1
|
Zhang W, Zhang J, Liu H, Liu Y, Sheng X, Zhou S, Pei T, Li C, Wang J. Functional hydrogel empowering 3D printing titanium alloys. Mater Today Bio 2025; 30:101422. [PMID: 39830135 PMCID: PMC11742631 DOI: 10.1016/j.mtbio.2024.101422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 12/15/2024] [Accepted: 12/20/2024] [Indexed: 01/22/2025] Open
Abstract
Titanium alloys are widely used in the manufacture of orthopedic prosthesis given their excellent mechanical properties and biocompatibility. However, the primary drawbacks of traditional titanium alloy prosthesis are their much higher elastic modulus than cancellous bone and poor interfacial adhesion, which lead to poor osseointegration. 3D-printed porous titanium alloys can partly address these issues, but their bio-inertness still requires modifications to adapt to different physiological and pathological microenvironments. Hydrogels composed of three-dimensional networks of hydrophilic polymers can effectively simulate the extracellular matrix of natural bone and are capable of loading bioactive molecules such as proteins, peptides, growths factors, polysaccharides, or nucleotides for localized release within the human body, by directly participating in biological processes. Combining 3D-printed porous titanium alloys with hydrogels to construct a bioactive composite system that regulates cellular adhesion, proliferation, migration, and differentiation in the local microenvironment is of great significance for enhancing the bioactivity of the prosthesis surface. In this review, we focus on three aspects of the bioactive composite system: (Ⅰ) strategies for constructing bioactive interfaces with hydrogels, and (Ⅱ) how bioactive composite systems regulate the microenvironment under different physiological and pathological conditions to enhance the osteointegration and bone regeneration capability of prostheses. Considering the current research status in this field, innovations in orthopedic prosthesis can be achieved through material optimization, personalized customization, and the development of multifunctional composite systems. These advancements provide essential references for the clinical translation of osseointegration and bone regeneration in various physiological and pathological microenvironments.
Collapse
Affiliation(s)
- Weimin Zhang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, Jilin, China
| | - Jiaxin Zhang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, Jilin, China
| | - He Liu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, Jilin, China
| | - Yang Liu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, Jilin, China
| | - Xiao Sheng
- Huzhou Central Hospital, Fifth school of Clinical Medical Universtiy, Wuxing, Huzhou, Zhejiang 313000, PR China
| | - Sixing Zhou
- Department of Emergency and Critical Care Medicine, The Second Hospital of Jilin University, Changchun 130041, China
| | - Tiansen Pei
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, Jilin, China
| | - Chen Li
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, Jilin, China
| | - Jincheng Wang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, Jilin, China
| |
Collapse
|
2
|
Xu N, Wang J, Liu L, Gong C. Injectable hydrogel-based drug delivery systems for enhancing the efficacy of radiation therapy: A review of recent advances. CHINESE CHEM LETT 2024; 35:109225. [DOI: 10.1016/j.cclet.2023.109225] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
3
|
Kim J, Song S, Gwak M, Cho H, Yun WS, Hwang N, Kim J, Lee JS, Kim DH, Kim H, Jeon SI, Kim TI, Kim K. Micro-syringe chip-guided intratumoral administration of lipid nanoparticles for targeted anticancer therapy. Biomater Res 2023; 27:102. [PMID: 37845762 PMCID: PMC10577945 DOI: 10.1186/s40824-023-00440-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 09/25/2023] [Indexed: 10/18/2023] Open
Abstract
BACKGROUND Nano-sized drug delivery system has been widely studied as a potential technique to promote tumor-specific delivery of anticancer drugs due to its passive targeting property, but resulting in very restricted improvements in its systemic administration so far. There is a requirement for a different approach that dramatically increases the targeting efficiency of therapeutic agents at targeted tumor tissues. METHODS To improve the tumor-specific accumulation of anticancer drugs and minimize their undesirable toxicity to normal tissues, a tumor-implantable micro-syringe chip (MSC) with a drug reservoir is fabricated. As a clinically established delivery system, six liposome nanoparticles (LNPs) with different compositions and surface chemistry are prepared and their physicochemical properties and cellular uptake are examined in vitro. Subsequently, MSC-guided