1
|
Chemla Y, Sweeney CJ, Wozniak CA, Voigt CA. Design and regulation of engineered bacteria for environmental release. Nat Microbiol 2025; 10:281-300. [PMID: 39905169 DOI: 10.1038/s41564-024-01918-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 12/04/2024] [Indexed: 02/06/2025]
Abstract
Emerging products of biotechnology involve the release of living genetically modified microbes (GMMs) into the environment. However, regulatory challenges limit their use. So far, GMMs have mainly been tested in agriculture and environmental cleanup, with few approved for commercial purposes. Current government regulations do not sufficiently address modern genetic engineering and limit the potential of new applications, including living therapeutics, engineered living materials, self-healing infrastructure, anticorrosion coatings and consumer products. Here, based on 47 global studies on soil-released GMMs and laboratory microcosm experiments, we discuss the environmental behaviour of released bacteria and offer engineering strategies to help improve performance, control persistence and reduce risk. Furthermore, advanced technologies that improve GMM function and control, but lead to increases in regulatory scrutiny, are reviewed. Finally, we propose a new regulatory framework informed by recent data to maximize the benefits of GMMs and address risks.
Collapse
Affiliation(s)
- Yonatan Chemla
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Connor J Sweeney
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Christopher A Voigt
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
2
|
Anuar MSK, Hashim AM, Ho CL, Wong MY, Sundram S, Saidi NB, Yusof MT. Synergism: biocontrol agents and biostimulants in reducing abiotic and biotic stresses in crop. World J Microbiol Biotechnol 2023; 39:123. [PMID: 36934342 DOI: 10.1007/s11274-023-03579-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/12/2023] [Indexed: 03/20/2023]
Abstract
In today's fast-shifting climate change scenario, crops are exposed to environmental pressures, abiotic and biotic stress. Hence, these will affect the production of agricultural products and give rise to a worldwide economic crisis. The increase in world population has exacerbated the situation with increasing food demand. The use of chemical agents is no longer recommended due to adverse effects towards the environment and health. Biocontrol agents (BCAs) and biostimulants, are feasible options for dealing with yield losses induced by plant stresses, which are becoming more intense due to climate change. BCAs and biostimulants have been recommended due to their dual action in reducing both stresses simultaneously. Although protection against biotic stresses falls outside the generally accepted definition of biostimulant, some microbial and non-microbial biostimulants possess the biocontrol function, which helps reduce biotic pressure on crops. The application of synergisms using BCAs and biostimulants to control crop stresses is rarely explored. Currently, a combined application using both agents offer a great alternative to increase the yield and growth of crops while managing stresses. This article provides an overview of crop stresses and plant stress responses, a general knowledge on synergism, mathematical modelling used for synergy evaluation and type of in vitro and in vivo synergy testing, as well as the application of synergism using BCAs and biostimulants in reducing crop stresses. This review will facilitate an understanding of the combined effect of both agents on improving crop yield and growth and reducing stress while also providing an eco-friendly alternative to agroecosystems.
Collapse
Affiliation(s)
- Muhammad Salahudin Kheirel Anuar
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, UPM, Selangor, 43400, Malaysia
| | - Amalia Mohd Hashim
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, UPM, Selangor, 43400, Malaysia
| | - Chai Ling Ho
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, UPM, Selangor, 43400, Malaysia
| | - Mui-Yun Wong
- Department of Plant Protection, Faculty of Agriculture, Universiti Putra Malaysia, Serdang, UPM, Selangor, 43400, Malaysia
| | - Shamala Sundram
- Biology Research Division, Malaysian Palm Oil Board, Kajang, Selangor, 43000, Malaysia
| | - Noor Baity Saidi
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, UPM, Selangor, 43400, Malaysia
| | - Mohd Termizi Yusof
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, UPM, Selangor, 43400, Malaysia.
| |
Collapse
|
3
|
Zhang S, Ma Y, Jiang W, Meng L, Cao X, Hu J, Chen J, Li J. Development of a Strain-Specific Quantification Method for Monitoring Bacillus amyloliquefaciens TF28 in the Rhizospheric Soil of Soybean. Mol Biotechnol 2020; 62:521-533. [PMID: 32840729 DOI: 10.1007/s12033-020-00268-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2020] [Indexed: 10/23/2022]
Abstract
Bacillus amyloliquefaciens TF28 can be used to control soybean root disease. To assess its commercial potential as a biocontrol agent, it is necessary to develop a strain-specific quantification method to monitor its colonization dynamics in the rhizospheric soil of soybean under field conditions. Based on genomic comparison with the same species in NCBI databases, a strain-unique gene ukfpg was used as molecular marker to develop strain-specific PCR assay. Among three primer pairs, only primer pairs (F2/R2) could specifically differentiate TF28 from other strains of B. amyloliquefaciens with the detection limit of 10 fg and 100 CFU/g for DNA extracted from pure culture and dry soil, respectively. Then, a colony count coupled with PCR assay was used to monitor the population of TF28 in the rhizospheric soil of soybean in the field. The results indicated that TF28 successfully colonized in the rhizospheric soil of soybean. The colonization population of TF28 changed dynamically within the 120-day growth period with high population at the branching (V6) and flowering stages (R2). This study provides an efficient method to quantitatively monitor the colonization dynamics of TF28 in the rhizospheric soil of soybean in the field and demonstrates the potential of TF28 as a biocontrol agent for commercial development.
Collapse
Affiliation(s)
- Shumei Zhang
- Institute of Microbiology, Heilongjiang Academy of Sciences, 68 Zhaolin Street, Daoli District, Harbin, 150010, Heilongjiang, China
- Institute of Advanced Technology, Heilongjiang Academy of Sciences, Harbin, 150020, China
| | - Yinpeng Ma
- Institute of Advanced Technology, Heilongjiang Academy of Sciences, Harbin, 150020, China
| | - Wei Jiang
- Institute of Microbiology, Heilongjiang Academy of Sciences, 68 Zhaolin Street, Daoli District, Harbin, 150010, Heilongjiang, China
- Institute of Advanced Technology, Heilongjiang Academy of Sciences, Harbin, 150020, China
| | - Liqiang Meng
- Institute of Microbiology, Heilongjiang Academy of Sciences, 68 Zhaolin Street, Daoli District, Harbin, 150010, Heilongjiang, China
- Institute of Advanced Technology, Heilongjiang Academy of Sciences, Harbin, 150020, China
| | - Xu Cao
- Institute of Microbiology, Heilongjiang Academy of Sciences, 68 Zhaolin Street, Daoli District, Harbin, 150010, Heilongjiang, China
- Institute of Advanced Technology, Heilongjiang Academy of Sciences, Harbin, 150020, China
| | - Jihua Hu
- Institute of Advanced Technology, Heilongjiang Academy of Sciences, Harbin, 150020, China
| | - Jingyu Chen
- Institute of Advanced Technology, Heilongjiang Academy of Sciences, Harbin, 150020, China
| | - Jing Li
- Institute of Microbiology, Heilongjiang Academy of Sciences, 68 Zhaolin Street, Daoli District, Harbin, 150010, Heilongjiang, China.
- Institute of Advanced Technology, Heilongjiang Academy of Sciences, Harbin, 150020, China.
| |
Collapse
|
4
|
Alam M, Imran M, Ahmad SS. Screening of Metal and Antibiotic Resistance in Beta-lactamase Producing Coliform Bacteria from Hospital Wastewater of Northern India. Recent Pat Biotechnol 2020; 14:63-77. [PMID: 31577211 DOI: 10.2174/1872208313666191002130406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/03/2019] [Accepted: 09/04/2019] [Indexed: 06/10/2023]
Abstract
AIMS Our exploration work has uncovered the different anti-toxin/metal tolerance and patterns against the heavy metal resistant coliform microscopic organisms from the aquatic waste of the hospital. It might give new routes for the treatment of irresistible ailments particularly by coliform and critical for hazard evaluation as well as hazard management associated with the effluents of the hospital. BACKGROUND The higher use of pharmaceuticals, Radionuclides, and other antimicrobial solvents are the major source of metals in hospital wastewater. The hospital aquatic environment has a high content of both organic and inorganic matter with living organisms. Bacteria can resist an antimicrobial agent by producing extracellular enzymes that eliminate antibiotics and metal toxicity. In this study, we covered the existing patent literature in this area. New patents in the areas of topically applied antibiotics and agents that can potentiate the achievement of existing antibiotics may extend their helpful lifetime. METHODS Samples were collected from three different Departments of King George Medical University, Lucknow during the month of December to May (2015-16). Isolation and metal tolerance of coliform isolates were done on metal amended plates. The antibiotic sensitivity test was done by disc diffusion method. The plasmid DNA of bacterial isolates was done by the alkaline lysis method. The conjugation study was also performed in wastewater as well as a nutrient medium. RESULTS Maximum isolates demonstrated their MICs at 400, 800 and 1600 μg/ml against all the metals, respectively. The high level of resistance was observed against Methicillin (88.32%, 80.60%) followed by penicillin (75%, 76%), Cephradin (59.52%, 28.84%) and least to Gentamycine (1.92%, 5.76) in E. coli and Enterobacter, respectively. Of 70%, 78% E. coli and Enterobacter isolates produce beta-lactamase activity. Six amino acid residues namely, Glu104, Tyr105, Asn132, Asn170, Ala237, and Gly238 of the beta-lactamase were found in the common interaction with the selected drugs. Plasmid DNA size ranged between 48-58.8 kb. The conjugation experiments showed a higher transfer frequency (5.5×10-1 and 3.6×10-1) rate among antibiotics and metals tested. CONCLUSION The finding of this study presents a potential health problem as the predominant coliform species have increasingly been associated with outbreaks of hospital infections. It is recommended that hospital waste must be properly treated before its release into the environment.
