation of SYK is closely related to the occurrence and development of allergic diseases, autoimmune diseases and cancer. SYK has become an attractive target for drug discovery due to its important biological functions. This article reviews the biological function of SYK, the relationship between SYK and disease, and therapies targeting SYK. In addition, inspired by new technologies such as proteolysis targeting chimeras (PROTACs) and phosphatase recruiting chimeras (PHORCs), we propose the development of new therapeutic approaches for targeting SYK, such as SYK PROTACs and SYK PHORCs, which may overcome deficiencies of existing methods.
Collapse
Affiliation(s)
- Zhaozhao Wang
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China
| | - Shu Qu
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China
| | - Jiahao Yuan
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China
| | - Wen Tian
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China
| | - Jinglei Xu
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China
| | - Rui Tao
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China
| | - Shilong Sun
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China
| | - Tao Lu
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China
| | - Weifang Tang
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China.
| | - Yong Zhu
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China.
| |
Collapse
|
17
|
Shadab M, Slavin SA, Mahamed Z, Millar MW, Najar RA, Leonard A, Pietropaoli A, Dean DA, Fazal F, Rahman A. Spleen Tyrosine Kinase phosphorylates VE-cadherin to cause endothelial barrier disruption in acute lung injury. J Biol Chem 2023; 299:105408. [PMID: 38229397 PMCID: PMC10731244 DOI: 10.1016/j.jbc.2023.105408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/24/2023] [Accepted: 10/10/2023] [Indexed: 01/18/2024] Open
Abstract
Increased endothelial cell (EC) permeability is a cardinal feature of acute lung injury/acute respiratory distress syndrome (ALI/ARDS). Tyrosine phosphorylation of VE-cadherin is a key determinant of EC barrier disruption. However, the identity and role of tyrosine kinases in this context are incompletely understood. Here we report that Spleen Tyrosine Kinase (Syk) is a key mediator of EC barrier disruption and lung vascular leak in sepsis. Inhibition of Syk by pharmacological or genetic approaches, each reduced thrombin-induced EC permeability. Mechanistically, Syk associates with and phosphorylates VE-cadherin to cause EC permeability. To study the causal role of endothelial Syk in sepsis-induced ALI, we used a remarkably efficient and cost-effective approach based on gene transfer to generate EC-ablated Syk mice. These mice were protected against sepsis-induced loss of VE-cadherin and inflammatory lung injury. Notably, the administration of Syk inhibitor R788 (fostamatinib); currently in phase II clinical trial for the treatment of COVID-19, mitigated lung injury and mortality in mice with sepsis. These data identify Syk as a novel kinase for VE-cadherin and a druggable target against ALI in sepsis.
Collapse
Affiliation(s)
- Mohammad Shadab
- Department of Pediatrics, Lung Biology and Disease Program, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Spencer A Slavin
- Department of Pediatrics, Lung Biology and Disease Program, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Zahra Mahamed
- Department of Pediatrics, Lung Biology and Disease Program, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Michelle W Millar
- Department of Pediatrics, Lung Biology and Disease Program, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Rauf A Najar
- Department of Pediatrics, Lung Biology and Disease Program, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Antony Leonard
- Department of Pediatrics, Lung Biology and Disease Program, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Anthony Pietropaoli
- Department of Medicine, Lung Biology and Disease Program, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - David A Dean
- Department of Pediatrics, Lung Biology and Disease Program, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Fabeha Fazal
- Department of Pediatrics, Lung Biology and Disease Program, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Arshad Rahman
- Department of Pediatrics, Lung Biology and Disease Program, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA.
| |
Collapse
|
18
|
Crowley HM, Georgantzoglou N, Tse JY, Williams EA, Mata DA, Martin SS, Guitart J, Bridge JA, Linos K. Expanding Our Knowledge of Molecular Pathogenesis in Histiocytoses: Solitary Soft Tissue Histiocytomas in Children With a Novel CLTC::SYK Fusion. Am J Surg Pathol 2023; 47:1108-1115. [PMID: 37522373 DOI: 10.1097/pas.0000000000002102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
The histiocytoses comprise a histopathologically and clinically diverse group of disorders bearing recurrent genomic alterations, commonly involving the BRAF gene and mitogen-activated protein kinase pathway. In the current study, a novel CLTC :: SYK fusion in 3 cases of a histopathologically distinct histiocytic neoplasm arising as solitary soft tissue lesions in children identified by next-generation sequencing and fluorescence in situ hybridization is described. Morphologically, all 3 neoplasms were composed of sheets of cells with round-oval nuclei and vacuolated eosinophilic cytoplasm but, in contrast to classic juvenile xanthogranuloma (JXG), Touton giant cells were absent. A separate cohort of classic JXG cases subsequently profiled by fluorescence in situ hybridization were negative for the presence of a CLTC::SYK fusion suggesting that CLTC::SYK fusion-positive histiocytoma is genetically and histologically distinct from JXG. We postulate that the CLTC::SYK fusion leads to aberrant activation of the SYK kinase, which is involved in variable pathways, including mitogen-activated protein kinase. The identification of a novel CLTC::SYK fusion may pave the way for the development of targeted therapeutic options for aggressive disease.
Collapse
Affiliation(s)
- Helena M Crowley
- Division of Pediatric Surgery and Urology, University of Maryland Children's Hospital
| | - Natalia Georgantzoglou
- Department of Pathology and Laboratory Medicine, Dartmouth Hitchcock Medical Center, Lebanon, NH
| | | | | | | | - Stuart S Martin
- Department of Pharmacology and Physiology, University of Maryland School of Medicine, Baltimore, MD
| | - Joan Guitart
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Julia A Bridge
- Division of Molecular Pathology, ProPath, Dallas, TX
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE
| | - Konstantinos Linos
- Department of Pathology & Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| |
Collapse
|
19
|
Yoo Y, Neumayer G, Shibuya Y, Mader MMD, Wernig M. A cell therapy approach to restore microglial Trem2 function in a mouse model of Alzheimer's disease. Cell Stem Cell 2023; 30:1043-1053.e6. [PMID: 37541210 DOI: 10.1016/j.stem.2023.07.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 05/10/2023] [Accepted: 07/11/2023] [Indexed: 08/06/2023]
Abstract
Alzheimer's disease (AD) remains one of the grand challenges facing human society. Much controversy exists around the complex and multifaceted pathogenesis of this prevalent disease. Given strong human genetic evidence, there is little doubt, however, that microglia play an important role in preventing degeneration of neurons. For example, loss of function of the microglial gene Trem2 renders microglia dysfunctional and causes an early-onset neurodegenerative syndrome, and Trem2 variants are among the strongest genetic risk factors for AD. Thus, restoring microglial function represents a rational therapeutic approach. Here, we show that systemic hematopoietic cell transplantation followed by enhancement of microglia replacement restores microglial function in a Trem2 mutant mouse model of AD.
Collapse
Affiliation(s)
- Yongjin Yoo
- Institute for Stem Cell Biology and Regenerative Medicine and Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Gernot Neumayer
- Institute for Stem Cell Biology and Regenerative Medicine and Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Yohei Shibuya
- Institute for Stem Cell Biology and Regenerative Medicine and Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Marius Marc-Daniel Mader
- Institute for Stem Cell Biology and Regenerative Medicine and Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Marius Wernig
- Institute for Stem Cell Biology and Regenerative Medicine and Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
20
|
Cui B, Wang Y, Zhao Z, Fan L, Jiao Y, Li H, Feng J, Tang W, Lu T, Chen Y. Discovery of 3-(1H-benzo[d]imidazole-2-yl)-1H-pyrazol-4 -amine derivatives as novel and potent syk inhibitors for the treatment of hematological malignancies. Eur J Med Chem 2023; 258:115597. [PMID: 37423126 DOI: 10.1016/j.ejmech.2023.115597] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/09/2023] [Accepted: 06/23/2023] [Indexed: 07/11/2023]
Abstract
Spleen tyrosine kinase (Syk) is an important oncogene and signal transduction mediator that is mainly expressed in hematopoietic cells. Syk plays a key role in the B cell receptor (BCR) signaling pathway. Abnormal activation of Syk is closely related to the occurrence and development of hematological malignancies. Therefore, Syk is a potential target for the treatment of various hematologic cancers. Starting from compound 6(Syk, IC50 = 15.8 μM), we performed fragment-based rational drug design for structural optimization based on the specific solvent-accessible region, hydrophobic region, and ribose region of Syk. This resulted in the discovery of a series of novel 3-(1H-benzo [d]imidazole-2-yl)-1H-pyrazol-4-amine Syk inhibitors, which led to the identification of 19q, a highly potent Syk inhibitor that exhibited excellent inhibitory activity on Syk enzyme (IC50 = 0.52 nM) and showed potency against several other kinases. In addition, compound 19q effectively reduced phosphorylation of downstream PLCγ2 level in Romos cells. And it also exhibited antiproliferative activity in multiple hematological tumour cells. More gratifyingly, 19q showed impressive efficacy at a low dosage (1 mg/kg/day) in the MV4-11 mouse xenograft model without affecting the body weight of the mice. These findings suggest that 19q is a promising new Syk inhibitor for treating blood cancers.
Collapse
Affiliation(s)
- Bingbing Cui
- School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, PR China
| | - Yong Wang
- School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, PR China
| | - Zhipeng Zhao
- School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, PR China
| | - Lu Fan
- School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, PR China
| | - Yu Jiao
- School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, PR China
| | - Hongmei Li
- School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, PR China
| | - Jie Feng
- School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, PR China
| | - Weifang Tang
- School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, PR China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, PR China
| | - Tao Lu
- School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, PR China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, PR China.
| | - Yadong Chen
- School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, PR China.
| |
Collapse
|
21
|
Dangelmaier CA, Patchin M, Vajipayajula DN, Vari HR, Singh PK, Wright MN, Kostyak JC, Tsygankov AY, Kunapuli SP. Phosphorylation of spleen tyrosine kinase at Y346 negatively regulates ITAM-mediated signaling and function in platelets. J Biol Chem 2023; 299:104865. [PMID: 37268160 PMCID: PMC10320515 DOI: 10.1016/j.jbc.2023.104865] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 04/29/2023] [Accepted: 05/02/2023] [Indexed: 06/04/2023] Open
Abstract
Spleen tyrosine kinase (Syk) is expressed in a variety of hemopoietic cells. Upon phosphorylation of the platelet immunoreceptor-based activation motif of the glycoprotein VI (GPVI)/Fc receptor gamma chain collagen receptor, both the tyrosine phosphorylation and activity of Syk are increased leading to downstream signaling events. Although it has been established that the activity of Syk is regulated by tyrosine phosphorylation, the specific roles of individual phosphorylation sites remain to be elucidated. We observed that Syk Y346 in mouse platelets was still phosphorylated when GPVI-induced Syk activity was inhibited. We then generated Syk Y346F mice and analyzed the effect this mutation exerts on platelet responses. Syk Y346F mice bred normally, and their blood cell count was unaltered. We did observe potentiation of GPVI-induced platelet aggregation and ATP secretion as well as increased phosphorylation of other tyrosines on Syk in the Syk Y346F mouse platelets when compared to WT littermates. This phenotype was specific for GPVI-dependent activation, since it was not seen when AYPGKF, a PAR4 agonist, or 2-MeSADP, a purinergic receptor agonist, was used to activate platelets. Despite a clear effect of Syk Y346F on GPVI-mediated signaling and cellular responses, there was no effect of this mutation on hemostasis as measured by tail-bleeding times, although the time to thrombus formation determined using the ferric chloride injury model was reduced. Thus, our results indicate a significant effect of Syk Y346F on platelet activation and responses in vitro and reveal its complex nature manifesting itself by the diversified translation of platelet activation into physiological responses.