intratumoral administration is studied to identify the most appropriate for the higher tumor targeting efficacy with a uniform intratumoral distribution. For efficient cancer treatment, pro-apoptotic anticancer prodrugs (SMAC-P-FRRG-DOX) are encapsulated to the optimal LNPs (SMAC-P-FRRG-DOX encapsulating LNPs; ApoLNPs), then the ApoLNPs are loaded into the 1 μL-volume drug reservoir of MSC to be delivered intratumorally for 9 h. The tumor accumulation and therapeutic effect of ApoLNPs administered via MSC guidance are evaluated and compared to those of intravenous and intratumoral administration of ApoLNP in 4T1 tumor-bearing mice. RESULTS MSC is precisely fabricated to have a 0.5 × 4.5 mm needle and 1 μL-volume drug reservoir to achieve the uniform intratumoral distribution of LNPs in targeted tumor tissues. Six liposome nanoparticles with different compositions of 1-palmitoyl-2-oleoyl-glycero-3-phosphocholine (PC), 1,2-dioleoyl-sn-glycero-3-phospho-L-serine (PS), 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP), and 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy (polyethylene glycol)2000] (PEG2000-DSPE) are prepared with average sizes of 100-120 nm and loaded into the 1 μL-volume drug reservoir in MSC. Importantly negatively charged 10 mol% of PS-containing LNPs are very slowly infused into the tumor tissue through the micro-syringe of the MSC over 6 h. The intratumoral targeting efficiency of MSC guidance is 93.5%, effectively assisting the homogeneous diffusion of LNPs throughout the tumor tissue at 3.8- and 2.7-fold higher concentrations compared to the intravenous and intratumoral administrations of LNPs, respectively. Among the six LNP candidates 10 mol% of PS-containing LNPs are finally selected for preparing pro-apoptotic SMAC-P-FRRG-DOX anticancer prodrug-encapsulated LNPs (ApoLNPs) due to their moderate endocytosis rate high tumor accumulation and homogenous intratumoral distribution. The ApoLNPs show a high therapeutic effect specifically to cathepsin B-overexpressing cancer cells with 6.6 μM of IC50 value while its IC50 against normal cells is 230.7 μM. The MSC-guided administration of ApoLNPs efficiently inhibits tumor growth wherein the size of the tumor is 4.7- and 2.2-fold smaller than those treated with saline and intratumoral ApoLNP without MSC, respectively. Moreover, the ApoLNPs remarkably reduce the inhibitor of apoptosis proteins (IAPs) level in tumor tissues confirming their efficacy even in cancers with high drug resistance. CONCLUSION The MSC-guided administration of LNPs greatly enhances the therapeutic efficiency of anticancer drugs via the slow diffusion mechanism through micro-syringe to tumor tissues for 6 h, whereas they bypass most hurdles of systemic delivery including hepatic metabolism, rapid renal clearance, and interaction with blood components or other normal tissues, resulting in the minimum toxicity to normal tissues. The negatively charged ApoLNPs with cancer cell-specific pro-apoptotic prodrug (SMAC-P-FRRG-DOX) show the highest tumor-targeting efficacy when they are treated with the MSC guidance, compared to their intravenous or intratumoral administration in 4T1 tumor-bearing mice. The MSC-guided administration of anticancer drug-encapsulated LNPs is expected to be a potent platform system that facilitates overcoming the limitations of systemic drug administration with low delivery efficiency and serious side effects.
Collapse
Affiliation(s)
- Jeongrae Kim
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Woman's University, Seoul, 03760, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Sunejeong Song
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Woman's University, Seoul, 03760, Republic of Korea
| | - Minjun Gwak
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Hanhee Cho
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Woman's University, Seoul, 03760, Republic of Korea
| | - Wan Su Yun
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Namcheol Hwang
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, 04107, Republic of Korea
| | - Jinseong Kim
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Woman's University, Seoul, 03760, Republic of Korea
| | - Jun Seo Lee
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Dong-Hwee Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Hyuncheol Kim
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, 04107, Republic of Korea
| | - Seong Ik Jeon
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Woman's University, Seoul, 03760, Republic of Korea.
| | - Tae-Il Kim
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea.
| | - Kwangmeyung Kim
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Woman's University, Seoul, 03760, Republic of Korea.