Collapse
Affiliation(s)
- Manzar Alam
- Department of Biosciences, Integral University, Lucknow, India
| | - Mohd Imran
- Department of Biosciences, Integral University, Lucknow, India
| | | |
Collapse
|
5
|
Sharma RS, Karmakar S, Kumar P, Mishra V. Application of filamentous phages in environment: A tectonic shift in the science and practice of ecorestoration. Ecol Evol 2019; 9:2263-2304. [PMID: 30847110 PMCID: PMC6392359 DOI: 10.1002/ece3.4743] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 08/25/2018] [Accepted: 10/30/2018] [Indexed: 02/06/2023] Open
Abstract
Theories in soil biology, such as plant-microbe interactions and microbial cooperation and antagonism, have guided the practice of ecological restoration (ecorestoration). Below-ground biodiversity (bacteria, fungi, invertebrates, etc.) influences the development of above-ground biodiversity (vegetation structure). The role of rhizosphere bacteria in plant growth has been largely investigated but the role of phages (bacterial viruses) has received a little attention. Below the ground, phages govern the ecology and evolution of microbial communities by affecting genetic diversity, host fitness, population dynamics, community composition, and nutrient cycling. However, few restoration efforts take into account the interactions between bacteria and phages. Unlike other phages, filamentous phages are highly specific, nonlethal, and influence host fitness in several ways, which make them useful as target bacterial inocula. Also, the ease with which filamentous phages can be genetically manipulated to express a desired peptide to track and control pathogens and contaminants makes them useful in biosensing. Based on ecology and biology of filamentous phages, we developed a hypothesis on the application of phages in environment to derive benefits at different levels of biological organization ranging from individual bacteria to ecosystem for ecorestoration. We examined the potential applications of filamentous phages in improving bacterial inocula to restore vegetation and to monitor changes in habitat during ecorestoration and, based on our results, recommend a reorientation of the existing framework of using microbial inocula for such restoration and monitoring. Because bacterial inocula and biomonitoring tools based on filamentous phages are likely to prove useful in developing cost-effective methods of restoring vegetation, we propose that filamentous phages be incorporated into nature-based restoration efforts and that the tripartite relationship between phages, bacteria, and plants be explored further. Possible impacts of filamentous phages on native microflora are discussed and future areas of research are suggested to preclude any potential risks associated with such an approach.
Collapse
Affiliation(s)
- Radhey Shyam Sharma
- Bioresources and Environmental Biotechnology Laboratory, Department of Environmental StudiesUniversity of DelhiDelhiIndia
| | - Swagata Karmakar
- Bioresources and Environmental Biotechnology Laboratory, Department of Environmental StudiesUniversity of DelhiDelhiIndia
| | - Pankaj Kumar
- Bioresources and Environmental Biotechnology Laboratory, Department of Environmental StudiesUniversity of DelhiDelhiIndia
| | - Vandana Mishra
- Bioresources and Environmental Biotechnology Laboratory, Department of Environmental StudiesUniversity of DelhiDelhiIndia
| |
Collapse
|
6
|
Kaminsky LM, Trexler RV, Malik RJ, Hockett KL, Bell TH. The Inherent Conflicts in Developing Soil Microbial Inoculants. Trends Biotechnol 2019; 37:140-151. [DOI: 10.1016/j.tibtech.2018.11.011] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 11/28/2018] [Accepted: 11/29/2018] [Indexed: 11/30/2022]
|
7
|
Diallo-Diagne NH, Assigbetse K, Sall S, Masse D, Bonzi M, Ndoye I, Chotte JL. Response of Soil Microbial Properties to Long-Term Application of Organic and Inorganic Amendments in a Tropical Soil (Saria, Burkina Faso). ACTA ACUST UNITED AC 2016. [DOI: 10.4236/ojss.2016.62003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
8
|
Silva CM, Evangelista-Barreto NS, Vieira RHSDF, Mendonça KV, Sousa OVD. Population dynamics and antimicrobial susceptibility of Aeromonas spp. along a salinity gradient in an urban estuary in Northeastern Brazil. MARINE POLLUTION BULLETIN 2014; 89:96-101. [PMID: 25455376 DOI: 10.1016/j.marpolbul.2014.10.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 10/07/2014] [Accepted: 10/16/2014] [Indexed: 06/04/2023]
Abstract
The main objective of this study was to quantify population and identify culturable species of Aeromonas in sediment and surface water collected along a salinity gradient in an urban estuary in Northeastern Brazil. Thirty sediment samples and 30 water samples were collected from 3 sampling locations (A, B and C) between October 2007 and April 2008. The Aeromonas count was 10-7050CFU/mL (A), 25-38,500CFU/mL (B) and<10CFU/mL (C) for water samples, and ∼100-37,500CFU/g (A), 1200-43,500CFU/g (B) and<10CFU/g (C) for sediment samples. Five species (Aeromonas caviae, A. sobria, A. trota, A. salmonicida and A. allosaccharophila) were identified among 41 isolates. All strains were sensitive to chloramphenicol and ceftriaxone, whereas 33 (80, 4%) strains were resistant to at least 2 of the 9 antibiotics tested. Resistance to erythromycin was mostly plasmidial. In conclusion, due to pollution, the Cocó River is contaminated by pathogenic strains of Aeromonas spp. with a high incidence of antibacterial resistance, posing a serious risk to human health.
Collapse
Affiliation(s)
- Camila Magalhães Silva
- Federal University of Ceara, Pos-Graduate Program of Engineering of Fish, Av. Mister Hull, s/n, Campus do Pici, Bloco 848, 60021-970 Fortaleza, CE, Brazil.
| | - Norma Suely Evangelista-Barreto
- Federal University of Reconcavo Baiano CCAAB - Center for Research on Fisheries and Aquaculture (NEPA), Campus Universitário, 44380-000 Cruz das Almas, BA, Brazil
| | | | - Kamila Vieira Mendonça
- Institute of Marine Science, Av. da Abolição, 3207, Meireles, 60165-081 Fortaleza, CE, Brazil
| | - Oscarina Viana de Sousa
- Institute of Marine Science, Av. da Abolição, 3207, Meireles, 60165-081 Fortaleza, CE, Brazil
| |
Collapse
|
9
|
Koubek J, Mackova M, Macek T, Uhlik O. Diversity of chlorobiphenyl-metabolizing bacteria and their biphenyl dioxygenases in contaminated sediment. CHEMOSPHERE 2013; 93:1548-1555. [PMID: 24007621 DOI: 10.1016/j.chemosphere.2013.07.073] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 07/22/2013] [Indexed: 06/02/2023]
Abstract
Bacteria and bacterial communities in sites contaminated with polychlorinated biphenyls have been extensively studied in the past decades. However, there are still major gaps in the knowledge of environmental processes, especially in the behavior of previously described bacteria in vitro, their real degradation abilities and the enzymes that are involved in the degradation processes. In this work we analyzed actively degrading bacterial populations by stable isotope probing with (13)C biphenyl and (13)C-4-chlorobiphenyl as labeled substrates in the environment of sediment contaminated with polychlorinated biphenyls. We performed analysis of populations which degrade biphenyl and 4-chlorobiphenyl at concentrations similar to those of the original site. Several bacterial genera were revealed to actively participate in biphenyl and 4-chlorobiphenyl removal, some of which had not previously been described to take part in this process. We also found there are few differences in the communities metabolizing biphenyl and 4-chlorobiphenyl. Analysis of the genes responsible for substrate removal proved most of the genes to be closely related to Pseudomonas pseudoalcaligenes KF707 genes giving bacteria the ability of transforming di-para-chlorinated biphenyls.
Collapse
Affiliation(s)
- Jiri Koubek
- Institute of Chemical Technology Prague, Faculty of Food and Biochemical Technology, Department of Biochemistry and Microbiology, Technicka 3, 166 28 Prague, Czech Republic
| | | | | | | |
Collapse
|
10
|
Griffiths RI, Whiteley AS, O'Donnell AG, Bailey MJ. Influence of depth and sampling time on bacterial community structure in an upland grassland soil. FEMS Microbiol Ecol 2012; 43:35-43. [PMID: 19719694 DOI: 10.1111/j.1574-6941.2003.tb01043.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Abstract Temporal and spatial variation of soil bacterial communities was evaluated with both molecular and metabolic profiling techniques. Soil cores (20 cm deep) were taken from an upland grassland in the Scottish Borders (UK) over 3 days in July 1999, and on single days in October 1999, April 2000, and August 2000. Cores were separated into four 5-cm depths to examine vertical spatial distribution. The 0-5-, 5-10- and 10-15-cm samples represented organic horizons whilst the 15-20-cm depths were from a mineral horizon. The potential metabolic activities were analysed using BIOLOG-GN plates, whereas genotypic diversity was evaluated using molecular profiling of amplified 16S rRNA and 16S rDNA gene fragments (denaturing gradient gel electrophoresis (DGGE)). BIOLOG-GN analysis revealed decreased substrate utilisation in the lowest depths, which was coupled with changes in the DNA and RNA DGGE profiles. Seasonal variation was pronounced in the 5-10-cm and 10-15-cm organic horizons for the July samplings whilst the 15-20-cm depths appeared more stable. Potential factors influencing the observed changes in bacterial communities resulting from soil depth and sampling time are discussed.
