1
|
Hwang CY, Seo SM, Cho ES, Nam YD, Park SL, Lim SI, Seo MJ. A Novel Carotenoid-Producing Bacterium, Paenibacillus aurantius sp. nov., Isolated from Korean Marine Environment. Microorganisms 2023; 11:2719. [PMID: 38004730 PMCID: PMC10673419 DOI: 10.3390/microorganisms11112719] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 10/24/2023] [Accepted: 11/05/2023] [Indexed: 11/26/2023] Open
Abstract
The novel bacterial strain MBLB1776T was isolated from marine mud in Uljin, the Republic of Korea. Cells were Gram-positive, spore-forming, non-motile, and non-flagellated rods. Growth was observed at a temperature range of 10-45 °C, pH range of 6.0-8.0, and NaCl concentrations of 0-4% (w/v). Phylogenetic analysis of the 16S rRNA gene sequence revealed that MBLB1776T belonged to the genus Paenibacillus and was closely related to Paenibacillus cavernae C4-5T (94.83% similarity). Anteiso-C15:0, iso-C16:0, C16:0, and iso-C15:0 were the predominant fatty acids. Menaquinone 7 was identified as the major isoprenoid quinone. The major polar lipids included diphosphatidylglycerol, phosphatidylglycerol, and phosphatidylethanolamine. Its whole genome was 6.3 Mb in size, with a G+C content of 55.8 mol%. Average nucleotide identity and in silico DNA-DNA hybridization values were below the species delineation threshold. Gene function analysis revealed the presence of a complete C30 carotenoid biosynthetic pathway. Intriguingly, MBLB1776T harbored carotenoid pigments, imparting an orange color to whole cells. Based on this comprehensive polyphasic taxonomy, the MBLB1776T strain represents a novel species within the genus Paenibacillus, for which the name Paenibacillus aurantius sp. nov is proposed. The type strain was MBLB1776T (=KCTC 43279T = JCM 34220T). This is the first report of a carotenoid-producing Paenibacillus sp.
Collapse
Affiliation(s)
- Chi Young Hwang
- Department of Bioengineering and Nano-Bioengineering, Incheon National University, Incheon 22012, Republic of Korea; (C.Y.H.); (E.-S.C.)
| | - Sung Man Seo
- Advanced Geo-Materials Research Department, Pohang Branch, Korea Institute of Geoscience and Mineral Resources, Pohang 37559, Republic of Korea;
| | - Eui-Sang Cho
- Department of Bioengineering and Nano-Bioengineering, Incheon National University, Incheon 22012, Republic of Korea; (C.Y.H.); (E.-S.C.)
| | - Young-Do Nam
- Personalized Diet Research Group, Korea Food Research Institute, Wanju 55365, Republic of Korea; (Y.-D.N.); (S.-L.P.)
| | - So-Lim Park
- Personalized Diet Research Group, Korea Food Research Institute, Wanju 55365, Republic of Korea; (Y.-D.N.); (S.-L.P.)
| | - Seong-Il Lim
- Personalized Diet Research Group, Korea Food Research Institute, Wanju 55365, Republic of Korea; (Y.-D.N.); (S.-L.P.)
| | - Myung-Ji Seo
- Department of Bioengineering and Nano-Bioengineering, Incheon National University, Incheon 22012, Republic of Korea; (C.Y.H.); (E.-S.C.)
- Division of Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
- Research Center for Bio Materials & Process Development, Incheon National University, Incheon 22012, Republic of Korea
| |
Collapse
|
2
|
Mapelli-Brahm P, Gómez-Villegas P, Gonda ML, León-Vaz A, León R, Mildenberger J, Rebours C, Saravia V, Vero S, Vila E, Meléndez-Martínez AJ. Microalgae, Seaweeds and Aquatic Bacteria, Archaea, and Yeasts: Sources of Carotenoids with Potential Antioxidant and Anti-Inflammatory Health-Promoting Actions in the Sustainability Era. Mar Drugs 2023; 21:340. [PMID: 37367666 DOI: 10.3390/md21060340] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/25/2023] [Accepted: 05/27/2023] [Indexed: 06/28/2023] Open
Abstract
Carotenoids are a large group of health-promoting compounds used in many industrial sectors, such as foods, feeds, pharmaceuticals, cosmetics, nutraceuticals, and colorants. Considering the global population growth and environmental challenges, it is essential to find new sustainable sources of carotenoids beyond those obtained from agriculture. This review focuses on the potential use of marine archaea, bacteria, algae, and yeast as biological factories of carotenoids. A wide variety of carotenoids, including novel ones, were identified in these organisms. The role of carotenoids in marine organisms and their potential health-promoting actions have also been discussed. Marine organisms have a great capacity to synthesize a wide variety of carotenoids, which can be obtained in a renewable manner without depleting natural resources. Thus, it is concluded that they represent a key sustainable source of carotenoids that could help Europe achieve its Green Deal and Recovery Plan. Additionally, the lack of standards, clinical studies, and toxicity analysis reduces the use of marine organisms as sources of traditional and novel carotenoids. Therefore, further research on the processing of marine organisms, the biosynthetic pathways, extraction procedures, and examination of their content is needed to increase carotenoid productivity, document their safety, and decrease costs for their industrial implementation.
Collapse
Affiliation(s)
- Paula Mapelli-Brahm
- Food Colour and Quality Laboratory, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain
| | - Patricia Gómez-Villegas
- Laboratory of Biochemistry, Faculty of Experimental Sciences, Marine International Campus of Excellence and REMSMA, University of Huelva, 21071 Huelva, Spain
| | - Mariana Lourdes Gonda
- Área Microbiología, Departamento de Biociencias, Facultad de Química, Universidad de la República, Gral Flores 2124, Montevideo 11800, Uruguay
| | - Antonio León-Vaz
- Laboratory of Biochemistry, Faculty of Experimental Sciences, Marine International Campus of Excellence and REMSMA, University of Huelva, 21071 Huelva, Spain
| | - Rosa León
- Laboratory of Biochemistry, Faculty of Experimental Sciences, Marine International Campus of Excellence and REMSMA, University of Huelva, 21071 Huelva, Spain
| | | | | | - Verónica Saravia
- Departamento de Bioingeniería, Facultad de Ingeniería, Instituto de Ingeniería Química, Universidad de la República, Montevideo 11300, Uruguay
| | - Silvana Vero
- Área Microbiología, Departamento de Biociencias, Facultad de Química, Universidad de la República, Gral Flores 2124, Montevideo 11800, Uruguay
| | - Eugenia Vila
- Departamento de Bioingeniería, Facultad de Ingeniería, Instituto de Ingeniería Química, Universidad de la República, Montevideo 11300, Uruguay
| | | |
Collapse
|
3
|
Hitchcock A, Hunter CN, Sobotka R, Komenda J, Dann M, Leister D. Redesigning the photosynthetic light reactions to enhance photosynthesis - the PhotoRedesign consortium. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:23-34. [PMID: 34709696 DOI: 10.1111/tpj.15552] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/12/2021] [Accepted: 10/21/2021] [Indexed: 06/13/2023]
Abstract
In this Perspective article, we describe the visions of the PhotoRedesign consortium funded by the European Research Council of how to enhance photosynthesis. The light reactions of photosynthesis in individual phototrophic species use only a fraction of the solar spectrum, and high light intensities can impair and even damage the process. In consequence, expanding the solar spectrum and enhancing the overall energy capacity of the process, while developing resilience to stresses imposed by high light intensities, could have a strong positive impact on food and energy production. So far, the complexity of the photosynthetic machinery has largely prevented improvements by conventional approaches. Therefore, there is an urgent need to develop concepts to redesign the light-harvesting and photochemical capacity of photosynthesis, as well as to establish new model systems and toolkits for the next generation of photosynthesis researchers. The overall objective of PhotoRedesign is to reconfigure the photosynthetic light reactions so they can harvest and safely convert energy from an expanded solar spectrum. To this end, a variety of synthetic biology approaches, including de novo design, will combine the attributes of photosystems from different photoautotrophic model organisms, namely the purple bacterium Rhodobacter sphaeroides, the cyanobacterium Synechocystis sp. PCC 6803 and the plant Arabidopsis thaliana. In parallel, adaptive laboratory evolution will be applied to improve the capacity of reimagined organisms to cope with enhanced input of solar energy, particularly in high and fluctuating light.