Collapse
Affiliation(s)
- Carol A Dangelmaier
- Department of Cardiovascular Sciences, Sol Sherry Thrombosis Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Margaret Patchin
- Department of Cardiovascular Sciences, Sol Sherry Thrombosis Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Dhruv N Vajipayajula
- Department of Cardiovascular Sciences, Sol Sherry Thrombosis Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Hymavathi Reddy Vari
- Department of Cardiovascular Sciences, Sol Sherry Thrombosis Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Pankaj K Singh
- Department of Cardiovascular Sciences, Sol Sherry Thrombosis Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Monica N Wright
- Department of Cardiovascular Sciences, Sol Sherry Thrombosis Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - John C Kostyak
- Department of Cardiovascular Sciences, Sol Sherry Thrombosis Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Alexander Y Tsygankov
- Department of Cardiovascular Sciences, Sol Sherry Thrombosis Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Satya P Kunapuli
- Department of Cardiovascular Sciences, Sol Sherry Thrombosis Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
22
|
Huang DY, Lu ST, Chen YS, Cheng CY, Lin WW. Epigenetic upregulation of spleen tyrosine kinase in cancer cells through p53-dependent downregulation of DNA methyltransferase. Exp Cell Res 2023; 425:113540. [PMID: 36889573 DOI: 10.1016/j.yexcr.2023.113540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/25/2023] [Accepted: 03/04/2023] [Indexed: 03/08/2023]
Abstract
Syk is a tumor suppressor gene in some solid tumors. Currently, it remains unknown how Syk gene hypermethylation is controlled by DNA methyltransferase (DNMT) and p53. In colorectal cancer HCT116 cells, we found that protein and mRNA levels of Syk were much higher in WT than in p53-/- cells. Both p53 inhibitor PFT-α and p53 silencing can reduce the protein and mRNA expression of Syk in WT cells, while DNMT inhibitor 5-Aza-2'-dC can increase Syk expression in p53-/- cells. Interestingly, the DNMT expression in p53-/- HCT116 cells was higher than that in WT cells. PFT-α can not only enhance Syk gene methylation but also increase DNMT1 protein and mRNA levels in WT HCT116 cells. In metastatic lung cancer cell lines A549 and PC9, which express WT p53 and gain function of p53, respectively, PFT-α can also downregulate Syk mRNA and protein expression. However, the Syk methylation level was increased by PFT-α in A549 but not in PC9 cells. Likewise, 5-Aza-2'-dC transcriptionally increased Syk gene expression in A549 cells, but not in PC9 cells. In summary methylation of Syk promoter requires DNMT1, and p53 can upregulate Syk expression via downregulation of DNMT1 at the transcriptional level.
Collapse
Affiliation(s)
- Duen-Yi Huang
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shang-Te Lu
- Graduate Institute of Medical Sciences, Taipei Medical University, Taipei, Taiwan
| | - Yuan-Shen Chen
- Department of Neurosurgery, National Taiwan University Hospital Yunlin Branch, Douliu, 64041, Taiwan
| | - Ching-Yuan Cheng
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Wan-Wan Lin
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan; Graduate Institute of Medical Sciences, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
23
|
Yao H, Sun J, Zhang T, Wang L, Song L. Syk regulates the haemocyte autophagy through inducing the mRNA expressions of autophagy-related genes and the cleavage of CgLC3 in oyster antibacterial immunity. FISH AND SHELLFISH IMMUNOLOGY REPORTS 2023; 4:100085. [PMID: 37065179 PMCID: PMC10102855 DOI: 10.1016/j.fsirep.2023.100085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/07/2023] [Accepted: 01/16/2023] [Indexed: 01/18/2023] Open
Abstract
Spleen tyrosine kinase (Syk) is reported to be involved in activating the autophagy. Recently, a homologue of Syk was identified from Pacific oyster Crassostrea gigas (defined as CgSyk). In the present study, the molecular characteristics of CgSyk and its regulation mechanism in autophagy were investigated in oyster C. gigas. The full-length cDNA of CgSyk was of 4566 bp with an open reading frame (ORF) of 1989 bp. CgSyk encoded a polypeptide of 662 amino acids, containing two Src homology 2 (SH2) domains and one tyrosine kinase catalytic (TyrKc) domain. The deduced amino acid sequence of CgSyk shared low similarity with the previously identified Syks from other species. In the phylogenetic tree, CgSyk was first clustered with Crassostrea virginica CvSyk, and then classified into a branch of invertebrate Syks. In CgSyk-RNAi oysters, the mRNA expressions of CgLC3, CgP62, CgBeclin-1 and CgATG5 in haemocytes decreased significantly at 12 h after Vibrio splendidus stimulation. At the same time, the abundance of CgLC3Ⅱ in haemocytes, and the autophagy rate of haemocytes in CgSyk-RNAi oysters decreased significantly at 12 h after V. splendidus stimulation. All the results collectively suggested that CgSyk regulated the autophagy through inducing the mRNA expressions of autophagy-related genes and the cleavage of CgLC3 to defend against bacterial invasion in oysters.
Collapse
Affiliation(s)
- Hongsheng Yao
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, 52 Heishijiao Street, Dalian 116023, China
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China
| | - Jiejie Sun
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, 52 Heishijiao Street, Dalian 116023, China
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China
- Corresponding author at: Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, 52 Heishijiao Street, Dalian 116023, China.
| | - Tong Zhang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, 52 Heishijiao Street, Dalian 116023, China
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, 52 Heishijiao Street, Dalian 116023, China
- Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China
- Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian 116023, China
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, 52 Heishijiao Street, Dalian 116023, China
- Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China
| |
Collapse
|
24
|
Prendecki M, Gulati K, Pisacano N, Pinheiro D, Bhatt T, Mawhin MA, Toulza F, Masuda ES, Cowburn A, Lodge KM, Tam FWK, Roufosse C, Pusey CD, McAdoo SP. Syk Activation in Circulating and Tissue Innate Immune Cells in Antineutrophil Cytoplasmic Antibody-Associated Vasculitis. Arthritis Rheumatol 2023; 75:84-97. [PMID: 36428281 PMCID: PMC10099805 DOI: 10.1002/art.42321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 06/21/2022] [Accepted: 07/26/2022] [Indexed: 02/04/2023]
Abstract
OBJECTIVE Syk is a cytoplasmic protein tyrosine kinase that plays a role in signaling via B cell and Fc receptors (FcR). FcR engagement and signaling via Syk is thought to be important in antineutrophil cytoplasm antibody (ANCA) IgG-mediated neutrophil activation. This study was undertaken to investigate the role of Syk in ANCA-induced myeloid cell activation and vasculitis pathogenesis. METHODS Phosphorylation of Syk in myeloid cells from healthy controls and ANCA-associated vasculitis (AAV) patients was analyzed using flow cytometry. The effect of Syk inhibition on myeloperoxidase (MPO)-ANCA IgG activation of cells was investigated using functional assays (interleukin-8 and reactive oxygen species production) and targeted gene analysis with NanoString. Total and phosphorylated Syk at sites of tissue inflammation in patients with AAV was assessed using immunohistochemistry and RNAscope in situ hybridization. RESULTS We identified increased phosphorylated Syk at critical activatory tyrosine residues in blood neutrophils and monocytes from patients with active AAV compared to patients with disease in remission or healthy controls. Syk was phosphorylated in vitro following MPO-ANCA IgG stimulation, and Syk inhibition was able to prevent ANCA-mediated cellular responses. Using targeted gene expression analysis, we identified up-regulation of FcR- and Syk-dependent signaling pathways following MPO-ANCA IgG stimulation. Finally, we showed that Syk is expressed and phosphorylated in tissue leukocytes at sites of organ inflammation in AAV. CONCLUSION These findings indicate that Syk plays a critical role in MPO-ANCA IgG-induced myeloid cell responses and that Syk is activated in circulating immune cells and tissue immune cells in AAV; therefore, Syk inhibition may be a potential therapeutic option.
Collapse
Affiliation(s)
- Maria Prendecki
- Department of Immunology and Inflammation, Centre for Inflammatory Disease, Imperial College London, Hammersmith Campus, and Imperial College Renal and Transplant Centre, Imperial College Healthcare NHS Trust, Hammersmith Hospital, London, UK
| | - Kavita Gulati
- Department of Immunology and Inflammation, Centre for Inflammatory Disease, Imperial College London, Hammersmith Campus, and Imperial College Renal and Transplant Centre, Imperial College Healthcare NHS Trust, Hammersmith Hospital, London, UK
| | - Noelle Pisacano
- National Heart and Lung Institute, Imperial College, London, UK
| | - Damilola Pinheiro
- Department of Immunology and Inflammation, Centre for Inflammatory Disease, Imperial College London, Hammersmith Campus, London, UK
| | - Tejal Bhatt
- Department of Immunology and Inflammation, Centre for Inflammatory Disease, Imperial College London, Hammersmith Campus, London, UK
| | - Marie-Anne Mawhin
- Department of Immunology and Inflammation, Centre for Inflammatory Disease, Imperial College London, Hammersmith Campus, London, UK
| | - Frederic Toulza
- Department of Immunology and Inflammation, Centre for Inflammatory Disease, Imperial College London, Hammersmith Campus, London, UK
| | | | - Andrew Cowburn
- National Heart and Lung Institute, Imperial College, London, UK
| | | | - Frederick W K Tam
- Department of Immunology and Inflammation, Centre for Inflammatory Disease, Imperial College London, Hammersmith Campus, and Imperial College Renal and Transplant Centre, Imperial College Healthcare NHS Trust, Hammersmith Hospital, London, UK
| | - Candice Roufosse
- Department of Immunology and Inflammation, Centre for Inflammatory Disease, Imperial College London, Hammersmith Campus, London, UK
| | - Charles D Pusey
- Department of Immunology and Inflammation, Centre for Inflammatory Disease, Imperial College London, Hammersmith Campus, and Imperial College Renal and Transplant Centre, Imperial College Healthcare NHS Trust, Hammersmith Hospital, London, UK
| | - Stephen P McAdoo
- Department of Immunology and Inflammation, Centre for Inflammatory Disease, Imperial College London, Hammersmith Campus, and Imperial College Renal and Transplant Centre, Imperial College Healthcare NHS Trust, Hammersmith Hospital, London, UK
| |
Collapse
|
25
|
Hao Y, Tang X, Xing J, Sheng X, Chi H, Zhan W. The role of Syk phosphorylation in Fc receptor mediated mIgM + B lymphocyte phagocytosis in flounder (Paralichthys olivaceus). FISH & SHELLFISH IMMUNOLOGY 2022; 130:462-471. [PMID: 36162778 DOI: 10.1016/j.fsi.2022.09.054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 09/12/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
Spleen tyrosine kinase (Syk) is a non-receptor protein tyrosine kinase, and it mediates downstream signaling of FcR-mediated immune responses. Our previous work revealed that the expression of Syk was significantly up-regulated in flounder mIgM+ B lymphocytes after phagocytosis of antiserum-opsonized Edwardsiella tarda, which suggested Syk might be involved in Ig-opsonized phagocytosis. In this paper, phospho-Syk (pSyk) inhibitor was used to investigate the potential role of phosphorylated Syk in FcR-mediated phagocytosis of IgM+ B cells. Indirect immunofluorescence assay (IFA) and Western blotting showed that the level of phosphorylated Syk in the mIgM+ B lymphocytes treated with pSyk inhibitor was significantly lower compared to the control group after stimulation with flounder antiserum. Flow cytometry analysis showed that after 3 h incubation with antiserum-opsonized E. tarda, the phagocytosis rates of mIgM+ B lymphocytes from peripheral blood, spleen and head kidney pre-treated with pSyk inhibitor were 48.1%, 40.1% and 43.6% respectively, which were significantly lower than that of the control groups with 58.7%, 53.2% and 57.4%, respectively. And likewise, after pSyk inhibitor treatment, the proportions of mIgM+ B lymphocytes with higher intracellular reactive oxygen species (ROS) levels in peripheral blood, spleen and head kidney decreased to 15.2%, 12.0% and 12.1% from the control level of 26.5%, 25.9% and 26.3%, respectively. Moreover, the expression of three genes affected by pSyk, including phospholipase Cγ1 (PLCγ1), phospholipase Cγ2 (PLCγ2) and phosphatidylinositol 3 kinase (PI3K) were found to be significantly down-regulated in pSyk inhibitor-treated mIgM+ B lymphocytes post phagocytosis. These results suggest that pSyk plays a key role in FcR-mediated phagocytosis and bactericidal activity of mIgM+ B lymphocytes, which promotes further understanding of the regulatory role of pSyk in teleost B cells phagocytosis.
