1
|
Sim KH, Lee E, Shrestha P, Choi BH, Hong J, Lee YJ. Isobavachin attenuates FcεRI-mediated inflammatory allergic responses by regulating SHP-1-dependent Fyn/Lyn/Syk/Lck signaling. Biochem Pharmacol 2025; 232:116698. [PMID: 39643121 DOI: 10.1016/j.bcp.2024.116698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 11/30/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
Isobavachin, isolated from Psoralea corylifolia L. exhibits therapeutic potential for osteoporosis or skin disease. Here, we evaluated the pharmacological effects of isobavachin on IgE-dependent inflammatory allergic reactions, as well as the underlying mechanisms, in bone marrow-derived mast cells and a mouse model of passive cutaneous anaphylaxis (PCA). Isobavachin reduced IgE/Ag-stimulated degranulation, eicosanoid (leukotriene C4 and prostaglandin D2) generation, and release of pro-inflammatory cytokines (tumor necrosis factor-α (TNF-α) and interleukin (IL)-6). Mechanistic studies revealed that isobavachin suppressed activation of Fyn, Lyn, spleen tyrosine kinase (Syk), and lymphocyte-specific-protein-kinase (Lck), receptor-proximal tyrosine kinases that initiate and play a central role in FcɛRI-mediated mast cell activation, as well as their common downstream signaling molecules including linker for activation of T cells, phospholipase Cγ1, AKT, mitogen-activated protein kinases (MAPKs), and intracellular Ca2+. Additionally, isobavachin increased phosphorylation of Src homology region 2 domain-containing phosphatase-1 (SHP-1), thereby strengthening its interaction with Syk and Lck as well as Fyn and Lyn, resulting in de-phosphorylation of these proximal tyrosine kinases. Genetic knockdown of SHP-1 reversed the inhibitory effects of isobavachin on mast cell activation, as well as the related signaling pathways, indicating that the inhibitory effects of isobavachin are mediated by negative regulation of SHP-1-dependent Fyn, Lyn, Syk and Lck. The anti-inflammatory properties of isobavachin were also examined in macrophages. Isobavachin suppressed production of lipopolysaccharide-stimulated production of pro-inflammatory cytokines and nitric oxide. Furthermore, oral administration of isobavachin attenuated mast cell-mediated PCA reactions in mice. These results suggest that isobavachin is a potential treatment for mast cell-mediated allergic inflammatory diseases.
Collapse
Affiliation(s)
- Kyeong Hwa Sim
- Department of Pharmacology, School of Medicine, Daegu Catholic University, 33 Duryugongwon-ro 17-gil, Nam-gu, Daegu 42472, Republic of Korea
| | - Eunkyung Lee
- Department of Korean Medicine Development, National Institute for Korean Medicine Development, Gyeongsan 38540, Republic of Korea
| | - Prafulla Shrestha
- Department of Pharmacology, School of Medicine, Daegu Catholic University, 33 Duryugongwon-ro 17-gil, Nam-gu, Daegu 42472, Republic of Korea
| | - Bo-Hyun Choi
- Department of Pharmacology, School of Medicine, Daegu Catholic University, 33 Duryugongwon-ro 17-gil, Nam-gu, Daegu 42472, Republic of Korea
| | - Jaewoo Hong
- Department of Physiology, School of Medicine, Daegu Catholic University, 33 Duryugongwon-ro 17-gil, Nam-gu, Daegu 42472, Republic of Korea; Department of Companion Animal Health, Daegu Catholic University, Gyeongsan, Gyeongbuk 38430, Republic of Korea; Eversummer Lab, Daegu Catholic University, Gyeongsan, Gyeongbuk 38430, Republic of Korea; Department of Research and Development, CaniCatiCare Inc., Daegu 42078, Republic of Korea
| | - Youn Ju Lee
- Department of Pharmacology, School of Medicine, Daegu Catholic University, 33 Duryugongwon-ro 17-gil, Nam-gu, Daegu 42472, Republic of Korea.
| |
Collapse
|
2
|
Clanchy FI, Borghese F, Bystrom J, Balog A, Penn H, Hull DN, Mageed RA, Taylor PC, Williams RO. Inflammatory disease status and response to TNF blockade are associated with mechanisms of endotoxin tolerance. J Autoimmun 2024; 148:103300. [PMID: 39116634 DOI: 10.1016/j.jaut.2024.103300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 07/26/2024] [Accepted: 07/27/2024] [Indexed: 08/10/2024]
Abstract
The mechanisms of endotoxin tolerance (ET), which down-regulate inflammation, are well described in response to exogenous toll-like receptor ligands, but few studies have focused on ET-associated mechanisms in inflammatory disease. As blocking TNF can attenuate the development of ET, the effect of anti-TNF on the expression of key ET-associated molecules in inflammatory auto-immune disease was measured; changes in inflammatory gene expression were confirmed using an ET bioassay. The expression of immunomodulatory molecules was measured in a murine model of arthritis treated with anti-TNF and the expression of ET-associated molecules was measured in whole blood in rheumatoid arthritis (RA) and ankylosing spondylitis (AS) patients, before and after therapy. The expression of ET-associated genes was also measured in RA patient monocytes before and after therapy, in anti-TNF responders and non-responders. Tnfaip3, Ptpn6 and Irak3 were differentially expressed in affected paws, spleens, lymph nodes and circulating leucocytes in experimental murine arthritis treated with anti-TNF. Prior to therapy, the expression of TNFAIP3, INPP5D, PTPN6, CD38 and SIGIRR in whole blood differed between human healthy controls and RA or AS patients. In blood monocytes from RA patients, the expression of TNFAIP3 was significantly reduced by anti-TNF therapy in non-responders. Prior to therapy, anti-TNF non-responders had higher expression of TNFAIP3 and SLPI, compared to responders. Although the expression of TNFAIP3 was significantly higher in RA non-responders prior to treatment, the post-treatment reduction to a level similar to responders did not coincide with a clinical response to therapy.
Collapse
Affiliation(s)
- Felix Il Clanchy
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Roosevelt Drive, Oxford, United Kingdom; Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom.
| | - Federica Borghese
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Roosevelt Drive, Oxford, United Kingdom
| | - Jonas Bystrom
- Centre for Cancer Cell and Molecular Biology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Attila Balog
- Department of Rheumatology and Immunology, Szent-Györgyi Albert Clinical Centre, University of Szeged, Szeged, Hungary
| | - Henry Penn
- Northwick Park Hospital, Harrow, United Kingdom
| | - Dobrina N Hull
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Roosevelt Drive, Oxford, United Kingdom
| | - Rizgar A Mageed
- Centre for Translational Medicine and Therapeutics, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Peter C Taylor
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - Richard O Williams
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Roosevelt Drive, Oxford, United Kingdom
| |
Collapse
|
3
|
Long MB, Howden AJM, Keir HR, Rollings CM, Giam YH, Pembridge T, Delgado L, Abo-Leyah H, Lloyd AF, Sollberger G, Hull R, Gilmour A, Hughes C, New BJM, Cassidy D, Shoemark A, Richardson H, Lamond AI, Cantrell DA, Chalmers JD, Brenes AJ. Extensive acute and sustained changes to neutrophil proteomes post-SARS-CoV-2 infection. Eur Respir J 2024; 63:2300787. [PMID: 38097207 PMCID: PMC10918319 DOI: 10.1183/13993003.00787-2023] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 11/23/2023] [Indexed: 02/15/2024]
Abstract
BACKGROUND Neutrophils are important in the pathophysiology of coronavirus disease 2019 (COVID-19), but the molecular changes contributing to altered neutrophil phenotypes following severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection are not fully understood. We used quantitative mass spectrometry-based proteomics to explore neutrophil phenotypes immediately following acute SARS-CoV-2 infection and during recovery. METHODS Prospective observational study of hospitalised patients with PCR-confirmed SARS-CoV-2 infection (May to December 2020). Patients were enrolled within 96 h of admission, with longitudinal sampling up to 29 days. Control groups comprised non-COVID-19 acute lower respiratory tract infection (LRTI) and age-matched noninfected controls. Neutrophils were isolated from peripheral blood and analysed using mass spectrometry. COVID-19 severity and recovery were defined using the World Health Organization ordinal scale. RESULTS Neutrophil proteomes from 84 COVID-19 patients were compared to those from 91 LRTI and 42 control participants. 5800 neutrophil proteins were identified, with >1700 proteins significantly changed in neutrophils from COVID-19 patients compared to noninfected controls. Neutrophils from COVID-19 patients initially all demonstrated a strong interferon signature, but this signature rapidly declined in patients with severe disease. Severe disease was associated with increased abundance of proteins involved in metabolism, immunosuppression and pattern recognition, while delayed recovery from COVID-19 was associated with decreased granule components and reduced abundance of metabolic proteins, chemokine and leukotriene receptors, integrins and inhibitory receptors. CONCLUSIONS SARS-CoV-2 infection results in the sustained presence of circulating neutrophils with distinct proteomes suggesting altered metabolic and immunosuppressive profiles and altered capacities to respond to migratory signals and cues from other immune cells, pathogens or cytokines.
Collapse
Affiliation(s)
- Merete B Long
- Division of Molecular and Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
- Indicates equal contribution
| | - Andrew J M Howden
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, UK
- Indicates equal contribution
| | - Holly R Keir
- Division of Molecular and Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
- Indicates equal contribution
| | - Christina M Rollings
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, UK
- Indicates equal contribution
| | - Yan Hui Giam
- Division of Molecular and Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| | - Thomas Pembridge
- Division of Molecular and Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| | - Lilia Delgado
- Division of Molecular and Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| | - Hani Abo-Leyah
- Division of Molecular and Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| | - Amy F Lloyd
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, UK
| | - Gabriel Sollberger
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, UK
- Max Planck Institute for Infection Biology, Berlin, Germany
| | - Rebecca Hull
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Amy Gilmour
- Division of Molecular and Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| | - Chloe Hughes
- Division of Molecular and Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| | - Benjamin J M New
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Diane Cassidy
- Division of Molecular and Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| | - Amelia Shoemark
- Division of Molecular and Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| | - Hollian Richardson
- Division of Molecular and Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| | - Angus I Lamond
- Division of Molecular, Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee, UK
| | - Doreen A Cantrell
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, UK
| | - James D Chalmers
- Division of Molecular and Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
- Indicates joint senior authorship
| | - Alejandro J Brenes
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, UK
- Division of Molecular, Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee, UK
- Indicates joint senior authorship
| |
Collapse
|
4
|
Hao F, Wang C, Sholy C, Cao M, Kang X. Strategy for Leukemia Treatment Targeting SHP-1,2 and SHIP. Front Cell Dev Biol 2021; 9:730400. [PMID: 34490276 PMCID: PMC8417302 DOI: 10.3389/fcell.2021.730400] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 07/28/2021] [Indexed: 11/29/2022] Open
Abstract
Protein tyrosine phosphatases (PTPs) are modulators of cellular functions such as differentiation, metabolism, migration, and survival. PTPs antagonize tyrosine kinases by removing phosphate moieties from molecular signaling residues, thus inhibiting signal transduction. Two PTPs, SHP-1 and SHP-2 (SH2 domain-containing phosphatases 1 and 2, respectively) and another inhibitory phosphatase, SH2 domain-containing inositol phosphatase (SHIP), are essential for cell function, which is reflected in the defective phenotype of mutant mice. Interestingly, SHP-1, SHP-2, and SHIP mutations are identified in many cases of human leukemia. However, the impact of these phosphatases and their mutations regarding the onset and progression of leukemia is controversial. The ambiguity of the role of these phosphatases imposes challenges on the development of targeting therapies for leukemia. This fundamental problem, confronted by the expanding investigational field of leukemia, will be addressed in this review, which will include a discussion of the molecular mechanisms of SHP-1, SHP-2, and SHIP in normal hematopoiesis and their role in leukemia. Clinical development of leukemic therapies achieved by targeting these phosphatases will be addressed as well.