| |
Collapse
|
4
|
Injectable anti-cancer drug loaded silk-based hydrogel for the prevention of cancer recurrence and post-lumpectomy tissue regeneration aiding triple-negative breast cancer therapy. BIOMATERIALS ADVANCES 2023; 145:213224. [PMID: 36516618 DOI: 10.1016/j.bioadv.2022.213224] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/16/2022] [Accepted: 11/27/2022] [Indexed: 12/12/2022]
Abstract
A single system capable of delivering anticancer drugs and growth factors by a minimally invasive approach is in demand for effective treatment of triple-negative breast cancer (TNBC) after lumpectomy. Here, we showcase one such holistic system for TNBC therapy and its assessment via 3D in vitro lumpectomy model, a first of its kind. Firstly, Bombyx mori silk fibroin (BMSF) and Antheraea assamensis silk fibroin (AASF) blended hydrogels were prepared and biophysically characterized. Secondly, a 3D in vitro lumpectomy model was developed using MDA-MB-231 cell line to assess the efficacy of localized delivery of doxorubicin (dox) using injectable hydrogel system in terminating remaining breast cancer after lumpectomy. Additionally, we have also evaluated the adipose tissue regeneration in the lumpectomy region by delivering dexamethasone (dex) using injectable hydrogels. Rheological studies showed that the BMSF/AASF blended hydrogels exhibit viscoelasticity and injectability conducive for minimally invasive application. The developed hydrogels by virtue of its slow and sustained release of dox exerted cytotoxicity towards MDA-MB-231 cells assessed through in vitro studies. Further, dex loaded hydrogel supported adipogenic differentiation of adipose tissue derived stem cells (ADSCs), while the secreted factors were found to aid in vascularization and macrophage polarization. This was confirmed through in vitro angiogenic tube formation assay and macrophage polarization study respectively. The corroborated results vouch for potential application of this injectable hydrogels for localized anticancer drug delivery and aiding in breast reconstruction, post lumpectomy.
Collapse
|
5
|
A Simple Preparation Method of Gelatin Hydrogels Incorporating Cisplatin for Sustained Release. Pharmaceutics 2022; 14:pharmaceutics14122601. [PMID: 36559095 PMCID: PMC9786307 DOI: 10.3390/pharmaceutics14122601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/18/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
The objective of this study was to develop a new preparation method for cisplatin (CDDP)-incorporated gelatin hydrogels without using chemical crosslinking nor a vacuum heating instrument for dehydrothermal crosslinking. By simply mixing CDDP and gelatin, CDDP-crosslinked gelatin hydrogels (CCGH) were prepared. CDDP functions as a crosslinking agent of gelatin to form the gelatin hydrogel. Simultaneously, CDDP is incorporated into the gelatin hydrogel as a controlled release carrier. CDDP's in vitro and in vivo anticancer efficacy after incorporation into CCGH was evaluated. In the in vitro system, the CDDP was released gradually due to CCGH degradation with an initial burst release of approximately 16%. CDDP metal-coordinated with the degraded fragment of gelatin was released from CCGH with maintaining the anticancer activity. After intraperitoneal administration of CCGH, CDDP was detected in the blood circulation while its toxicity was low. Following intraperitoneal administration of CCGH in a murine peritoneal dissemination model of human gastric cancer MKN45-Luc cell line, the survival time was significantly prolonged compared with free CDDP solution. It is concluded that CCGH prepared by the CDDP-based crosslinking of gelatin is an excellent sustained release system of CDDP to achieve superior anticancer effects with minimal side effects compared with free CDDP solution.
Collapse
|
6
|
Modular polymer platform as a novel approach to head and neck cancer therapy. Sci Rep 2022; 12:3592. [PMID: 35246558 PMCID: PMC8897426 DOI: 10.1038/s41598-022-07324-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 02/14/2022] [Indexed: 01/19/2023] Open
Abstract
Head and neck cancer is the sixth most common cancer in the world, with more than 300,000 deaths attributed to the disease annually. Aggressive surgical resection often with adjuvant chemoradiation is the cornerstone of treatment. However, the necessary chemoradiation treatment can result in collateral damage to adjacent vital structures causing a profound impact on quality of life. Here, we present a novel polymer of poly(lactic-co-glycolic) acid and polyvinyl alcohol that can serve as a versatile multidrug delivery platform as well as for detection on cross-sectional imaging while functioning as a fiduciary marker for postoperative radiotherapy and radiotherapeutic dosing. In a mouse xenograft model, the dual-layered polymer composed of calcium carbonate/thymoquinone was used for both polymer localization and narrow-field infusion of a natural therapeutic compound. A similar approach can be applied in the treatment of head and neck cancer patients, where immunotherapy and traditional chemotherapy can be delivered simultaneously with independent release kinetics.