Collapse
Affiliation(s)
- Yanbo Hao
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Xiaoqian Tang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Jing Xing
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Xiuzhen Sheng
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Heng Chi
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Wenbin Zhan
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.
| |
Collapse
|
26
|
Wang S, Sudan R, Peng V, Zhou Y, Du S, Yuede CM, Lei T, Hou J, Cai Z, Cella M, Nguyen K, Poliani PL, Beatty WL, Chen Y, Cao S, Lin K, Rodrigues C, Ellebedy AH, Gilfillan S, Brown GD, Holtzman DM, Brioschi S, Colonna M. TREM2 drives microglia response to amyloid-β via SYK-dependent and -independent pathways. Cell 2022; 185:4153-4169.e19. [PMID: 36306735 PMCID: PMC9625082 DOI: 10.1016/j.cell.2022.09.033] [Citation(s) in RCA: 204] [Impact Index Per Article: 68.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 05/12/2022] [Accepted: 09/23/2022] [Indexed: 12/05/2022]
Abstract
Genetic studies have highlighted microglia as pivotal in orchestrating Alzheimer's disease (AD). Microglia that adhere to Aβ plaques acquire a transcriptional signature, "disease-associated microglia" (DAM), which largely emanates from the TREM2-DAP12 receptor complex that transmits intracellular signals through the protein tyrosine kinase SYK. The human TREM2R47H variant associated with high AD risk fails to activate microglia via SYK. We found that SYK-deficient microglia cannot encase Aβ plaques, accelerating brain pathology and behavioral deficits. SYK deficiency impaired the PI3K-AKT-GSK-3β-mTOR pathway, incapacitating anabolic support required for attaining the DAM profile. However, SYK-deficient microglia proliferated and advanced to an Apoe-expressing prodromal stage of DAM; this pathway relied on the adapter DAP10, which also binds TREM2. Thus, microglial responses to Aβ involve non-redundant SYK- and DAP10-pathways. Systemic administration of an antibody against CLEC7A, a receptor that directly activates SYK, rescued microglia activation in mice expressing the TREM2R47H allele, unveiling new options for AD immunotherapy.
Collapse
Affiliation(s)
- Shoutang Wang
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Raki Sudan
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Vincent Peng
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Yingyue Zhou
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Siling Du
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Carla M Yuede
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Tingting Lei
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jinchao Hou
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Zhangying Cai
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Marina Cella
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Khai Nguyen
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Pietro L Poliani
- Pathology Unit, Molecular and Translational Medicine Department, University of Brescia, Brescia 25123, Italy
| | - Wandy L Beatty
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Yun Chen
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Neurology, Knight Alzheimer's Disease Research Center, Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Siyan Cao
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Kent Lin
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Cecilia Rodrigues
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, Devon EX4 4QD, UK
| | - Ali H Ellebedy
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Susan Gilfillan
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Gordon D Brown
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, Devon EX4 4QD, UK
| | - David M Holtzman
- Department of Neurology, Knight Alzheimer's Disease Research Center, Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Simone Brioschi
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
27
|
Gu J, Wu Q, Zhang Q, You Q, Wang L. A decade of approved first-in-class small molecule orphan drugs: Achievements, challenges and perspectives. Eur J Med Chem 2022; 243:114742. [PMID: 36155354 DOI: 10.1016/j.ejmech.2022.114742] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/01/2022] [Accepted: 09/01/2022] [Indexed: 12/01/2022]
Abstract
In the past decade (2011-2020), there was a growing interest in the discovery and development of orphan drugs for the treatment of rare diseases. However, rare diseases only account for a population of 0.65‰-1‰ which usually occur with previously unknown biological mechanisms and lack of specific therapeutics, thus to increase the demands for the first-in-class (FIC) drugs with new biological targets or mechanisms. Considering the achievements in the past 10 years, a total of 410 drugs were approved by U.S. Food and Drug Administration (FDA), which contained 151 FIC drugs and 184 orphan drugs, contributing to make up significant numbers of the approvals. Notably, more than 50% of FIC drugs are developed as orphan drugs and some of them have already been milestones in drug development. In this review, we aim to discuss the FIC small molecules for the development of orphan drugs case by case and highlight the R&D strategy with novel targets and scientific breakthroughs.
Collapse
Affiliation(s)
- Jinying Gu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Qiuyu Wu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Qiuyue Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Qidong You
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Lei Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
28
|
Kostyak JC, Mauri B, Dangelmaier C, Vari HR, Patel A, Wright M, Reddy H, Tsygankov AY, Kunapuli SP. Phosphorylation on Syk Y342 is important for both ITAM and hemITAM signaling in platelets. J Biol Chem 2022; 298:102189. [PMID: 35753354 PMCID: PMC9287148 DOI: 10.1016/j.jbc.2022.102189] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 11/29/2022] Open
Abstract
Immune cells express receptors bearing an immune tyrosine activation motif (ITAM) containing two YXXL motifs or hemITAMs containing only one YXXL motif. Phosphorylation of the ITAM/hemITAM is mediated by Src family kinases allowing for the binding and activation of spleen tyrosine kinase (Syk). It is believed that Syk must be phosphorylated on tyrosine residues for activation, and Tyr342, а conserved tyrosine in the interdomain B region, has been shown to be critical for regulating Syk in FcεR1-activated mast cells. Syk is a key mediator of signaling pathways downstream of several platelet pathways including the ITAM bearing glycoprotein VI (GPVI)/Fc receptor gamma chain collagen receptor and the hemITAM containing C-type lectin-like receptor-2 (CLEC-2). Since platelet activation is a crucial step in both hemostasis and thrombosis, we evaluated the importance of Syk Y342 in these processes by producing an Syk Y342F knock-in mouse. When using a CLEC-2 antibody as an agonist, reduced aggregation and secretion were observed in Syk Y342F mouse platelets when compared with control mouse platelets. Platelet reactivity was also reduced in response to the GPVI agonist collagen-related peptide. Signaling initiated by either GPVI or CLEC-2 was also greatly inhibited, including Syk Y519/520 phosphorylation. Hemostasis, as measured by tail bleeding time, was not altered in Syk Y342F mice, but thrombus formation in response to FeCl3 injury was prolonged in Syk Y342F mice. These data demonstrate that phosphorylation of Y342 on Syk following stimulation of either GPVI or CLEC-2 receptors is important for the ability of Syk to transduce a signal.
Collapse
Affiliation(s)
- John C Kostyak
- Sol Sherry Thrombosis Research Center and Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Benjamin Mauri
- Sol Sherry Thrombosis Research Center and Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Carol Dangelmaier
- Sol Sherry Thrombosis Research Center and Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Hymavathi Reddy Vari
- Sol Sherry Thrombosis Research Center and Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Akruti Patel
- Sol Sherry Thrombosis Research Center and Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Monica Wright
- Sol Sherry Thrombosis Research Center and Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Haritha Reddy
- Sol Sherry Thrombosis Research Center and Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Alexander Y Tsygankov
- Sol Sherry Thrombosis Research Center and Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Satya P Kunapuli
- Sol Sherry Thrombosis Research Center and Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
29
|
Palominos PE, Lineburger IB, Xavier RM. Emerging protein kinase inhibitors for the treatment of rheumatoid arthritis. Expert Opin Emerg Drugs 2021; 26:303-321. [PMID: 34365877 DOI: 10.1080/14728214.2021.1964472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Protein tyrosine kinase inhibitors are emergent drugs in the treatment of rheumatoid arthritis (RA); they block the signal transduction in immune cells preventing the production and release of pro-inflammatory cytokines. AREAS COVERED The current research aims to review the role of Janus, Bruton's and spleen kinase inhibitors for the treatment of RA. Mechanism of action, rationale for usage, and the main efficacy and safety outcomes in phase II and III clinical trials are described. EXPERT OPINION In RA, the development of Bruton kinase inhibitors was interrupted because they failed to demonstrate superiority versus placebo. The spleen kinase inhibitors had their development deprioritized because their risk/benefit profile was unfavorable compared to janus kinase inhibitors (JAKi). JAKi proved to be effective in treatment naïve patients and in those with previous failure to methotrexate and/or biological therapy. There still remain important points about JAKi that need more studies: the clinical importance of JAKi selectivity should be further evaluated in head-to-head trials and the safety profile of JAKi, mainly regarding the risk of malignancy and thromboembolic events, must be analyzed in long-term real-life studies.
Collapse
|
30
|
Lopez‐Sanz L, Bernal S, Jimenez‐Castilla L, Prieto I, La Manna S, Gomez‐Lopez S, Blanco‐Colio LM, Egido J, Martin‐Ventura JL, Gomez‐Guerrero C. Fcγ receptor activation mediates vascular inflammation and abdominal aortic aneurysm development. Clin Transl Med 2021; 11:e463. [PMID: 34323424 PMCID: PMC8255062 DOI: 10.1002/ctm2.463] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 05/24/2021] [Accepted: 05/30/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Abdominal aortic aneurysm (AAA), a degenerative vascular pathology characterized by permanent dilation of the aorta, is considered a chronic inflammatory disease involving innate/adaptive immunity. However, the functional role of antibody-dependent immune response against antigens present in the damaged vessel remains unresolved. We hypothesized that engagement of immunoglobulin G (IgG) Fc receptors (FcγR) by immune complexes (IC) in the aortic wall contributes to AAA development. We therefore evaluated FcγR expression in AAA lesions and analysed whether inhibition of FcγR signaling molecules (γ-chain and Syk kinase) influences AAA formation in mice. METHODS FcγR gene/protein expression was assessed in human and mouse AAA tissues. Experimental AAA was induced by aortic elastase perfusion in wild-type (WT) mice and γ-chain knockout (γKO) mice (devoid of activating FcγR) in combination with macrophage adoptive transfer or Syk inhibitor treatment. To verify the mechanisms of FcγR in vitro, vascular smooth muscle cells (VSMC) and macrophages were stimulated with IgG IC. RESULTS FcγR overexpression was detected in adventitia and media layers of human and mouse AAA. Elastase-perfused γKO mice exhibited a decrease in AAA incidence, aortic dilation, elastin degradation, and VSMC loss. This was associated with (1) reduced infiltrating leukocytes and immune deposits in AAA lesions, (2) inflammatory genes and metalloproteinases downregulation, (3) redox balance restoration, and (4) converse phenotype of anti-inflammatory macrophage M2 and contractile VSMC. Adoptive transfer of FcγR-expressing macrophages aggravated aneurysm in γKO mice. In vitro, FcγR deficiency attenuated inflammatory gene expression, oxidative stress, and phenotypic switch triggered by IC. Additionally, Syk inhibition prevented IC-mediated cell responses, reduced inflammation, and mitigated AAA formation. CONCLUSION Our findings provide insight into the role and mechanisms mediating IgG-FcγR-associated inflammation and aortic wall injury in AAA, which might represent therapeutic targets against AAA disease.