Collapse
Affiliation(s)
- Fang Hao
- Center for Precision Medicine, Department of Medicine, University of Missouri, Columbia, MO, United States
| | - Chen Wang
- Center for Precision Medicine, Department of Medicine, University of Missouri, Columbia, MO, United States
| | - Christine Sholy
- Center for Precision Medicine, Department of Medicine, University of Missouri, Columbia, MO, United States
| | - Min Cao
- Center for Precision Medicine, Department of Medicine, University of Missouri, Columbia, MO, United States
| | - Xunlei Kang
- Center for Precision Medicine, Department of Medicine, University of Missouri, Columbia, MO, United States
| |
Collapse
|
5
|
B Cell Aberrance in Lupus: the Ringleader and the Solution. Clin Rev Allergy Immunol 2021; 62:301-323. [PMID: 33534064 DOI: 10.1007/s12016-020-08820-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2020] [Indexed: 12/18/2022]
Abstract
Systemic lupus erythematosus (SLE) is a prototypical autoimmune disease with high heterogeneity but the common characterization of numerous autoantibodies and systemic inflammation which lead to the damage of multiple organs. Aberrance of B cells plays a pivotal role in the immunopathogenesis of SLE via both antibody-dependent and antibody-independent manners. Escape of autoreactive B cells from the central and peripheral tolerance checkpoints, over-activation of B cells and their excessive cytokines release which drive T cells and dendritic cells stimulation, and dysregulated surface molecules, as well as intracellular signal pathways involved in B cell biology, are all contributing to B cell aberrance and participating in the pathogenesis of SLE. Based on that rationale, targeting aberrance of B cells and relevant molecules and pathways is expected to be a promising strategy for lupus control. Multiple approaches targeting B cells through different mechanisms have been attempted, including B-cell depletion via monoclonal antibodies against B-cell-specific molecules, blockade of B-cell survival and activation factors, suppressing T-B crosstalk by interrupting costimulatory molecules and inhibiting intracellular activation signaling cascade by targeting pathway molecules in B cells. Though most attempts ended in failure, the efficacy of B-cell targeting has been encouraged by the FDA approval of belimumab that blocks B cell-activating factor (BAFF) and the recommended use of anti-CD20 as a remedial therapy in refractory lupus. Still, quantities of clinical trials targeting B cells or relevant molecules are ongoing and some of them have displayed promising preliminary results. Additionally, advances in multi-omics studies help deepen our understandings of B cell biology in lupus and may promote the discovery of novel potential therapeutic targets. The combination of real-world data with basic research achievements may pave the road to conquering lupus.
Collapse
|
6
|
Hartman Z, Geldenhuys WJ, Agazie YM. Novel Small-Molecule Inhibitor for the Oncogenic Tyrosine Phosphatase SHP2 with Anti-Breast Cancer Cell Effects. ACS OMEGA 2020; 5:25113-25124. [PMID: 33043190 PMCID: PMC7542598 DOI: 10.1021/acsomega.0c02746] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 09/14/2020] [Indexed: 05/08/2023]
Abstract
The oncogenic property of the Src homology phosphotyrosine phosphatase 2 (SHP2) is well-known, but developing specific inhibitors has been very difficult. Based on our previous reports that showed the importance of acidic residues surrounding SHP2 substrate phosphotyrosines for specific recognition, we have rationally designed and chemically synthesized a small-molecule SHP2 inhibitor named 4,4'-(4'-carboxy)-4-nonyloxy-[1,1'-biphenyl]-3,5-diyl)dibutanoic acid (CNBDA). Molecular modeling predicted that CNBDA packs well into the SHP2 active site and makes extended interactions primarily with positively charged and polar amino acids surrounding the active site. In vitro PTPase assays showed that CNBDA inhibits SHP2 with an IC50 of 5 μM. However, the IC50 of CNBDA toward SHP1, the close structural homologue of SHP2, was 125 μM, suggesting an approximately 25-fold effectiveness against SHP2 than SHP1. Because SHP2 is known for its positive role in breast cancer (BC) cell biology, we tested the effect of SHP2 inhibition with CNBDA in HER2-positive BC cells. Treatment with CNBDA suppressed cell proliferation in 2D culture, anchorage-independent growth in soft agar, and mammosphere (tumorisphere) formation in suspension cultures in a concentration-dependent manner. Furthermore, CNBDA inhibited EGF-induced signaling and expression of HER2 by inhibiting the PTPase activity of SHP2 in BC cells. These findings suggest that CNBDA is a promising anti-SHP2 lead compound with anti-BC cell effects.
Collapse
Affiliation(s)
- Zachary Hartman
- Department
of Biochemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Werner J. Geldenhuys
- School
of Medicine; Department of Basic Pharmaceutical Sciences, School of
Pharmacy, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Yehenew M. Agazie
- Department
of Biochemistry, West Virginia University, Morgantown, West Virginia 26506, United States
- WVU
Cancer Institute, West Virginia University Morgantown, West Virginia 26506, United States
- . Phone: (304) 293-7756. Fax: (304) 293-6486
| |
Collapse
|
7
|
Jiang M, Ye J, Wang X, Li N, Wang Y, Shi Y. Phosphatase SHP1 impedes mesenchymal stromal cell immunosuppressive capacity modulated by JAK1/STAT3 and P38 signals. Cell Biosci 2020; 10:65. [PMID: 32467752 PMCID: PMC7227316 DOI: 10.1186/s13578-020-00428-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 05/08/2020] [Indexed: 12/13/2022] Open
Abstract
Background Mesenchymal stromal cells (MSCs) are multiple stromal cells existing in various tissues and have already been employed in animal models and clinical trials to treat immune disorders through potent immunosuppressive capacity. Our previous reports have suggested that MSC immunosuppression is not intrinsic but is acquired upon combined inflammatory cytokine treatment. However, the understanding of detailed molecular mechanisms involved in MSC immunomodulation remains incomplete. Results In the study, we report that MSCs derived from viable motheaten (mev) mice, with deficiency in SH2 domain-containing phosphatase-1 (SHP1), exhibited remarkable increased suppressive effect on activated splenocyte proliferation. Consistently, when MSCs were treated with combined inflammatory cytokines, SHP1-deficient MSCs produced dramatically more iNOS expression compared with wild-type MSCs. SHP1 was found to suppress the phosphorylation of JAK1/STAT3 and P38 signals. The classical animal model of concanavalin A (ConA)-induced liver injury was applied to examine the role of SHP1 in modulation MSC-therapeutic effect in vivo. Consistent with the results in vitro, SHP1-deficient MSCs exhibited dramatically more effective protection against ConA-induced hepatitis, compared to WT MSCs. Conclusion Taken together, our study reveals a possible role for SHP1 in modulation of MSC immunosuppression regulated by JAK1/STAT3 and P38 signals.
Collapse
Affiliation(s)
- Menghui Jiang
- 1School of Public Health, Qingdao University, Qingdao, China
| | - Jiayin Ye
- 3Key Laboratory of Stem Cell Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031 China
| | - Xuefeng Wang
- 2The Third Affiliated Hospital of Soochow University, Institutes for Translational Medicine, Soochow University, Suzhou, China
| | - Na Li
- 3Key Laboratory of Stem Cell Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031 China
| | - Ying Wang
- 3Key Laboratory of Stem Cell Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031 China
| | - Yufang Shi
- 1School of Public Health, Qingdao University, Qingdao, China.,2The Third Affiliated Hospital of Soochow University, Institutes for Translational Medicine, Soochow University, Suzhou, China.,3Key Laboratory of Stem Cell Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031 China
| |
Collapse
|
8
|
Angata T. Siglecs that Associate with DAP12. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1204:215-230. [PMID: 32152949 DOI: 10.1007/978-981-15-1580-4_9] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Siglecs are a family of transmembrane receptor-like glycan-recognition proteins expressed primarily on leukocytes. Majority of Siglecs have an intracellular sequence motif called immunoreceptor tyrosine-based inhibitory motif (ITIM) and associate with Src homology region 2 domain-containing tyrosine phosphatase-1 (SHP-1), and negatively regulate tyrosine phosphorylation-mediated intracellular signaling events. On the other hand, some Siglecs have a positively charged amino acid residue in the transmembrane domain and associate with DNAX activation protein of 12 kDa (DAP12), which in turn recruits spleen tyrosine kinase (Syk). These DAP12-associated Siglecs play diverse functions. For example, Siglec-15 is conserved throughout vertebrate evolution and plays a role in bone homeostasis by regulating osteoclast development and function. Human Siglec-14 and -16 have inhibitory counterparts (Siglec-5 and -11, respectively), which show extremely high sequence similarity with them at the extracellular domain but interact with SHP-1. The DAP12-associated Siglec in such "paired receptor" configuration counteracts the pathogens that exploit the inhibitory counterpart. Polymorphisms (mutations) that render DAP12-associated inactive Siglecs are found in humans, and some of these appear to be associated with sensitivity or resistance of human hosts to bacterially induced conditions. Studies of mouse Siglec-H have revealed complex and intriguing functions it plays in regulating adaptive immunity. Many questions remain unanswered, and further molecular and genetic studies of DAP12-associated Siglecs will yield valuable insights with translational relevance.
Collapse
Affiliation(s)
- Takashi Angata
- Institute of Biological Chemistry, Academia Sinica, 128, Section 2, Academia Road, Nangang District, Taipei, Taiwan.
| |
Collapse
|
9
|
Snook JP, Soedel AJ, Ekiz HA, O'Connell RM, Williams MA. Inhibition of SHP-1 Expands the Repertoire of Antitumor T Cells Available to Respond to Immune Checkpoint Blockade. Cancer Immunol Res 2020; 8:506-517. [PMID: 32075800 DOI: 10.1158/2326-6066.cir-19-0690] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 12/12/2019] [Accepted: 02/11/2020] [Indexed: 12/13/2022]
Abstract
The presence and activity of CD8+ T cells within the tumor microenvironment are essential for the control of tumor growth. Utilizing B16-F10 melanoma tumors that express altered peptide ligands of chicken ovalbumin, OVA257-264, we measured high- and low-affinity OVA-specific responses following adoptive transfer of OT-I CD8+ T cell into mice subsequently challenged with tumors. T-cell receptor (TCR) affinity positively correlated with the frequency of OT-I tumor-infiltrating lymphocytes (TIL). Differences in TCR affinity inversely corresponded to in vivo tumor growth rate. Blockade of the PD-1 and CTLA-4 checkpoints preferentially increased the frequency and antitumor function of TIL responding to high-affinity antigens, while failing to enhance the antitumor activity of low-affinity T cells. To determine whether lowering the TCR activation threshold could enhance the breadth and magnitude of the antitumor T-cell response, we inhibited Src homology region 2 domain-containing phosphatase 1 (SHP-1) in OT-I T cells prior to tumor antigen exposure. SHP-1 knockdown increased the cytokine-producing potential of high- and low-affinity T cells but failed to enhance control of tumor growth. In contrast, when SHP-1 knockdown of OT-I T cells was combined with immunotherapy, we observed a significant and long-lasting suppression of tumor growth mediated by low-affinity T cells. We conclude that lowering the TCR activation threshold by targeting SHP-1 expands the repertoire of T cells available to respond to conventional checkpoint blockade, leading to enhanced control of tumor growth.