Collapse
Affiliation(s)
- Andrew Hitchcock
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK
| | - Christopher Neil Hunter
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK
| | - Roman Sobotka
- Laboratory of Photosynthesis, Institute of Microbiology of the Czech Academy of Sciences, Třeboň, 37901, Czech Republic
| | - Josef Komenda
- Laboratory of Photosynthesis, Institute of Microbiology of the Czech Academy of Sciences, Třeboň, 37901, Czech Republic
| | - Marcel Dann
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, 82152, Germany
| | - Dario Leister
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, 82152, Germany
| |
Collapse
|
4
|
When Carotenoid Biosynthesis Genes Met Escherichia coli : The Early Days and These Days. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021. [PMID: 33783740 DOI: 10.1007/978-981-15-7360-6_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register]
Abstract
Nowadays, carotenoid biosynthetic pathways are sufficiently elucidated at gene levels in bacteria, fungi, and higher plants. Also, in pathway engineering for isoprenoid (terpene) production, carotenoids have been one of the most studied targets. However, in 1988 when the author started carotenoid research, almost no carotenoid biosynthesis genes were identified. It was because carotenogenic enzymes are easily inactivated when extracted from their organism sources, indicating that their purification and the subsequent cloning of the corresponding genes were infeasible or difficult. On the other hand, natural product chemistry of carotenoids had advanced a great deal. Thus, those days, carotenoid biosynthetic pathways had been proposed based mainly on the chemical structures of carotenoids without findings on relevant enzymes and genes. This chapter shows what happened on carotenoid research, when carotenoid biosynthesis genes met non-carotenogenic Escherichia coli around 1990, followed by subsequent developments.
Collapse
|
5
|
Carotenoid Production in Escherichia coli: Case of Acyclic Carotenoids. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021. [PMID: 33783742 DOI: 10.1007/978-981-15-7360-6_17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2023]
Abstract
Among isoprenoids, carotenoids were the first group of compounds which were synthesized from foreign genes in non-carotenogenic Escherichia coli as a heterologous host. A great variety of carotenoids have been shown to be produced in E. coli due to the introduction of combinations of carotenoid biosynthesis genes, which were isolated from carotenogenic organisms. Carotenoids that have been produced in E. coli are mostly cyclic carotenoids that retain carbon 40 (C40) basic structure, except for acyclic carotene lycopene. On the other hand, acyclic carotenoids, which can also be produced in E. coli, comprise a group of carotenoids with diverse chain lengths, i.e., with C20, C30, C40, or C50 basic skeleton. As for acyclic C30, C40, and C50 carotenoids, carotenogenic genes of bacterial origin were needed, while a cleavage dioxygenase gene of higher-plant origin was utilized for the synthesis of acyclic C20 carotenoids. The present chapter is a review on the biosynthesis of such diverse acyclic carotenoids at the gene level.
Collapse
|
6
|
García-López JI, Niño-Medina G, Olivares-Sáenz E, Lira-Saldivar RH, Barriga-Castro ED, Vázquez-Alvarado R, Rodríguez-Salinas PA, Zavala-García F. Foliar Application of Zinc Oxide Nanoparticles and Zinc Sulfate Boosts the Content of Bioactive Compounds in Habanero Peppers. PLANTS (BASEL, SWITZERLAND) 2019; 8:E254. [PMID: 31366005 PMCID: PMC6724079 DOI: 10.3390/plants8080254] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 07/14/2019] [Accepted: 07/24/2019] [Indexed: 11/17/2022]
Abstract
The physiological responses of habanero pepper plants (Capsicum chinense Jacq.) to foliar applications of zinc sulphate and zinc nano-fertilizer were evaluated in greenhouse trials. The effect of the supplement on fruit quality of habanero pepper was particularly observed. Habanero pepper plants were grown to maturity, and during the main stages of phenological development, they were treated with foliar applications of Zn at concentrations of 1000 and 2000 mg L-1 in the form of zinc sulfate (ZnSO4) and zinc oxide nanoparticles (ZnO NPs). Additional Zn was not supplied to the control treatment plants. ZnO NPs at a concentration of 1000 mg L-1 positively affected plant height, stem diameter, and chlorophyll content, and increased fruit yield and biomass accumulation compared to control and ZnSO4 treatments. ZnO NPs at 2000 mg L-1 negatively affected plant growth but significantly increased fruit quality, capsaicin content by 19.3%, dihydrocapsaicin by 10.9%, and Scoville Heat Units by 16.4%. In addition, at 2000 ZnO NPs mg L-1 also increased content of total phenols and total flavonoids (soluble + bound) in fruits (14.50% and 26.9%, respectively), which resulted in higher antioxidant capacity in ABTS (2,2'azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)), DPPH (2,2-diphenyl-1-picrylhydrazyl), and FRAP (ferric reducing antioxidant power) (15.4%, 31.8%, and 20.5%, respectively). These results indicate that application of ZnO NPs could be employed in habanero pepper production to improve yield, quality, and nutraceutical properties of fruits.
Collapse
Affiliation(s)
- Josué I García-López
- Universidad Autónoma de Nuevo León, Laboratorio de Química y Bioquímica, Facultad de Agronomía, Francisco Villa S/N, Col. Ex-Hacienda el Canadá, C.P. 66050 General Escobedo, Nuevo León, Mexico
| | - Guillermo Niño-Medina
- Universidad Autónoma de Nuevo León, Laboratorio de Química y Bioquímica, Facultad de Agronomía, Francisco Villa S/N, Col. Ex-Hacienda el Canadá, C.P. 66050 General Escobedo, Nuevo León, Mexico.
| | - Emilio Olivares-Sáenz
- Universidad Autónoma de Nuevo León, Laboratorio de Química y Bioquímica, Facultad de Agronomía, Francisco Villa S/N, Col. Ex-Hacienda el Canadá, C.P. 66050 General Escobedo, Nuevo León, Mexico
| | - Ricardo H Lira-Saldivar
- Departamento de Agroplasticultura, Centro de Investigación en Química Aplicada (CIQA), CP. 25294 Saltillo, Coahuila, Mexico
| | - Enrique Díaz Barriga-Castro
- Departamento de Agroplasticultura, Centro de Investigación en Química Aplicada (CIQA), CP. 25294 Saltillo, Coahuila, Mexico
| | - Rigoberto Vázquez-Alvarado
- Universidad Autónoma de Nuevo León, Laboratorio de Química y Bioquímica, Facultad de Agronomía, Francisco Villa S/N, Col. Ex-Hacienda el Canadá, C.P. 66050 General Escobedo, Nuevo León, Mexico
| | - Pablo A Rodríguez-Salinas
- Universidad Autónoma de Nuevo León, Laboratorio de Química y Bioquímica, Facultad de Agronomía, Francisco Villa S/N, Col. Ex-Hacienda el Canadá, C.P. 66050 General Escobedo, Nuevo León, Mexico
| | - Francisco Zavala-García
- Universidad Autónoma de Nuevo León, Laboratorio de Química y Bioquímica, Facultad de Agronomía, Francisco Villa S/N, Col. Ex-Hacienda el Canadá, C.P. 66050 General Escobedo, Nuevo León, Mexico.
| |
Collapse
|
7
|
Li L, Furubayashi M, Otani Y, Maoka T, Misawa N, Kawai-Noma S, Saito K, Umeno D. Nonnatural biosynthetic pathway for 2-hydroxylated xanthophylls with C 50-carotenoid backbone. J Biosci Bioeng 2019; 128:438-444. [PMID: 31029539 DOI: 10.1016/j.jbiosc.2019.04.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 03/17/2019] [Accepted: 04/02/2019] [Indexed: 11/18/2022]
Abstract
Carotenoids are structurally diverse pigments with various important biological functions. There has been a large interest in the search for novel carotenoid structures, since only a slight structural changes can result in a drastic difference in their biological functions. Carotenoid-modifying enzymes show remarkable substrate promiscuity, allowing rapid access to a vast set of novel carotenoids by combinatorial biosynthesis. We previously constructed a nonnatural carotenoid biosynthetic pathway in Escherichia coli that can produce C50 carotenoids having a longer chain than their natural C40 counterparts. In this study, a carotenoid 2,2'-hydroxylase (crtG) from Brevundimonas sp. SD212 was coexpressed together with our laboratory-engineered C50-zeaxanthin and C50-astaxanthin biosynthetic pathways. We identified six novel nonnatural C50-xanthophylls, namely, C50-nostoxanthin, C50-caloxanthin, C50-adonixanthin, C50-4-ketonostoxanthin, C50-2-hydroxyastaxanthin, and C50-2,2'-dihydroxyastaxanthin.