Collapse
MESH Headings
- Animals
- Antigen-Antibody Complex/adverse effects
- Aorta, Abdominal/metabolism
- Aorta, Abdominal/pathology
- Aortic Aneurysm, Abdominal/pathology
- Aortic Aneurysm, Abdominal/prevention & control
- Disease Models, Animal
- Humans
- Immunoglobulin gamma-Chains/genetics
- Immunoglobulin gamma-Chains/metabolism
- Inflammation/metabolism
- Inflammation/pathology
- Macrophages/cytology
- Macrophages/immunology
- Macrophages/metabolism
- Male
- Matrix Metalloproteinases/genetics
- Matrix Metalloproteinases/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/metabolism
- Niacinamide/analogs & derivatives
- Niacinamide/therapeutic use
- Oxidative Stress
- Pancreatic Elastase/adverse effects
- Pyrimidines/therapeutic use
- Receptors, IgG/genetics
- Receptors, IgG/metabolism
- Syk Kinase/antagonists & inhibitors
- Syk Kinase/metabolism
Collapse
Affiliation(s)
- Laura Lopez‐Sanz
- Renal, Vascular and Diabetes Research LabIIS‐Fundacion Jimenez Diaz (IIS‐FJD)MadridSpain
- Universidad Autonoma de Madrid (UAM)MadridSpain
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM)MadridSpain
| | - Susana Bernal
- Renal, Vascular and Diabetes Research LabIIS‐Fundacion Jimenez Diaz (IIS‐FJD)MadridSpain
- Universidad Autonoma de Madrid (UAM)MadridSpain
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM)MadridSpain
| | - Luna Jimenez‐Castilla
- Renal, Vascular and Diabetes Research LabIIS‐Fundacion Jimenez Diaz (IIS‐FJD)MadridSpain
- Universidad Autonoma de Madrid (UAM)MadridSpain
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM)MadridSpain
| | - Ignacio Prieto
- Renal, Vascular and Diabetes Research LabIIS‐Fundacion Jimenez Diaz (IIS‐FJD)MadridSpain
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM)MadridSpain
| | - Sara La Manna
- Renal, Vascular and Diabetes Research LabIIS‐Fundacion Jimenez Diaz (IIS‐FJD)MadridSpain
- Universidad Autonoma de Madrid (UAM)MadridSpain
| | | | - Luis Miguel Blanco‐Colio
- Renal, Vascular and Diabetes Research LabIIS‐Fundacion Jimenez Diaz (IIS‐FJD)MadridSpain
- Spanish Biomedical Research Centre in Cardiovascular Diseases (CIBERCV)MadridSpain
| | - Jesus Egido
- Renal, Vascular and Diabetes Research LabIIS‐Fundacion Jimenez Diaz (IIS‐FJD)MadridSpain
- Universidad Autonoma de Madrid (UAM)MadridSpain
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM)MadridSpain
| | - Jose Luis Martin‐Ventura
- Renal, Vascular and Diabetes Research LabIIS‐Fundacion Jimenez Diaz (IIS‐FJD)MadridSpain
- Universidad Autonoma de Madrid (UAM)MadridSpain
- Spanish Biomedical Research Centre in Cardiovascular Diseases (CIBERCV)MadridSpain
| | - Carmen Gomez‐Guerrero
- Renal, Vascular and Diabetes Research LabIIS‐Fundacion Jimenez Diaz (IIS‐FJD)MadridSpain
- Universidad Autonoma de Madrid (UAM)MadridSpain
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM)MadridSpain
| |
Collapse
|
31
|
Sadras T, Martin M, Kume K, Robinson ME, Saravanakumar S, Lenz G, Chen Z, Song JY, Siddiqi T, Oksa L, Knapp AM, Cutler J, Cosgun KN, Klemm L, Ecker V, Winchester J, Ghergus D, Soulas-Sprauel P, Kiefer F, Heisterkamp N, Pandey A, Ngo V, Wang L, Jumaa H, Buchner M, Ruland J, Chan WC, Meffre E, Martin T, Müschen M. Developmental partitioning of SYK and ZAP70 prevents autoimmunity and cancer. Mol Cell 2021; 81:2094-2111.e9. [PMID: 33878293 PMCID: PMC8239336 DOI: 10.1016/j.molcel.2021.03.043] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 12/01/2020] [Accepted: 03/26/2021] [Indexed: 12/11/2022]
Abstract
Even though SYK and ZAP70 kinases share high sequence homology and serve analogous functions, their expression in B and T cells is strictly segregated throughout evolution. Here, we identified aberrant ZAP70 expression as a common feature in a broad range of B cell malignancies. We validated SYK as the kinase that sets the thresholds for negative selection of autoreactive and premalignant clones. When aberrantly expressed in B cells, ZAP70 competes with SYK at the BCR signalosome and redirects SYK from negative selection to tonic PI3K signaling, thereby promoting B cell survival. In genetic mouse models for B-ALL and B-CLL, conditional expression of Zap70 accelerated disease onset, while genetic deletion impaired malignant transformation. Inducible activation of Zap70 during B cell development compromised negative selection of autoreactive B cells, resulting in pervasive autoantibody production. Strict segregation of the two kinases is critical for normal B cell selection and represents a central safeguard against the development of autoimmune disease and B cell malignancies.
Collapse
Affiliation(s)
- Teresa Sadras
- Center of Molecular and Cellular Oncology, Yale Cancer Center, Yale School of Medicine, New Haven, CT, USA; Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Mickaël Martin
- CNRS UPR 3572 "Immunopathology and Therapeutic Chemistry," Institute of Molecular and Cellular Biology (IBMC), Strasbourg, France; Department of Clinical Immunology, Strasbourg University Hospital, Strasbourg, France
| | - Kohei Kume
- Center of Molecular and Cellular Oncology, Yale Cancer Center, Yale School of Medicine, New Haven, CT, USA
| | - Mark E Robinson
- Center of Molecular and Cellular Oncology, Yale Cancer Center, Yale School of Medicine, New Haven, CT, USA
| | - Supraja Saravanakumar
- Department of Systems Biology, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Gal Lenz
- Department of Cancer Biology, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Zhengshan Chen
- Department of Systems Biology, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Joo Y Song
- Department of Pathology, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Tanya Siddiqi
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Laura Oksa
- Tampere Center for Child Health Research, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Anne Marie Knapp
- CNRS UPR 3572 "Immunopathology and Therapeutic Chemistry," Institute of Molecular and Cellular Biology (IBMC), Strasbourg, France
| | - Jevon Cutler
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kadriye Nehir Cosgun
- Center of Molecular and Cellular Oncology, Yale Cancer Center, Yale School of Medicine, New Haven, CT, USA
| | - Lars Klemm
- Center of Molecular and Cellular Oncology, Yale Cancer Center, Yale School of Medicine, New Haven, CT, USA
| | - Veronika Ecker
- Department of Systems Biology, City of Hope Comprehensive Cancer Center, Duarte, CA, USA; Institute of Clinical Chemistry and Pathobiochemistry, Technical University of Munich, Klinikum rechts der Isar, 81675 Munich, Germany
| | - Janet Winchester
- Department of Systems Biology, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Dana Ghergus
- Department of Clinical Hematology, Hospices Civils de Lyon, Lyon, France
| | - Pauline Soulas-Sprauel
- CNRS UPR 3572 "Immunopathology and Therapeutic Chemistry," Institute of Molecular and Cellular Biology (IBMC), Strasbourg, France; Department of Clinical Immunology, Strasbourg University Hospital, Strasbourg, France
| | - Friedemann Kiefer
- Mammalian Cell Signaling Laboratory, Department of Vascular Cell Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Nora Heisterkamp
- Department of Systems Biology, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Akhilesh Pandey
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Vu Ngo
- Department of Systems Biology, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Lili Wang
- Department of Systems Biology, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Hassan Jumaa
- Department of Immunology, University of Ulm, Ulm, Germany
| | - Maike Buchner
- Institute of Clinical Chemistry and Pathobiochemistry, Technical University of Munich, Klinikum rechts der Isar, 81675 Munich, Germany
| | - Jürgen Ruland
- Institute of Clinical Chemistry and Pathobiochemistry, Technical University of Munich, Klinikum rechts der Isar, 81675 Munich, Germany
| | - Wing-Chung Chan
- Department of Pathology, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Eric Meffre
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA.
| | - Thierry Martin
- CNRS UPR 3572 "Immunopathology and Therapeutic Chemistry," Institute of Molecular and Cellular Biology (IBMC), Strasbourg, France; Department of Clinical Immunology, Strasbourg University Hospital, Strasbourg, France.
| | - Markus Müschen
- Center of Molecular and Cellular Oncology, Yale Cancer Center, Yale School of Medicine, New Haven, CT, USA; Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
32
|
Carriba P, Davies AM. Signalling Pathways Mediating the Effects of CD40-Activated CD40L Reverse Signalling on Inhibitory Medium Spiny Neuron Neurite Growth. Cells 2021; 10:829. [PMID: 33917019 PMCID: PMC8067729 DOI: 10.3390/cells10040829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/15/2021] [Accepted: 04/02/2021] [Indexed: 01/16/2023] Open
Abstract
CD40-activated CD40L-mediated reverse signalling is a major physiological regulator of neurite growth from excitatory and inhibitory neurons in the developing central nervous system (CNS). Whereas in excitatory pyramidal neurons, CD40L reverse signalling promotes the growth and elaboration of dendrites and axons, in inhibitory GABAergic striatal medium spiny neurons (MSNs), it restricts neurite growth and branching. In pyramidal neurons, we previously reported that CD40L reverse signalling activates an interconnected and interdependent signalling network involving protein kinase C (PKC), extracellular regulated kinases 1 and 2 (ERK1/2), and c-Jun N-terminal kinase (JNK) signalling pathways that regulates dendrite and axon growth. Here, we have studied whether these signalling pathways also influence neurite growth from striatal inhibitory MSNs. To unequivocally activate CD40L reverse signalling, we treated MSN cultures from CD40-deficient mice with CD40-Fc. Here, we report that activation of CD40L reverse signalling in these cultures also increased the phosphorylation of PKC, ERK1/2, and JNK. Using pharmacological activators and inhibitors of these signalling pathways singularly and in combination, we have shown that, as in pyramidal neurons, these signalling pathways work in an interconnected and interdependent network to regulate the neurite growth, but their functions, relationships, and interdependencies are different from those observed in pyramidal neurons. Furthermore, immunoprecipitation studies showed that stimulation of CD40L reverse signalling recruits the catalytic fragment of Syk tyrosine kinase, but in contrast to pyramidal neurons, PKC does not participate in this recruitment. Our findings show that distinctive networks of three signalling pathways mediate the opposite effects of CD40L reverse signalling on neurite growth in excitatory and inhibitory neurons.