Collapse
Affiliation(s)
- Jeremy P Snook
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah.,Huntsman Cancer Institute, University of Utah Health, Salt Lake City, Utah
| | - Ashleigh J Soedel
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah.,Huntsman Cancer Institute, University of Utah Health, Salt Lake City, Utah
| | - H Atakan Ekiz
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah.,Huntsman Cancer Institute, University of Utah Health, Salt Lake City, Utah
| | - Ryan M O'Connell
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah.,Huntsman Cancer Institute, University of Utah Health, Salt Lake City, Utah
| | - Matthew A Williams
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah. .,Huntsman Cancer Institute, University of Utah Health, Salt Lake City, Utah
| |
Collapse
|
10
|
Hartman Z, Geldenhuys WJ, Agazie YM. A specific amino acid context in EGFR and HER2 phosphorylation sites enables selective binding to the active site of Src homology phosphatase 2 (SHP2). J Biol Chem 2020; 295:3563-3575. [PMID: 32024694 DOI: 10.1074/jbc.ra119.011422] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 01/22/2020] [Indexed: 11/06/2022] Open
Abstract
The Src homology phosphatase 2 (SHP2) is a cytoplasmic enzyme that mediates signaling induced by multiple receptor tyrosine kinases, including signaling by the epidermal growth factor receptor (EGFR) family (EGFR1-4 or the human homologs HER1-4). In EGFR (HER1) and EGFR2 (HER2) signaling, SHP2 increases the half-life of activated Ras by blocking recruitment of Ras GTPase-activating protein (RasGAP) to the plasma membrane through dephosphorylation of docking sites on the receptors. However, it is unclear how SHP2 selectively recognizes RasGAP-binding sites on EGFR and HER2. In this report, we show that SHP2-targeted pTyr residues exist in a specific amino acid context that allows selective binding. More specifically, we show that acidic residues N-terminal to the substrate pTyr in EGFR and HER2 mediate specific binding by the SHP2 active site, leading to blockade of RasGAP binding and optimal signaling by the two receptors. Molecular modeling studies revealed that a peptide derived from the region of pTyr992-EGFR packs well and makes stronger interactions with the SHP2 active site than with the SHP1 active site, suggesting a built-in mechanism that enables selective substrate recognition by SHP2. A phosphorylated form of this peptide inhibits SHP2 activity in vitro and EGFR and HER2 signaling in cells, suggesting inhibition of SHP2 protein tyrosine phosphatase activity by this peptide. Although we do not expect this peptide to be a strong inhibitor by itself, we foresee that the insights into SHP2 selectivity described here will be useful in future development of active-site small molecule-based inhibitors.
Collapse
Affiliation(s)
- Zachary Hartman
- Department of Biochemistry, School of Medicine West Virginia University, Morgantown, West Virginia 26506
| | - Werner J Geldenhuys
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, West Virginia 26506
| | - Yehenew M Agazie
- Department of Biochemistry, School of Medicine West Virginia University, Morgantown, West Virginia 26506; WVU Cancer Institute, School of Medicine, West Virginia University, Morgantown, West Virginia 26506.
| |
Collapse
|
11
|
Tian H, Tan R, Ye B, Yan S, Sui M, Zhao W, Zhang L, Zhu Y, Zeng L. SHP-1 inhibits renal ischemia reperfusion injury via dephosphorylating ASK1 and suppressing apoptosis. Biochem Biophys Res Commun 2019; 513:360-367. [PMID: 30961932 DOI: 10.1016/j.bbrc.2019.03.187] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 03/27/2019] [Indexed: 12/14/2022]
Abstract
Apoptosis of tubular epithelium cells (TECs) plays critical roles in renal ischemia reperfusion (I/R) injury, but the molecular regulatory mechanisms of apoptosis still require further investigation. Recently, phosphatase family members have been suggested to regulate multiple aspects of the injury and regeneration response. However, the roles of SHP-1, an important protein-tyrosine phosphatase, in the regulation of renal I/R injury remain unknown. Here, we found that SHP-1 knockdown in vivo significantly increased renal I/R injury and aggravated the apoptosis of TECs. Consistently, after SHP-1 knockdown in TECs in vitro, a sharp increase of apoptosis induced by cobalt dichloride was found. The protective role of SHP-1 was also validated in a TEC cell line stably overexpressing SHP-1. Mechanistically, the ASK1/MKK4/JNK pro-apoptosis signal was over activated after SHP-1 knockdown, and SHP-1 could bind to and dephosphorylate ASK1 to inhibit its activation, thus repressing apoptosis.
Collapse
Affiliation(s)
- Hongzhe Tian
- Department of Organ Transplantation, Changhai Hospital, Second Military Medical University, Shanghai, 200433, PR China
| | - Rumeng Tan
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Bogen Ye
- Department of Organ Transplantation, Changhai Hospital, Second Military Medical University, Shanghai, 200433, PR China
| | - Sijia Yan
- Department of Organ Transplantation, Changhai Hospital, Second Military Medical University, Shanghai, 200433, PR China
| | - Mingxing Sui
- Department of Organ Transplantation, Changhai Hospital, Second Military Medical University, Shanghai, 200433, PR China
| | - Wenyu Zhao
- Department of Organ Transplantation, Changhai Hospital, Second Military Medical University, Shanghai, 200433, PR China
| | - Lei Zhang
- Department of Organ Transplantation, Changhai Hospital, Second Military Medical University, Shanghai, 200433, PR China
| | - Youhua Zhu
- Department of Organ Transplantation, Changhai Hospital, Second Military Medical University, Shanghai, 200433, PR China
| | - Li Zeng
- Department of Organ Transplantation, Changhai Hospital, Second Military Medical University, Shanghai, 200433, PR China.
| |
Collapse
|
12
|
Varone A, Mariggiò S, Patheja M, Maione V, Varriale A, Vessichelli M, Spano D, Formiggini F, Lo Monte M, Brancati N, Frucci M, Del Vecchio P, D'Auria S, Flagiello A, Iannuzzi C, Luini A, Pucci P, Banci L, Valente C, Corda D. A signalling cascade involving receptor-activated phospholipase A 2, glycerophosphoinositol 4-phosphate, Shp1 and Src in the activation of cell motility. Cell Commun Signal 2019; 17:20. [PMID: 30823936 PMCID: PMC6396489 DOI: 10.1186/s12964-019-0329-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 02/13/2019] [Indexed: 12/28/2022] Open
Abstract
Background Shp1, a tyrosine-phosphatase-1 containing the Src-homology 2 (SH2) domain, is involved in inflammatory and immune reactions, where it regulates diverse signalling pathways, usually by limiting cell responses through dephosphorylation of target molecules. Moreover, Shp1 regulates actin dynamics. One Shp1 target is Src, which controls many cellular functions including actin dynamics. Src has been previously shown to be activated by a signalling cascade initiated by the cytosolic-phospholipase A2 (cPLA2) metabolite glycerophosphoinositol 4-phosphate (GroPIns4P), which enhances actin polymerisation and motility. While the signalling cascade downstream Src has been fully defined, the mechanism by which GroPIns4P activates Src remains unknown. Methods Affinity chromatography, mass spectrometry and co-immunoprecipitation studies were employed to identify the GroPIns4P-interactors; among these Shp1 was selected for further analysis. The specific Shp1 residues interacting with GroPIns4P were revealed by NMR and validated by site-directed mutagenesis and biophysical methods such as circular dichroism, isothermal calorimetry, fluorescence spectroscopy, surface plasmon resonance and computational modelling. Morphological and motility assays were performed in NIH3T3 fibroblasts. Results We find that Shp1 is the direct cellular target of GroPIns4P. GroPIns4P directly binds to the Shp1-SH2 domain region (with the crucial residues being Ser 118, Arg 138 and Ser 140) and thereby promotes the association between Shp1 and Src, and the dephosphorylation of the Src-inhibitory phosphotyrosine in position 530, resulting in Src activation. As a consequence, fibroblast cells exposed to GroPIns4P show significantly enhanced wound healing capability, indicating that GroPIns4P has a stimulatory role to activate fibroblast migration. GroPIns4P is produced by cPLA2 upon stimulation by diverse receptors, including the EGF receptor. Indeed, endogenously-produced GroPIns4P was shown to mediate the EGF-induced cell motility. Conclusions This study identifies a so-far undescribed mechanism of Shp1/Src modulation that promotes cell motility and that is dependent on the cPLA2 metabolite GroPIns4P. We show that GroPIns4P is required for EGF-induced fibroblast migration and that it is part of a cPLA2/GroPIns4P/Shp1/Src cascade that might have broad implications for studies of immune-inflammatory response and cancer. ![]()
Electronic supplementary material The online version of this article (10.1186/s12964-019-0329-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alessia Varone
- Institute of Protein Biochemistry, National Research Council, Via Pietro Castellino 111, 80131, Naples, Italy.
| | - Stefania Mariggiò
- Institute of Protein Biochemistry, National Research Council, Via Pietro Castellino 111, 80131, Naples, Italy
| | - Manpreet Patheja
- Institute of Protein Biochemistry, National Research Council, Via Pietro Castellino 111, 80131, Naples, Italy
| | - Vincenzo Maione
- Magnetic Resonance Centre (CERM), University of Florence, 50019, Sesto Fiorentino, Italy
| | - Antonio Varriale
- Institute of Protein Biochemistry, National Research Council, Via Pietro Castellino 111, 80131, Naples, Italy.,Institute of Food Science, National Research Council, Via Roma 64, 83100, Avellino, Italy
| | - Mariangela Vessichelli
- Institute of Protein Biochemistry, National Research Council, Via Pietro Castellino 111, 80131, Naples, Italy
| | - Daniela Spano
- Institute of Protein Biochemistry, National Research Council, Via Pietro Castellino 111, 80131, Naples, Italy
| | - Fabio Formiggini
- Italian Institute of Technology, Centre for Advanced Biomaterials for Health Care at CRIB, Largo Barsanti e Matteucci 53, 80125, Naples, Italy
| | - Matteo Lo Monte
- Institute of Protein Biochemistry, National Research Council, Via Pietro Castellino 111, 80131, Naples, Italy
| | - Nadia Brancati
- Institute of High Performance Computing and Networking, National Research Council, Via P. Castellino 111, 80131, Naples, Italy
| | - Maria Frucci
- Institute of High Performance Computing and Networking, National Research Council, Via P. Castellino 111, 80131, Naples, Italy
| | - Pompea Del Vecchio
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia, 80126, Naples, Italy
| | - Sabato D'Auria
- Institute of Protein Biochemistry, National Research Council, Via Pietro Castellino 111, 80131, Naples, Italy.,Institute of Food Science, National Research Council, Via Roma 64, 83100, Avellino, Italy
| | - Angela Flagiello
- CEINGE Advanced Biotechnology, Via G. Salvatore 486, 80145, Naples, Italy
| | - Clara Iannuzzi
- Institute of Protein Biochemistry, National Research Council, Via Pietro Castellino 111, 80131, Naples, Italy.,Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Via L. de Crecchio 7, 80138, Naples, Italy
| | - Alberto Luini
- Institute of Protein Biochemistry, National Research Council, Via Pietro Castellino 111, 80131, Naples, Italy
| | - Piero Pucci
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia, 80126, Naples, Italy.,CEINGE Advanced Biotechnology, Via G. Salvatore 486, 80145, Naples, Italy
| | - Lucia Banci
- Magnetic Resonance Centre (CERM), University of Florence, 50019, Sesto Fiorentino, Italy
| | - Carmen Valente
- Institute of Protein Biochemistry, National Research Council, Via Pietro Castellino 111, 80131, Naples, Italy
| | - Daniela Corda
- Institute of Protein Biochemistry, National Research Council, Via Pietro Castellino 111, 80131, Naples, Italy.