Collapse
Affiliation(s)
- Ling Li
- Department of Applied Chemistry and Biotechnology, Chiba University, Chiba 263-8522, Japan
| | - Maiko Furubayashi
- Department of Applied Chemistry and Biotechnology, Chiba University, Chiba 263-8522, Japan
| | - Yusuke Otani
- Department of Applied Chemistry and Biotechnology, Chiba University, Chiba 263-8522, Japan
| | - Takashi Maoka
- Research Institute for Production Development, Kyoto 606-0805, Japan
| | - Norihiko Misawa
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, Ishikawa 921-8836, Japan
| | - Shigeko Kawai-Noma
- Department of Applied Chemistry and Biotechnology, Chiba University, Chiba 263-8522, Japan
| | - Kyoichi Saito
- Department of Applied Chemistry and Biotechnology, Chiba University, Chiba 263-8522, Japan
| | - Daisuke Umeno
- Department of Applied Chemistry and Biotechnology, Chiba University, Chiba 263-8522, Japan.
| |
Collapse
|
8
|
Li L, Furubayashi M, Hosoi T, Seki T, Otani Y, Kawai-Noma S, Saito K, Umeno D. Construction of a Nonnatural C 60 Carotenoid Biosynthetic Pathway. ACS Synth Biol 2019; 8:511-520. [PMID: 30689939 DOI: 10.1021/acssynbio.8b00385] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Longer-chain carotenoids have interesting physiological and electronic/photonic properties due to their extensive polyene structures. Establishing nonnatural biosynthetic pathways for longer-chain carotenoids in engineerable microorganisms will provide a platform to diversify and explore the potential of these molecules. We have previously reported the biosynthesis of nonnatural C50 carotenoids by engineering a C30-carotenoid backbone synthase (CrtM) from Staphylococcus aureus. In the present work, we conducted a series of experiments to engineer C60 carotenoid pathways. Stepwise introduction of cavity-expanding mutations together with stabilizing mutations progressively shifted the product size specificity of CrtM toward efficient synthases for C60 carotenoids. By coexpressing these CrtM variants with hexaprenyl diphosphate synthase, we observed that C60-phytoene accumulated together with a small amount of C65-phytoene, which is the largest carotenoid biosynthesized to date. Although these carotenoids failed to serve as a substrate for carotene desaturases, the C25-half of the C55-phytoene was accepted by the variant of phytoene desaturase CrtI, leading to accumulation of the largest carotenoid-based pigments. Continuing effort should further expand the scope of carotenoids, which are promising components for various biological (light-harvesting, antioxidant, and communicating) and nonbiological (photovoltaic, photonic, and field-effect transistor) systems.
Collapse
Affiliation(s)
- Ling Li
- Department of Applied Chemistry and Biotechnology, Chiba University, 263-8522 Chiba, Japan
| | - Maiko Furubayashi
- Department of Applied Chemistry and Biotechnology, Chiba University, 263-8522 Chiba, Japan
| | - Takuya Hosoi
- Department of Applied Chemistry and Biotechnology, Chiba University, 263-8522 Chiba, Japan
| | - Takahiro Seki
- Department of Applied Chemistry and Biotechnology, Chiba University, 263-8522 Chiba, Japan
| | - Yusuke Otani
- Department of Applied Chemistry and Biotechnology, Chiba University, 263-8522 Chiba, Japan
| | - Shigeko Kawai-Noma
- Department of Applied Chemistry and Biotechnology, Chiba University, 263-8522 Chiba, Japan
| | - Kyoichi Saito
- Department of Applied Chemistry and Biotechnology, Chiba University, 263-8522 Chiba, Japan
| | - Daisuke Umeno
- Department of Applied Chemistry and Biotechnology, Chiba University, 263-8522 Chiba, Japan
| |
Collapse
|
9
|
Li J, Shen J, Sun Z, Li J, Li C, Li X, Zhang Y. Discovery of Several Novel Targets that Enhance β-Carotene Production in Saccharomyces cerevisiae. Front Microbiol 2017; 8:1116. [PMID: 28663749 PMCID: PMC5471310 DOI: 10.3389/fmicb.2017.01116] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 05/31/2017] [Indexed: 11/13/2022] Open
Abstract
β-Carotene is the precursor of vitamin A, and also exhibits multiple pharmaceutical functions by itself. In comparison to chemical synthesis, the production of β-carotene in microbes by metabolic engineering strategy is relatively inexpensive. Identifying genes enhancing β-carotene production in microbes is important for engineering a strain of producing higher yields of β-carotene. Most of previous efforts in identifying the gene targets have focused on the isoprenoid pathway where the β-carotene biosynthesis belongs. However, due to the complex interactions between metabolic fluxes, seemingly irrelevant genes that are outside the isoprenoid pathway might also affect β-carotene biosynthesis. To this end, here we provided an example that several novel gene targets, which are outside the isoprenoid pathway, have improving effects on β-carotene synthesis in yeast cells, when they were over-expressed. Among these targets, the class E protein of the vacuolar protein-sorting pathway (Did2) led to the highest improvement in β-carotene yields, which was 2.1-fold to that of the corresponding control. This improvement was further explained by the observation that the overexpression of the DID2 gene generally boosted the transcriptions of β-carotene pathway genes. The mechanism by which the other targets improve the production of β-carotene is discussed.
Collapse
Affiliation(s)
- Jia Li
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of SciencesWuhan, China
| | - Jia Shen
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of SciencesWuhan, China
| | - Zhiqiang Sun
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of SciencesWuhan, China
| | - Jing Li
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of SciencesWuhan, China
| | - Changfu Li
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of SciencesWuhan, China
| | - Xiaohua Li
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of SciencesWuhan, China.,University of Chinese Academy of SciencesBeijing, China
| | - Yansheng Zhang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of SciencesWuhan, China
| |
Collapse
|
10
|
Rezaeeyan Z, Safarpour A, Amoozegar MA, Babavalian H, Tebyanian, H, Shakeri F. High carotenoid production by a halotolerant bacterium, Kocuria sp. strain QWT-12 and anticancer activity of its carotenoid. EXCLI JOURNAL 2017; 16:840-851. [PMID: 28827999 PMCID: PMC5547384 DOI: 10.17179/excli2017-218] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 03/30/2017] [Indexed: 11/13/2022]
Abstract
Halophilic prokaryotes are extremophile microorganisms that grow optimally in media containing salts and almost appeared pigmented. Many of them contain high concentrations of carotenoids. Amongst 15 strains of halophilic prokaryotes isolated from industrial tannery wastewater in Qom, a Gram-stain-positive coccoid, aerobic, non-endospore-forming, halotolerant bacterium designated as strain QWT-12 showed high capacity in the production of carotenoids in a wide range of culture medium factors. 16S rRNA gene analysis showed that this strain belongs to the genus Kocuria. Carotenoids from this strain were extracted by methanol. MTT assay for extracted carotenoid was carried out against seven cancer cell lines belonging to breast, lung and prostate cancer with negative control of fibroblast cell line through six concentration levels to find out IC50. Based on statistical analysis of data from MTT assay, IC50 of 1, 4 and 8 mg/ml for MCF-7, (A549 and MDA-MB-468) and MDA-MB-231 respectively. Additionally, qualitative carotenoid determination was carried out using spectrophotometric method in 300-600 nm and thin layer chromatography, respectively. According to the obtained results from mass spectrophotometry, absorption spectrum of strain QWT-12 is similar to the absorption spectrum of the carotenoid neurosporene.
Collapse
Affiliation(s)
- Zahra Rezaeeyan
- Extremophiles Laboratory, Department of Microbiology, Faculty of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran
| | - Atefeh Safarpour
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 19395-4644, Iran
| | - Mohammad Ali Amoozegar
- Extremophiles Laboratory, Department of Microbiology, Faculty of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran
| | - Hamid Babavalian
- Applied Virology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Hamid Tebyanian,
- Division of Tissue Engineering and Regenerative Medicine, Nanobiotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran,Research Center for Prevention of Oral and Dental Disease, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Fatemeh Shakeri
- Division of Tissue Engineering and Regenerative Medicine, Nanobiotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Shen HJ, Cheng BY, Zhang YM, Tang L, Li Z, Bu YF, Li XR, Tian GQ, Liu JZ. Dynamic control of the mevalonate pathway expression for improved zeaxanthin production in Escherichia coli and comparative proteome analysis. Metab Eng 2016; 38:180-190. [DOI: 10.1016/j.ymben.2016.07.012] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Revised: 06/07/2016] [Accepted: 07/25/2016] [Indexed: 01/13/2023]
|
12
|
Lichtenthaler HK. Peter Heinrich Böger, 1935-2015. Z NATURFORSCH C 2016; 71:287-293. [PMID: 27542200 DOI: 10.1515/znc-2016-0120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
On October 22, 2015, Professor Peter Heinrich Böger, an excellent and internationally highly regarded plant scientist, died in Constance, Germany, at the age of 80 years. He was a broadly oriented researcher of photosynthetic processes, with emphasis on the mode of action of herbicides in chloroplasts and on the biodiversity of nitrogen-fixing cyanobacteria. He was a very active, much committed person, who advanced not only plant science research, but also scientific communication, international cooperation and the promotion of young scientists. His scientific career, his manifold activities as editor and board member, and his merits and honors are described in this tribute.
Collapse
|
13
|
Kim SH, Kim MS, Lee BY, Lee PC. Generation of structurally novel short carotenoids and study of their biological activity. Sci Rep 2016; 6:21987. [PMID: 26902326 PMCID: PMC4763220 DOI: 10.1038/srep21987] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 02/04/2016] [Indexed: 12/19/2022] Open
Abstract
Recent research interest in phytochemicals has consistently driven the efforts in the metabolic engineering field toward microbial production of various carotenoids. In spite of systematic studies, the possibility of using C30 carotenoids as biologically functional compounds has not been explored thus far. Here, we generated 13 novel structures of C30 carotenoids and one C35 carotenoid, including acyclic, monocyclic, and bicyclic structures, through directed evolution and combinatorial biosynthesis, in Escherichia coli. Measurement of radical scavenging activity of various C30 carotenoid structures revealed that acyclic C30 carotenoids showed higher radical scavenging activity than did DL-α-tocopherol. We could assume high potential biological activity of the novel structures of C30 carotenoids as well, based on the neuronal differentiation activity observed for the monocyclic C30 carotenoid 4,4′-diapotorulene on rat bone marrow mesenchymal stem cells. Our results demonstrate that a series of structurally novel carotenoids possessing biologically beneficial properties can be synthesized in E. coli.