Collapse
Affiliation(s)
- Robert I Griffiths
- Molecular Microbial Ecology Laboratory, IVEM, CEH-Oxford, Mansfield Road, Oxford OX1 3SR, UK
| | | | | | | |
Collapse
|
11
|
Han I, Lee TK, Han J, Doan TV, Kim SB, Park J. Improved detection of microbial risk of releasing genetically modified bacteria in soil by using massive sequencing and antibiotic resistance selection. JOURNAL OF HAZARDOUS MATERIALS 2012; 227-228:172-178. [PMID: 22682799 DOI: 10.1016/j.jhazmat.2012.05.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 04/15/2012] [Accepted: 05/07/2012] [Indexed: 06/01/2023]
Abstract
High-throughput 16S rRNA gene-targeted pyrosequencing was used with commonly used risk assessment techniques to evaluate the potential microbial risk in soil after inoculating genetically modified (GM) Corynebacterium glutamicum. To verify the risk, reference experiments were conducted in parallel using well-defined and frequently used GM Escherichia coli and wild-type strains. The viable cell count showed that the number of GM bacteria in the soil was reduced to below the detection limit within 10 days, while the molecular indicator for GM plasmids was detected throughout the experiment by using quantitative real-time polymerase chain reactions. Subsequent pyrosequencing showed an insignificant influence of the GM bacteria and/or their GM plasmids on the structure of the soil bacterial community this was similar to non-GM wild-type strains. However, pyrosequencing combined with kanamycin-resistant bacteria selection uncovered a potential risk of GM bacteria on the soil bacterial community and pathogens. The results of the improved methodology showed that the microbial risk attributable to GM C. glutamicum was relatively lower than that attributable to the reference GM E. coli.
Collapse
Affiliation(s)
- Il Han
- School of Civil and Environmental Engineering and WCU Center for Green Metagenomics, Yonsei University, Seoul, South Korea
| | | | | | | | | | | |
Collapse
|
12
|
Gao G, Yin D, Chen S, Xia F, Yang J, Li Q, Wang W. Effect of biocontrol agent Pseudomonas fluorescens 2P24 on soil fungal community in cucumber rhizosphere using T-RFLP and DGGE. PLoS One 2012; 7:e31806. [PMID: 22359632 PMCID: PMC3281021 DOI: 10.1371/journal.pone.0031806] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Accepted: 01/17/2012] [Indexed: 12/12/2022] Open
Abstract
Fungi and fungal community play important roles in the soil ecosystem, and the diversity of fungal community could act as natural antagonists of various plant pathogens. Biological control is a promising method to protect plants as chemical pesticides may cause environment pollution. Pseudomonas fluorescens 2P24 had strong inhibitory on Rastonia solanacearum, Fusarium oxysporum and Rhizoctonia solani, etc., and was isolated from the wheat rhizosphere take-all decline soils in Shandong province, China. However, its potential effect on soil fungal community was still unknown. In this study, the gfp-labeled P. fluorescens 2P24 was inoculated into cucumber rhizosphere, and the survival of 2P24 was monitored weekly. The amount decreased from 108 to 105 CFU/g dry soils. The effect of 2P24 on soil fungal community in cucumber rhizosphere was investigated using T-RFLP and DGGE. In T-RFLP analysis, principle component analysis showed that the soil fungal community was greatly influenced at first, digested with restriction enzyme Hinf I and Taq I. However, there was little difference as digested by different enzymes. DGGE results demonstrated that the soil fungal community was greatly shocked at the beginning, but it recovered slowly with the decline of P. fluorescens 2P24. Four weeks later, there was little difference between the treatment and control. Generally speaking, the effect of P. fluorescens 2P24 on soil fungal community in cucumber rhizosphere was just transient.
Collapse
Affiliation(s)
- Guanpeng Gao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Danhan Yin
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Shengju Chen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Fei Xia
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Jie Yang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Qing Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Wei Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- * E-mail:
| |
Collapse
|
13
|
Bonaterra A, Badosa E, Cabrefiga J, Francés J, Montesinos E. Prospects and limitations of microbial pesticides for control of bacterial and fungal pomefruit tree diseases. TREES (BERLIN, GERMANY : WEST) 2011; 26:215-226. [PMID: 25983396 PMCID: PMC4425264 DOI: 10.1007/s00468-011-0626-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2011] [Revised: 07/20/2011] [Accepted: 09/15/2011] [Indexed: 05/14/2023]
Abstract
The tree constitutes an ecosystem in which microorganisms play an essential role in its functionality. Interactions that microorganisms establish with plants may be beneficial or detrimental and are of extreme importance in the exploitation of trees in agriculture as crop production systems. Fruit trees, especially pomefruit trees including apple, pear and several ornamentals are of great economic importance but its production is affected by several diseases. Fungal and bacterial fruit tree diseases are mainly controlled with chemical fungicides and bactericides, but health and environmental concerns about the use of chemical pesticides have result in strong regulatory actions and have stimulated the development of beneficial microorganisms as microbial pesticides. Up to now, several microorganisms have been registered in different countries and in the EU as biocontrol agents (BCA) covering mainly fire blight, soil-borne fungal diseases and postharvest fruit fungal rot. The key aspects in the success of this technology for disease control are related to biosafety and environmental impact of biocontrol agents, the traceability and fate in the environment and food chain, the improvement by physiological, genetic engineering or the use of mixtures or formulations as well as the industrial production and development of delivery systems for treatment application to trees.
Collapse
Affiliation(s)
- A. Bonaterra
- Institute of Food and Agricultural Technology-XaRTA-CIDSAV, University of Girona, Campus Montilivi s/n, 17071 Girona, Spain
| | - E. Badosa
- Institute of Food and Agricultural Technology-XaRTA-CIDSAV, University of Girona, Campus Montilivi s/n, 17071 Girona, Spain
| | - J. Cabrefiga
- Institute of Food and Agricultural Technology-XaRTA-CIDSAV, University of Girona, Campus Montilivi s/n, 17071 Girona, Spain
| | - J. Francés
- Institute of Food and Agricultural Technology-XaRTA-CIDSAV, University of Girona, Campus Montilivi s/n, 17071 Girona, Spain
| | - E. Montesinos
- Institute of Food and Agricultural Technology-XaRTA-CIDSAV, University of Girona, Campus Montilivi s/n, 17071 Girona, Spain
| |
Collapse
|
14
|
Effect of soil clay content on RNA isolation and on detection and quantification of bacterial gene transcripts in soil by quantitative reverse transcription-PCR. Appl Environ Microbiol 2011; 77:6249-52. [PMID: 21724880 DOI: 10.1128/aem.00055-11] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this study, we evaluated the effect of soil clay content on RNA isolation and on quantitative reverse transcription-PCR (qRT-PCR) quantification of microbial gene transcripts. The amount of clay significantly altered RNA isolation yields and qRT-PCR analyses. Recommendations are made for quantifying microbial gene transcripts in soil samples varying in clay content.
Collapse
|
15
|
Critical evaluation of solid waste sample processing for DNA-based microbial community analysis. Biodegradation 2010; 22:189-204. [DOI: 10.1007/s10532-010-9387-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Accepted: 07/01/2010] [Indexed: 10/19/2022]
|
16
|
Seo DC, DeLaune RD. Fungal and bacterial mediated denitrification in wetlands: influence of sediment redox condition. WATER RESEARCH 2010; 44:2441-2450. [PMID: 20122708 DOI: 10.1016/j.watres.2010.01.006] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2009] [Revised: 01/05/2010] [Accepted: 01/07/2010] [Indexed: 05/28/2023]
Abstract
Fungal and bacterial denitrification rates were determined under a range of redox conditions in sediment from a Louisiana swamp forest used for wastewater treatment. Sediment was incubated in microcosms at 6 Eh levels (-200, -100, 0, +100, +250 and +400 mV) ranging from strongly reducing to moderately oxidizing conditions. Denitrification was determined using the substrate-induced respiration (SIR) inhibition and acetylene inhibition methods. Cycloheximide (C15H23NO4) was used as the fungal inhibitor and streptomycin (C21H39N7O12) as the bacterial inhibitor. At Eh values of +250 mV and +400 mV, denitrification rates by fungi and bacteria were 34.3-35.1% and 1.46-1.59% of total denitrification, respectively, indicating that fungi were responsible for most of the denitrification under aerobic or weakly reducing conditions. On the other hand, at Eh -200 mV, denitrification rates of fungi and bacteria were 17.6% and 64.9% of total denitrification, respectively, indicating that bacteria were responsible for most of the denitrification under strongly reducing conditions. Results show fungal denitrification was dominant under moderately reducing to weakly oxidizing conditions (Eh>+250 mV), whereas bacterial denitrification was dominant under strongly reducing condition (Eh<-100 mV). At Eh values between -100 to +100 mV, denitrification by fungi and bacteria were 37.9-43.2% and 53.0-51.1% of total denitrification, respectively, indicating that both bacteria and fungi contributed significantly to denitrification under these redox conditions. Because N2O is an important gaseous denitrification product in sediment, fungal denitrification could be of greater ecological significance under aerobic or moderately reducing conditions contributing to greenhouse gas emission and global warming potential (GWP).