Collapse
|
7
|
Jing Z, Ni R, Wang J, Lin X, Fan D, Wei Q, Zhang T, Zheng Y, Cai H, Liu Z. Practical strategy to construct anti-osteosarcoma bone substitutes by loading cisplatin into 3D-printed titanium alloy implants using a thermosensitive hydrogel. Bioact Mater 2021; 6:4542-4557. [PMID: 34027239 PMCID: PMC8138733 DOI: 10.1016/j.bioactmat.2021.05.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 04/12/2021] [Accepted: 05/03/2021] [Indexed: 12/29/2022] Open
Abstract
Surgical resection and perioperative adjuvant chemotherapy-based therapies have improved the prognosis of patients with osteosarcoma; however, intraoperative bone defects, local tumour recurrence, and chemotherapy-induced adverse effects still affect the quality of life of patients. Emerging 3D-printed titanium alloy (Ti6Al4V) implants have advantages over traditional implants in bone repair, including lower elastic modulus, lower stiffness, better bone conduction, more bone in-growth, stronger mechanical interlocking, and lager drug-loading capacity by their inherent porous structure. Here, cisplatin, a clinical first-line anti-osteosarcoma drug, was loaded into Ti6Al4V implants, within a PLGA-PEG-PLGA thermo-sensitive hydrogel, to construct bone substitutes with both anti-osteosarcoma and bone-repair functions. The optimal concentrations of cisplatin (0.8 and 1.6 mg/mL) were first determined in vitro. Thereafter, the anti-tumour effect and biosafety of the cisplatin/hydrogel-loaded implants, as well as their bone-repair potential were evaluated in vivo in tumour-bearing mouse, and bone defect rabbit models, respectively. The loading of cisplatin reduced tumour volume by more than two-thirds (from 641.1 to 201.4 mm3) with negligible organ damage, achieving better anti-tumour effects while avoiding the adverse effects of systemic cisplatin delivery. Although bone repair was hindered by cisplatin loading at 4 weeks, no difference was observed at 8 weeks in the context of implants with versus without cisplatin, indicating acceptable long-term stability of all implants (with 8.48%–10.04% bone in-growth and 16.94%–20.53% osseointegration). Overall, cisplatin/hydrogel-loaded 3D-printed Ti6Al4V implants are safe and effective for treating osteosarcoma-caused bone defects, and should be considered for clinical use. Vehiculated within PLGA-PEG-PLGA hydrogel, cisplatin can be conveniently loaded into 3D-printed Ti6Al4V implants. The cisplatin/hydrogel-loaded implants are safe and show a good anti-tumour potential both in vitro and in vivo. This strategy has better anti-osteosarcoma effects and fewer side effects than the conventional cisplatin delivery method. Cisplatin loading does not decrease the bone repair effect of 3D-printed Ti6Al4V implants 8 weeks after surgery. As the components of the implants are non-toxic, this strategy has great potential for clinical translation.
Collapse
Affiliation(s)
- Zehao Jing
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, People's Republic of China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, 100191, People's Republic of China
- Beijing Key Laboratory of Spinal Disease Research, Beijing, 100191, People's Republic of China
| | - Renhua Ni
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, People's Republic of China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, 100191, People's Republic of China
| | - Jiedong Wang
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, People's Republic of China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, 100191, People's Republic of China
- Beijing Key Laboratory of Spinal Disease Research, Beijing, 100191, People's Republic of China
| | - Xinhong Lin
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, People's Republic of China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, 100191, People's Republic of China
- Beijing Key Laboratory of Spinal Disease Research, Beijing, 100191, People's Republic of China
| | - Daoyang Fan
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, People's Republic of China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, 100191, People's Republic of China
- Beijing Key Laboratory of Spinal Disease Research, Beijing, 100191, People's Republic of China
| | - Qingguang Wei
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, People's Republic of China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, 100191, People's Republic of China
- Beijing Key Laboratory of Spinal Disease Research, Beijing, 100191, People's Republic of China
| | - Teng Zhang
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, People's Republic of China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, 100191, People's Republic of China
- Beijing Key Laboratory of Spinal Disease Research, Beijing, 100191, People's Republic of China
| | - Yufeng Zheng
- Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing, 100871, People's Republic of China
- Corresponding author. Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing, 100871, People's Republic of China.