Collapse
Affiliation(s)
- Paulina Carriba
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AX, UK
| | - Alun M Davies
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AX, UK
| |
Collapse
|
33
|
Yiu WH, Chan KW, Chan LYY, Leung JCK, Lai KN, Tang SCW. Spleen Tyrosine Kinase Inhibition Ameliorates Tubular Inflammation in IgA Nephropathy. Front Physiol 2021; 12:650888. [PMID: 33790807 PMCID: PMC8006276 DOI: 10.3389/fphys.2021.650888] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 02/01/2021] [Indexed: 12/15/2022] Open
Abstract
Spleen tyrosine kinase (Syk) is a non-receptor tyrosine kinase involved in signal transduction in a variety of immune responses. It has been demonstrated that Syk plays a pathogenic role in orchestrating inflammatory responses and cell proliferation in human mesangial cells (HMC) in IgA nephropathy (IgAN). However, whether Syk is involved in tubular damage in IgAN remains unknown. Using human kidney biopsy specimens, we found that Syk was activated in renal tubules of biopsy-proven IgAN patients with an increase in total and phosphorylated levels compared to that from healthy control subjects. In vitro, cultured proximal tubular epithelial cells (PTECs) were stimulated with conditioned medium prepared from human mesangial cells incubated with polymeric IgA (IgA-HMC) from patients with IgAN or healthy control. Induction of IL-6, IL-8, and ICAM-1 synthesis from cultured PTECs incubated with IgA-HMC conditioned medium was significantly suppressed by treatment with the Syk inhibitor R406 compared to that from healthy control. Furthermore, R406 downregulated expression of phosphorylated p65 NF-κB and p-42/p-44 MAPK, and attenuated TNF-α-induced cytokine production in PTECs. Taken together, our findings suggest that Syk mediates IgA-HMC conditioned medium-induced inflammation in tubular cells via activation of NF-κB and p-42/p-44 MAPK signaling. Inhibition of Syk may be a potential therapeutic approach for tubulointerstitial injury in IgAN.
Collapse
Affiliation(s)
- Wai Han Yiu
- Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong
| | - Kam Wa Chan
- Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong
| | - Loretta Y Y Chan
- Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong
| | - Joseph C K Leung
- Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong
| | - Kar Neng Lai
- Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong
| | - Sydney C W Tang
- Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong
| |
Collapse
|
34
|
Hon KL, Li JTS, Leung AKC, Lee VWY. Current and emerging pharmacotherapy for chronic spontaneous Urticaria: a focus on non-biological therapeutics. Expert Opin Pharmacother 2021; 22:497-509. [PMID: 32990110 DOI: 10.1080/14656566.2020.1829593] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
INTRODUCTION Chronic spontaneous urticaria (CSU) refers to urticaria (wheals) or angioedema, which occur for a period of six weeks or longer without an apparent cause. The condition may impair the patient's quality of life. AREAS COVERED Treatment for CSU is mainly symptomatic. Both AAAAI/ACAAI practice parameters and EAACI/GA2LEN/EDF/WAO guidelines suggest CSU management in a stepwise manner. First-line therapy is with second-generation H1-antihistamines. Treatment should be stepped up along the algorithm if symptoms are not adequately controlled. Increasing the dosage of second-generation H1-antihistamines, with the addition of first-generation H1-antihistamines, H2 antagonist, omalizumab, ciclosporin A, or short-term corticosteroid may be necessary. New medications are being developed to treat refractory CSU. They include spleen tyrosine kinase inhibitor, Bruton tyrosine kinase inhibitor, prostaglandin D2 receptor inhibitor, H4-antihistamine, and other agents. The authors discuss these treatments and provide expert perspectives on the management of CSU. EXPERT OPINION Second-generation H1-antihistamines remain the first-line therapeutic options for the management of CSU. For patients not responding to higher-dose H1-antihistamines, international guidelines recommend the addition of omalizumab. Efficacy and safety data for newer agents are still pending. Large-scale, well-designed, randomized, double-blind, placebo-controlled trials will further provide evidence on the safety profile and efficacy of these agents in patients with CSU.
Collapse
Affiliation(s)
- Kam Lun Hon
- Department of Paediatrics, The Chinese University of Hong Kong, Shatin, Hong Kong & Department of Paediatrics and adolescent Medicine, the Hong Kong Children's Hospital, Shatin, Hong Kong
| | - Joyce T S Li
- Centre for Learning Enhancement and Research, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Alexander K C Leung
- Department of Pediatrics, The University of Calgary and The Alberta Children's Hospital, Calgary, Alberta, Canada
| | - Vivian W Y Lee
- Centre for Learning Enhancement and Research, The Chinese University of Hong Kong, Shatin, Hong Kong
| |
Collapse
|
35
|
Bakthavatsalam D, Craft JW, Kazansky A, Nguyen N, Bae G, Caivano AR, Gundlach CW, Aslam A, Ali S, Gupta S, Lin SY, Parthiban HD, Vanderslice P, Stephan CC, Woodside DG. Identification of Inhibitors of Integrin Cytoplasmic Domain Interactions With Syk. Front Immunol 2021; 11:575085. [PMID: 33488575 PMCID: PMC7819857 DOI: 10.3389/fimmu.2020.575085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 11/20/2020] [Indexed: 11/13/2022] Open
Abstract
Leukocyte inflammatory responses require integrin cell-adhesion molecule signaling through spleen tyrosine kinase (Syk), a non-receptor kinase that binds directly to integrin β-chain cytoplasmic domains. Here, we developed a high-throughput screen to identify small molecule inhibitors of the Syk-integrin cytoplasmic domain interactions. Screening small molecule compound libraries identified the β-lactam antibiotics cefsulodin and ceftazidime, which inhibited integrin β-subunit cytoplasmic domain binding to the tandem SH2 domains of Syk (IC50 range, 1.02-4.9 µM). Modeling suggested antagonist binding to Syk outside the pITAM binding site. Ceftazidime inhibited integrin signaling via Syk, including inhibition of adhesion-dependent upregulation of interleukin-1β and monocyte chemoattractant protein-1, but did not inhibit ITAM-dependent phosphorylation of Syk mediated by FcγRI signaling. Our results demonstrate a novel means to target Syk independent of its kinase and pITAM binding sites such that integrin signaling via this kinase is abrogated but ITAM-dependent signaling remains intact. As integrin signaling through Syk is essential for leukocyte activation, this may represent a novel approach to target inflammation.
Collapse
Affiliation(s)
| | - John W. Craft
- Molecular Cardiology Research Laboratories, Texas Heart Institute, Houston, TX, United States
- Department of Biology and Chemistry, University of Houston, Houston, TX, United States
| | - Anna Kazansky
- Molecular Cardiology Research Laboratories, Texas Heart Institute, Houston, TX, United States
| | - Nghi Nguyen
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX, United States
| | - Goeun Bae
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX, United States
| | - Amy R. Caivano
- Molecular Cardiology Research Laboratories, Texas Heart Institute, Houston, TX, United States
| | - C. William Gundlach
- Molecular Cardiology Research Laboratories, Texas Heart Institute, Houston, TX, United States
| | - Asra Aslam
- Department of Biology and Chemistry, University of Houston, Houston, TX, United States
| | - Safa Ali
- Department of Biology and Chemistry, University of Houston, Houston, TX, United States
| | - Shashikant Gupta
- Molecular Cardiology Research Laboratories, Texas Heart Institute, Houston, TX, United States
| | - Sophie Y. Lin
- Molecular Cardiology Research Laboratories, Texas Heart Institute, Houston, TX, United States
| | - Hema D. Parthiban
- Molecular Cardiology Research Laboratories, Texas Heart Institute, Houston, TX, United States
| | - Peter Vanderslice
- Molecular Cardiology Research Laboratories, Texas Heart Institute, Houston, TX, United States
| | - Clifford C. Stephan
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX, United States
| | - Darren G. Woodside
- Molecular Cardiology Research Laboratories, Texas Heart Institute, Houston, TX, United States
| |
Collapse
|
36
|
Tuttolomondo A, Puleo MG, Velardo MC, Corpora F, Daidone M, Pinto A. Molecular Biology of Atherosclerotic Ischemic Strokes. Int J Mol Sci 2020; 21:9372. [PMID: 33317034 PMCID: PMC7763838 DOI: 10.3390/ijms21249372] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 12/03/2020] [Indexed: 02/07/2023] Open
Abstract
Among the causes of global death and disability, ischemic stroke (also known as cerebral ischemia) plays a pivotal role, by determining the highest number of worldwide mortality, behind cardiomyopathies, affecting 30 million people. The etiopathogenetic burden of a cerebrovascular accident could be brain ischemia (~80%) or intracranial hemorrhage (~20%). The most common site when ischemia occurs is the one is perfused by middle cerebral arteries. Worse prognosis and disablement consequent to brain damage occur in elderly patients or affected by neurological impairment, hypertension, dyslipidemia, and diabetes. Since, in the coming years, estimates predict an exponential increase of people who have diabetes, the disease mentioned above constitutes together with stroke a severe social and economic burden. In diabetic patients after an ischemic stroke, an exorbitant activation of inflammatory molecular pathways and ongoing inflammation is responsible for more severe brain injury and impairment, promoting the advancement of ischemic stroke and diabetes. Considering that the ominous prognosis of ischemic brain damage could by partially clarified by way of already known risk factors the auspice would be modifying poor outcome in the post-stroke phase detecting novel biomolecules associated with poor prognosis and targeting them for revolutionary therapeutic strategies.
Collapse
Affiliation(s)
- Antonino Tuttolomondo
- Department of Health Promotion, Maternal and Infant Care, Internal Medicine and Medical Specialties, “G. D’Alessandro”, University of Palermo, Piazza delle Cliniche n.2, 90127 Palermo, Italy; (M.G.P.); (M.C.V.); (F.C.); (M.D.); (A.P.)
| | | | | | | | | | | |
Collapse
|
37
|
Lodhi N, Tun M, Nagpal P, Inamdar AA, Ayoub NM, Siyam N, Oton-Gonzalez L, Gerona A, Morris D, Sandhu R, Suh KS. Biomarkers and novel therapeutic approaches for diffuse large B-cell lymphoma in the era of precision medicine. Oncotarget 2020; 11:4045-4073. [PMID: 33216822 PMCID: PMC7646825 DOI: 10.18632/oncotarget.27785] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 09/29/2020] [Indexed: 12/18/2022] Open
Abstract
Despite the great efforts for better treatment options for diffuse large B-cell lymphoma (DLBCL) (most common form of non-Hodgkin lymphoma, NHL) to treat and prevent relapse, it continues to be a challenge. Here, we present an overview of DLBCL and address the diagnostic assays and molecular techniques used in its diagnosis, role of biomarkers in detection, treatment of early and advanced stage DLBCL, and novel drug regimens. We discuss the significant biomarkers that have emerged as essential tools for stratifying patients according to risk factors and for providing insights into the use of more targeted and individualized therapeutics. We discuss techniques such as gene expression studies, including next-generation sequencing, which have enabled a more understanding of the complex pathogenesis of DLBCL and have helped determine molecular targets for novel therapeutic agents. We examine current treatment approaches, outline the findings of completed clinical trials, and provide updates for ongoing clinical trials. We highlight clinical trials relevant to the significant fraction of DLBCL patients who present with complex cases marked by high relapse rates. Supported by an increased understanding of targetable pathways in DLBCL, clinical trials involving specialized combination therapies are bringing us within reach the promise of an effective cure to DLBCL using precision medicine. Optimization of therapy remains a crucial objective, with the end goal being a balance between high survival rates through targeted and personalized treatment while reducing adverse effects in DLBCL patients of all subsets.