Collapse
Affiliation(s)
- Dong Cheol Seo
- Department of Oceanography and Coastal Sciences, School of the Coast and Environment, Louisiana State University, Baton Rouge, LA 70803, USA
| | | |
Collapse
|
17
|
Wojnowska-Baryła I, Cydzik-Kwiatkowska A, Zielińska M. The application of molecular techniques to the study of wastewater treatment systems. Methods Mol Biol 2010; 599:157-183. [PMID: 19882286 DOI: 10.1007/978-1-60761-439-5_11] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Wastewater treatment systems tend to be engineered to select for a few functional microbial groups that may be organized in various spatial structures such as activated sludge flocs, biofilm or granules and represented by single coherent phylogenic groups such as ammonia-oxidizing bacteria (AOB) and polyphosphate-accumulating organisms (PAO). In order to monitor and control engineered microbial structure in wastewater treatment systems, it is necessary to understand the relationships between the microbial community structure and the process performance. This review focuses on bacterial communities in wastewater treatment processes, the quantity of microorganisms and structure of microbial consortia in wastewater treatment bioreactors. The review shows that the application of molecular techniques in studies of engineered environmental systems has increased our insight into the vast diversity and interaction of microorganisms present in wastewater treatment systems.
Collapse
Affiliation(s)
- Irena Wojnowska-Baryła
- Department of Environmental Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Sloneczna, Poland
| | | | | |
Collapse
|
18
|
Schoeman H, Wolfaardt GM, Botha A, van Rensburg P, Pretorius IS. Establishing a risk-assessment process for release of genetically modified wine yeast into the environment. Can J Microbiol 2009; 55:990-1002. [PMID: 19898539 DOI: 10.1139/w09-039] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The use and release of genetically modified organisms (GMOs) is an issue of intense public concern and, in the case of food and beverages, products containing GMOs or products thereof carry the risk of consumer rejection. The recent commercialization of 2 GM wine yeasts in the United States and Canada has made research and development of risk assessments for GM microorganisms a priority. The purpose of this study was to take a first step in establishing a risk-assessment process for future use and potential release of GM wine yeasts into the environment. The behaviour and spread of a GM wine yeast was monitored in saturated sand columns, saturated sand flow cells, and conventional flow cells. A widely used commercial Saccharomyces cerevisiae wine yeast, VIN13, a VIN13 transgenic strain (LKA1, which carries the LKA1 alpha-amylase gene of Lipomyces kononenkoae), a soil bacterium (Dyadobacter fermentens), and a nonwine soil-borne yeast (Cryptococcus laurentii) were compared in laboratory-scale microcosm systems designed to monitor microbial mobility behaviour, survival, and attachment to surfaces. It was found that LKA1 cells survived in saturated sand columns, but showed little mobility in the porous matrix, suggesting that the cells attached with high efficiency to sand. There was no significant difference between the mobility patterns of LKA1 and VIN13. All 3 yeasts (VIN13, LKA1, and C. laurentii) were shown to form stable biofilms; the 2 S. cerevisiae strains either had no difference in biofilm density or the LKA1 biofilm was less dense than that of VIN13. When co-inoculated with C. laurentii, LKA1 had no negative influence on the breakthrough of the Cryptococcus yeast in a sand column or on its ability to form biofilms. In addition, LKA1 did not successfully integrate into a stable mixed-biofilm community, nor did it disrupt the biofilm community. Overall, it was concluded that the LKA1 transgenic yeast had the same reproductive success as VIN13 in these 3 microcosms and had no selective advantage over the untransformed parental strain.
Collapse
Affiliation(s)
- Heidi Schoeman
- Institute for Wine Biotechnology, Stellenbosch University, Matieland, ZA, South Africa
| | | | | | | | | |
Collapse
|
19
|
Boon N, Windt W, Verstraete W, Top EM. Evaluation of nested PCR-DGGE (denaturing gradient gel electrophoresis) with group-specific 16S rRNA primers for the analysis of bacterial communities from different wastewater treatment plants. FEMS Microbiol Ecol 2009; 39:101-12. [PMID: 19709189 DOI: 10.1111/j.1574-6941.2002.tb00911.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The diversity of bacterial groups of activated sludge samples that received wastewater from four different types of industry was investigated by a nested PCR-DGGE (denaturing gradient gel electrophoresis) approach. Specific 16S rRNA primers were chosen for large bacterial groups (Bacteria and alpha-Proteobacteria in particular), which dominate activated sludge communities, as well as for actinomycetes, ammonium oxidisers and methanotrophs (types I and II). In addition primers for the new Acidobacterium kingdom were used to observe their community structure in activated sludge. After this first PCR amplification, a second PCR with bacterial primers yielded 16S rRNA gene fragments that were subsequently separated by DGGE, thus generating 'group-specific DGGE patterns'. The community structure and diversity of the bacterial groups from the different samples was further analysed using different techniques, such as statistical analysis and Shannon diversity index evaluation of the band patterns. By combining the seven DGGE gels, cluster analysis, multidimensional scaling and principal component analysis clearly clustered two of the four activated sludge types separately. It was shown that the combination of molecular and statistical methods can be very useful to differentiate microbial communities.
Collapse
Affiliation(s)
- Nico Boon
- Ghent University, Faculty of Agricultural and Applied Biological Sciences, Laboratory of Microbial Ecology and Technology, Coupure Links 653, B-9000 Ghent, Belgium
| | | | | | | |
Collapse
|
20
|
Bonfante P, Anca IA. Plants, Mycorrhizal Fungi, and Bacteria: A Network of Interactions. Annu Rev Microbiol 2009; 63:363-83. [DOI: 10.1146/annurev.micro.091208.073504] [Citation(s) in RCA: 532] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Paola Bonfante
- Dipartimento di Biologia Vegetale dell' Università di Torino and Istituto di Protezione delle Piante del CNR, Sezione di Torino, 10125 Torino, Italy;
| | - Iulia-Andra Anca
- Dipartimento di Biologia Vegetale dell' Università di Torino and Istituto di Protezione delle Piante del CNR, Sezione di Torino, 10125 Torino, Italy;
| |
Collapse
|
21
|
Rameshkumar N, Nair S. Isolation and molecular characterization of genetically diverse antagonistic, diazotrophic red-pigmented vibrios from different mangrove rhizospheres. FEMS Microbiol Ecol 2009; 67:455-67. [DOI: 10.1111/j.1574-6941.2008.00638.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
22
|
Miller AZ, Laiz L, Gonzalez JM, Dionísio A, Macedo MF, Saiz-Jimenez C. Reproducing stone monument photosynthetic-based colonization under laboratory conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2008; 405:278-285. [PMID: 18768211 DOI: 10.1016/j.scitotenv.2008.06.066] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2007] [Revised: 06/26/2008] [Accepted: 06/28/2008] [Indexed: 05/26/2023]
Abstract
In order to understand the biodeterioration process occurring on stone monuments, we analyzed the microbial communities involved in these processes and studied their ability to colonize stones under controlled laboratory experiments. In this study, a natural green biofilm from a limestone monument was cultivated, inoculated on stone probes of the same lithotype and incubated in a laboratory chamber. This incubation system, which exposes stone samples to intermittently sprinkling water, allowed the development of photosynthetic biofilms similar to those occurring on stone monuments. Denaturing gradient gel electrophoresis (DGGE) analysis was used to evaluate the major microbial components of the laboratory biofilms. Cyanobacteria, green microalgae, bacteria and fungi were identified by DNA-based molecular analysis targeting the 16S and 18S ribosomal RNA genes. The natural green biofilm was mainly composed by the Chlorophyta Chlorella, Stichococcus, and Trebouxia, and by Cyanobacteria belonging to the genera Leptolyngbya and Pleurocapsa. A number of bacteria belonging to Alphaproteobacteria, Bacteroidetes and Verrucomicrobia were identified, as well as fungi from the Ascomycota. The laboratory colonization experiment on stone probes showed a colonization pattern similar to that occurring on stone monuments. The methodology described in this paper allowed to reproduce a colonization equivalent to the natural biodeteriorating process.
Collapse
Affiliation(s)
- Ana Zélia Miller
- Departamento de Conservação e Restauro, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Monte de Caparica, Caparica, Portugal.
| | | | | | | | | | | |
Collapse
|
23
|
Dandie C, Thomas S, McClure N. Comparison of a range of green fluorescent protein-tagging vectors for monitoring a microbial inoculant in soil. Lett Appl Microbiol 2008. [DOI: 10.1111/j.1472-765x.2001.00848.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
24
|
Felici C, Vettori L, Toffanin A, Nuti M. Development of a strain-specific genomic marker for monitoring a Bacillus subtilis biocontrol strain in the rhizosphere of tomato. FEMS Microbiol Ecol 2008; 65:289-98. [PMID: 18462399 DOI: 10.1111/j.1574-6941.2008.00489.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
A strain-specific molecular marker enabling the detection and tracking of the biological control agent Bacillus subtilis 101, when released into the environment, was developed. Random amplified polymorphic DNA (RAPD) technique was used to differentiate this from other B. subtilis strains. A differentially amplified fragment obtained from RAPD profiles was sequenced and characterized as sequence-characterized amplified region (SCAR) marker, and four primer pairs were designed and evaluated for their specificity towards this strain. The sensibility of the selected SCAR primer pair was evaluated by qualitative PCR and Southern blotting, and the detection limit was assessed around 10(2) CFU (g dry wt soil)(-1), thus providing a reliable tool for the traceability of this B. subtilis strain in greenhouse or field trials. A plating assay coupled to PCR with the SCAR primer pair was then used as a detection method in microcosm experiments for monitoring the population of B. subtilis 101 in the rhizosphere of tomato, grown under two different soil conditions, i.e. nonsterile peat-based substrate and sandy-loam agricultural soil, respectively. The data of rhizosphere colonization indicated that the soil conditions significantly affected the rhizosphere establishment of strain 101.