Collapse
Affiliation(s)
- Se H Kim
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kogle Alle 6, 2970 Hørsholm, Denmark
| | - Moon S Kim
- Department of Molecular Science and Technology and Department of Applied Chemistry and Biological Engineering, Ajou University, Woncheon-dong, Yeongtong-gu, Suwon 443-749, South Korea
| | - Bun Y Lee
- Department of Molecular Science and Technology and Department of Applied Chemistry and Biological Engineering, Ajou University, Woncheon-dong, Yeongtong-gu, Suwon 443-749, South Korea
| | - Pyung C Lee
- Department of Molecular Science and Technology and Department of Applied Chemistry and Biological Engineering, Ajou University, Woncheon-dong, Yeongtong-gu, Suwon 443-749, South Korea
| |
Collapse
|
14
|
Abstract
Carotenoid is a group of pigments naturally present in vegetal raw materials that have biological properties. These pigments have been used mainly in food, pharmaceutical, and cosmetic industries. Currently, the industrial production is executed through chemical synthesis, but natural alternatives of carotenoid production/attainment are in development. The carotenoid extraction occurs generally with vegetal oil and organic solvents, but supercritical technology is an alternative technique to the recovery of these compounds, presenting many advantages when compared to conventional process. Brazil has an ample diversity of vegetal sources inadequately investigated and, then, a major development of optimization and validation of carotenoid production/attainment methods is necessary, so that the benefits of these pigments can be delivered to the consumer.
Collapse
|
15
|
Huang L, Pu Y, Yang X, Zhu X, Cai J, Xu Z. Engineering of global regulator cAMP receptor protein (CRP) in Escherichia coli for improved lycopene production. J Biotechnol 2015; 199:55-61. [PMID: 25687103 DOI: 10.1016/j.jbiotec.2015.02.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 02/05/2015] [Accepted: 02/05/2015] [Indexed: 01/23/2023]
Abstract
Transcriptional engineering has received significant attention for improving strains by modulating the behavior of transcription factors, which could be used to reprogram a series of gene transcriptions and enable multiple simultaneous modifications at the genomic level. In this study, engineering of the cAMP receptor protein (CRP) was explored with the aim of subtly balancing entire pathway networks and potentially improving lycopene production without significant genetic intervention in other pathways. Amino acid mutations were introduced to CRP by error-prone PCR, and three variants (mcrp26, mcrp159 and mcrp424) with increased lycopene productivity were screened. Combinations of three point mutations were then created via site-directed mutagenesis. The best mutant gene (mcrp26) was integrated into the genome of E. coli BW25113-BIE to replace the wild-type crp gene (MT-1), which resulted in a higher lycopene production (18.49mg/g DCW) compared to the original strain (WT). The mutant strain MT-1 was further investigated in a 10-L bench-top fermentor with a lycopene yield of 128mg/l at 20h, approximately 25% higher than WT. DNA microarray analyses showed that 396 genes (229 up-regulated and 167 down-regulated) were differentially expressed in the mutant MT-1 compared to WT. Finally, the introduction of the mutant crp gene (mcrp26) increased β-carotene production in E. coli. This is the first report of improving the phenotype for metabolite overproduction in E. coli using a CRP engineering strategy.
Collapse
Affiliation(s)
- Lei Huang
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Yue Pu
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Xiuliang Yang
- Shangdong Jincheng Biopharmaceutical Corporation Limited, Zibo, China
| | - Xiangcheng Zhu
- Hunan Engineering Research Center of Combinatorial Biosynthesis and Natural Product Drug Discovery, Changsha, China
| | - Jin Cai
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Zhinan Xu
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China.
| |
Collapse
|
16
|
Wang C, Kim JH, Kim SW. Synthetic biology and metabolic engineering for marine carotenoids: new opportunities and future prospects. Mar Drugs 2014; 12:4810-32. [PMID: 25233369 PMCID: PMC4178492 DOI: 10.3390/md12094810] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2014] [Revised: 08/29/2014] [Accepted: 09/01/2014] [Indexed: 11/17/2022] Open
Abstract
Carotenoids are a class of diverse pigments with important biological roles such as light capture and antioxidative activities. Many novel carotenoids have been isolated from marine organisms to date and have shown various utilizations as nutraceuticals and pharmaceuticals. In this review, we summarize the pathways and enzymes of carotenoid synthesis and discuss various modifications of marine carotenoids. The advances in metabolic engineering and synthetic biology for carotenoid production are also reviewed, in hopes that this review will promote the exploration of marine carotenoid for their utilizations.
Collapse
Affiliation(s)
- Chonglong Wang
- Division of Applied Life Science (BK21 Plus), PMBBRC, Gyeongsang National University, Jinju 660-701, Korea.
| | - Jung-Hun Kim
- Division of Applied Life Science (BK21 Plus), PMBBRC, Gyeongsang National University, Jinju 660-701, Korea.
| | - Seon-Won Kim
- Division of Applied Life Science (BK21 Plus), PMBBRC, Gyeongsang National University, Jinju 660-701, Korea.
| |
Collapse
|
17
|
Barbachano-Torres A, Castelblanco-Matiz LM, Ramos-Valdivia AC, Cerda-García-Rojas CM, Salgado LM, Flores-Ortiz CM, Ponce-Noyola T. Analysis of proteomic changes in colored mutants of Xanthophyllomyces dendrorhous (Phaffia rhodozyma). Arch Microbiol 2014; 196:411-21. [DOI: 10.1007/s00203-014-0979-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 02/18/2014] [Accepted: 03/15/2014] [Indexed: 01/23/2023]
|
18
|
Sandmann G. Carotenoids of biotechnological importance. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2014; 148:449-67. [PMID: 25326165 DOI: 10.1007/10_2014_277] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Carotenoids are natural pigments with antioxidative functions that protect against oxidative stress. They are essential for humans and must be supplied through the diet. Carotenoids are the precursors for the visual pigment rhodopsin, and lutein and zeaxanthin must be accumulated in the yellow eye spot to protect the retina from excess light and ultraviolet damage. There is a global market for carotenoids as food colorants, animal feed, and nutraceuticals. Some carotenoids are chemically synthesized, whereas others are from natural sources. Microbial mass production systems of industrial interest for carotenoids are in use, and new ones are being developed by metabolic pathway engineering of bacteria, fungi, and plants. Several examples will be highlighted in this chapter.
Collapse
Affiliation(s)
- Gerhard Sandmann
- Biosynthesis Group, Molecular Biosciences, Goethe University Frankfurt, Max-von-Laue Str. 9, 60438, Frankfurt, Germany,
| |
Collapse
|
19
|
Improvement of NADPH bioavailability in Escherichia coli by replacing NAD(+)-dependent glyceraldehyde-3-phosphate dehydrogenase GapA with NADP (+)-dependent GapB from Bacillus subtilis and addition of NAD kinase. J Ind Microbiol Biotechnol 2013; 40:1449-60. [PMID: 24048943 DOI: 10.1007/s10295-013-1335-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 08/28/2013] [Indexed: 02/03/2023]
Abstract
Enzymatic synthesis of some industrially important compounds depends heavily on cofactor NADPH as the reducing agent. This is especially true in the synthesis of chiral compounds that are often used as pharmaceutical intermediates to generate the correct stereochemistry in bioactive products. The high cost and technical difficulty of cofactor regeneration often pose a challenge for such biocatalytic reactions. In this study, to increase NADPH bioavailability, the native NAD(+)-dependent glyceraldehyde-3-phosphate dehydrogenase (GAPDH) gapA gene in Escherichia coli was replaced with a NADP(+)-dependent gapB from Bacillus subtilis. To overcome the limitation of NADP(+) availability, E. coli NAD kinase, nadK was also coexpressed with gapB. The recombinant strains were then tested in three reporting systems: biosynthesis of lycopene, oxidation of cyclohexanone with cyclohexanone monooxygenase (CHMO), and an anaerobic system utilizing 2-haloacrylate reductase (CAA43). In all the reporting systems, replacing NAD(+)-dependent GapA activity with NADP(+)-dependent GapB activity increased the synthesis of NADPH-dependent compounds. The increase was more pronounced when NAD kinase was also overexpressed in the case of the one-step reaction catalyzed by CAA43 which approximately doubled the product yield. These results validate this novel approach to improve NADPH bioavailability in E. coli and suggest that the strategy can be applied in E. coli or other bacterium-based production of NADPH-dependent compounds.