| | - Hong Cai
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, People's Republic of China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, 100191, People's Republic of China
- Corresponding author. Department of Orthopedics, Peking University Third Hospital, Beijing 100191, People's Republic of China.
| | - Zhongjun Liu
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, People's Republic of China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, 100191, People's Republic of China
- Beijing Key Laboratory of Spinal Disease Research, Beijing, 100191, People's Republic of China
- Corresponding author. Department of Orthopedics, Peking University Third Hospital, Beijing 100191, People's Republic of China.
| |
Collapse
|
8
|
Gao J, Xu Y, Zheng Y, Wang X, Li S, Yan G, Wang J, Tang R. pH-sensitive carboxymethyl chitosan hydrogels via acid-labile ortho ester linkage as an implantable drug delivery system. Carbohydr Polym 2019; 225:115237. [DOI: 10.1016/j.carbpol.2019.115237] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 07/30/2019] [Accepted: 08/21/2019] [Indexed: 12/18/2022]
|
9
|
Wu H, Fan ZP, Jiang AN, Di XS, He B, Wang S, Goldberg SN, Ahmed M, Zhang Q, Yang W. Combination of intratumoural micellar paclitaxel with radiofrequency ablation: efficacy and toxicity in rodents. Eur Radiol 2019; 29:6202-6210. [PMID: 30993436 DOI: 10.1007/s00330-019-06207-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 03/11/2019] [Accepted: 03/26/2019] [Indexed: 10/27/2022]
Abstract
OBJECTIVES To determine whether radiofrequency ablation (RFA) is more effective when combined with intratumoural injection (IT) than with intravenous injection (IV) of micelles. MATERIALS AND METHODS Balb/c mice bearing 4T1 breast cancer were used. The tumour drug accumulation and biodistribution in major organs were evaluated at different time points after IT, IV, IT+RFA and IV+RFA. Periablational drug penetration was evaluated by quantitative analysis and pathologic staining after different treatments. For long-term outcomes, mice bearing tumours were randomised into six groups (n = 7/group): the control, IV, IT, RFA alone, IV+RFA and IT+RFA groups. The end-point survival was estimated for the different treatment groups. RESULTS In vivo, intratumoural drug accumulation was always much higher for IT than for IV within 48 h (p < 0.001). The IT+RFA group (3084.7 ± 985.5 μm) exhibited greater and deeper drug penetration than the IV+RFA group (686.3 ± 83.7 μm, p < 0.001). Quantitatively, the intratumoural drug accumulation in the IT+RFA group increased approximately 4.0-fold compared with that in the IV+RFA group (p < 0.001). In addition, compared with the IT treatment, the IT+RFA treatment further reduced the drug deposition in the main organs. Survival was longer in the IT+RFA group than in the IV+RFA (p = 0.033) and RF alone (p = 0.003) groups. CONCLUSION The use of IT+RFA achieved much deeper and greater intratumoural drug penetration and accumulation, resulting in better efficacy, and decreased the systemic toxicity of nanoparticle-delivered chemotherapy. KEY POINTS • Association of IT+RFA achieved much deeper and greater intratumoural drug penetration than of IV+RFA, leading to better therapeutic efficacy. • Compared with IV or IT chemotherapy alone, the combination with RFA decreased toxicity, especially in the IT+RFA group.
Collapse
Affiliation(s)
- Hao Wu
- Department of Ultrasound, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education /Beijing), Peking University Cancer Hospital & Institute, Beijing, 100142, China
- Department of Ultrasonography, Guangdong Second Provincial General Hospital Affiliated to Southern Medical University, Guangzhou, 510317, China
| | - Zhi-Pu Fan
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - An-Na Jiang
- Department of Ultrasound, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education /Beijing), Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Xing-Sheng Di
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Bing He
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Song Wang
- Department of Ultrasound, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education /Beijing), Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - S Nahum Goldberg
- Laboratory for Minimally Invasive Tumor Therapies, Department of Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
- Division of Image-Guided Therapy, Department of Radiology, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Muneeb Ahmed
- Laboratory for Minimally Invasive Tumor Therapies, Department of Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Qiang Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Wei Yang
- Department of Ultrasound, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education /Beijing), Peking University Cancer Hospital & Institute, Beijing, 100142, China.
| |
Collapse
|
10
|
Yang C, Mi X, Su H, Yang J, Gu Y, Zhang L, Sun W, Liang X, Zhang C. GE11-PDA-Pt@USPIOs nano-formulation for relief of tumor hypoxia and MRI/PAI-guided tumor radio-chemotherapy. Biomater Sci 2019; 7:2076-2090. [DOI: 10.1039/c8bm01492b] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
GE11-PDA-Pt@USPIOs can relieve tumor hypoxic conditions efficiently and are highly effective for radio-chemotherapy of EGFR-positive tumors.