Collapse
Affiliation(s)
- Cristiana Felici
- Department of Crop Biology, Microbiology Unit, University of Pisa, Pisa, Italy
| | | | | | | |
Collapse
|
25
|
Picard C, Bosco M. Genotypic and phenotypic diversity in populations of plant-probiotic Pseudomonas spp. colonizing roots. Naturwissenschaften 2007; 95:1-16. [PMID: 17646952 DOI: 10.1007/s00114-007-0286-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2006] [Revised: 06/07/2007] [Accepted: 06/25/2007] [Indexed: 11/29/2022]
Abstract
Several soil microorganisms colonizing roots are known to naturally promote the health of plants by controlling a range of plant pathogens, including bacteria, fungi, and nematodes. The use of theses antagonistic microorganisms, recently named plant-probiotics, to control plant-pathogenic fungi is receiving increasing attention, as they may represent a sustainable alternative to chemical pesticides. Many years of research on plant-probiotic microorganisms (PPM) have indicated that fluorescent pseudomonads producing antimicrobial compounds are largely involved in the suppression of the most widespread soilborne pathogens. Phenotype and genotype analysis of plant-probiotic fluorescent pseudomonads (PFP) have shown considerable genetic variation among these types of strains. Such variability plays an important role in the rhizosphere competence and the biocontrol ability of PFP strains. Understanding the mechanisms by which genotypic and phenotypic diversity occurs in natural populations of PFP could be exploited to choose those agricultural practices which best exploit the indigenous PFP populations, or to isolate new plant-probiotic strains for using them as inoculants. A number of different methods have been used to study diversity within PFP populations. Because different resolutions of the existing microbial diversity can be revealed depending on the approach used, this review first describes the most important methods used for the assessment of fluorescent Pseudomonas diversity. Then, we focus on recent data relating how differences in genotypic and phenotypic diversity within PFP communities can be attributed to geographic location, climate, soil type, soil management regime, and interactions with other soil microorganisms and host plants. It becomes evident that plant-related parameters exert the strongest influence on the genotypic and phenotypic variations in PFP populations.
Collapse
Affiliation(s)
- Christine Picard
- Dipartimento di Scienze e Tecnologie Agroambientali, Area di Microbiologia, Alma Mater Studiorum - Università di Bologna, Viale Fanin 42, 40127, Bologna, Italy.
| | | |
Collapse
|
26
|
Bending GD, Rodriguez-Cruz MS. Microbial aspects of the interaction between soil depth and biodegradation of the herbicide isoproturon. CHEMOSPHERE 2007; 66:664-71. [PMID: 16996107 DOI: 10.1016/j.chemosphere.2006.07.099] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2006] [Revised: 07/28/2006] [Accepted: 07/28/2006] [Indexed: 05/11/2023]
Abstract
Factors controlling change in biodegradation rate of the pesticide isoproturon with soil depth were investigated in a field with sandy-loam soil. Soil was sampled at five depths between 0-10 and 70-80 cm. Degradation rate declined progressively down the soil profile, with degradation slower, and relative differences in degradation rate between soil depths greater, in intact cores relative to sieved soil. Neither the maximum rate of degradation, or sorption, changed with soil depth, indicating that there was no variation in bioavailability. Differences in degradation rate between soil depths were not associated with the starting population size of catabolic organisms or the number of catabolic organisms proliferating following 100% degradation. Decreasing degradation rates with soil depth were associated with an increase in the length of the lag phase prior to exponential degradation, suggesting the time required for adaptation within communities controlled degradation rates. 16S rRNA PCR denaturing gradient gel electrophoresis showed that degradation in sub-soil between 40-50 and 70-80 cm depths was associated with proliferation of the same strains of Sphingomonas spp.
Collapse
Affiliation(s)
- Gary D Bending
- Warwick HRI, University of Warwick, Wellesbourne, Warwick CV35 9EF, UK.
| | | |
Collapse
|
27
|
Cook KL, Garland JL, Layton AC, Dionisi HM, Levine LH, Sayler GS. Effect of microbial species richness on community stability and community function in a model plant-based wastewater processing system. MICROBIAL ECOLOGY 2006; 52:725-37. [PMID: 17075733 DOI: 10.1007/s00248-006-9105-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2005] [Accepted: 06/14/2005] [Indexed: 05/12/2023]
Abstract
Microorganisms will be an integral part of biologically based waste processing systems used for water purification or nutrient recycling on long-term space missions planned by the National Aeronautics and Space Administration. In this study, the function and stability of microbial inocula of different diversities were evaluated after inoculation into plant-based waste processing systems. The microbial inocula were from a constructed community of plant rhizosphere-associated bacteria and a complexity gradient of communities derived from industrial wastewater treatment plant-activated sludge. Community stability and community function were defined as the ability of the community to resist invasion by a competitor (Pseudomonas fluorescens 5RL) and the ability to degrade surfactant, respectively. Carbon source utilization was evaluated by measuring surfactant degradation and through Biolog and BD oxygen biosensor community level physiological profiling. Community profiles were obtained from a 16S-23S rDNA intergenic spacer region array. A wastewater treatment plant-derived community with the greatest species richness was the least susceptible to invasion and was able to degrade surfactant to a greater extent than the other complexity gradient communities. All communities resisted invasion by a competitor to a greater extent than the plant rhizosphere isolate constructed community. However, the constructed community degraded surfactant to a greater extent than any of the other communities and utilized the same number of carbon sources as many of the other communities. These results demonstrate that community function (carbon source utilization) and community stability (resistance to invasion) are a function of the structural composition of the community irrespective of species richness or functional richness.
Collapse
Affiliation(s)
- K L Cook
- Center for Environmental Biotechnology, 676 Dabney Hall, Knoxville, TN 37996, USA.
| | | | | | | | | | | |
Collapse
|
28
|
Pujol M, Badosa E, Manceau C, Montesinos E. Assessment of the environmental fate of the biological control agent of fire blight, Pseudomonas fluorescens EPS62e, on apple by culture and real-time PCR methods. Appl Environ Microbiol 2006; 72:2421-7. [PMID: 16597940 PMCID: PMC1449005 DOI: 10.1128/aem.72.4.2421-2427.2006] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The colonization of apple blossoms and leaves by Pseudomonas fluorescens EPS62e was monitored in greenhouse and field trials using cultivable cell counting and real-time PCR. The real-time PCR provided a specific quantitative method for the detection of strain EPS62e. The detection level was around 10(2) cells g (fresh weight)(-1) and the standard curve was linear within a 5-log range. EPS62e actively colonized flowers reaching values from 10(7) to 10(8) cells per blossom. In apple flowers, no significant differences were observed between population levels obtained by real-time PCR and plating, suggesting that viable but nonculturable (VBNC) cells and residual nondegraded DNA were not present. In contrast, on apple leaves, where cultivable populations of EPS62e decreased with time, significant differences were observed between real-time PCR and plating. These differences indicate the presence of VBNC cells or nondegraded DNA after cell death. Therefore, the EPS62e population was under optimal conditions during the colonization of flowers but it was stressed and poorly survived on leaves. It was concluded that for monitoring this biological control agent, the combined use of cultivable cell count and real-time PCR is necessary.
Collapse
Affiliation(s)
- Marta Pujol
- Institute of Food and Agricultural Technology-CIDSAV-CeRTA, University of Girona, Campus Montilivi, 17071 Girona, Spain
| | | | | | | |
Collapse
|
29
|
Li Z, Xu J, Tang C, Wu J, Muhammad A, Wang H. Application of 16S rDNA-PCR amplification and DGGE fingerprinting for detection of shift in microbial community diversity in Cu-, Zn-, and Cd-contaminated paddy soils. CHEMOSPHERE 2006; 62:1374-80. [PMID: 16216305 DOI: 10.1016/j.chemosphere.2005.07.050] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2005] [Revised: 07/07/2005] [Accepted: 07/10/2005] [Indexed: 05/04/2023]
Abstract
Seven soils were sampled from farmland at different distances (0.01-5 km) from a copper and zinc smelter. The total contents of heavy metals in these soils ranged from 46 to 4895 mg Cu kg-1, 96 to 1133 mg Zn kg-1, and 6.9 to 28.8 mg Cd kg-1, respectively. The available fractions were highly correlated with total contents of the metals. In order to assess the impact of combined contamination of heavy metals on soil bacterial communities, denaturing gradient gel electrophoresis (DGGE) of polymerase chain reaction (PCR) amplicons of 16S rDNA sequence of bacteria in soil was used. Bacterial community structure was affected to some extent by heavy metals. The number of DGGE bands in soils increased with increasing distance from the copper and zinc smelter. Clustering analysis of the DGGE profiles showed that bacteria in the seven soils belonged to three clusters. Bacterial communities in three soils sampled at 0.01-0.60 km from the smelter belonged to one cluster, and those in three soils sampled at 0.8-1.2 km from the smelter belong to another cluster. Bacterial community in soil farthest from the smelter belonged to a single cluster. This study demonstrated that heavy metal contamination decreased both biomass and diversity of bacterial community in the soil.