| |
Collapse
|
13
|
Whitsett JA, Kalin TV, Xu Y, Kalinichenko VV. Building and Regenerating the Lung Cell by Cell. Physiol Rev 2019; 99:513-554. [PMID: 30427276 DOI: 10.1152/physrev.00001.2018] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The unique architecture of the mammalian lung is required for adaptation to air breathing at birth and thereafter. Understanding the cellular and molecular mechanisms controlling its morphogenesis provides the framework for understanding the pathogenesis of acute and chronic lung diseases. Recent single-cell RNA sequencing data and high-resolution imaging identify the remarkable heterogeneity of pulmonary cell types and provides cell selective gene expression underlying lung development. We will address fundamental issues related to the diversity of pulmonary cells, to the formation and function of the mammalian lung, and will review recent advances regarding the cellular and molecular pathways involved in lung organogenesis. What cells form the lung in the early embryo? How are cell proliferation, migration, and differentiation regulated during lung morphogenesis? How do cells interact during lung formation and repair? How do signaling and transcriptional programs determine cell-cell interactions necessary for lung morphogenesis and function?
Collapse
Affiliation(s)
- Jeffrey A Whitsett
- Perinatal Institute, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, Division of Neonatology, Perinatal and Pulmonary Biology, Cincinnati, Ohio
| | - Tanya V Kalin
- Perinatal Institute, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, Division of Neonatology, Perinatal and Pulmonary Biology, Cincinnati, Ohio
| | - Yan Xu
- Perinatal Institute, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, Division of Neonatology, Perinatal and Pulmonary Biology, Cincinnati, Ohio
| | - Vladimir V Kalinichenko
- Perinatal Institute, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, Division of Neonatology, Perinatal and Pulmonary Biology, Cincinnati, Ohio
| |
Collapse
|
14
|
Tang H, Wang H, Lin Q, Fan F, Zhang F, Peng X, Fang X, Liu J, Ouyang K. Loss of IP3 Receptor–Mediated Ca2+ Release in Mouse B Cells Results in Abnormal B Cell Development and Function. THE JOURNAL OF IMMUNOLOGY 2017; 199:570-580. [DOI: 10.4049/jimmunol.1700109] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 05/17/2017] [Indexed: 12/16/2022]
|
15
|
Abstract
The immense power of the immune system is harnessed in healthy individuals by a range of negative regulatory signals and checkpoints. Manipulating these checkpoints through inhibition has resulted in striking immune-mediated clearance of otherwise untreatable tumours and metastases; unfortunately, not all patients respond to treatment with the currently available inhibitors of cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) and programmed cell death protein 1 (PD-1). Combinatorial studies using both anti-CTLA-4 and anti-PD-1 demonstrate synergistic effects of targeting multiple checkpoints, paving the way for other immune checkpoints to be targeted. Src homology 2 domain-containing protein tyrosine phosphatase 1 (SHP-1) is a widely expressed inhibitory protein tyrosine phosphatase (PTP). In T-cells, it is a negative regulator of antigen-dependent activation and proliferation. It is a cytosolic protein, and therefore not amenable to antibody-mediated therapies, but its role in activation and proliferation makes it an attractive target for genetic manipulation in adoptive transfer strategies, such as chimeric antigen receptor (CAR) T-cells. This review will discuss the potential value of SHP-1 inhibition in future tumour immunotherapy.
Collapse
|
16
|
Demosthenous C, Han JJ, Hu G, Stenson M, Gupta M. Loss of function mutations in PTPN6 promote STAT3 deregulation via JAK3 kinase in diffuse large B-cell lymphoma. Oncotarget 2016; 6:44703-13. [PMID: 26565811 PMCID: PMC4792586 DOI: 10.18632/oncotarget.6300] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 10/22/2015] [Indexed: 11/25/2022] Open
Abstract
PTPN6 (SHP1) is a tyrosine phosphatase that negatively controls the activity of multiple signaling pathways including STAT signaling, however role of mutated PTPN6 is not much known. Here we investigated whether PTPN6 might also be a potential target for diffuse large B cell lymphoma (DLBCL) and performed Sanger sequencing of the PTPN6 gene. We have identified missense mutations within PTPN6 (N225K and A550V) in 5% (2/38) of DLBCL tumors. Site directed mutagenesis was performed to mutate wild type (WT) PTPN6 and stable cell lines were generated by lentiviral transduction of PTPN6(WT), PTPN6(N225K) and PTPN6(A550V) constructs, and effects of WT or mutated PTPN6 on STAT3 signaling were analyzed. WT PTPN6 dephosphorylated STAT3, but had no effect on STAT1, STAT5 or STAT6 phosphorylation. Both PTPN6 mutants were unable to inhibit constitutive, as well as cytokines induced STAT3 activation. Both PTPN6 mutants also demonstrated reduced tyrosine phosphatase activity and exhibited enhanced STAT3 transactivation activity. Intriguingly, a lack of direct binding between STAT3 and WT or mutated PTPN6 was observed. However, compared to WT PTPN6, cells expressing PTPN6 mutants exhibited increased binding between JAK3 and PTPN6 suggesting a more dynamic interaction of PTPN6 with upstream regulators of STAT3. Consistent with this notion, both the mutants demonstrated increased resistance to JAK3 inhibitor, WHIP-154 relative to WT PTPN6. Overall, this is the first study, which demonstrates that N225K and A550V PTPN6 mutations cause loss-of-function leading to JAK3 mediated deregulation of STAT3 pathway and uncovers a mechanism that tumor cells can use to control PTPN6 substrate specificity.
Collapse
Affiliation(s)
- Christos Demosthenous
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, College of Medicine, Rochester, MN, USA
| | - Jing Jing Han
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, College of Medicine, Rochester, MN, USA
| | - Guangzhen Hu
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, College of Medicine, Rochester, MN, USA
| | - Mary Stenson
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, College of Medicine, Rochester, MN, USA
| | - Mamta Gupta
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, College of Medicine, Rochester, MN, USA
| |
Collapse
|
17
|
Atayde VD, Hassani K, da Silva Lira Filho A, Borges AR, Adhikari A, Martel C, Olivier M. Leishmania exosomes and other virulence factors: Impact on innate immune response and macrophage functions. Cell Immunol 2016; 309:7-18. [PMID: 27499212 DOI: 10.1016/j.cellimm.2016.07.013] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 07/14/2016] [Accepted: 07/25/2016] [Indexed: 12/23/2022]
Abstract
Leishmania parasites are the causative agents of the leishmaniases, a collection of vector-borne diseases that range from simple cutaneous to fatal visceral forms. Employing potent immune modulation mechanisms, Leishmania is able to render the host macrophage inactive and persist inside its phagolysosome. In the last few years, the role of exosomes in Leishmania-host interactions has been increasingly investigated. For instance, it was reported that Leishmania exosome release is augmented following temperature shift, a condition mimicking parasite's entry into its mammalian host. Leishmania exosomes were found to strongly affect macrophage cell signaling and functions, similarly to whole parasites. Importantly, these vesicles were shown to be pro-inflammatory, capable to recruit neutrophils at their inoculation site exacerbating the pathology. In this review, we provide the most recent insights on the role of exosomes and other virulence factors, especially the surface protease GP63, in Leishmania-host interactions, deepening our knowledge on leishmaniasis and paving the way for the development of new therapeutics.
Collapse
Affiliation(s)
- Vanessa Diniz Atayde
- Departments of Medicine, Microbiology and Immunology, McGill University, 3775 University Street, Montréal, QC H3A 2B4, Canada; Infectious Diseases and Immunity in Global Heath Program, The Research Institute of the McGill University Health Centre, 1001 Boulevard Décarie, Montréal, QC H4A 3J1, Canada
| | - Kasra Hassani
- Departments of Medicine, Microbiology and Immunology, McGill University, 3775 University Street, Montréal, QC H3A 2B4, Canada; Infectious Diseases and Immunity in Global Heath Program, The Research Institute of the McGill University Health Centre, 1001 Boulevard Décarie, Montréal, QC H4A 3J1, Canada
| | - Alonso da Silva Lira Filho
- Departments of Medicine, Microbiology and Immunology, McGill University, 3775 University Street, Montréal, QC H3A 2B4, Canada; Infectious Diseases and Immunity in Global Heath Program, The Research Institute of the McGill University Health Centre, 1001 Boulevard Décarie, Montréal, QC H4A 3J1, Canada
| | - Andrezza Raposo Borges
- Departments of Medicine, Microbiology and Immunology, McGill University, 3775 University Street, Montréal, QC H3A 2B4, Canada; Infectious Diseases and Immunity in Global Heath Program, The Research Institute of the McGill University Health Centre, 1001 Boulevard Décarie, Montréal, QC H4A 3J1, Canada
| | - Anupam Adhikari
- Departments of Medicine, Microbiology and Immunology, McGill University, 3775 University Street, Montréal, QC H3A 2B4, Canada; Infectious Diseases and Immunity in Global Heath Program, The Research Institute of the McGill University Health Centre, 1001 Boulevard Décarie, Montréal, QC H4A 3J1, Canada
| | - Caroline Martel
- Departments of Medicine, Microbiology and Immunology, McGill University, 3775 University Street, Montréal, QC H3A 2B4, Canada; Infectious Diseases and Immunity in Global Heath Program, The Research Institute of the McGill University Health Centre, 1001 Boulevard Décarie, Montréal, QC H4A 3J1, Canada
| | - Martin Olivier
- Departments of Medicine, Microbiology and Immunology, McGill University, 3775 University Street, Montréal, QC H3A 2B4, Canada; Infectious Diseases and Immunity in Global Heath Program, The Research Institute of the McGill University Health Centre, 1001 Boulevard Décarie, Montréal, QC H4A 3J1, Canada.
| |
Collapse
|
18
|
Jiang M, Zheng C, Shou P, Li N, Cao G, Chen Q, Xu C, Du L, Yang Q, Cao J, Han Y, Li F, Cao W, Liu F, Rabson A, Roberts A, Xie W, Wang Y, Shi Y. SHP1 Regulates Bone Mass by Directing Mesenchymal Stem Cell Differentiation. Cell Rep 2016; 16:769-80. [DOI: 10.1016/j.celrep.2016.06.035] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 04/03/2016] [Accepted: 06/05/2016] [Indexed: 12/31/2022] Open
|
19
|
Chen C, Cao M, Zhu S, Wang C, Liang F, Yan L, Luo D. Discovery of a Novel Inhibitor of the Protein Tyrosine Phosphatase Shp2. Sci Rep 2015; 5:17626. [PMID: 26626996 PMCID: PMC4667271 DOI: 10.1038/srep17626] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 11/03/2015] [Indexed: 02/07/2023] Open
Abstract
Shp2 is a ubiquitously expressed protein tyrosine phosphatase (PTP) related to adult acute myelogenous leukemia and human solid tumors. In this report, we describe identification of a potent Shp2 inhibitor, Fumosorinone (Fumos) from entomogenous fungi, which shows selective inhibition of Shp2 over other tested PTPs. Using a surface plasmon resonance analysis, we further confirmed the physical interaction between Shp2 and Fumos. Fumos inhibits Shp2-dependent activation of the Ras/ERK signal pathway downstream of EGFR, and interrupts EGF-induced Gab1-Shp2 association. As expected, Fumos shows little effects on the Shp2-independent ERK1/2 activation induced by PMA or oncogenic Ras. Furthermore, Fumos down-regulates Src activation, inhibits phosphorylation of Paxillin and prevents tumor cell invasion. These results suggest that Fumos can inhibit Shp2-dependent cell signaling in human cells and has a potential for treatment of Shp2-associated diseases.