Collapse
Affiliation(s)
- Chengcheng Yang
- Department of Nuclear Medicine
- Rui Jin Hospital
- School of Medicine
- Shanghai Jiao Tong University
- Shanghai 200025
| | - Xuan Mi
- Department of Nuclear Medicine
- Rui Jin Hospital
- School of Medicine
- Shanghai Jiao Tong University
- Shanghai 200025
| | - Huilan Su
- State Key Laboratory of Metal Matrix Composites
- School of Materials Science and Engineering
- Shanghai Jiao Tong University
- Shanghai 200240
- China
| | - Jingxing Yang
- School of Biomedical Engineering
- Shanghai Jiao Tong University
- Shanghai 200230
- China
| | - Yiyun Gu
- School of Biomedical Engineering
- Shanghai Jiao Tong University
- Shanghai 200230
- China
| | - Lu Zhang
- School of Biomedical Engineering
- Shanghai Jiao Tong University
- Shanghai 200230
- China
| | - Wenshe Sun
- School of Biomedical Engineering
- Shanghai Jiao Tong University
- Shanghai 200230
- China
| | - Xiaowen Liang
- The University of Queensland Diamantina Institute
- The University of Queensland
- QLD 4102
- Australia
| | - Chunfu Zhang
- Department of Nuclear Medicine
- Rui Jin Hospital
- School of Medicine
- Shanghai Jiao Tong University
- Shanghai 200025
| |
Collapse
|
11
|
Chen S, Boda SK, Batra SK, Li X, Xie J. Emerging Roles of Electrospun Nanofibers in Cancer Research. Adv Healthc Mater 2018; 7:e1701024. [PMID: 29210522 PMCID: PMC5867260 DOI: 10.1002/adhm.201701024] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 10/01/2017] [Indexed: 02/01/2023]
Abstract
This article reviews the recent progress of electrospun nanofibers in cancer research. It begins with a brief introduction to the emerging potential of electrospun nanofibers in cancer research. Next, a number of recent advances on the important features of electrospun nanofibers critical for cancer research are discussed including the incorporation of drugs, control of release kinetics, orientation and alignment of nanofibers, and the fabrication of 3D nanofiber scaffolds. This article further highlights the applications of electrospun nanofibers in several areas of cancer research including local chemotherapy, combinatorial therapy, cancer detection, cancer cell capture, regulation of cancer cell behavior, construction of in vitro 3D cancer model, and engineering of bone microenvironment for cancer metastasis. This progress report concludes with remarks on the challenges and future directions for design, fabrication, and application of electrospun nanofibers in cancer diagnostics and therapeutics.