Collapse
Affiliation(s)
- Zhaojun Li
- Institute of Soil and Water Resources and Environmental Science, Zhejiang University, Hangzhou 310029, China
| | | | | | | | | | | |
Collapse
|
30
|
Qu Y, Zhou J, Wang J, Song Z, Xing L, Fu X. Bioaugmentation of Bromoamine Acid Degradation with Sphingomonas xenophaga QYY and DNA Fingerprint Analysis of Augmented Systems. Biodegradation 2006; 17:83-91. [PMID: 16453174 DOI: 10.1007/s10532-005-3544-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2005] [Indexed: 11/24/2022]
Abstract
One high-effective bromoamine acid (1-amino-4-bromoanthraquinone-2-sulfonic acid, BAA) degrading strain was isolated previously with the ability to use BAA as sole source of carbon and nitrogen. It was identified as Sphingomonas xenophaga QYY by 16S rDNA sequence analysis and physio-biochemical tests. In this study, bioaugmentation of BAA degradation with suspended and immobilized cells of strain QYY was investigated. The optimal degradation conditions were as follows: temperature 30 degrees C, pH 6.0-7.0, 150 rev min(-1) and the immobilized cells maintained degradation activity to BAA after 60 days storage at 4 degrees C. The structure of BAA was evidently changed according to the analysis of total organic carbon removal of BAA (about 50%) and the UV-VIS spectra changes during the biodegradation. Bioaugmented systems exhibited stronger abilities degrading BAA than the non-bioaugmented control ones. And microbial community dynamics of augmented systems was revealed by amplified ribosomal DNA restriction analysis (ARDRA), a modern DNA fingerprint technique. The results indicated that the microbial community dynamics was substantially changed throughout the augmentation process. This study suggests that it is feasible and potentially useful to enhance BAA degradation using bioaugmentation with the immobilized cells of BAA-degrading bacterium.
Collapse
Affiliation(s)
- Yuanyuan Qu
- School of Environmental and Biological Science and Technology, Dalian University of Technology, China
| | | | | | | | | | | |
Collapse
|
31
|
Application of Molecular Fingerprinting Techniques to Explore the Diversity of Bacterial Endophytic Communities. ACTA ACUST UNITED AC 2006. [DOI: 10.1007/3-540-33526-9_19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2023]
|
32
|
Zaporozhenko EV, Slobodova NV, Boulygina ES, Kravchenko IK, Kuznetsov BB. Method for rapid DNA extraction from bacterial communities of different soils. Microbiology (Reading) 2006. [DOI: 10.1134/s0026261706010188] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
33
|
da Mota FF, Gomes EA, Paiva E, Seldin L. Assessment of the diversity of Paenibacillus species in environmental samples by a novel rpoB-based PCR-DGGE method. FEMS Microbiol Ecol 2005; 53:317-28. [PMID: 16329951 DOI: 10.1016/j.femsec.2005.01.017] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2004] [Revised: 01/05/2005] [Accepted: 01/11/2005] [Indexed: 11/21/2022] Open
Abstract
A specific PCR system based on the gene encoding the RNA polymerase beta subunit, rpoB, was developed for amplification and denaturing gradient gel electrophoresis (DGGE) fingerprinting of Paenibacillus communities in environmental samples. This gene has been previously proven to be a powerful identification tool for the discrimination of species within the genus Paenibacillus and could avoid the limitations of 16S rRNA-based phylogenetic analysis. Initially, the PCR system based on universal rpoB primers were used to amplify DNAs of different Paenibacillus species. A new reverse primer (rpoBPAEN) was further designed based on an insertion of six nucleotides in the Paenibacillus sequences analyzed. This semi-nested PCR system was evaluated for specificity using DNAs isolated from 27 Paenibacillus species belonging to different 16S rRNA-based phylogenetic groups and seven non-Paenibacillus species. The non-Paenibacillus species were not amplified using this PCR approach and one group of Paenibacillus species consisting of strains without the six-base insert also were not amplified; these latter strains were found to be distinct based on 16S rRNA gene phylogeny. In addition, a clone library was generated from the rpoB fragments amplified from two Brazilian soil types (Cerrado and Forest) and all 62 clones sequenced were closely related to one of the 22 sequences from Paenibacillus previously obtained in this study. To assess the diversity of Paenibacillus species in Cerrado and Forest soils and in the rhizosphere of different cultivars of maize, a PCR-DGGE system was used. The Paenibacillus DGGE fingerprints showed a clear distinction between communities of Paenibacillus in Forest and Cerrado soils and rhizosphere samples clustered along Cerrado soil. Profiles of cultivars CMS22 and CMS36 clustered together, with only 53% of similarity to CMS11 and CMS04. The results presented here demonstrate the potential use of the rpoB-based Paenibacillus-specific PCR-DGGE method for studying the diversity of Paenibacillus populations in natural environments.
Collapse
Affiliation(s)
- Fabio Faria da Mota
- Laboratório de Genética Microbiana, Instituto de Microbiologia Prof. Paulo de Góes, Universidade Federal do Rio de Janeiro, Centro de Ciências da Saúde, Bloco I, Ilha do Fundão, Brazil
| | | | | | | |
Collapse
|
34
|
Pujol M, Badosa E, Cabrefiga J, Montesinos E. Development of a strain-specific quantitative method for monitoring Pseudomonas fluorescens EPS62e, a novel biocontrol agent of fire blight. FEMS Microbiol Lett 2005; 249:343-52. [PMID: 16006071 DOI: 10.1016/j.femsle.2005.06.029] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2005] [Revised: 06/10/2005] [Accepted: 06/14/2005] [Indexed: 11/27/2022] Open
Abstract
Pseudomonas fluorescens EPS62e has been selected in a screening procedure for its high efficacy controlling Erwinia amylovora infections in flowers, immature fruits and young pear plants. We developed two monitoring methods which allowed specific detection and quantification of EPS62e by combining classical microbiological techniques with molecular tools. RAPD and unspecific-PCR fingerprints were used to differentiate EPS62e from other P. fluorescens strains. Differential amplified fragments from EPS62e were sequence characterized as SCAR markers and two primer pairs were designed and selected for their specificity against EPS62e. A SCAR primer pair was evaluated and validated for the assessment of population dynamics of EPS62e on pear plants under greenhouse conditions using plating and most probable number assays coupled to PCR. Both techniques were useful in monitoring the biological control agent. The population level of EPS62e after treatment was 7 log CFU(gf.w.)(-1), which in turn decreased progressively to 4-5 log CFU(gf.w.)(-1) after 17 days and then remained stable until the end of the assay 11 days later. The limit of detection of both monitoring methods developed was around 3 log CFU(gf.w.)(-1), thus, providing a reliable tool for the analysis of EPS62e in greenhouse or field trials, and the assessment of threshold population levels for efficient biocontrol of fire blight.
Collapse
Affiliation(s)
- Marta Pujol
- Institute of Food and Agricultural Technology-CIDSAV-CeRTA, University of Girona, Campus Montilivi, 17071 Girona, Spain
| | | | | | | |
Collapse
|
35
|
Zhang Y, Aiyuk S, Xu H, Chen G, Verstraete W. Study of microbial community structures in UASB sludge treating municipal wastewater by denaturing gradient gel electrophoresis of 16S rDNA. ACTA ACUST UNITED AC 2005; 48 Suppl 1:128-35. [PMID: 16089338 DOI: 10.1007/bf02889810] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The structures of microbial communities in lab-scale upflow anaerobic sludge blanket (UASB) reactors for treating municipal wastewater with different ratios of COD soluble/COD total were studied using denaturing gradient gel electrophoresis (DGGE) of 16S rRNA genes. The microbial structure of the inoculum sludge obtained from a full-scale UASB reactor of treating potato processing wastewater was compared with the structures of sludges collected from three lab-scale UASB reactors after eight months feeding with raw municipal wastewater, with CEPS (chemically enhanced primary sedimentation) pretreated municipal wastewater, and with a synthetic municipal sewage, respectively. Computer-aided numerical analysis of the DGGE fingerprints showed that the bacterial community underwent major changes. The sludges for treating raw and CEPS pretreated wastewater had very similar bacterial and archaeal communities (82% and 96% similarity) but were different from that for treating the synthetic sewage. Hence, despite similar % COD in the particulate form in the synthetic and the real wastewater, the two wastewaters were selected for different microbial communities. Prominent DGGE bands of Bacteria and Archaea were purified and sequenced. The 16S rRNA gene sequences of the dominant archaeal bands found in the inoculum, and UASB sludge fed with raw sewage, CEPS pretreated wastewater, and synthetic sewage were closely associated with Methanosaeta concilii. In the UASB sludge fed with synthetic sewage, another dominant band associated with an uncultured archaeon 39-2 was found together with M. concilii.
Collapse
Affiliation(s)
- Ying Zhang
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China.
| | | | | | | | | |
Collapse
|
36
|
Bergsma-Vlami M, Prins ME, Staats M, Raaijmakers JM. Assessment of genotypic diversity of antibiotic-producing pseudomonas species in the rhizosphere by denaturing gradient gel electrophoresis. Appl Environ Microbiol 2005; 71:993-1003. [PMID: 15691958 PMCID: PMC546794 DOI: 10.1128/aem.71.2.993-1003.2005] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The genotypic diversity of antibiotic-producing Pseudomonas spp. provides an enormous resource for identifying strains that are highly rhizosphere competent and superior for biological control of plant diseases. In this study, a simple and rapid method was developed to determine the presence and genotypic diversity of 2,4-diacetylphloroglucinol (DAPG)-producing Pseudomonas strains in rhizosphere samples. Denaturing gradient gel electrophoresis (DGGE) of 350-bp fragments of phlD, a key gene involved in DAPG biosynthesis, allowed discrimination between genotypically different phlD(+) reference strains and indigenous isolates. DGGE analysis of the phlD fragments provided a level of discrimination between phlD(+) genotypes that was higher than the level obtained by currently used techniques and enabled detection of specific phlD(+) genotypes directly in rhizosphere samples with a detection limit of approximately 5 x 10(3) CFU/g of root. DGGE also allowed simultaneous detection of multiple phlD(+) genotypes present in mixtures in rhizosphere samples. DGGE analysis of 184 indigenous phlD(+) isolates obtained from the rhizospheres of wheat, sugar beet, and potato plants resulted in the identification of seven phlD(+) genotypes, five of which were not described previously based on sequence and phylogenetic analyses. Subsequent bioassays demonstrated that eight genotypically different phlD(+) genotypes differed substantially in the ability to colonize the rhizosphere of sugar beet seedlings. Collectively, these results demonstrated that DGGE analysis of the phlD gene allows identification of new genotypic groups of specific antibiotic-producing Pseudomonas with different abilities to colonize the rhizosphere of sugar beet seedlings.