Collapse
Affiliation(s)
- Niraj Lodhi
- Department of Immunotherapeutic and Biotechnology, Texas Tech Health Science Center, Abilene, TX, USA
- Formerly: The Genomics and Biomarkers Program, John Theurer Cancer Center at Hackensack University Medical Center, David Jurist Research Building, Hackensack, NJ, USA
- These authors contributed equally to this work
| | - Moe Tun
- Formerly: The Genomics and Biomarkers Program, John Theurer Cancer Center at Hackensack University Medical Center, David Jurist Research Building, Hackensack, NJ, USA
- These authors contributed equally to this work
| | - Poonam Nagpal
- Formerly: The Genomics and Biomarkers Program, John Theurer Cancer Center at Hackensack University Medical Center, David Jurist Research Building, Hackensack, NJ, USA
- College of Natural, Applied, and Health Sciences, Kean University, Union, NJ, USA
| | - Arati A. Inamdar
- Formerly: The Genomics and Biomarkers Program, John Theurer Cancer Center at Hackensack University Medical Center, David Jurist Research Building, Hackensack, NJ, USA
| | - Nehad M. Ayoub
- Department of Clinical Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Noor Siyam
- Formerly: The Genomics and Biomarkers Program, John Theurer Cancer Center at Hackensack University Medical Center, David Jurist Research Building, Hackensack, NJ, USA
| | | | - Angela Gerona
- Formerly: The Genomics and Biomarkers Program, John Theurer Cancer Center at Hackensack University Medical Center, David Jurist Research Building, Hackensack, NJ, USA
| | - Dainelle Morris
- Formerly: The Genomics and Biomarkers Program, John Theurer Cancer Center at Hackensack University Medical Center, David Jurist Research Building, Hackensack, NJ, USA
| | - Rana Sandhu
- Formerly: The Genomics and Biomarkers Program, John Theurer Cancer Center at Hackensack University Medical Center, David Jurist Research Building, Hackensack, NJ, USA
| | - Kwangsun Stephen Suh
- Formerly: The Genomics and Biomarkers Program, John Theurer Cancer Center at Hackensack University Medical Center, David Jurist Research Building, Hackensack, NJ, USA
- DiagnoCine, Hackensack, NJ, USA
| |
Collapse
|
38
|
Wu W, Wu H, He M, Zhang L, Huang Y, Geng Y, Liu J, Wang Q, Fan Z, Hou R, Yue B, Zhang X. Transcriptome analyses provide insights into maternal immune changes at several critical phases of giant panda reproduction. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 110:103699. [PMID: 32344048 DOI: 10.1016/j.dci.2020.103699] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 04/06/2020] [Accepted: 04/06/2020] [Indexed: 06/11/2023]
Abstract
Giant pandas (Ailuropoda melanoleuca) possess highly specialized reproductive characteristics, but the maternal immune changes during reproduction are largely unclear. Here, 20 blood transcriptomes were used to determine immune changes at four key phases of giant panda reproduction, and a total of 4640 differential expression genes were identified. During estrus, six immune-related genes (TLR4, IL1B, SYK, SPI1, CD80, and ITK) were identified as hub genes. The up-regulation of the TLR family genes (TLR4, TLR5, TLR6, and TLR8) and inflammatory response related genes (IL1B) may reflect innate immune enhancement and local tissue remodeling events, while the up-regulation of SYK and SPI1, and the down-regulation of CD80 and ITK suggested that the enhanced humoral immunity and inhibited cellular immunity of female giant pandas during estrus. During early pregnancy, antigen presentation related genes and proinflammatory cytokine (IL1B) were down-regulated. This may indicate that partial immune functions were suppressed in early pregnancy to achieve immune tolerance, including reducing inflammatory to protect embryos. By the late pregnancy, the antiviral related genes were up-regulated to strengthen defenses against external pathogen infection. KLRK1, which acts as a primary activation receptor for NK cells, was down regulated in estrus and pregnancy, suggesting that the activities of NK cells were inhibited, and KLRK1 may play a key role in the regulation the activities of pbNK cells during reproduction of giant pandas. Our results showed that there was no significant immune change in lactating females (post-natal 2 months) compared to anestrus females. This is the first time to observe the immune changes of giant panda during the breeding period and our data is expected to provide valuable resources for further studies on reproductive immunology of giant pandas.
Collapse
Affiliation(s)
- Wei Wu
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu, 610064, PR China.
| | - Honglin Wu
- China Conservation and Research Center for the Giant Panda, Wolong, 623006, Sichuan, PR China
| | - Ming He
- China Conservation and Research Center for the Giant Panda, Wolong, 623006, Sichuan, PR China
| | - Liang Zhang
- The Sichuan Key Laboratory for Conservation Biology of Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu, 610081, PR China
| | - Yan Huang
- China Conservation and Research Center for the Giant Panda, Wolong, 623006, Sichuan, PR China
| | - Yang Geng
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu, 610064, PR China
| | - Jinhua Liu
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu, 610064, PR China
| | - Qian Wang
- China Conservation and Research Center for the Giant Panda, Wolong, 623006, Sichuan, PR China
| | - Zhenxin Fan
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu, 610064, PR China
| | - Rong Hou
- The Sichuan Key Laboratory for Conservation Biology of Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu, 610081, PR China
| | - Bisong Yue
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu, 610064, PR China
| | - Xiuyue Zhang
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu, 610064, PR China.
| |
Collapse
|
39
|
Foster H, Wilson C, Philippou H, Foster R. Progress toward a Glycoprotein VI Modulator for the Treatment of Thrombosis. J Med Chem 2020; 63:12213-12242. [PMID: 32463237 DOI: 10.1021/acs.jmedchem.0c00262] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Pathogenic thrombus formation accounts for the etiology of many serious conditions including myocardial infarction, stroke, deep vein thrombosis, and pulmonary embolism. Despite the development of numerous anticoagulants and antiplatelet agents, the mortality rate associated with these diseases remains high. In recent years, however, significant epidemiological evidence and clinical models have emerged to suggest that modulation of the glycoprotein VI (GPVI) platelet receptor could be harnessed as a novel antiplatelet strategy. As such, many peptidic agents have been described in the past decade, while more recent efforts have focused on the development of small molecule modulators. Herein the rationale for targeting GPVI is summarized and the published GPVI modulators are reviewed, with particular focus on small molecules. A qualitative pharmacophore hypothesis for small molecule ligands at GPVI is also presented.
Collapse
Affiliation(s)
- Holly Foster
- School of Chemistry and Leeds Institute of Cardiovascular and Metabolic Medicine (LICAMM), School of Medicine, University of Leeds, Leeds LS2 9JT, U.K
| | - Clare Wilson
- Leeds Institute of Cardiovascular and Metabolic Medicine (LICAMM), School of Medicine, University of Leeds, Leeds LS2 9JT, U.K
| | - Helen Philippou
- Leeds Institute of Cardiovascular and Metabolic Medicine (LICAMM), School of Medicine, University of Leeds, Leeds LS2 9JT, U.K
| | - Richard Foster
- School of Chemistry and Leeds Institute of Cardiovascular and Metabolic Medicine (LICAMM), School of Medicine, University of Leeds, Leeds LS2 9JT, U.K
| |
Collapse
|
40
|
Carriba P, Davies AM. How CD40L reverse signaling regulates axon and dendrite growth. Cell Mol Life Sci 2020; 78:1065-1083. [PMID: 32506167 PMCID: PMC7897621 DOI: 10.1007/s00018-020-03563-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 05/01/2020] [Accepted: 05/25/2020] [Indexed: 12/18/2022]
Abstract
CD40-activated CD40L reverse signaling is a major physiological regulator of axon and dendrite growth from developing hippocampal pyramidal neurons. Here we have studied how CD40L-mediated reverse signaling promotes the growth of these processes. Cultures of hippocampal pyramidal neurons were established from Cd40-/- mouse embryos to eliminate endogenous CD40/CD40L signaling, and CD40L reverse signaling was stimulated by a CD40-Fc chimera. CD40L reverse signaling increased phosphorylation and hence activation of proteins in the PKC, ERK, and JNK signaling pathways. Pharmacological activators and inhibitors of these pathways revealed that whereas activation of JNK inhibited growth, activation of PKC and ERK1/ERK2 enhanced growth. Experiments using combinations of pharmacological reagents revealed that these signaling pathways regulate growth by functioning as an interconnected and interdependent network rather than acting in a simple linear sequence. Immunoprecipitation studies suggested that stimulation of CD40L reverse signaling generated a receptor complex comprising CD40L, PKCβ, and the Syk tyrosine kinase. Our studies have begun to elucidate the molecular network and interactions that promote axon and dendrite growth from developing hippocampal neurons following activation of CD40L reverse signaling.
Collapse
Affiliation(s)
- Paulina Carriba
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff, CF10 3AX, Wales.
| | - Alun M Davies
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff, CF10 3AX, Wales
| |
Collapse
|
41
|
Blomgren P, Chandrasekhar J, Di Paolo JA, Fung W, Geng G, Ip C, Jones R, Kropf JE, Lansdon EB, Lee S, Lo JR, Mitchell SA, Murray B, Pohlmeyer C, Schmitt A, Suekawa-Pirrone K, Wise S, Xiong JM, Xu J, Yu H, Zhao Z, Currie KS. Discovery of Lanraplenib (GS-9876): A Once-Daily Spleen Tyrosine Kinase Inhibitor for Autoimmune Diseases. ACS Med Chem Lett 2020; 11:506-513. [PMID: 32292557 DOI: 10.1021/acsmedchemlett.9b00621] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 02/12/2020] [Indexed: 11/29/2022] Open
Abstract
Spleen tyrosine kinase (SYK) is a critical regulator of signaling in a variety of immune cell types such as B-cells, monocytes, and macrophages. Accordingly, there have been numerous efforts to identify compounds that selectively inhibit SYK as a means to treat autoimmune and inflammatory diseases. We previously disclosed GS-9973 (entospletinib) as a selective SYK inhibitor that is under clinical evaluation in hematological malignancies. However, a BID dosing regimen and drug interaction with proton pump inhibitors (PPI) prevented development of entospletinib in inflammatory diseases. Herein, we report the discovery of a second-generation SYK inhibitor, GS-9876 (lanraplenib), which has human pharmacokinetic properties suitable for once-daily administration and is devoid of any interactions with PPI. Lanraplenib is currently under clinical evaluation in multiple autoimmune indications.