Collapse
Affiliation(s)
- Chuan Chen
- College of Life Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding, Hebei 071002, P.R. China
| | - Mengmeng Cao
- College of Life Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding, Hebei 071002, P.R. China
| | - Siyu Zhu
- College of Life Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding, Hebei 071002, P.R. China
| | - Cuicui Wang
- College of Life Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding, Hebei 071002, P.R. China
| | - Fan Liang
- College of Life Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding, Hebei 071002, P.R. China
| | - Leilei Yan
- College of Life Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding, Hebei 071002, P.R. China
| | - Duqiang Luo
- College of Life Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding, Hebei 071002, P.R. China
| |
Collapse
|
20
|
Baba Y, Kurosaki T. Role of Calcium Signaling in B Cell Activation and Biology. Curr Top Microbiol Immunol 2015; 393:143-174. [PMID: 26369772 DOI: 10.1007/82_2015_477] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Increase in intracellular levels of calcium ions (Ca2+) is one of the key triggering signals for the development of B cell response to the antigen. The diverse Ca2+ signals finely controlled by multiple factors participate in the regulation of gene expression, B cell development, and effector functions. B cell receptor (BCR)-initiated Ca2+ mobilization is sourced from two pathways: one is the release of Ca2+ from the intracellular stores, endoplasmic reticulum (ER), and other is the prolonged influx of extracellular Ca2+ induced by depleting the stores via store-operated calcium entry (SOCE) and calcium release-activated calcium (CRAC) channels. The identification of stromal interaction molecule 1(STIM1), the ER Ca2+ sensor, and Orai1, a key subunit of the CRAC channel pore, has now provided the tools to understand the mode of Ca2+ influx regulation and physiological relevance. Herein, we discuss our current understanding of the molecular mechanisms underlying BCR-triggered Ca2+ signaling as well as its contribution to the B cell biological processes and diseases.
Collapse
Affiliation(s)
- Yoshihiro Baba
- Laboratory for Lymphocyte Differentiation, WPI Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka, 565-0871, Japan. .,Laboratory for Lymphocyte Differentiation, RIKEN Center for Integrative Medical Sciences (IMS), Kanagawa, Yokohama, 230-0045, Japan.
| | - Tomohiro Kurosaki
- Laboratory for Lymphocyte Differentiation, WPI Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka, 565-0871, Japan.,Laboratory for Lymphocyte Differentiation, RIKEN Center for Integrative Medical Sciences (IMS), Kanagawa, Yokohama, 230-0045, Japan
| |
Collapse
|
21
|
Abstract
The druggability of a target is defined by the likelihood of a certain target binding site to be amendable to functional modulation by a small molecule in vivo. Thus, druggability depends on the ability of the developed small molecule to reach the target site, the properties of the ligand binding pocket and our ability to develop chemical matter that efficiently interact with the drug binding site of interest. Historically enzymes have been the main drug targets because the inhibition of their activity can be easily assayed and catalytic centres are often attractive drug binding sites. However, despite considerable effort, a number of classical enzyme families have not been successfully targeted. More recently protein-protein interactions received considerable attention and several clinical inhibitors have now been developed. Despite the considerable progress made expanding target space, a large number of targets with a very strong rationale for targeting remain intractable. In the following chapter I will summarize progress made in developing inhibitors for challenging drug binding sites and emerging target families.
Collapse
|
22
|
The SHP-1 expression is associated with cytokines and psychopathological status in unmedicated first episode schizophrenia patients. Brain Behav Immun 2014; 41:251-60. [PMID: 24793756 DOI: 10.1016/j.bbi.2014.04.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 03/25/2014] [Accepted: 04/21/2014] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Recent lines of research have boosted awareness of the immunological facets of schizophrenia. However, associations with protein tyrosine phosphatase regulators have never been reported. The aim of our study was to investigate the expression and promoter status methylation of phosphatase SHP-1, a key negative regulator of the inflammatory process, in Peripheral blood mononuclear cells (PBMCs) of Schizophrenic patients. METHODS We enrolled fifty-four (28 men and 26 women) unmedicated first episode subjects (SC) who met DSM-IV and thirty-eight (22 men and 16 women) healthy controls (HC). The SC psychopathological status was assessed using the Positive and Negative Syndrome Scale. We evaluated SHP-1 expression by Quantitative Real-time PCR (qPCR) and Western blotting (WB) methods and promoter status methylation through PCR bisulfate. IKK/NFkB signaling was detected by WB, and medium and plasma levels of pro-inflammatory cytokines (IL-1β, IL-2, and TNF-α) by the ELISA method. SHP-1 was silenced by treating cells with specific siRNA. RESULTS We found a significantly lower level of SHP-1 gene expression in PBMCs from SC vs. HC, consistently with which the promoter region analyzed presented significant hypermethylation. Silencing of SHP-1 expression induced higher activation of IKK/NF-kB signaling and pro-inflammatory cytokine production in ex vivo PBMCs from both SC and HC. Linear regression among patients generated a model in which SHP-1 expression explained 30% of the clinical negative symptom variance (adjusted R(2)=0.30, ANOVA p<0.001). CONCLUSIONS Our findings are the first to suggest that impairment of SHP-1 expression is involved in the physiopathology of schizophrenia, opening fruitful new avenues for ameliorating treatment at least of negative symptoms.
Collapse
|
23
|
Abstract
The JAK (Janus kinase) family members serve essential roles as the intracellular signalling effectors of cytokine receptors. This family, comprising JAK1, JAK2, JAK3 and TYK2 (tyrosine kinase 2), was first described more than 20 years ago, but the complexities underlying their activation, regulation and pleiotropic signalling functions are still being explored. Here, we review the current knowledge of their physiological functions and the causative role of activating and inactivating JAK mutations in human diseases, including haemopoietic malignancies, immunodeficiency and inflammatory diseases. At the molecular level, recent studies have greatly advanced our knowledge of the structures and organization of the component FERM (4.1/ezrin/radixin/moesin)-SH2 (Src homology 2), pseudokinase and kinase domains within the JAKs, the mechanism of JAK activation and, in particular, the role of the pseudokinase domain as a suppressor of the adjacent tyrosine kinase domain's catalytic activity. We also review recent advances in our understanding of the mechanisms of negative regulation exerted by the SH2 domain-containing proteins, SOCS (suppressors of cytokine signalling) proteins and LNK. These recent studies highlight the diversity of regulatory mechanisms utilized by the JAK family to maintain signalling fidelity, and suggest alternative therapeutic strategies to complement existing ATP-competitive kinase inhibitors.
Collapse
|
24
|
Khan TH, Srivastava N, Srivastava A, Sareen A, Mathur RK, Chande AG, Musti KV, Roy S, Mukhopadhyaya R, Saha B. SHP-1 Plays a Crucial Role in CD40 Signaling Reciprocity. THE JOURNAL OF IMMUNOLOGY 2014; 193:3644-53. [DOI: 10.4049/jimmunol.1400620] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
25
|
Dave RK, Naylor AJ, Young SP, Bayley R, Hardie DL, Haworth O, Rider DA, Cook AD, Buckley CD, Kellie S. Differential expression of CD148 on leukocyte subsets in inflammatory arthritis. Arthritis Res Ther 2014; 15:R108. [PMID: 24016860 PMCID: PMC3978474 DOI: 10.1186/ar4288] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 05/22/2013] [Accepted: 09/09/2013] [Indexed: 12/21/2022] Open
Abstract
Introduction Monocytic cells play a central role in the aetiology of rheumatoid arthritis, and manipulation of the activation of these cells is an approach currently under investigation to discover new therapies for this and associated diseases. CD148 is a transmembrane tyrosine phosphatase that is highly expressed in monocytes and macrophages and, since this family of molecules plays an important role in the regulation of cell activity, CD148 is a potential target for the manipulation of macrophage activation. For any molecule to be considered a therapeutic target, it is important for it to be increased in activity or expression during disease. Methods We have investigated the expression of CD148 in two murine models of arthritis and in joints from rheumatoid arthritis (RA) patients using real-time PCR, immunohistochemistry, and studied the effects of proinflammatory stimuli on CD148 activity using biochemical assays. Results We report that CD148 mRNA is upregulated in diseased joints of mice with collagen-induced arthritis. Furthermore, we report that in mice CD148 protein is highly expressed in infiltrating monocytes of diseased joints, with a small fraction of T cells also expressing CD148. In human arthritic joints both T cells and monocytes expressed high levels of CD148, however, we show differential expression of CD148 in T cells and monocytes from normal human peripheral blood compared to peripheral blood from RA and both normal and RA synovial fluid. Finally, we show that synovial fluid from rheumatoid arthritis patients suppresses CD148 phosphatase activity. Conclusions CD148 is upregulated in macrophages and T cells in human RA samples, and its activity is enhanced by treatment with tumour necrosis factor alpha (TNFα), and reduced by synovial fluid or oxidising conditions. A greater understanding of the role of CD148 in chronic inflammation may lead to alternative therapeutic approaches to these diseases.
Collapse
|
26
|
|
27
|
Okenwa C, Kumar A, Rego D, Konarski Y, Nilchi L, Wright K, Kozlowski M. SHP-1-Pyk2-Src protein complex and p38 MAPK pathways independently regulate IL-10 production in lipopolysaccharide-stimulated macrophages. THE JOURNAL OF IMMUNOLOGY 2013; 191:2589-603. [PMID: 23904162 DOI: 10.4049/jimmunol.1300466] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The role of tyrosine phosphatase Src homology region 2 domain-containing phosphatase (SHP)-1 in LPS-activated cytokine production and inflammation was investigated by determining TNF-α and IL-10 production in splenic macrophages employing SHP-1-null (me/me) mouse model. LPS-stimulated me/me splenic macrophages secreted significantly less IL-10 with concomitantly elevated levels of TNF-α compared with wild-type (WT) macrophages irrespective of LPS dose and duration of stimulation. IL-10 significantly inhibited LPS-induced TNF-α production in both me/me and WT macrophages. The critical requirement for SHP-1 in regulating LPS-induced IL-10 and TNF-α production was confirmed by interfering with SHP-1 expression in WT macrophages and by reconstituting me/me macrophages with the SHP-1 gene. To delineate the role of SHP-1 in positive regulation of LPS-induced IL-10 production, signaling proteins representing SHP-1 targets were examined. The results reveal that tyrosine kinases Src and proline-rich tyrosine kinase 2 (Pyk2) regulate SHP-1-dependent LPS-induced IL-10 production and infer that optimal LPS-induced IL-10 production requires an assembly of a protein complex consisting of SHP-1-Pyk2-Src proteins. Moreover, LPS-induced IL-10 production also requires activation of the p38 MAPK independent of SHP-1 function. Overall, to our knowledge our results show for the first time that SHP-1 acts as a positive regulator of LPS-induced IL-10 production in splenic macrophages through two distinct and independent SHP-1-Pyk2-Src and p38 MAPK pathways.