Collapse
Affiliation(s)
- M Bergsma-Vlami
- Laboratory of Phytopathology, Wageningen University, Binnenhaven 5, 6709 PD Wageningen, The Netherlands
| | | | | | | |
Collapse
|
37
|
Siyambalapitiya N, Blackall LL. Discrepancies in the widely applied GAM42a fluorescence in situ hybridisation probe forGammaproteobacteria. FEMS Microbiol Lett 2005; 242:367-73. [PMID: 15621461 DOI: 10.1016/j.femsle.2004.11.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2004] [Revised: 10/25/2004] [Accepted: 11/02/2004] [Indexed: 10/26/2022] Open
Abstract
A bacterial culture collection of 104 strains was obtained from an activated sludge wastewater treatment plant to pursue studies into microbial flocculation. Characterisation of the culture collection using a polyphasic approach indicated seven isolates, phylogenetically affiliated with the deep-branching Xanthomonas group of the class Gammaproteobacteria, were unable to hybridise the GAM42a fluorescence in situ hybridisation (FISH) probe for Gammaproteobacteria. The sequence of the GAM42a probe target region in the 23S rRNA gene of these isolates was determined to have mismatches to GAM42a. Probes perfectly targeting the mismatches (GAM42a_T1038_G1031, and GAM42a_T1038 and GAM42a_A1041_A1040) were synthesised, and used in conjunction with GAM42a in FISH to study the Gammaproteobacteria community structure in one full-scale activated sludge plant. Several bacteria in the activated sludge biomass bound the modified probes demonstrating their presence and the fact that these Gammaproteobacteria have been overlooked in community structure analyses of activated sludge.
Collapse
Affiliation(s)
- Nishanthi Siyambalapitiya
- Advanced Wastewater Management Centre, The University of Queensland, St. Lucia, 4072, Queensland, Australia
| | | |
Collapse
|
38
|
Taylor MW, Schupp PJ, Dahllöf I, Kjelleberg S, Steinberg PD. Host specificity in marine sponge-associated bacteria, and potential implications for marine microbial diversity. Environ Microbiol 2004; 6:121-30. [PMID: 14756877 DOI: 10.1046/j.1462-2920.2003.00545.x] [Citation(s) in RCA: 173] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Biodiversity is fundamental to both eukaryote and prokaryote ecology, yet investigations of diversity often differ markedly between the two disciplines. Host specificity - the association of organisms with only a few (specialism) or many (generalism) host species - is recognized within eukaryote ecology as a key determinant of diversity. In contrast, its implications for microbial diversity have received relatively little attention. Here we explore the relationship between microbial diversity and host specificity using marine sponge-bacteria associations. We used a replicated, hierarchical sampling design and both 16S rDNA- and rpoB-based denaturing gradient gel electrophoresis (DGGE) to examine whether three co-occurring sponges from temperate Australia -Cymbastela concentrica, Callyspongia sp. and Stylinos sp. - contained unique, specialized communities of microbes. Microbial communities varied little within each species of sponge, but variability among species was substantial. Over five seasons, the microbial community in C. concentrica differed significantly from other sponges, which were more similar to seawater. Overall, three types of sponge-associated bacteria were identified via 16S rDNA sequencing of excised DGGE bands: 'specialists'- found on only one host species, 'sponge associates'- found on multiple hosts but not in seawater, and 'generalists' from multiple hosts and seawater. Analogous to other high diversity systems, the degree of specificity of prokaryotes to host eukaryotes could have a potentially significant effect on estimates of marine microbial diversity.
Collapse
Affiliation(s)
- Michael W Taylor
- School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | | | | | | | | |
Collapse
|
39
|
|
40
|
Garbeva P, van Veen JA, van Elsas JD. Microbial diversity in soil: selection microbial populations by plant and soil type and implications for disease suppressiveness. ANNUAL REVIEW OF PHYTOPATHOLOGY 2004; 42:243-70. [PMID: 15283667 DOI: 10.1146/annurev.phyto.42.012604.135455] [Citation(s) in RCA: 516] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
An increasing interest has emerged with respect to the importance of microbial diversity in soil habitats. The extent of the diversity of microorganisms in soil is seen to be critical to the maintenance of soil health and quality, as a wide range of microorganisms is involved in important soil functions. This review focuses on recent data relating how plant type, soil type, and soil management regime affect the microbial diversity of soil and the implication for the soil's disease suppressiveness. The two main drivers of soil microbial community structure, i.e., plant type and soil type, are thought to exert their function in a complex manner. We propose that the fact that in some situations the soil and in others the plant type is the key factor determining soil microbial diversity is related to the complexity of the microbial interactions in soil, including interactions between microorganisms and soil and microorganisms and plants. A conceptual framework, based on the relative strengths of the shaping forces exerted by plant and soil versus the ecological behavior of microorganisms, is proposed.
Collapse
Affiliation(s)
- P Garbeva
- Netherlands Institute of Ecology, NIOO-KNAW, Center for Terrestrial Ecology, Heteren, The Netherlands
| | | | | |
Collapse
|
41
|
Cho KS, Choi OK, Joo YH, Lee KM, Lee TH, Ryu HW. Characterization of biofilms occurred in seepage groundwater contaminated with petroleum within an urban subway tunnel. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2004; 39:639-650. [PMID: 15055931 DOI: 10.1081/ese-120027730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Biofilms occurring in seepage groundwater contaminated with petroleum in an urban subway drainage system were characterized. The development of biofilms was observed only in the sites where petroleum-contaminated groundwater had seeped or was seeping. Moreover, the conditions of the biofilms such as color and development extent were influenced by the amount of spilled petroleum: By increasing the amount of spilled petroleum, the amount of biofilms increased and its color whitened. It deteriorated and became dark-brown if the contaminated groundwater did not seep any more. These facts indicate that the biofilms can be used as a preliminary indicator to identify the locations of fuel contaminated sumps and seeps without a more detailed assessment such as instrumental analysis. The biofilms were capable of degrading petroleum at 15 degrees C, which is similar to the average temperature of the seepage groundwater. Filamentous bacteria, Sphaerotilus spp., were isolated from the biofilms. It is considered that these bacteria are responsible for the development of biofilms in the seepage groundwater contaminated with petroleum because they can secrete extracellular polymeric substances.
Collapse
Affiliation(s)
- Kyung-Suk Cho
- Department of Environmental Science and Engineering, Ewha Womans University, Seodaemun-Gu, Seoul, Korea
| | | | | | | | | | | |
Collapse
|
42
|
Thirup L, Johansen A, Winding A. Microbial succession in the rhizosphere of live and decomposing barley roots as affected by the antagonistic strain Pseudomonas fluorescens DR54-BN14 or the fungicide imazalil. FEMS Microbiol Ecol 2003; 43:383-92. [DOI: 10.1111/j.1574-6941.2003.tb01079.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
43
|
Boon N, Top EM, Verstraete W, Siciliano SD. Bioaugmentation as a tool to protect the structure and function of an activated-sludge microbial community against a 3-chloroaniline shock load. Appl Environ Microbiol 2003; 69:1511-20. [PMID: 12620837 PMCID: PMC150069 DOI: 10.1128/aem.69.3.1511-1520.2003] [Citation(s) in RCA: 207] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bioaugmentation of bioreactors focuses on the removal of xenobiotics, with little attention typically paid to the recovery of disrupted reactor functions such as ammonium-nitrogen removal. Chloroanilines are widely used in industry as a precursor to a variety of products and are occasionally released into wastewater streams. This work evaluated the effects on activated-sludge reactor functions of a 3-chloroaniline (3-CA) pulse and bioaugmentation by inoculation with the 3-CA-degrading strain Comamonas testosteroni I2 gfp. Changes in functions such as nitrification, carbon removal, and sludge compaction were studied in relation to the sludge community structure, in particular the nitrifying populations. Denaturing gradient gel electrophoresis (DGGE), real-time PCR, and fluorescent in situ hybridization (FISH) were used to characterize and enumerate the ammonia-oxidizing microbial community immediately after a 3-CA shock load. Two days after the 3-CA shock, ammonium accumulated, and the nitrification activity did not recover over a 12-day period in the nonbioaugmented reactors. In contrast, nitrification in the bioaugmented reactor started to recover on day 4. The DGGE patterns and the FISH and real-time PCR data showed that the ammonia-oxidizing microbial community of the bioaugmented reactor recovered in structure, activity, and abundance, while the number of ribosomes of the ammonia oxidizers in the nonbioaugmented reactor decreased drastically and the community composition changed and did not recover. The settleability of the activated sludge was negatively influenced by the 3-CA addition, with the sludge volume index increasing by a factor of 2.3. Two days after the 3-CA shock in the nonbioaugmented reactor, chemical oxygen demand (COD) removal efficiency decreased by 36% but recovered fully by day 4. In contrast, in the bioaugmented reactor, no decrease of the COD removal efficiency was observed. This study demonstrates that bioaugmentation of wastewater reactors to accelerate the degradation of toxic chlorinated organics such as 3-CA protected the nitrifying bacterial community, thereby allowing faster recovery from toxic shocks.