Collapse
Affiliation(s)
- Peter Blomgren
- Gilead Sciences, 199 E. Blaine Street, Seattle, Washington 98102, United States
| | | | - Julie A. Di Paolo
- Gilead Sciences, 333 Lakeside Drive, Foster City, California 94404, United States
| | - Wanchi Fung
- Gilead Sciences, 333 Lakeside Drive, Foster City, California 94404, United States
| | - Guoju Geng
- Gilead Sciences, 333 Lakeside Drive, Foster City, California 94404, United States
| | - Carmen Ip
- Gilead Sciences, 333 Lakeside Drive, Foster City, California 94404, United States
| | - Randall Jones
- Gilead Sciences, 199 E. Blaine Street, Seattle, Washington 98102, United States
| | - Jeffrey E. Kropf
- Gilead Sciences, 199 E. Blaine Street, Seattle, Washington 98102, United States
| | - Eric B. Lansdon
- Gilead Sciences, 333 Lakeside Drive, Foster City, California 94404, United States
| | - Seung Lee
- Gilead Sciences, 199 E. Blaine Street, Seattle, Washington 98102, United States
| | - Jennifer R. Lo
- Gilead Sciences, 199 E. Blaine Street, Seattle, Washington 98102, United States
| | - Scott A. Mitchell
- Gilead Sciences, 199 E. Blaine Street, Seattle, Washington 98102, United States
| | - Bernard Murray
- Gilead Sciences, 333 Lakeside Drive, Foster City, California 94404, United States
| | - Chris Pohlmeyer
- Gilead Sciences, 333 Lakeside Drive, Foster City, California 94404, United States
| | - Aaron Schmitt
- Gilead Sciences, 199 E. Blaine Street, Seattle, Washington 98102, United States
| | | | - Sarah Wise
- Gilead Sciences, 333 Lakeside Drive, Foster City, California 94404, United States
| | - Jin-Ming Xiong
- Gilead Sciences, 199 E. Blaine Street, Seattle, Washington 98102, United States
| | - Jianjun Xu
- Gilead Sciences, 199 E. Blaine Street, Seattle, Washington 98102, United States
| | - Helen Yu
- Gilead Sciences, 333 Lakeside Drive, Foster City, California 94404, United States
| | - Zhongdong Zhao
- Gilead Sciences, 199 E. Blaine Street, Seattle, Washington 98102, United States
| | | |
Collapse
|
42
|
Kurniawan DW, Storm G, Prakash J, Bansal R. Role of spleen tyrosine kinase in liver diseases. World J Gastroenterol 2020; 26:1005-1019. [PMID: 32205992 PMCID: PMC7081001 DOI: 10.3748/wjg.v26.i10.1005] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/14/2020] [Accepted: 02/28/2020] [Indexed: 02/06/2023] Open
Abstract
Spleen tyrosine kinase (SYK) is a non-receptor tyrosine kinase expressed in most hematopoietic cells and non-hematopoietic cells and play a crucial role in both immune and non-immune biological responses. SYK mediate diverse cellular responses via an immune-receptor tyrosine-based activation motifs (ITAMs)-dependent signalling pathways, ITAMs-independent and ITAMs-semi-dependent signalling pathways. In liver, SYK expression has been observed in parenchymal (hepatocytes) and non-parenchymal cells (hepatic stellate cells and Kupffer cells), and found to be positively correlated with the disease severity. The implication of SYK pathway has been reported in different liver diseases including liver fibrosis, viral hepatitis, alcoholic liver disease, non-alcoholic steatohepatitis and hepatocellular carcinoma. Antagonism of SYK pathway using kinase inhibitors have shown to attenuate the progression of liver diseases thereby suggesting SYK as a highly promising therapeutic target. This review summarizes the current understanding of SYK and its therapeutic implication in liver diseases.
Collapse
Affiliation(s)
- Dhadhang Wahyu Kurniawan
- Department of Biomaterials Science and Technology, Faculty of Science and Technology, Technical Medical Centre, University of Twente, Enschede 7500, the Netherlands
- Department of Pharmacy, Universitas Jenderal Soedirman, Purwokerto 53132, Indonesia
| | - Gert Storm
- Department of Biomaterials Science and Technology, Faculty of Science and Technology, Technical Medical Centre, University of Twente, Enschede 7500, the Netherlands
- Department of Pharmaceutics, University of Utrecht, Utrecht 3454, the Netherlands
| | - Jai Prakash
- Department of Biomaterials Science and Technology, Faculty of Science and Technology, Technical Medical Centre, University of Twente, Enschede 7500, the Netherlands
| | - Ruchi Bansal
- Department of Biomaterials Science and Technology, Faculty of Science and Technology, Technical Medical Centre, University of Twente, Enschede 7500, the Netherlands
- Department of Pharmacokinetics, Toxicology and Targeting, Groningen Research Institute of Pharmacy, University of Groningen, Enschede 7500, the Netherlands
| |
Collapse
|
43
|
Huang DY, Chen WY, Chen CL, Wu NL, Lin WW. Synergistic Anti-Tumour Effect of Syk Inhibitor and Olaparib in Squamous Cell Carcinoma: Roles of Syk in EGFR Signalling and PARP1 Activation. Cancers (Basel) 2020; 12:cancers12020489. [PMID: 32093123 PMCID: PMC7072502 DOI: 10.3390/cancers12020489] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/05/2020] [Accepted: 02/17/2020] [Indexed: 12/19/2022] Open
Abstract
Syk is a non-receptor tyrosine kinase involved in the signalling of immunoreceptors and growth factor receptors. Previously, we reported that Syk mediates epidermal growth factor receptor (EGFR) signalling and plays a negative role in the terminal differentiation of keratinocytes. To understand whether Syk is a potential therapeutic target of cancer cells, we further elucidated the role of Syk in disease progression of squamous cell carcinoma (SCC), which is highly associated with EGFR overactivation, and determined the combined effects of Syk and PARP1 inhibitors on SCC viability. We found that pharmacological inhibition of Syk could attenuate the EGF-induced phosphorylation of EGFR, JNK, p38 MAPK, STAT1, and STAT3 in A431, CAL27 and SAS cells. In addition, EGF could induce a Syk-dependent IL-8 gene and protein expression in SCC. Confocal microscopic data demonstrated the ability of the Syk inhibitor to change the subcellular distribution patterns of EGFR after EGF treatment in A431 and SAS cells. Moreover, according to Kaplan-Meier survival curve analysis, higher Syk expression is correlated with poorer patient survival rate and prognosis. Notably, both Syk and EGFR inhibitors could induce PARP activation, and synergistic cytotoxic actions were observed in SCC cells upon the combined treatment of the PARP1 inhibitor olaparib with Syk or the EGFR inhibitor. Collectively, we reported Syk as an important signalling molecule downstream of EGFR that plays crucial roles in SCC development. Combining Syk and PARP inhibition may represent an alternative therapeutic strategy for treating SCC.
Collapse
Affiliation(s)
- Duen-Yi Huang
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei 100, Taiwan;
| | - Wei-Yu Chen
- Department of Pathology, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan;
- Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 106, Taiwan;
| | - Chi-Long Chen
- Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 106, Taiwan;
- Department of Pathology, Taipei Medical University Hospital, Taipei 106, Taiwan
| | - Nan-Lin Wu
- Department of Medicine, Mackay Medical College, New Taipei City 251, Taiwan;
- Department of Dermatology, Mackay Memorial Hospital, Taipei 104, Taiwan
- Mackay Junior College of Medicine, Nursing, and Management, New Taipei City 252, Taiwan
| | - Wan-Wan Lin
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei 100, Taiwan;
- Graduate Institute of Medical Sciences, Taipei Medical University, Taipei 106, Taiwan
- Correspondence: ; Tel.: +886-223-123-456 (ext. 88315); Fax: +886-223-513-716
| |
Collapse
|
44
|
Ingawale DK, Mandlik SK. New insights into the novel anti-inflammatory mode of action of glucocorticoids. Immunopharmacol Immunotoxicol 2020; 42:59-73. [PMID: 32070175 DOI: 10.1080/08923973.2020.1728765] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Inflammation is a physiological intrinsic host response to injury meant for removal of noxious stimuli and maintenance of homeostasis. It is a defensive body mechanism that involves immune cells, blood vessels and molecular mediators of inflammation. Glucocorticoids (GCs) are steroidal hormones responsible for regulation of homeostatic and metabolic functions of body. Synthetic GCs are the most useful anti-inflammatory drugs used for the treatment of chronic inflammatory diseases such as asthma, chronic obstructive pulmonary disease (COPD), allergies, multiple sclerosis, tendinitis, lupus, atopic dermatitis, ulcerative colitis, rheumatoid arthritis and osteoarthritis whereas, the long term use of GCs are associated with many side effects. The anti-inflammatory and immunosuppressive (desired) effects of GCs are usually mediated by transrepression mechanism whereas; the metabolic and toxic (undesired) effects are usually manifested by transactivation mechanism. Though GCs are most potent anti-inflammatory and immunosuppressive drugs, the common problem associated with their use is GC resistance. Several research studies are rising to comprehend these mechanisms, which would be helpful in improving the GC resistance in asthma and COPD patients. This review aims to focus on identification of new drug targets in inflammation which will be helpful in the resolution of inflammation. The ample understanding of GC mechanisms of action helps in the development of novel anti-inflammatory drugs for the treatment of inflammatory and autoimmune disease with reduced side effects and minimal toxicity.
Collapse
Affiliation(s)
- Deepa K Ingawale
- Department of Pharmacology, Poona College of Pharmacy, Bharati Vidyapeeth Deemed University, Pune, India
| | - Satish K Mandlik
- Department of Pharmacology, Sinhgad College of Pharmacy, Pune, India
| |
Collapse
|
45
|
Ye XC, Hao Q, Ma WJ, Zhao QC, Wang WW, Yin HH, Zhang T, Wang M, Zan K, Yang XX, Zhang ZH, Shi HJ, Zu J, Raza HK, Zhang XL, Geng DQ, Hu JX, Cui GY. Dectin-1/Syk signaling triggers neuroinflammation after ischemic stroke in mice. J Neuroinflammation 2020; 17:17. [PMID: 31926564 PMCID: PMC6954534 DOI: 10.1186/s12974-019-1693-z] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 12/26/2019] [Indexed: 12/13/2022] Open
Abstract
Background Dendritic cell-associated C-type lectin-1 (Dectin-1) receptor has been reported to be involved in neuroinflammation in Alzheimer’s disease and traumatic brain injury. The present study was designed to investigate the role of Dectin-1 and its downstream target spleen tyrosine kinase (Syk) in early brain injury after ischemic stroke using a focal cortex ischemic stroke model. Methods Adult male C57BL/6 J mice were subjected to a cerebral focal ischemia model of ischemic stroke. The neurological score, adhesive removal test, and foot-fault test were evaluated on days 1, 3, 5, and 7 after ischemic stroke. Dectin-1, Syk, phosphorylated (p)-Syk, tumor necrosis factor-α (TNF-α), and inducible nitric oxide synthase (iNOS) expression was analyzed via western blotting in ischemic brain tissue after ischemic stroke and in BV2 microglial cells subjected to oxygen-glucose deprivation/reoxygenation (OGD/R) injury in vitro. The brain infarct volume and Iba1-positive cells were evaluated using Nissl’s and immunofluorescence staining, respectively. The Dectin-1 antagonist laminarin (LAM) and a selective inhibitor of Syk phosphorylation (piceatannol; PIC) were used for the intervention. Results Dectin-1, Syk, and p-Syk expression was significantly enhanced on days 3, 5, and 7 and peaked on day 3 after ischemic stroke. The Dectin-1 antagonist LAM or Syk inhibitor PIC decreased the number of Iba1-positive cells and TNF-α and iNOS expression, decreased the brain infarct volume, and improved neurological functions on day 3 after ischemic stroke. In addition, the in vitro data revealed that Dectin-1, Syk, and p-Syk expression was increased following the 3-h OGD and 0, 3, and 6 h of reperfusion in BV2 microglial cells. LAM and PIC also decreased TNF-α and iNOS expression 3 h after OGD/R induction. Conclusion Dectin-1/Syk signaling plays a crucial role in inflammatory activation after ischemic stroke, and further investigation of Dectin-1/Syk signaling in stroke is warranted.