Collapse
|
20
|
Biochemistry and molecular biology of carotenoid biosynthesis in chili peppers (Capsicum spp.). Int J Mol Sci 2013; 14:19025-53. [PMID: 24065101 PMCID: PMC3794819 DOI: 10.3390/ijms140919025] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 07/29/2013] [Accepted: 08/17/2013] [Indexed: 12/13/2022] Open
Abstract
Capsicum species produce fruits that synthesize and accumulate carotenoid pigments, which are responsible for the fruits' yellow, orange and red colors. Chili peppers have been used as an experimental model for studying the biochemical and molecular aspects of carotenoid biosynthesis. Most reports refer to the characterization of carotenoids and content determination in chili pepper fruits from different species, cultivars, varieties or genotypes. The types and levels of carotenoids differ between different chili pepper fruits, and they are also influenced by environmental conditions. Yellow-orange colors of chili pepper fruits are mainly due to the accumulation of α- and β-carotene, zeaxanthin, lutein and β-cryptoxanthin. Carotenoids such as capsanthin, capsorubin and capsanthin-5,6-epoxide confer the red colors. Chromoplasts are the sites of carotenoid pigment synthesis and storage. According to the most accepted theory, the synthesis of carotenoids in chili peppers is controlled by three loci: c1, c2 and y. Several enzymes participating in carotenoid biosynthesis in chili pepper fruits have been isolated and characterized, and the corresponding gene sequences have been reported. However, there is currently limited information on the molecular mechanisms that regulate this biosynthetic pathway. Approaches to gain more knowledge of the regulation of carotenoid biosynthesis are discussed.
Collapse
|
21
|
Production of β-carotene and acetate in recombinant Escherichia coli with or without mevalonate pathway at different culture temperature or pH. BIOTECHNOL BIOPROC E 2013. [DOI: 10.1007/s12257-012-0272-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
22
|
Metabolic precursors and cofactors stimulate astaxanthin production in Paracoccus MBIC 01143. Food Sci Biotechnol 2012. [DOI: 10.1007/s10068-012-0225-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
23
|
Efficient heterologous transformation of Chlamydomonas reinhardtii npq2 mutant with the zeaxanthin epoxidase gene isolated and characterized from Chlorella zofingiensis. Mar Drugs 2012; 10:1955-1976. [PMID: 23118714 PMCID: PMC3475266 DOI: 10.3390/md10091955] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Revised: 08/06/2012] [Accepted: 08/22/2012] [Indexed: 11/16/2022] Open
Abstract
In the violaxanthin cycle, the violaxanthin de-epoxidase and zeaxanthin epoxidase catalyze the inter-conversion between violaxanthin and zeaxanthin in both plants and green algae. The zeaxanthin epoxidase gene from the green microalga Chlorella zofingiensis (Czzep) has been isolated. This gene encodes a polypeptide of 596 amino acids. A single copy of Czzep has been found in the C. zofingiensis genome by Southern blot analysis. qPCR analysis has shown that transcript levels of Czzep were increased after zeaxanthin formation under high light conditions. The functionality of Czzep gene by heterologous genetic complementation in the Chlamydomonas mutant npq2, which lacks zeaxanthin epoxidase (ZEP) activity and accumulates zeaxanthin in all conditions, was analyzed. The Czzep gene was adequately inserted in the pSI105 vector and expressed in npq2. The positive transformants were able to efficiently convert zeaxanthin into violaxanthin, as well as to restore their maximum quantum efficiency of the PSII (Fv/Fm). These results show that Chlamydomonas can be an efficient tool for heterologous expression and metabolic engineering for biotechnological applications.
Collapse
|
24
|
High-level production of the industrial product lycopene by the photosynthetic bacterium Rhodospirillum rubrum. Appl Environ Microbiol 2012; 78:7205-15. [PMID: 22865070 DOI: 10.1128/aem.00545-12] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The biosynthesis of the major carotenoid spirilloxanthin by the purple nonsulfur bacterium Rhodospirillum rubrum is thought to occur via a linear pathway proceeding through phytoene and, later, lycopene as intermediates. This assumption is based solely on early chemical evidence (B. H. Davies, Biochem. J. 116:93-99, 1970). In most purple bacteria, the desaturation of phytoene, catalyzed by the enzyme phytoene desaturase (CrtI), leads to neurosporene, involving only three dehydrogenation steps and not four as in the case of lycopene. We show here that the chromosomal insertion of a kanamycin resistance cassette into the crtC-crtD region of the partial carotenoid gene cluster, whose gene products are responsible for the downstream processing of lycopene, leads to the accumulation of the latter as the major carotenoid. We provide spectroscopic and biochemical evidence that in vivo, lycopene is incorporated into the light-harvesting complex 1 as efficiently as the methoxylated carotenoids spirilloxanthin (in the wild type) and 3,4,3',4'-tetrahydrospirilloxanthin (in a crtD mutant), both under semiaerobic, chemoheterotrophic, and photosynthetic, anaerobic conditions. Quantitative growth experiments conducted in dark, semiaerobic conditions, using a growth medium for high cell density and high intracellular membrane levels, which are suitable for the conventional industrial production in the absence of light, yielded lycopene at up to 2 mg/g (dry weight) of cells or up to 15 mg/liter of culture. These values are comparable to those of many previously described Escherichia coli strains engineered for lycopene production. This study provides the first genetic proof that the R. rubrum CrtI produces lycopene exclusively as an end product.
Collapse
|
25
|
Del Carmen Chavez-Parga M, Munguia-Franco A, Aguilar-Torres M, M. Escamilla-Silva E. Optimization of Zeaxanthin Production by Immobilized <i>Flavobacterium</i> sp. Cells in Fluidized Bed Bioreactor. ACTA ACUST UNITED AC 2012. [DOI: 10.4236/aim.2012.24078] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
26
|
Abstract
A noncarotenogenic microbe E. coli was engineered for high production of carotenoids. To increase the isoprenoid flux, the chromosomal native promoters of the rate-controlling steps (dxs, idi and ispDispF) in the isoprenoid pathway were replaced with a strong bacteriophage T5 promoter (P(T5)) by using the λ-Red recombinase system in combination with the Flp/FRT site-specific recombination system for marker excision and P1 transduction for gene trait stacking. The resulting high isoprenoid flux E. coli can be used as a starting strain to produce various carotenoids by introducing heterologous carotenoid genes. In this study, the high isoprenoid flux E. coli was transformed with a plasmid carrying the β-carotene biosynthetic genes from Pantoea stewartii for β-carotene production.
Collapse
Affiliation(s)
- Wonchul Suh
- DuPont Central Research and Development, Wilmington, DE, USA.
| |
Collapse
|
27
|
Lu CH, Choi JH, Moran NE, Jin YS, Erdman JW. Laboratory-scale production of 13C-labeled lycopene and phytoene by bioengineered Escherichia coli. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:9996-10005. [PMID: 21888370 PMCID: PMC3178727 DOI: 10.1021/jf202599z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Consumption of tomato products has been associated with decreased risks of chronic diseases such as cardiovascular disease and cancer, and therefore the biological functions of tomato carotenoids such as lycopene, phytoene, and phytofluene are being investigated. To study the absorption, distribution, metabolism, and excretion of these carotenoids, a bioengineered Escherichia coli model was evaluated for laboratory-scale production of stable isotope-labeled carotenoids. Carotenoid biosynthetic genes from Enterobacter agglomerans were introduced into the BL21Star(DE3) strain to yield lycopene. Over 96% of accumulated lycopene was in the all-trans form, and the molecules were highly enriched with 13C by 13C-glucose dosing. In addition, error-prone PCR was used to disrupt phytoene desaturase (crtI) function and create a phytoene-accumulating strain, which was also found to maintain the transcription of phytoene synthase (crtB). Phytoene molecules were also highly enriched with 13C when the 13C-glucose was the only carbon source. The development of this production model will provide carotenoid researchers a source of labeled tracer materials to further investigate the metabolism and biological functions of these carotenoids.
Collapse
Affiliation(s)
- Chi-Hua Lu
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, 905 S. Goodwin Ave, Urbana, Illinois 61801
| | - Jin-Ho Choi
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, 905 S. Goodwin Ave, Urbana, Illinois 61801
| | - Nancy Engelmann Moran
- The Ohio State University Comprehensive Cancer Center, The Ohio State University, 300 W. 10th Ave., Columbus, Ohio 43210
| | - Yong-Su Jin
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, 905 S. Goodwin Ave, Urbana, Illinois 61801
| | - John W. Erdman
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, 905 S. Goodwin Ave, Urbana, Illinois 61801
| |
Collapse
|
28
|
Abstract
Carotenoids are one of the most widespread groups of pigments in nature and more than 600 of these have been identified. Beside provitamin A activity, carotenoids are important as antioxidants and protective agents against various diseases. They are isoprenoids with a long polyene chain containing 3 to 15 conjugated double bonds, which determines their absorption spectrum. Cyclization at one or both ends occurs in hydrocarbon carotene, while xanthophylls are formed by the introduction of oxygen. In addition, modifications involving chain elongation, isomerization, or degradation are also found. The composition of carotenoids in food may vary depending upon production practices, post-harvest handling, processing, and storage. In higher plants they are synthesized in the plastid. Both mevalonate dependent and independent pathway for the formation of isopentenyl diphosphate are known. Isopentenyl diphosphate undergoes a series of addition and condensation reactions to form phytoene, which gets converted to lycopene. Cyclization of lycopene either leads to the formation of β-carotene and its derivative xanthophylls, β-cryptoxanthin, zeaxanthin, antheraxanthin, and violaxanthin or α-carotene and lutein. Even though most of the carotenoid biosynthetic genes have been cloned and identified, some aspects of carotenoid formation and manipulation in higher plants especially remain poorly understood. In order to enhance the carotenoid content of crop plants to a level that will be required for the prevention of diseases, there is a need for research in both the basic and the applied aspects.