Collapse
Affiliation(s)
- Nico Boon
- Laboratory of Microbial Ecology and Technology (LabMET), Faculty of Agricultural and Applied Biological Sciences, Ghent University, B-9000 Ghent, Belgium
| | | | | | | |
Collapse
|
44
|
Abstract
Since the first estimate of prokaryotic abundance in soil was published, researchers have attempted to assess the abundance and distribution of species and relate this information on community structure to ecosystem function. Culture-based methods were found to be inadequate to the task, and as a consequence a number of culture-independent approaches have been applied to the study of microbial diversity in soil. Applications of various culture-independent methods to descriptions of soil and rhizosphere microbial communities are reviewed. Culture-independent analyses have been used to catalog the species present in various environmental samples and also to assess the impact of human activity and interactions with plants or other microbes on natural microbial communities. Recent work has investigated the linkage of specific organisms to ecosystem function. Prospects for increased understanding of the ecological significance of particular populations through the use of genomics and microarrays are discussed.
Collapse
Affiliation(s)
- Angela D Kent
- Center for Limnology University of Wisconsin-Madison, 53706, USA.
| | | |
Collapse
|
45
|
Lee HW, Lee SY, Lee JW, Park JB, Choi ES, Park YK. Molecular characterization of microbial community in nitrate-removing activated sludge. FEMS Microbiol Ecol 2002; 41:85-94. [DOI: 10.1111/j.1574-6941.2002.tb00969.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
46
|
Richardson RE, Bhupathiraju VK, Song DL, Goulet TA, Alvarez-Cohen L. Phylogenetic characterization of microbial communities that reductively dechlorinate TCE based upon a combination of molecular techniques. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2002; 36:2652-2662. [PMID: 12099461 DOI: 10.1021/es0157797] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
An anaerobic microbial consortium (referred to as ANAS) that reductively dechlorinates trichloroethene (TCE) completely to ethene with the transient production of cisdichloroethene (cDCE) and vinyl chloride was enriched from contaminated soil obtained from Alameda Naval Air Station. ANAS uses lactate as its electron donor and has been functionally stable for over 2 years. Following a brief exposure to oxygen, a subculture (designated VCC) derived from ANAS could dechlorinate TCE only to vinyl chloride with lactate as its electron donor. Three molecular methods were used concurrently to characterize the community structure of ANAS and VCC: clone library construction/clone sequencing, terminal restriction fragment length polymorphism (T-RFLP) analysis, and fluorescent in situ hybridization (FISH) with rRNA probes. The community structure of ANAS did not change significantly over the course of a single feeding/dechlorination cycle, and only minor fluctuations occurred over many feeding cycles spanning the course of 1 year. Clone libraries and T-RFLP analyses suggested that ANAS was dominated by populations belonging to three phylogenetic groups: Dehalococcoides species, Desulfovibrio species, and members of the Clostridiaceae (within the low G + C Gram-positives). FISH results suggest that members of the Cytophaga/Flavobacterium/Bacteroides (CFB) cluster and high G + C Gram-positives (HGCs) were numerically important in ANAS despite their under-representation in the clone libraries. Parallel analyses of VCC samples suggested that Dehalococcoides species and Clostridiaceae were only minor populations in this community. Instead, VCC had increased populations of organisms in the beta and gamma subclasses of the Proteobacteria as well as significant populations of organisms in the CFB cluster. It is possible that symbiotic interactions are occurring between some of ANAS's phylogenetic groups under the enrichment conditions, including interspecies hydrogen transfer from Desulfovibrio species to Dehalococcoides species. However, the nucleic acid-based analyses performed here would need to be supplemented with chemical species data in order to test any hypotheses about functional roles of various community members. Additionally, these results suggest that an organism outside the Dehalococcoides genus may be capable of dechlorinating cDCE to vinyl chloride.
Collapse
Affiliation(s)
- Ruth E Richardson
- Department of Civil and Environmental Engineering, University of California, Berkeley 94720-1710, USA
| | | | | | | | | |
Collapse
|
47
|
Salles JF, De Souza FA, van Elsas JD. Molecular method to assess the diversity of Burkholderia species in environmental samples. Appl Environ Microbiol 2002; 68:1595-603. [PMID: 11916673 PMCID: PMC123827 DOI: 10.1128/aem.68.4.1595-1603.2002] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In spite of the importance of many members of the genus Burkholderia in the soil microbial community, no direct method to assess the diversity of this genus has been developed so far. The aim of this work was the development of soil DNA-based PCR-denaturing gradient gel electrophoresis (DGGE), a powerful tool for studying the diversity of microbial communities, for detection and analysis of the Burkholderia diversity in soil samples. Primers specific for the genus Burkholderia were developed based on the 16S rRNA gene sequence and were evaluated in PCRs performed with genomic DNAs from Burkholderia and non-Burkholderia species as the templates. The primer system used exhibited good specificity and sensitivity for the majority of established species of the genus Burkholderia. DGGE analyses of the PCR products obtained showed that there were sufficient differences in migration behavior to distinguish the majority of the 14 Burkholderia species tested. Sequence analysis of amplicons generated with soil DNA exclusively revealed sequences affiliated with sequences of Burkholderia species, demonstrating that the PCR-DGGE method is suitable for studying the diversity of this genus in natural settings. A PCR-DGGE analysis of the Burkholderia communities in two grassland plots revealed differences in diversity mainly between bulk and rhizosphere soil samples; the communities in the latter samples produced more complex patterns.
Collapse
|
48
|
Morgan CA, Hudson A, Konopka A, Nakatsu CH. Analyses of microbial activity in biomass-recycle reactors using denaturing gradient gel electrophoresis of 16S rDNA and 16S rRNA PCR products. Can J Microbiol 2002; 48:333-41. [PMID: 12030706 DOI: 10.1139/w02-029] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The relationship between mixed microbial community structure and physiology when grown under substrate-limited conditions was investigated using continuous-flow bioreactors with 100% biomass recycle. Community structure was analyzed by denaturing gradient gel electrophoresis (DGGE) of the PCR and RT-PCR amplified V3 region of 16S rDNA and 16S rRNA templates, respectively. Comparisons were made of communities exposed to different types of transient conditions (e.g., long- and short-term starvation, increasing nutrients). With progressively more stringent substrate limitation over time, the specific content of community RNA declined by more than 10-fold and closely followed the decline in specific growth rate. In contrast, the DNA content was variable (up to 3-fold differences) and did not follow the same trend. Cluster analysis of the presence or absence of individual bands indicated that the fingerprints generated by the two templates were different, and community response was first observed in the rRNA fraction. However, both the rDNA and rRNA fingerprints provided a picture of temporal population dynamics. Dice similarity coefficients gave a quantitative measure of the differences and changes between the communities. In comparison, standard cultivation techniques yielded only a quarter of the phylotypes detected by DGGE, but included the most dominant population based on rRNA. Nucleotide-sequence analyses of the almost complete 16S rRNA genes of these isolates place them in the same group of organisms that is typically cultivated from environmental samples: alpha, beta, and gamma Proteobacteria and the high GC and the low GC Gram-positive divisions.
Collapse
Affiliation(s)
- Christine A Morgan
- Department of Agronomy, Purdue University, West Lafayette, IN 47907, USA
| | | | | | | |
Collapse
|
49
|
Fortin JA, Bécard G, Declerck S, Dalpé Y, St-Arnaud M, Coughlan AP, Piché Y. Arbuscular mycorrhiza on root-organ cultures. ACTA ACUST UNITED AC 2002. [DOI: 10.1139/b01-139] [Citation(s) in RCA: 184] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The study of arbuscular mycorrhizal (AM) fungi and the AM symbiosis formed with host plant roots is complicated by the biotrophic and hypogeous nature of the mycobionts involved. To overcome this, several attempts have been made during the last three decades to obtain this symbiosis in vitro. The use of root-organ cultures has proved particularly successful. In this review, we describe the method by which root-organ cultures (transformed and nontransformed) have been obtained, together with the choice of host species, inoculation techniques, and culture media. We also outline the potential use of continuous cultures and cryopreservation of in vitro produced spores for long-term germ plasm storage. Furthermore, this review highlights the considerable impact that in vitro root-organ cultures have had on studies of AM fungal morphology, taxonomy, and phylogeny and how they have improved our understanding of the processes leading to root colonization and development of the extraradical mycelium. This is supported by a summary of some of the most important findings, regarding this symbiosis, that have been made at the physiological, biochemical, and molecular levels. We also summarize results from studies between AM fungi and certain pathogenic and nonpathogenic soil microorganisms. We describe some of the limitations of this in vitro system and propose diverse avenues of AM research that can now be undertaken, including the potential use of a similar system for ectomycorrhizal research.Key words: arbuscular mycorrhiza, root-organ cultures, Glomales, in vitro, root symbioses, source of inoculum, cryopreservation, intraradical and extraradical mycelium, mycorrhizosphere.
Collapse
|
50
|
Fould S, Dieng A, Davies K, Normand P, Mateille T. Immunological quantification of the nematode parasitic bacterium Pasteuria penetrans in soil. FEMS Microbiol Ecol 2001. [DOI: 10.1111/j.1574-6941.2001.tb00866.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|