Collapse
Affiliation(s)
- Chinonso Okenwa
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | | | | | | | | | | | | |
Collapse
|
28
|
Dave RK, Dinger ME, Andrew M, Askarian-Amiri M, Hume DA, Kellie S. Regulated expression of PTPRJ/CD148 and an antisense long noncoding RNA in macrophages by proinflammatory stimuli. PLoS One 2013; 8:e68306. [PMID: 23840844 PMCID: PMC3695918 DOI: 10.1371/journal.pone.0068306] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Accepted: 05/28/2013] [Indexed: 12/28/2022] Open
Abstract
PTPRJ/CD148 is a tyrosine phosphatase that has tumour suppressor-like activity. Quantitative PCR of various cells and tissues revealed that it is preferentially expressed in macrophage-enriched tissues. Within lymphoid tissues immunohistochemistry revealed that PTPRJ/CD148 co-localised with F4/80, indicating that macrophages most strongly express the protein. Macrophages express the highest basal level of ptprj, and this is elevated further by treatment with LPS and other Toll-like receptor ligands. In contrast, CSF-1 treatment reduced basal and stimulated Ptprj expression in human and mouse cells, and interferon also repressed Ptprj expression. We identified a 1006 nucleotide long noncoding RNA species, Ptprj-as1 that is transcribed antisense to Ptprj. Ptprj-as1 was highly expressed in macrophage-enriched tissue and was transiently induced by Toll-like receptor ligands with a similar time course to Ptprj. Finally, putative transcription factor binding sites in the promoter region of Ptprj were identified.
Collapse
Affiliation(s)
- Richa K. Dave
- The University of Queensland, Institute for Molecular Bioscience, Brisbane, Australia
- The University of Queensland, Cooperative Research Centre for Chronic Inflammatory Diseases (CRC-CID), Brisbane, Australia
- The University of Queensland, Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, Australia
| | - Marcel E. Dinger
- The University of Queensland Diamantina Institute, Brisbane, Australia
- Garvan Institute of Medical Research, Darlinghurst, Australia
| | - Megan Andrew
- The University of Queensland, Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, Australia
| | - Marjan Askarian-Amiri
- The University of Queensland, Institute for Molecular Bioscience, Brisbane, Australia
| | - David A. Hume
- The University of Queensland, Institute for Molecular Bioscience, Brisbane, Australia
- The University of Queensland, Cooperative Research Centre for Chronic Inflammatory Diseases (CRC-CID), Brisbane, Australia
- The Roslin Institute, University of Edinburgh, Roslin, Scotland, United Kingdom
| | - Stuart Kellie
- The University of Queensland, Institute for Molecular Bioscience, Brisbane, Australia
- The University of Queensland, Cooperative Research Centre for Chronic Inflammatory Diseases (CRC-CID), Brisbane, Australia
- The University of Queensland, Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, Australia
| |
Collapse
|
29
|
Goronzy JJ, Li G, Yang Z, Weyand CM. The janus head of T cell aging - autoimmunity and immunodeficiency. Front Immunol 2013; 4:131. [PMID: 23761790 PMCID: PMC3671290 DOI: 10.3389/fimmu.2013.00131] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 05/21/2013] [Indexed: 01/09/2023] Open
Abstract
Immune aging is best known for its immune defects that increase susceptibility to infections and reduce adaptive immune responses to vaccination. In parallel, the aged immune system is prone to autoimmune responses and many autoimmune diseases increase in incidence with age or are even preferentially encountered in the elderly. Why an immune system that suboptimally responds to exogenous antigen fails to maintain tolerance to self-antigens appears to be perplexing. In this review, we will discuss age-associated deviations in the immune repertoire and the regulation of signaling pathways that may shed light on this conundrum.
Collapse
Affiliation(s)
- Jörg J Goronzy
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine , Stanford, CA , USA ; Department of Medicine, Palo Alto Veteran Administration Health Care System , Palo Alto, CA , USA
| | | | | | | |
Collapse
|
30
|
Hong XX, Carmichael GG. Innate immunity in pluripotent human cells: attenuated response to interferon-β. J Biol Chem 2013; 288:16196-205. [PMID: 23599426 PMCID: PMC3668775 DOI: 10.1074/jbc.m112.435461] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2012] [Revised: 04/18/2013] [Indexed: 12/13/2022] Open
Abstract
Type I interferon (IFN-α/β) binds to cell surface receptors IFNAR1 and IFNAR2 and triggers a signaling cascade that leads to the transcription of hundreds of IFN-stimulated genes. This response is a crucial component in innate immunity in that it establishes an "antiviral state" in cells and protects them against further damage. Previous work demonstrated that, compared with their differentiated counterparts, pluripotent human cells have a much weaker response to cytoplasmic double-stranded RNA (dsRNA) and are only able to produce a minimal amount of IFN-β. We show here that human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs) also exhibit an attenuated response to IFN-β. Even though all known type I IFN signaling components are expressed in these cells, STAT1 phosphorylation is greatly diminished upon IFN-β treatment. This attenuated response correlates with a high expression of suppressor of cytokine signaling 1 (SOCS1). Upon differentiation of hESCs into trophoblasts, cells acquire the ability to respond to IFN-β, and this is accompanied by a significant induction of STAT1 phosphorylation as well as a decrease in SOCS1 expression. Furthermore, SOCS1 knockdown in hiPSCs enhances their ability to respond to IFN-β. Taken together, our results suggest that an attenuated cellular response to type I IFNs may be a general feature of pluripotent human cells and that this is associated with high expression of SOCS1.
Collapse
Affiliation(s)
- Xiao-Xiao Hong
- From the Department of Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, Connecticut 06032
| | - Gordon G. Carmichael
- From the Department of Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, Connecticut 06032
| |
Collapse
|
31
|
Hendriks WJAJ, Pulido R. Protein tyrosine phosphatase variants in human hereditary disorders and disease susceptibilities. Biochim Biophys Acta Mol Basis Dis 2013; 1832:1673-96. [PMID: 23707412 DOI: 10.1016/j.bbadis.2013.05.022] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 05/14/2013] [Accepted: 05/16/2013] [Indexed: 12/18/2022]
Abstract
Reversible tyrosine phosphorylation of proteins is a key regulatory mechanism to steer normal development and physiological functioning of multicellular organisms. Phosphotyrosine dephosphorylation is exerted by members of the super-family of protein tyrosine phosphatase (PTP) enzymes and many play such essential roles that a wide variety of hereditary disorders and disease susceptibilities in man are caused by PTP alleles. More than two decades of PTP research has resulted in a collection of PTP genetic variants with corresponding consequences at the molecular, cellular and physiological level. Here we present a comprehensive overview of these PTP gene variants that have been linked to disease states in man. Although the findings have direct bearing for disease diagnostics and for research on disease etiology, more work is necessary to translate this into therapies that alleviate the burden of these hereditary disorders and disease susceptibilities in man.
Collapse
Affiliation(s)
- Wiljan J A J Hendriks
- Department of Cell Biology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands.
| | | |
Collapse
|
32
|
Abram CL, Roberge GL, Pao LI, Neel BG, Lowell CA. Distinct roles for neutrophils and dendritic cells in inflammation and autoimmunity in motheaten mice. Immunity 2013; 38:489-501. [PMID: 23521885 DOI: 10.1016/j.immuni.2013.02.018] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Accepted: 11/26/2012] [Indexed: 01/18/2023]
Abstract
The motheaten mouse has long served as a paradigm for complex autoimmune and inflammatory disease. Null mutations in Ptpn6, which encodes the nonreceptor protein-tyrosine phosphatase Shp1, cause the motheaten phenotype. However, Shp1 regulates multiple signaling pathways in different hematopoietic cell types, so the cellular and molecular mechanism of autoimmunity and inflammation in the motheaten mouse has remained unclear. By using floxed Ptpn6 mice, we dissected the contribution of innate immune cells to the motheaten phenotype. Ptpn6 deletion in neutrophils resulted in cutaneous inflammation, but not autoimmunity, providing an animal model of human neutrophilic dermatoses. By contrast, dendritic cell deletion caused severe autoimmunity, without inflammation. Genetic and biochemical analysis showed that inflammation was caused by enhanced neutrophil integrin signaling through Src-family and Syk kinases, whereas autoimmunity resulted from exaggerated MyD88-dependent signaling in dendritic cells. Our data demonstrate that disruption of distinct Shp1-regulated pathways in different cell types combine to cause motheaten disease.
Collapse
Affiliation(s)
- Clare L Abram
- Department of Laboratory Medicine and the Program in Immunology, University of California, San Francisco 94143, USA
| | | | | | | | | |
Collapse
|
33
|
Stanford SM, Rapini N, Bottini N. Regulation of TCR signalling by tyrosine phosphatases: from immune homeostasis to autoimmunity. Immunology 2012; 137:1-19. [PMID: 22862552 DOI: 10.1111/j.1365-2567.2012.03591.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
More than half of the known protein tyrosine phosphatases (PTPs) in the human genome are expressed in T cells, and significant progress has been made in elucidating the biology of these enzymes in T-cell development and function. Here we provide a systematic review of the current understanding of the roles of PTPs in T-cell activation, providing insight into their mechanisms of action and regulation in T-cell receptor signalling, the phenotypes of their genetically modified mice, and their possible involvement in T-cell-mediated autoimmune disease. Our projection is that the interest in PTPs as mediators of T-cell homeostasis will continue to rise with further functional analysis of these proteins, and PTPs will be increasingly considered as targets of immunomodulatory therapies.
Collapse
Affiliation(s)
- Stephanie M Stanford
- Division of Cellular Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
34
|
Stromnes IM, Fowler C, Casamina CC, Georgopolos CM, McAfee MS, Schmitt TM, Tan X, Kim TD, Choi I, Blattman JN, Greenberg PD. Abrogation of SRC homology region 2 domain-containing phosphatase 1 in tumor-specific T cells improves efficacy of adoptive immunotherapy by enhancing the effector function and accumulation of short-lived effector T cells in vivo. THE JOURNAL OF IMMUNOLOGY 2012; 189:1812-25. [PMID: 22798667 DOI: 10.4049/jimmunol.1200552] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
T cell expression of inhibitory proteins can be a critical component for the regulation of immunopathology owing to self-reactivity or potentially exuberant responses to pathogens, but it may also limit T cell responses to some malignancies, particularly if the tumor Ag being targeted is a self-protein. We found that the abrogation of Src homology region 2 domain-containing phosphatase-1 (SHP-1) in tumor-reactive CD8(+) T cells improves the therapeutic outcome of adoptive immunotherapy in a mouse model of disseminated leukemia, with benefit observed in therapy employing transfer of CD8(+) T cells alone or in the context of also providing supplemental IL-2. SHP-1(-/-) and SHP-1(+/+) effector T cells were expanded in vitro for immunotherapy. Following transfer in vivo, the SHP-1(-/-) effector T cells exhibited enhanced short-term accumulation, followed by greater contraction, and they ultimately formed similar numbers of long-lived, functional memory cells. The increased therapeutic effectiveness of SHP-1(-/-) effector cells was also observed in recipients that expressed the tumor Ag as a self-antigen in the liver, without evidence of inducing autoimmune toxicity. SHP-1(-/-) effector CD8(+) T cells expressed higher levels of eomesodermin, which correlated with enhanced lysis of tumor cells. Furthermore, reduction of SHP-1 expression in tumor-reactive effector T cells by retroviral transduction with vectors that express SHP-1-specific small interfering RNA, a translatable strategy, also exhibited enhanced antitumor activity in vivo. These studies suggest that abrogating SHP-1 in effector T cells may improve the efficacy of tumor elimination by T cell therapy without affecting the ability of the effector cells to persist and provide a long-term response.