Collapse
Affiliation(s)
- K K Namitha
- Human Resource Development, Central Food Technological Research Institute (CSIR), Mysore, India
| | | |
Collapse
|
29
|
Kim JH, Kim SW, Nguyen DQA, Li H, Kim SB, Seo YG, Yang JK, Chung IY, Kim DH, Kim CJ. Production of β-carotene by recombinant Escherichia coli with engineered whole mevalonate pathway in batch and fed-batch cultures. BIOTECHNOL BIOPROC E 2009. [DOI: 10.1007/s12257-008-0230-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
30
|
Kim SW, Kim JB, Ryu JM, Jung JK, Kim JH. High-level production of lycopene in metabolically engineered E. coli. Process Biochem 2009. [DOI: 10.1016/j.procbio.2009.04.018] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
31
|
2′-Methyl and 1′-xylosyl derivatives of 2′-hydroxyflexixanthin are major carotenoids of Hymenobacter species. Tetrahedron Lett 2009. [DOI: 10.1016/j.tetlet.2009.03.117] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
32
|
The production of beta-carotene by recombinant Escherichia coli engineered with whole mevalonate pathway in batch and fed-batch cultures. J Biotechnol 2008. [DOI: 10.1016/j.jbiotec.2008.07.1137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
33
|
Mantzouridou F, Tsimidou MZ. Lycopene formation in Blakeslea trispora. Chemical aspects of a bioprocess. Trends Food Sci Technol 2008. [DOI: 10.1016/j.tifs.2008.01.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
34
|
Iniesta AA, Cervantes M, Murillo FJ. Conversion of the lycopene monocyclase of Myxococcus xanthus into a bicyclase. Appl Microbiol Biotechnol 2008; 79:793-802. [DOI: 10.1007/s00253-008-1481-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2008] [Revised: 03/10/2008] [Accepted: 03/28/2008] [Indexed: 10/22/2022]
|
35
|
Differences in carotenoid composition among hymenobacter and related strains support a tree-like model of carotenoid evolution. Appl Environ Microbiol 2008; 74:2016-22. [PMID: 18263749 DOI: 10.1128/aem.02306-07] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Carotenoids are structurally diverse pigments of biotechnological interest as natural colorants and in the prevention of human disease. The carotenoids present in 19 strains taxonomically related to the poorly described, nonphotosynthetic bacterial genus Hymenobacter, including 10 novel isolates cultivated from Victoria Upper Glacier, Antarctica, were characterized using high-performance liquid chromatography (HPLC). Nine chemically distinct carotenoids, present in various combinations irresolvable by conventional crude spectrophotometric analyses, were purified by preparative HPLC and characterized using UV-visible light absorption spectroscopy and high-resolution mass spectrometry. All major Hymenobacter carotenoids appear to be derived from a common backbone of 2'-hydroxyflexixanthin and include previously unreported presumptive hexosyl, pentosyl, and methyl derivatives. Their distribution does not, however, correlate perfectly with 16S rRNA gene phylogeny. Carotenoid composition, therefore, may be strain specific and does not follow a strictly homogeneous pattern of vertical evolutionary descent.
Collapse
|
36
|
Identification of an alternative translation initiation site for the Pantoea ananatis lycopene cyclase (crtY) gene in E. coli and its evolutionary conservation. Protein Expr Purif 2007; 58:23-31. [PMID: 18096401 DOI: 10.1016/j.pep.2007.11.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2007] [Revised: 11/05/2007] [Accepted: 11/12/2007] [Indexed: 11/20/2022]
Abstract
Previous sequence analyses of the lycopene cyclase gene (crt Y) from Pantoea ananatis revealed that translation of its protein product in Escherichia coli began at the ATG start codon. We found, however, that this enzyme could also be produced in E. coli without the ATG start codon present. Results of experiments using crt Y mutants revealed that a GTG (Val) sequence, located in-frame and 24 bp downstream of the ATG, could act as a potential start codon. Additionally, a point-mutated GTA (Val), replaced from alternative GTG start codon, also displayed its potential as a start codon although the strength as a translation initiation codon was considerably weak. This finding suggests that non-ATG codons, especially one base pairing with the anticodon (3'-UAC-5') in fMet-tRNA, might be also able to function as start codon in translation process. Furthermore, amino acid sequence alignment of lycopene cyclases from different sources suggested that a Val residue located within the N-terminus of these enzymes might be used as an alternative translation initiation site. In particular, presence of a conserved Asp, located in-frame and 12 bp upstream of potential start codon, supports this assumption in view of the fact that Asp (GAT or GAC) can function as part of the Shine-Dalgano sequence (AGGAGG).
Collapse
|
37
|
Das A, Yoon SH, Lee SH, Kim JY, Oh DK, Kim SW. An update on microbial carotenoid production: application of recent metabolic engineering tools. Appl Microbiol Biotechnol 2007; 77:505-12. [PMID: 17912511 DOI: 10.1007/s00253-007-1206-3] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2007] [Revised: 09/12/2007] [Accepted: 09/12/2007] [Indexed: 10/22/2022]
Abstract
Carotenoids are ubiquitous pigments synthesized by plants, fungi, algae, and bacteria. Industrially, carotenoids are used in pharmaceuticals, neutraceuticals, and animal feed additives, as well as colorants in cosmetics and foods. Scientific interest in dietary carotenoids has increased in recent years because of their beneficial effects on human health, such as lowering the risk of cancer and enhancement of immune system function, which are attributed to their antioxidant potential. The availability of carotenoid genes from carotenogenic microbes has made possible the synthesis of carotenoids in non-carotenogenic microbes. The increasing interest in microbial sources of carotenoid is related to consumer preferences for natural additives and the potential cost effectiveness of creating carotenoids via microbial biotechnology. In this review, we will describe the recent progress made in metabolic engineering of non-carotenogenic microorganisms with particular focus on the potential of Escherichia coli for improved carotenoid productivity.
Collapse
Affiliation(s)
- Amitabha Das
- Division of Applied Life Science (BK21), EB-NCRC and PMBBRC, Gyeongsang National University, Jinju, 660-701, South Korea
| | | | | | | | | | | |
Collapse
|
38
|
Klein-Marcuschamer D, Ajikumar PK, Stephanopoulos G. Engineering microbial cell factories for biosynthesis of isoprenoid molecules: beyond lycopene. Trends Biotechnol 2007; 25:417-24. [PMID: 17681626 DOI: 10.1016/j.tibtech.2007.07.006] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2007] [Revised: 05/24/2007] [Accepted: 07/20/2007] [Indexed: 11/23/2022]
Abstract
The isoprenoid superfamily of compounds holds great potential for delivering commercial therapeutics, neutraceuticals and fine chemicals. As such, it has attracted widespread attention and prompted research aimed at metabolic engineering of the pathway for isoprenoid overproduction. The carotenoids in particular, because of their convenient colorimetric screening properties, have facilitated the investigation of new tools for pathway optimization. Because all isoprenoids share common metabolic precursors, genetic platforms resulting from work with carotenoids can be applied to the biosynthesis of other valuable products. In this review we summarize the many tools and methods that have been developed for isoprenoid pathway engineering, and the potential of these technologies for producing other molecules of this family, especially terpenoids.
Collapse
|
39
|
Jin YS, Stephanopoulos G. Multi-dimensional gene target search for improving lycopene biosynthesis in Escherichia coli. Metab Eng 2007; 9:337-47. [PMID: 17509919 DOI: 10.1016/j.ymben.2007.03.003] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2006] [Revised: 03/02/2007] [Accepted: 03/11/2007] [Indexed: 11/29/2022]
Abstract
Identification of multiple gene targets that exhibit different modes of action toward a desired phenotype is a crucial step in strain improvement. Target identification methods based on traceable genetic perturbations and stoichiometric modeling have been employed before for the mining of putative overexpression and knock-out targets. Most search methods are sequential and, as such, quite limited in the space they can explore. In this study, we investigate a multi-dimensional search approach whereby unknown interactions of gene targets identified by different search methods are assessed by employing orthogonal search strategies. To this end, we combined knock-out and overexpression gene targets, identified through systematic and combinatorial approaches, respectively, in order to improve lycopene production in Escherichia coli. Specifically, we first identified multiple overexpression targets by screening genomic libraries of E. coli in a sequential-iterative manner. Targets so identified confirmed previously amplified genes in the non-mevalonate pathway (dxs and idi) and some regulatory genes (rpoS and appY). Additionally, this method revealed novel gene targets (yjiD, ycgW, yhbL, purDH, and yggT). A two-dimensional search was subsequently undertaken, whereby the selected overexpression targets were combined with the knock-out targets predicted by stoichiometric modeling. All combinations of single (rpoS, appY, yjiD, ycgW, and yhbL), double (yjiD-ycgW) and triple (yjiD-ycgW-yhbL) overexpressions with four gene deletion backgrounds, including single (delta gdhA, or delta aceE), double (delta gdhA delta aceE), and triple (delta gdhA delta aceE delta fdhF) knockouts, were constructed and evaluated for lycopene production. Investigation of the metabolic landscape spanned by these 40 strains identified the best-engineered strain (T5(P)-dxs, T5(P)-idi, rrnB(P)-yjiD-ycgW, delta gdh delta aceE delta fdhF, pACLYC), which accumulated 16,000 ppm (16 mg/g cell) of lycopene within 24 h in a batch shake flask with 5 g/L of glucose in M9 minimal medium.