Collapse
Affiliation(s)
- Xin-Chun Ye
- Institute of Stroke Center and Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, People's Republic of China.
| | - Qi Hao
- Department of Neurology, Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, Xuzhou, People's Republic of China
| | - Wei-Jing Ma
- Institute of Stroke Center and Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Qiu-Chen Zhao
- Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, People's Republic of China
| | - Wei-Wei Wang
- Department of Rehabilitation Medicine, Linyi Cancer Hospital, Shandong, People's Republic of China
| | - Han-Han Yin
- Institute of Stroke Center and Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Tao Zhang
- Institute of Stroke Center and Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Miao Wang
- Institute of Stroke Center and Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Kun Zan
- Institute of Stroke Center and Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Xin-Xin Yang
- Institute of Stroke Center and Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Zuo-Hui Zhang
- Institute of Stroke Center and Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Hong-Juan Shi
- Institute of Stroke Center and Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Jie Zu
- Institute of Stroke Center and Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Hafiz Khuram Raza
- Institute of Stroke Center and Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Xue-Ling Zhang
- Department of Neurology, Suqian People's Hospital of Nanjing Drum tower Hospital Group, Suqian, Jiangsu, People's Republic of China
| | - De-Qin Geng
- Institute of Stroke Center and Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Jin-Xia Hu
- Institute of Stroke Center and Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, People's Republic of China.
| | - Gui-Yun Cui
- Institute of Stroke Center and Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, People's Republic of China.
| |
Collapse
|
46
|
SYK Targeting Represents a Potential Therapeutic Option for Relapsed Resistant Pediatric ETV6-RUNX1 B-Acute Lymphoblastic Leukemia Patients. Int J Mol Sci 2019; 20:ijms20246175. [PMID: 31817853 PMCID: PMC6940898 DOI: 10.3390/ijms20246175] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 11/26/2019] [Accepted: 12/04/2019] [Indexed: 12/23/2022] Open
Abstract
The presence of the chromosomal rearrangement t(12;21)(ETV6-RUNX1) in childhood B-acute lymphoblastic leukemia (B-ALL) is an independent predictor of favorable prognosis, however relapses still occur many years later after stopping therapy, and patients often display resistance to current treatments. Since spleen tyrosine kinase (SYK), a cytosolic nonreceptor tyrosine kinase interacting with immune receptors, has been previously associated with malignant transformation and cancer cell proliferation, we aimed to assess its role in ETV6-RUNX1 cell survival and prognosis. We evaluated the effects on cell survival of three SYK inhibitors and showed that all of them, in particular entospletinib, are able to induce cell death and enhance the efficacy of conventional chemotherapeutics. By using reverse phase protein arrays we next revealed that activated SYK is upregulated at diagnosis in pediatric ETV6-RUNX1 patients who will experience relapse, and, importantly, hyperactivation is maintained at a high level also at relapse occurrence. We thus treated primary cells from patients both at diagnosis and relapse with the combination entospletinib + chemotherapeutics and observed that SYK inhibition is able to sensitize resistant primary cells to conventional drugs. Entospletinib could thus represent a new therapeutic option supporting conventional chemotherapy for relapsed ETV6-RUNX1 patients, and these evidences encourage further studies on SYK for treatment of other relapsed resistant acute lymphoblastic leukemia (ALL) subgroups.
Collapse
|
47
|
Wu J, Zhu Z, Yu Q, Ding C. Tyrosine kinase inhibitors for the treatment of rheumatoid arthritis: phase I to Ⅱ clinical trials. Expert Opin Investig Drugs 2019; 28:1113-1123. [PMID: 31738612 DOI: 10.1080/13543784.2019.1692812] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Introduction: Rheumatoid arthritis (RA) is a chronic, refractory disorder caused by autoimmunity in the synovial joints. Disease-modifying anti-rheumatic drugs (DMARDs) and biologicals offer remission in only two-thirds of RA patients within 3 months, hence new therapeutic approaches are necessary. Tyrosine kinase inhibitors (TKIs) are newly developed small molecule drugs which have demonstrated encouraging results in this disease.Areas covered: The key findings from phase I and II clinical trials that have investigated the use of novel TKIs in the treatment of RA are discussed. We examined the literature published between January 2014 to January 2019 using electronic databases including PubMed, Web of Science, Medline, Embase, and Google Scholar. Additional information about phase I and II trials on the ClinicalTrial.gov website up to January 2019 was also retrieved.Expert opinion: JAK inhibitors are promising drugs with sound efficacy and acceptable safety and may be beneficial to patients who do not respond to DMARDs and biologicals. The response rates among RA patients to TKIs are diverse; genetic and environmental factors may be involved in the varying responses which are closely related to the pathogenesis of RA. Future studies may reveal the underlying mechanisms of resistance and non-response.
Collapse
Affiliation(s)
- Jing Wu
- Department of Rheumatology and Clinical Immunology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhaohua Zhu
- Clinical Research Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Qinghong Yu
- Department of Rheumatology and Clinical Immunology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Changhai Ding
- Department of Rheumatology and Clinical Immunology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China.,Clinical Research Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China.,Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| |
Collapse
|
48
|
Ethanol Extract of Sesamum indicum Linn. Inhibits Fc εRI-Mediated Allergic Reaction via Regulation of Lyn/Syk and Fyn Signaling Pathways in Rat Basophilic Leukemic RBL-2H3 Mast Cells. Mediators Inflamm 2019; 2019:5914396. [PMID: 31686984 PMCID: PMC6811790 DOI: 10.1155/2019/5914396] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 06/12/2019] [Accepted: 08/07/2019] [Indexed: 01/26/2023] Open
Abstract
This study is aimed at determining whether Sesamum indicum Linn. beneficially influences FcεRI-mediated allergic reactions in RBL-2H3 mast cells; it is also aimed at further investigating Lyn/Fyn and Syk signaling pathways. To examine the antiallergic effect of Sesamum indicum Linn. extract (SIE), we treated antigen/immunoglobulin E- (IgE-) sensitized mast cells with extracts of various concentrations. We examined the degranulation release and concentrations of inflammatory mediators. Additionally, the expressions of genes involved in the FcεRI and arachidonate signaling pathways were examined. SIE inhibited the degranulation and secretion of inflammatory mediators in antigen/IgE-sensitized mast cells. SIE reduced the expressions of FcεRI signaling-related genes, such as Syk, Lyn, and Fyn, and the phosphorylation of extracellular signal-regulated kinase in antigen/IgE-sensitized mast cells. Additionally, in late allergic responses, SIE reduced PGD2 release and COX-2 and cPLA2 phosphorylation expression in FcεRI-mediated mast cell activation. Lastly, 250–500 mg/kg SIE significantly attenuated the Ag/IgE-induced passive cutaneous anaphylaxis (PCA) reaction in mice. The potent effect of SIE on RBL-2H3 mast cell activation indicates that the extract could potentially be used as a novel inhibitor against allergic reactions.
Collapse
|
49
|
Young RM, Phelan JD, Wilson WH, Staudt LM. Pathogenic B-cell receptor signaling in lymphoid malignancies: New insights to improve treatment. Immunol Rev 2019; 291:190-213. [PMID: 31402495 PMCID: PMC6693651 DOI: 10.1111/imr.12792] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Accepted: 05/30/2019] [Indexed: 12/12/2022]
Abstract
Signals emanating from the B-cell receptor (BCR) promote proliferation and survival in diverse forms of B-cell lymphoma. Precision medicine strategies targeting the BCR pathway have been generally effective in treating lymphoma, but often fail to produce durable responses in diffuse large B-cell lymphoma (DLBCL), a common and aggressive cancer. New insights into DLBCL biology garnered from genomic analyses and functional proteogenomic studies have identified novel modes of BCR signaling in this disease. Herein, we describe the distinct roles of antigen-dependent and antigen-independent BCR signaling in different subtypes of DLBCL. We highlight mechanisms by which the BCR cooperates with TLR9 and mutant isoforms of MYD88 to drive sustained NF-κB activity in the activated B-cell-like (ABC) subtype of DLBCL. Finally, we discuss progress in detecting and targeting oncogenic BCR signaling to improve the survival of patients with lymphoma.
Collapse
MESH Headings
- Animals
- Autoantigens/immunology
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Germinal Center/immunology
- Germinal Center/metabolism
- Germinal Center/pathology
- Humans
- Leukemia, Lymphoid/diagnosis
- Leukemia, Lymphoid/etiology
- Leukemia, Lymphoid/metabolism
- Leukemia, Lymphoid/therapy
- Lymphoma/diagnosis
- Lymphoma/etiology
- Lymphoma/metabolism
- Lymphoma/therapy
- Receptors, Antigen, B-Cell/genetics
- Receptors, Antigen, B-Cell/metabolism
- Signal Transduction
Collapse
Affiliation(s)
- Ryan M. Young
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD. 20892
| | - James D. Phelan
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD. 20892
| | - Wyndham H. Wilson
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD. 20892
| | - Louis M. Staudt
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD. 20892
| |
Collapse
|
50
|
Sahar N, Bibi S, Masood N, Faryal R. Status of serine tyrosine kinase at germline and expressional levels in asthma patients. MOLECULAR BIOLOGY RESEARCH COMMUNICATIONS 2019; 8:69-77. [PMID: 31531378 PMCID: PMC6715266 DOI: 10.22099/mbrc.2019.33040.1394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Asthma is a disease marked by inflammation of airways with an increasing incidence rate worldwide especially among Asian population. Spleen tyrosine kinase (Syk) is known to be involved in regulation of such inflammation response and thereby rendering its inevitable importance among asthma patients. DNA extraction followed by PCR and sequencing was performed for genomic analysis, mRNA analysis was done by RT PCR whereas Western blot and ELISA was used for protein study. Image J and UNAFOLD were also used for Bioinformatics analysis.The mean age of patients and controls were 31.1±9.3 and 30.4±6.1 years respectively. Results of sequencing showed nonsense exonic mutations in exon 3 at g.25710G>A and g.25722G>A positions. Substitution mutations in introns were also found at g.25827G>A (intron 3), g.63425C>T (intron 8) and g.63445T>G (intron 8). Significantly increased levels of IgE and significantly decreased expression of Syk at transcriptional level was found in patients compared to controls. The western blot results of asthmatic samples and healthy controls revealed that Syk has comparatively low expression in diseased individual's PBMCs. SYK has been found to be altered in DNA, mRNA and protein expression in asthma patients among Pakistani population therefore patients should be treated according to their Syk status for more effective recovery.
Collapse
Affiliation(s)
- Namoodn Sahar
- Department of Biosciences, COMSATS Institute of Information Technology, Islamabad, Pakistan
| | - Shakila Bibi
- Department of Biosciences, COMSATS Institute of Information Technology, Islamabad, Pakistan
| | - Nosheen Masood
- Department of Environmental Sciences, Fatima Jinnah Women University, Rawalpindi, Pakistan
| | - Rani Faryal
- Department of Biosciences, COMSATS Institute of Information Technology, Islamabad, Pakistan
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| |
Collapse
|