Collapse
Affiliation(s)
- Ingunn M Stromnes
- Department of Immunology, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Yi T, Elson P, Mitsuhashi M, Jacobs B, Hollovary E, Budd TG, Spiro T, Triozzi P, Borden EC. Phosphatase inhibitor, sodium stibogluconate, in combination with interferon (IFN) alpha 2b: phase I trials to identify pharmacodynamic and clinical effects. Oncotarget 2012; 2:1155-64. [PMID: 22201704 DOI: 10.18632/oncotarget.393] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Since sodium stibogluconate (SSG) inhibited phosphatases including SHP-1 and augmented anti-tumor actions of IFN-α2b in vitro and in mice, two Phase I trials of SSG/IFN-α2b combination were undertaken to evaluate safety and target inhibition. Escalating doses of SSG (200-1200 mg/m2) and fixed doses of IFN-α2b (3x106 units/m2) with or without chemotherapy (dacarbazine, vinblastine, cisplatin) were evaluated for side effects and impact on SHP-1 phospho-substrates and IFNα-stimulated-genes (ISGs) in peripheral blood in 40 patients with metastatic melanoma, soft tissue sarcomas, gastrointestinal stromal tumors, and breast or colorectal carcinomas who did not have other established treatment options. Common adverse events were bone marrow suppression, fatigue, gastrointestinal upset, and asymptomatic lipase elevation (n=13); the latter was dose related and mostly after 10d of SSG/IFN-α2b in combination. Levels of SHP-1 substrates (pSTAT1, pSTAT3, pLck and pSlp76) were increased (up to 3x) in peripheral blood cells following SSG with no potentiation by combination with IFN-α2b. Representative ISGs in peripheral blood were induced after IFN-α2b at 4 and 24 hrs with selective modulations by combination. The median time on trials was 2.3 months (10-281d) with no objective regression of disease. Alive at 1y were 17/40 (43%) patients and after 2y were 8/40 (20%) following treatment initiation. These data demonstrate that SSG impacted signal molecules consistent with PTP inhibition and was tolerated in combination with IFN-α2b. Phase II investigations of SSG could safely utilize doses of up to 1200 mg/m2 of SSG for up to 10d alone or in combination with IFN-α2b with or without chemotherapy.
Collapse
Affiliation(s)
- Taolin Yi
- Taussig Cancer Institute, The Cleveland Clinic, Cleveland, OH, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Sobhia ME, Paul S, Shinde R, Potluri M, Gundam V, Kaur A, Haokip T. Protein tyrosine phosphatase inhibitors: a patent review (2002 – 2011). Expert Opin Ther Pat 2012; 22:125-53. [DOI: 10.1517/13543776.2012.661414] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
37
|
Abstract
The role of B cells in autoimmune diseases involves different cellular functions, including the well-established secretion of autoantibodies, autoantigen presentation and ensuing reciprocal interactions with T cells, secretion of inflammatory cytokines, and the generation of ectopic germinal centers. Through these mechanisms B cells are involved both in autoimmune diseases that are traditionally viewed as antibody mediated and also in autoimmune diseases that are commonly classified as T cell mediated. This new understanding of the role of B cells opened up novel therapeutic options for the treatment of autoimmune diseases. This paper includes an overview of the different functions of B cells in autoimmunity; the involvement of B cells in systemic lupus erythematosus, rheumatoid arthritis, and type 1 diabetes; and current B-cell-based therapeutic treatments. We conclude with a discussion of novel therapies aimed at the selective targeting of pathogenic B cells.
Collapse
Affiliation(s)
- Christiane S. Hampe
- Department of Medicine, University of Washington, SLU-276, 850 Republican, Seattle, WA 98109, USA
- *Christiane S. Hampe:
| |
Collapse
|
38
|
Kodippili GC, Spector J, Hale J, Giger K, Hughes MR, McNagny KM, Birkenmeier C, Peters L, Ritchie K, Low PS. Analysis of the mobilities of band 3 populations associated with ankyrin protein and junctional complexes in intact murine erythrocytes. J Biol Chem 2011; 287:4129-38. [PMID: 22147703 DOI: 10.1074/jbc.m111.294439] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Current models of the erythrocyte membrane depict three populations of band 3: (i) a population tethered to spectrin via ankyrin, (ii) a fraction attached to the spectrin-actin junctional complex via adducin, and (iii) a freely diffusing population. Because many studies of band 3 diffusion also distinguish three populations of the polypeptide, it has been speculated that the three populations envisioned in membrane models correspond to the three fractions observed in diffusion analyses. To test this hypothesis, we characterized band 3 diffusion by single-particle tracking in wild-type and ankyrin- and adducin-deficient erythrocytes. We report that ∼40% of total band 3 in wild-type murine erythrocytes is attached to ankyrin, whereas ∼33% is immobilized by adducin, and ∼27% is not attached to any cytoskeletal anchor. More detailed analyses reveal that mobilities of individual ankyrin- and adducin-tethered band 3 molecules are heterogeneous, varying by nearly 2 orders of magnitude and that there is considerable overlap in diffusion coefficients for adducin and ankyrin-tethered populations. Taken together, the data suggest that although the ankyrin- and adducin-immobilized band 3 can be monitored separately, significant heterogeneity still exists within each population, suggesting that structural and compositional properties likely vary considerably within each band 3 complex.
Collapse
Affiliation(s)
- Gayani C Kodippili
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Yi T, Elson P, Mitsuhashi M, Jacobs B, Hollovary E, Budd GT, Spiro T, Triozzi P, Borden EC. Phosphatase inhibitor, sodium stibogluconate, in combination with interferon (IFN) alpha 2b: phase I trials to identify pharmacodynamic and clinical effects. Oncotarget 2011; 2:1155-1164. [PMID: 22201704 PMCID: PMC3282074 DOI: 10.18632/oncotarget.563] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Accepted: 12/21/2011] [Indexed: 12/27/2022] Open
Abstract
Since sodium stibogluconate (SSG) inhibited phosphatases including SHP-1 and augmented anti-tumor actions of IFN-α2b in vitro and in mice, two Phase I trials of SSG/IFN-α2b combination were undertaken to evaluate safety and target inhibition. Escalating doses of SSG (200-1200 mg/m2) and fixed doses of IFN-α2b (3x106 units/m2) with or without chemotherapy (dacarbazine, vinblastine, cisplatin) were evaluated for side effects and impact on SHP-1 phospho-substrates and IFNα-stimulated-genes (ISGs) in peripheral blood in 40 patients with metastatic melanoma, soft tissue sarcomas, gastrointestinal stromal tumors, and breast or colorectal carcinomas who did not have other established treatment options. Common adverse events were bone marrow suppression, fatigue, gastrointestinal upset, and asymptomatic lipase elevation (n=13); the latter was dose related and mostly after 10d of SSG/IFN-α2b in combination. Levels of SHP-1 substrates (pSTAT1, pSTAT3, pLck and pSlp76) were increased (up to 3x) in peripheral blood cells following SSG with no potentiation by combination with IFN-α2b. Representative ISGs in peripheral blood were induced after IFN-α2b at 4 and 24 hrs with selective modulations by combination. The median time on trials was 2.3 months (10-281d) with no objective regression of disease. Alive at 1y were 17/40 (43%) patients and after 2y were 8/40 (20%) following treatment initiation. These data demonstrate that SSG impacted signal molecules consistent with PTP inhibition and was tolerated in combination with IFN-α2b. Phase II investigations of SSG could safely utilize doses of up to 1200 mg/m2 of SSG for up to 10d alone or in combination with IFN-α2b with or without chemotherapy.
Collapse
Affiliation(s)
- Taolin Yi
- Taussig Cancer Institute, The Cleveland Clinic, Cleveland, OH, USA
- Department of Immunology of Lerner Research Institute, The Cleveland Clinic, Cleveland, OH, USA
| | - Paul Elson
- Taussig Cancer Institute, The Cleveland Clinic, Cleveland, OH, USA
| | | | - Barbara Jacobs
- Taussig Cancer Institute, The Cleveland Clinic, Cleveland, OH, USA
| | - Emese Hollovary
- Taussig Cancer Institute, The Cleveland Clinic, Cleveland, OH, USA
| | - G. Thomas Budd
- Taussig Cancer Institute, The Cleveland Clinic, Cleveland, OH, USA
| | - Timothy Spiro
- Taussig Cancer Institute, The Cleveland Clinic, Cleveland, OH, USA
| | - Pierre Triozzi
- Taussig Cancer Institute, The Cleveland Clinic, Cleveland, OH, USA
| | - Ernest C. Borden
- Taussig Cancer Institute, The Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
40
|
Baba Y, Kurosaki T. Impact of Ca2+ signaling on B cell function. Trends Immunol 2011; 32:589-94. [PMID: 22000665 DOI: 10.1016/j.it.2011.09.004] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Revised: 08/26/2011] [Accepted: 09/09/2011] [Indexed: 10/16/2022]
|
41
|
Pathak S, Mohan C. Cellular and molecular pathogenesis of systemic lupus erythematosus: lessons from animal models. Arthritis Res Ther 2011; 13:241. [PMID: 21989039 PMCID: PMC3308079 DOI: 10.1186/ar3465] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a complex disease characterized by the appearance of autoantibodies against nuclear antigens and the involvement of multiple organ systems, including the kidneys. The precise immunological events that trigger the onset of clinical manifestations of SLE are not yet well understood. However, research using various mouse strains of spontaneous and inducible lupus in the last two decades has provided insights into the role of the immune system in the pathogenesis of this disease. According to our present understanding, the immunological defects resulting in the development of SLE can be categorized into two phases: (a) systemic autoimmunity resulting in increased serum antinuclear and antiglomerular autoantibodies and (b) immunological events that occur within the target organ and result in end organ damage. Aberrations in the innate as well as adaptive arms of the immune system both play an important role in the genesis and progression of lupus. Here, we will review the present understanding - as garnered from studying mouse models - about the roles of various immune cells in lupus pathogenesis.