Collapse
Affiliation(s)
- Yong-Su Jin
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | |
Collapse
|
40
|
Cunningham FX, Gantt E. A portfolio of plasmids for identification and analysis of carotenoid pathway enzymes: Adonis aestivalis as a case study. PHOTOSYNTHESIS RESEARCH 2007; 92:245-59. [PMID: 17634749 DOI: 10.1007/s11120-007-9210-0] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2007] [Accepted: 05/25/2007] [Indexed: 05/16/2023]
Abstract
Carotenoids are indispensable pigments of the photosynthetic apparatus in plants, algae, and cyanobacteria and are produced, as well, by many bacteria and fungi. Elucidation of biochemical pathways leading to the carotenoids that function in the photosynthetic membranes of land plants has been greatly aided by the use of carotenoid-accumulating strains of Escherichia coli as heterologous hosts for functional assays, in vivo, of the otherwise difficult to study membrane-associated pathway enzymes. This same experimental approach is uniquely well-suited to the discovery and characterization of yet-to-be identified enzymes that lead to carotenoids of the photosynthetic membranes in algal cells, to the multitude of carotenoids found in nongreen plant tissues, and to the myriad flavor and aroma compounds that are derived from carotenoids in plant tissues. A portfolio of plasmids suitable for the production in E. coli of a variety of carotenoids is presented herein. The use of these carotenoid-producing E. coli for the identification of cDNAs encoding enzymes of carotenoid and isoprenoid biosynthesis, for characterization of the enzymes these cDNAs encode, and for the production of specific carotenoids for use as enzyme substrates and reference standards, is described using the flowering plant Adonis aestivalis to provide examples. cDNAs encoding nine different A. aestivalis enzymes of carotenoid and isoprenoid synthesis were identified and the enzymatic activity of their products verified. Those cDNAs newly described include ones that encode phytoene synthase, beta-carotene hydroxylase, deoxyxylulose-5-phosphate synthase, isopentenyl diphosphate isomerase, and geranylgeranyl diphosphate synthase.
Collapse
Affiliation(s)
- Francis X Cunningham
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA.
| | | |
Collapse
|
41
|
Quinlan RF, Jaradat TT, Wurtzel ET. Escherichia coli as a platform for functional expression of plant P450 carotene hydroxylases. Arch Biochem Biophys 2007; 458:146-57. [PMID: 17196929 PMCID: PMC1810121 DOI: 10.1016/j.abb.2006.11.019] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2006] [Revised: 11/02/2006] [Accepted: 11/19/2006] [Indexed: 11/26/2022]
Abstract
Carotenoids and their derivatives are essential for growth, development, and signaling in plants and have an added benefit as nutraceuticals in food crops. Despite the importance of the biosynthetic pathway, there remain open questions regarding some of the later enzymes in the pathway. The CYP97 family of P450 enzymes was predicted to function in carotene ring hydroxylation, to convert provitamin A carotenes to non-provitamin A xanthophylls. However, substrate specificity was difficult to investigate directly in plants, which mask enzyme activities by a complex and dynamic metabolic network. To characterize the enzymes more directly, we amplified cDNAs from a model crop, Oryza sativa, and used functional complementation in Escherichia coli to test activity and specificity of members of Clans A and C. This heterologous system will be valuable for further study of enzyme interactions and substrate utilization needed to understand better the role of CYP97 hydroxylases in plant carotenoid biosynthesis.
Collapse
Affiliation(s)
- Rena F Quinlan
- Department of Biological Sciences, Lehman College, The City University of New York, 250 Bedford Park Boulevard West, Bronx, NY 10468, USA
| | | | | |
Collapse
|
42
|
Yoon SH, Kim JE, Lee SH, Park HM, Choi MS, Kim JY, Lee SH, Shin YC, Keasling JD, Kim SW. Engineering the lycopene synthetic pathway in E. coli by comparison of the carotenoid genes of Pantoea agglomerans and Pantoea ananatis. Appl Microbiol Biotechnol 2007; 74:131-9. [PMID: 17115209 DOI: 10.1007/s00253-006-0623-z] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2006] [Revised: 07/20/2006] [Accepted: 08/08/2006] [Indexed: 10/23/2022]
Abstract
The lycopene synthetic pathway was engineered in Escherichia coli using the carotenoid genes (crtE, crtB, and crtI) of Pantoea agglomerans and Pantoea ananatis. E. coli harboring the P. agglomerans crt genes produced 27 mg/l of lycopene in 2YT medium without isopropyl-beta-D: -thiogalactopyranoside (IPTG) induction, which was twofold higher than that produced by E. coli harboring the P. ananatis crt genes (12 mg/l lycopene) with 0.1 mM IPTG induction. The crt genes of P. agglomerans proved better for lycopene production in E. coli than those of P. ananatis. The crt genes of the two bacteria were also compared in E. coli harboring the mevalonate bottom pathway, which was capable of providing sufficient carotenoid building blocks, isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP), with exogenous mevalonate supplementation. Lycopene production significantly increased using the mevalonate bottom pathway and 60 mg/l of lycopene was obtained with the P. agglomerans crt genes, which was higher than that obtained with the P. ananatis crt genes (35 mg/l lycopene). When crtE among the P. ananatis crt genes was replaced with P. agglomerans crtE or Archaeoglobus fulgidus gps, both lycopene production and cell growth were similar to that obtained with P. agglomerans crt genes. The crtE gene was responsible for the observed difference in lycopene production and cell growth between E. coli harboring the crt genes of P. agglomerans and P. ananatis. As there was no significant difference in lycopene production between E. coli harboring P. agglomerans crtE and A. fulgidus gps, farnesyl diphosphate (FPP) synthesis was not rate-limiting in E. coli.
Collapse
Affiliation(s)
- Sang-Hwal Yoon
- Environmental Biotechnology National Core Research Center, Gyeongsang National University, Jinju, 660-701, South Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Sandmann G, Zhu C, Krubasik P, Fraser PD. The biotechnological potential of the al-2 gene from Neurospra crassa for the production of monocyclic keto hydroxy carotenoids. Biochim Biophys Acta Mol Cell Biol Lipids 2006; 1761:1085-92. [PMID: 16928467 DOI: 10.1016/j.bbalip.2006.06.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2006] [Revised: 06/23/2006] [Accepted: 06/27/2006] [Indexed: 11/30/2022]
Abstract
The al-2 cDNA from Neurospora crassa was cloned, expressed and functionally characterized. The enzyme comprised the two catalytic activities of a phytoene synthase and a lycopene cyclase. In contrast to most other lycopene cyclases, single cyclizations were preferentially catalyzed. This N. crassa enzyme is the first CrtYB-type monocyclic-acting lycopene cyclase. Therefore, this cDNA has been evaluated for the heterologous synthesis of monocyclic hydroxy-keto carotenoids by combination with other carotenogenic genes in Escherichia coli. Depending on the degree of desaturation, 4-keto derivatives of gamma-carotene and torulene with additional 2-hydroxy, 3-hydroxy and/or 1'-HO groups were generated and the following asymmetrical carotenoids identified and quantitated: 3-HO-4-keto-gamma-carotene, 2-HO-4-keto-gamma-carotene, 4-keto-1'-HO-gamma-carotene, 3,1'-(HO)(2)-4-keto-gamma-carotene, 3-HO-4-keto-torulene and 2-HO-4-keto-torulene. Among them all the monocyclic gamma-carotene derivatives with 9 conjugated double bonds were not found naturally before. Furthermore, 2-HO-4-keto-torulene with 10 conjugated double bonds is another novel carotenoid.
Collapse
Affiliation(s)
- Gerhard Sandmann
- Biosynthesis Group, Molecular Biosciences 213, J.W. Goethe Universität, P.O. Box 111932, D-60054 Frankfurt, Germany.
| | | | | | | |
Collapse
|
44
|
Kim SW, Kim JB, Jung WH, Kim JH, Jung JK. Over-production of β-carotene from metabolically engineered Escherichia coli. Biotechnol Lett 2006; 28:897-904. [PMID: 16786275 DOI: 10.1007/s10529-006-9023-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2006] [Revised: 02/24/2006] [Accepted: 02/27/2006] [Indexed: 10/24/2022]
Abstract
To produce recombinant beta-carotene in vitro, synthetic operons encoding genes governing its biosynthesis were engineered into Escherichia coli. Constructs harboring these operons were introduced into either a high-copy or low-copy cloning vector. beta-Carotene production from these recombinant E. coli cells was either constitutive or inducible depending upon plasmid copy number. The most efficient beta-carotene production was with the low-copy based vector. The process was increased incrementally from a 5 l to a 50 l fermentor and finally into a 300 l fermentor. The maximal beta-carotene yields achieved using the 50 l and 300 l fermentor were 390 mg l(-1) and 240 mg l(-1), respectively, with overall productivities of 7.8 mg l(-1) h(-1) and 4.8 mg l(-1) h(-1).