Collapse
Affiliation(s)
- Simanta Pathak
- Department of Internal Medicine (Rheumatology), University of Texas, Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75235, USA
| | | |
Collapse
|
42
|
Protein tyrosine phosphatases as drug targets: strategies and challenges of inhibitor development. Future Med Chem 2011; 2:1563-76. [PMID: 21426149 DOI: 10.4155/fmc.10.241] [Citation(s) in RCA: 218] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Several 'classical' protein tyrosine phosphatases are attractive therapeutic targets, including PTP1B for obesity and Type II diabetes; SHP2 for cancer and Lyp for rheumatoid arthritis. Progress has been made in identifying a broad range of chemically distinct inhibitors; however, developing selective and cell-permeable clinically useful compounds has proved challenging. Here the ongoing challenges and recent significant advances in the field are reviewed. Key novel compounds are highlighted and a perspective on the future of phosphatase inhibitor development is presented.
Collapse
|
43
|
Rego D, Kumar A, Nilchi L, Wright K, Huang S, Kozlowski M. IL-6 Production Is Positively Regulated by Two DistinctSrcHomology Domain 2-Containing Tyrosine Phosphatase-1 (SHP-1)–Dependent CCAAT/Enhancer-Binding Protein β and NF-κB Pathways and an SHP-1–Independent NF-κB Pathway in Lipopolysaccharide-Stimulated Bone Marrow-Derived Macrophages. THE JOURNAL OF IMMUNOLOGY 2011; 186:5443-56. [DOI: 10.4049/jimmunol.1003551] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
44
|
Lambert AA, Imbeault M, Gilbert C, Tremblay MJ. HIV-1 induces DCIR expression in CD4+ T cells. PLoS Pathog 2010; 6:e1001188. [PMID: 21085612 PMCID: PMC2978727 DOI: 10.1371/journal.ppat.1001188] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Accepted: 10/12/2010] [Indexed: 01/30/2023] Open
Abstract
The C-type lectin receptor DCIR, which has been shown very recently to act as an attachment factor for HIV-1 in dendritic cells, is expressed predominantly on antigen-presenting cells. However, this concept was recently challenged by the discovery that DCIR can also be detected in CD4+ T cells found in the synovial tissue from rheumatoid arthritis (RA) patients. Given that RA and HIV-1 infections share common features such as a chronic inflammatory condition and polyclonal immune hyperactivation status, we hypothesized that HIV-1 could promote DCIR expression in CD4+ T cells. We report here that HIV-1 drives DCIR expression in human primary CD4+ T cells isolated from patients (from both aviremic/treated and viremic/treatment naive persons) and cells acutely infected in vitro (seen in both virus-infected and uninfected cells). Soluble factors produced by virus-infected cells are responsible for the noticed DCIR up-regulation on uninfected cells. Infection studies with Vpr- or Nef-deleted viruses revealed that these two viral genes are not contributing to the mechanism of DCIR induction that is seen following acute infection of CD4+ T cells with HIV-1. Moreover, we report that DCIR is linked to caspase-dependent (induced by a mitochondria-mediated generation of free radicals) and -independent intrinsic apoptotic pathways (involving the death effector AIF). Finally, we demonstrate that the higher surface expression of DCIR in CD4+ T cells is accompanied by an enhancement of virus attachment/entry, replication and transfer. This study shows for the first time that HIV-1 induces DCIR membrane expression in CD4+ T cells, a process that might promote virus dissemination throughout the infected organism. The type II transmembrane protein DCIR belongs to the C-type lectin domain family receptor and is predominantly expressed in cells of the myeloid lineage. However recent evidence suggests that it can also be induced in CD4+ T cells placed under an inflammatory condition. We assessed the capacity of HIV-1 to promote DCIR expression in CD4+ T cells because the establishment of an inflammatory state is a hallmark of this retroviral infection in humans. We report here that a higher DCIR expression is detected not only in CD4+ T cells acutely infected with HIV-1 in vitro but also in clinical cell samples. Additional studies suggest a possible link between DCIR induction and apoptosis through both caspase-dependent and -independent intrinsic pathways. The greater expression of DCIR on the surface of CD4+ T cells results in more efficient virus attachment/entry, replication and transfer processes.
Collapse
Affiliation(s)
| | | | - Caroline Gilbert
- Centre Hospitalier Universitaire de Québec-CHUL, Québec, Canada
- Département de Microbiologie-Infectiologie et Immunologie, Université Laval, Québec, Canada
- * E-mail: (MJT); (CG)
| | - Michel J. Tremblay
- Centre Hospitalier Universitaire de Québec-CHUL, Québec, Canada
- Département de Microbiologie-Infectiologie et Immunologie, Université Laval, Québec, Canada
- * E-mail: (MJT); (CG)
| |
Collapse
|
45
|
Fowler CC, Pao LI, Blattman JN, Greenberg PD. SHP-1 in T cells limits the production of CD8 effector cells without impacting the formation of long-lived central memory cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2010; 185:3256-67. [PMID: 20696858 PMCID: PMC2980864 DOI: 10.4049/jimmunol.1001362] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
During responses against viruses and malignancies, naive CD8 T lymphocytes expand to form both short-lived effector cells and a population containing cells with the potential to be long-lived and participate in memory responses (memory precursor effector cells). The strength of antigenic, costimulatory, and cytokine signals during responses impacts the magnitude and type of CD8 populations formed. In vitro studies have revealed that the tyrosine phosphatase Src homology region 2 domain-containing phosphatase-1 (SHP-1) regulates signal transduction from receptors on T cells including the TCR, helping set the activation threshold, and therefore may shape responses of mature CD8 T cells in vivo. Analysis of CD8 T cells from motheaten mice, which are globally deficient in SHP-1, proved problematic due to cell-extrinsic effects of SHP-1 deficiency in non-T cells on CD8 T cells. Therefore, a conditional knockout of SHP-1 in mature single-positive T cells was developed to analyze cell-intrinsic consequences of complete and partial SHP-1 deficiency on CD8 T cell responses to acute viral infection. The results demonstrated that SHP-1 has disparate effects on subpopulations of responding cells, limiting the magnitude and quality of primary and secondary responses by reducing the number of short-lived effector cells generated without affecting the size of the memory precursor effector cell pool that leads to formation of long-term memory.
Collapse
Affiliation(s)
- Carla C. Fowler
- Department of Immunology, School of Medicine, University of Washington, Seattle, WA 98195-6425
| | - Lily I. Pao
- Beth Israel Deaconess Medical Center, Boston, MA 02215
| | - Joseph N. Blattman
- Department of Immunology, School of Medicine, University of Washington, Seattle, WA 98195-6425
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | - Philip D. Greenberg
- Department of Immunology, School of Medicine, University of Washington, Seattle, WA 98195-6425
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| |
Collapse
|
46
|
Höglund P, Brodin P. Current perspectives of natural killer cell education by MHC class I molecules. Nat Rev Immunol 2010; 10:724-34. [PMID: 20818413 DOI: 10.1038/nri2835] [Citation(s) in RCA: 163] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
From the early days of natural killer (NK) cell research, it was clear that MHC genes controlled the specificity of mouse NK cell-dependent responses, such as the ability to reject transplanted allogeneic bone marrow and to kill tumour cells. Although several mechanisms that are involved in this 'education' process have been clarified, most of the mechanisms have still to be identified. Here, we review the current understanding of the processes that are involved in NK cell education, including how the host MHC class I molecules regulate responsiveness and receptor repertoire formation in NK cells and the signalling pathways that are involved.
Collapse
Affiliation(s)
- Petter Höglund
- Department of Microbiology, Tumour and Cell Biology, Karolinska Institutet, SE-171 77, Stockholm, Sweden
| | | |
Collapse
|
47
|
Abstract
IFN-alpha and skin-infiltrating activated T lymphocytes have important roles in the pathogenesis of psoriasis. T cells from psoriatic patients display an increased sensitivity to IFN-alpha, but the pathological mechanisms behind the hyperresponsiveness to IFN-alpha remained unknown. In this study, we show that psoriatic T cells display deficient expression of the suppressor of cytokine signaling (SOCS)3 in response to IFN-alpha and a low baseline expression of the SH2-domain-containing protein-tyrosine phosphatase (SHP)-1 when compared with skin T cells from nonpsoriatic donors. Moreover, IFN-alpha-stimulated psoriatic T cells show enhanced activation of JAKs (JAK1 and TYK2) and signal transducers and activators of transcription. Increased expression of SOCS3 proteins resulting from proteasomal blockade partially inhibits IFN-alpha response. Similarly, forced expression of SOCS3 and SHP-1 inhibits IFN-alpha signaling in psoriatic T cells. In conclusion, our data suggest that loss of regulatory control is involved in the aberrant hypersensitivity of psoriatic T cells to IFN-alpha.
Collapse
|
48
|
Kostanyan IA, Vonarshenko AV, Lipkin VM. STAT1: A many-sided transcription factor. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2010. [DOI: 10.1134/s1068162010010024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
49
|
Feske S. ORAI1 and STIM1 deficiency in human and mice: roles of store-operated Ca2+ entry in the immune system and beyond. Immunol Rev 2009; 231:189-209. [PMID: 19754898 DOI: 10.1111/j.1600-065x.2009.00818.x] [Citation(s) in RCA: 254] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Store-operated Ca2+ entry (SOCE) is a mechanism used by many cells types including lymphocytes and other immune cells to increase intracellular Ca2+ concentrations to initiate signal transduction. Activation of immunoreceptors such as the T-cell receptor, B-cell receptor, or Fc receptors results in the release of Ca2+ ions from endoplasmic reticulum (ER) Ca2+ stores and subsequent activation of plasma membrane Ca2+ channels such as the well-characterized Ca2+ release-activated Ca2+ (CRAC) channel. Two genes have been identified that are essential for SOCE: ORAI1 as the pore-forming subunit of the CRAC channel in the plasma membrane and stromal interaction molecule-1 (STIM1) sensing the ER Ca2+ concentration and activating ORAI1-CRAC channels. Intense efforts in the past several years have focused on understanding the molecular mechanism of SOCE and the role it plays for cell functions in vitro and in vivo. A number of transgenic mouse models have been generated to investigate the role of ORAI1 and STIM1 in immunity. In addition, mutations in ORAI1 and STIM1 identified in immunodeficient patients provide valuable insight into the role of both genes and SOCE. This review focuses on the role of ORAI1 and STIM1 in vivo, discussing the phenotypes of ORAI1- and STIM1-deficient human patients and mice.
Collapse
Affiliation(s)
- Stefan Feske
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
50
|
Nashi E, Wang Y, Diamond B. The role of B cells in lupus pathogenesis. Int J Biochem Cell Biol 2009; 42:543-50. [PMID: 19850148 DOI: 10.1016/j.biocel.2009.10.011] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Accepted: 10/13/2009] [Indexed: 12/18/2022]
Abstract
Autoantibodies clearly contribute to tissue inflammation in systemic lupus erythematosus. In order to therapeutically target B cells making pathogenic autoantibodies, it is necessary to identify their phenotype. It is also important to understand the defects in B cell repertoire selection that permit pathogenic autoreactive B cells to enter the immunocompetent B cell repertoire. We present the data that both marginal zone and follicular B cells can produce pathogenic autoantibodies. Moreover, we discuss how B cell survival and maturation are regulated centrally prior to antigen activation and in the periphery after antigen activation to form the repertoire that generates the spectrum of circulating antibodies.
Collapse
Affiliation(s)
- Emil Nashi
- The Center for Autoimmune and Musculoskeletal Disease, The Feinstein Institute for Medical Research, 350 Community Drive, Manhasset, NY 11030, United States
| | | | | |
Collapse
|