Collapse
Affiliation(s)
- Sung-Woo Kim
- AceBiotech Co Ltd, No 114 Bio-Venture Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong, Daejeon, Korea
| | | | | | | | | |
Collapse
|
45
|
Yuan LZ, Rouvière PE, Larossa RA, Suh W. Chromosomal promoter replacement of the isoprenoid pathway for enhancing carotenoid production in E. coli. Metab Eng 2006; 8:79-90. [PMID: 16257556 DOI: 10.1016/j.ymben.2005.08.005] [Citation(s) in RCA: 186] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2005] [Revised: 08/24/2005] [Accepted: 08/25/2005] [Indexed: 11/27/2022]
Abstract
For metabolic engineering it is advantageous in terms of stability, genetic regulation, and metabolic burden to modulate expression of relevant genes on the chromosome rather than relying on over-expression of the genes on multi-copy vectors. Here we have increased the production of beta-carotene in Escherichia coli by replacing the native promoter of the chromosomal isoprenoid genes with the strong bacteriophage T5 promoter (P(T5)). We recombined PCR fragments with the lambda-Red recombinase to effect chromosomal promoter replacement, which allows direct integration of a promoter along with a selectable marker that can subsequently be excised by the Flp/FRT site-specific recombination system. The resulting promoter-engineered isoprenoid genes were combined by serial P1 transductions into a host strain harboring a reporter plasmid containing beta-carotene biosynthesis genes allowing a visual screen for yellow color indicative of beta-carotene accumulation. Construction of an E. coli P(T5)-dxs P(T5)-ispDispF P(T5)-idi P(T5)-ispB strain resulted in producing high titers (6mg/g dry cell weight) of beta-carotene. Surprisingly, over-expression of the ispB gene, which was expected to divert carbon flow from the isoprenoid pathway to quinone biosynthesis, resulted in increased beta-carotene production. We thus demonstrated that chromosomal promoter engineering of the endogenous isoprenoid pathway yielded high levels of beta-carotene in a non-carotenogenic E. coli. The high isoprenoid flux E. coli can be used as a starting strain to produce various carotenoids by introducing heterologous carotenoid genes.
Collapse
Affiliation(s)
- Luke Z Yuan
- DuPont Central Research and Development, Experimental Station, Wilmington, DE 19880, USA
| | | | | | | |
Collapse
|
46
|
Ku B, Jeong JC, Mijts BN, Schmidt-Dannert C, Dordick JS. Preparation, characterization, and optimization of an in vitro C30 carotenoid pathway. Appl Environ Microbiol 2005; 71:6578-83. [PMID: 16269684 PMCID: PMC1287715 DOI: 10.1128/aem.71.11.6578-6583.2005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The ispA gene encoding farnesyl pyrophosphate (FPP) synthase from Escherichia coli and the crtM gene encoding 4,4'-diapophytoene (DAP) synthase from Staphylococcus aureus were overexpressed and purified for use in vitro. Steady-state kinetics for FPP synthase and DAP synthase, individually and in sequence, were determined under optimized reaction conditions. For the two-step reaction, the DAP product was unstable in aqueous buffer; however, in situ extraction using an aqueous-organic two-phase system resulted in a 100% conversion of isopentenyl pyrophosphate and dimethylallyl pyrophosphate into DAP. This aqueous-organic two-phase system is the first demonstration of an in vitro carotenoid synthesis pathway performed with in situ extraction, which enables quantitative conversions. This approach, if extended to a wide range of isoprenoid-based pathways, could lead to the synthesis of novel carotenoids and their derivatives.
Collapse
Affiliation(s)
- Bosung Ku
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | | | | | | | | |
Collapse
|
47
|
Maury J, Asadollahi MA, Møller K, Clark A, Nielsen J. Microbial Isoprenoid Production: An Example of Green Chemistry through Metabolic Engineering. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2005; 100:19-51. [PMID: 16270655 DOI: 10.1007/b136410] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Saving energy, cost efficiency, producing less waste, improving the biodegradability of products, potential for producing novel and complex molecules with improved properties, and reducing the dependency on fossil fuels as raw materials are the main advantages of using biotechnological processes to produce chemicals. Such processes are often referred to as green chemistry or white biotechnology. Metabolic engineering, which permits the rational design of cell factories using directed genetic modifications, is an indispensable strategy for expanding green chemistry. In this chapter, the benefits of using metabolic engineering approaches for the development of green chemistry are illustrated by the recent advances in microbial production of isoprenoids, a diverse and important group of natural compounds with numerous existing and potential commercial applications. Accumulated knowledge on the metabolic pathways leading to the synthesis of the principal precursors of isoprenoids is reviewed, and recent investigations into isoprenoid production using engineered cell factories are described.
Collapse
Affiliation(s)
- Jérôme Maury
- Center for Microbial Biotechnology, BioCentrum-DTU, Building 223, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | | | | | | | | |
Collapse
|
48
|
Umeno D, Tobias AV, Arnold FH. Diversifying carotenoid biosynthetic pathways by directed evolution. Microbiol Mol Biol Rev 2005; 69:51-78. [PMID: 15755953 PMCID: PMC1082795 DOI: 10.1128/mmbr.69.1.51-78.2005] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Microorganisms and plants synthesize a diverse array of natural products, many of which have proven indispensable to human health and well-being. Although many thousands of these have been characterized, the space of possible natural products--those that could be made biosynthetically--remains largely unexplored. For decades, this space has largely been the domain of chemists, who have synthesized scores of natural product analogs and have found many with improved or novel functions. New natural products have also been made in recombinant organisms, via engineered biosynthetic pathways. Recently, methods inspired by natural evolution have begun to be applied to the search for new natural products. These methods force pathways to evolve in convenient laboratory organisms, where the products of new pathways can be identified and characterized in high-throughput screening programs. Carotenoid biosynthetic pathways have served as a convenient experimental system with which to demonstrate these ideas. Researchers have mixed, matched, and mutated carotenoid biosynthetic enzymes and screened libraries of these "evolved" pathways for the emergence of new carotenoid products. This has led to dozens of new pathway products not previously known to be made by the assembled enzymes. These new products include whole families of carotenoids built from backbones not found in nature. This review details the strategies and specific methods that have been employed to generate new carotenoid biosynthetic pathways in the laboratory. The potential application of laboratory evolution to other biosynthetic pathways is also discussed.
Collapse
Affiliation(s)
- Daisuke Umeno
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California
| | - Alexander V. Tobias
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California
| | - Frances H. Arnold
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California
| |
Collapse
|
49
|
Kang MJ, Lee YM, Yoon SH, Kim JH, Ock SW, Jung KH, Shin YC, Keasling JD, Kim SW. Identification of genes affecting lycopene accumulation inEscherichia coli using a shot-gun method. Biotechnol Bioeng 2005; 91:636-42. [PMID: 15898075 DOI: 10.1002/bit.20539] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Genes enhancing lycopene production in Escherichia coli were identified through colorimetric screening of shot-gun library clones constructed with E. coli chromosomal DNA. These E. coli cells had been engineered to produce lycopene, a red-colored carotenoid, which enabled screening for genes that enhance lycopene production. Six clones with enhanced lycopene production were isolated. Among 13 genes in these clones, dxs, appY, crl, and rpoS were found to be involved in enhanced lycopene production. While dxs and rpoS have been already reported to enhance lycopene production, appY and crl have not. DXP (1-deoxy-D-xylulose-5-phosphate) synthase is encoded by dxs and participates in the rate-limiting step in the synthesis of isopentenyl pyrophosphate (IPP), a building block of lycopene. Sigma S factor, encoded by rpoS, regulates transcription of genes induced at the stationary phase. The appY and crl genes encode transcriptional regulators related to anaerobic energy metabolism and the formation of curli surface fibers, respectively. E. coli harboring appY plasmids produced 2.8 mg lycopene/g dry cell weight (DCW), the same amount obtained with dxs despite the fact that appY is not directly involved in the lycopene synthesis pathway. The co-expression of appY, crl, and rpoS with dxs synergistically enhanced lycopene production. The co-expression of appY with dxs produced eight times the amount of lycopene (4.7 mg/g DCW) that was produced without expression of both genes (0.6 mg/g DCW).
Collapse
|
50
|
Khosla C, Keasling JD. Metabolic engineering for drug discovery and development. Nat Rev Drug Discov 2004; 2:1019-25. [PMID: 14654799 DOI: 10.1038/nrd1256] [Citation(s) in RCA: 139] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Chaitan Khosla
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, USA.
| | | |
Collapse
|