Collapse
Affiliation(s)
- Shixuan Chen
- Department of Surgery-Transplant and Mary and Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Sunil Kumar Boda
- Department of Surgery-Transplant and Mary and Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Xiaoran Li
- Key Laboratory for Nano-Bio Interface Research, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Jingwei Xie
- Department of Surgery-Transplant and Mary and Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| |
Collapse
|
12
|
Zhang J, Wu N, Zhang T, Sun T, Su Y, Zhao J, Mu K, Jin Z, Gao M, Liu J, Gu L. The value of FATS expression in predicting sensitivity to radiotherapy in breast cancer. Oncotarget 2017; 8:38491-38500. [PMID: 28402275 PMCID: PMC5503548 DOI: 10.18632/oncotarget.16630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 03/01/2017] [Indexed: 11/25/2022] Open
Abstract
Purpose The fragile-site associated tumor suppressor (FATS) is a newly identified tumor suppressor involved in radiation-induced tumorigenesis. The purpose of this study was to characterize FATS expression in breast cancers about radiotherapy benefit, patient characteristics, and prognosis. Results The expression of FATS mRNA was silent or downregulated in 95.2% of breast cancer samples compared with paired normal controls (P < .0001). Negative status of FATS was correlated with higher nuclear grade (P = .01) and shorter disease-free survival (DFS) of breast cancer (P = .036). In a multivariate analysis, FATS expression showed favorable prognostic value for DFS (odds ratio, 0.532; 95% confidence interval, 0.299 to 0.947; (P = .032). Furthermore, improved survival time was seen in FATS-positive patients receiving radiotherapy (P = .006). The results of multivariate analysis revealed independent prognostic value of FATS expression in predicting longer DFS (odds ratio, 0.377; 95% confidence interval, 0.176 to 0.809; P = 0.012) for patients receiving adjuvant radiotherapy. In support of this, reduction of FATS expression in breast cancer cell lines, FATS positive group significantly sensitized than Knock-down of FATS group. Materials and Methods Tissue samples from 156 breast cancer patients and 42 controls in tumor bank were studied. FATS gene expression was evaluated using quantitative reverse transcription polymerase chain reaction (qRT-PCR). FATS function was examined in breast cancer cell lines using siRNA knock-downs and colony forming assays after irradiation. Conclusions FATS status is a biomarker in breast cancer to identify individuals likely to benefit from radiotherapy.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Breast Surgery, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin 300060, China
| | - Nan Wu
- Department of Breast Surgery, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin 300060, China
| | - Tiemei Zhang
- Department of Endoscopy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin 300060, China
| | - Tao Sun
- Department of Breast Surgery, Hebei Province Cangzhou City Nanpi People's Hospital, Cangzhou 061500, China
| | - Yi Su
- Department of Breast Surgery, Hebei Province Cangzhou City Nanpi People's Hospital, Cangzhou 061500, China
| | - Jing Zhao
- Department of Breast Surgery, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin 300060, China
| | - Kun Mu
- Department of Breast Surgery, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin 300060, China
| | - Zhao Jin
- Department of Breast Surgery, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin 300060, China
| | - Ming Gao
- Department of Thyroid and Neck Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Juntian Liu
- Department of Breast Surgery, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin 300060, China
| | - Lin Gu
- Department of Breast Surgery, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin 300060, China
| |
Collapse
|
13
|
Chu YH, Sibrian-Vazquez M, Escobedo JO, Phillips AR, Dickey DT, Wang Q, Ralle M, Steyger PS, Strongin RM. Systemic Delivery and Biodistribution of Cisplatin in Vivo. Mol Pharm 2016; 13:2677-82. [PMID: 27299507 DOI: 10.1021/acs.molpharmaceut.6b00240] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cisplatin is widely used to treat a variety of cancers. However, ototoxicity and nephrotoxicity remain serious side effects of cisplatin-based chemotherapy. In order to inform the study of cisplatin's off-target effects, a new drug-fluorophore conjugate was synthesized that exhibited utility as a tracer to determine the cellular uptake and in vivo distribution of cisplatin. This probe will serve as a useful tool to facilitate investigations into the kinetics and biodistribution of cisplatin and its associated side effects in preclinical models after systemic administration.
Collapse
Affiliation(s)
- Yu-Hsuan Chu
- Department of Chemistry, Portland State University , Portland, Oregon 97201, United States
| | - Martha Sibrian-Vazquez
- Department of Chemistry, Portland State University , Portland, Oregon 97201, United States
| | - Jorge O Escobedo
- Department of Chemistry, Portland State University , Portland, Oregon 97201, United States
| | | | | | | | | | | | - Robert M Strongin
- Department of Chemistry, Portland State University , Portland, Oregon 97201, United States
| |
Collapse
|
14
|
Kaplan JA, Liu R, Freedman JD, Padera R, Schwartz J, Colson YL, Grinstaff MW. Prevention of lung cancer recurrence using cisplatin-loaded superhydrophobic nanofiber meshes. Biomaterials 2015; 76:273-81. [PMID: 26547283 DOI: 10.1016/j.biomaterials.2015.10.060] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2015] [Revised: 10/20/2015] [Accepted: 10/26/2015] [Indexed: 02/02/2023]
Abstract
For early stage lung cancer patients, local cancer recurrence after surgical resection is a significant concern and stems from microscopic disease left behind after surgery. Here we apply a local drug delivery strategy to combat local lung cancer recurrence after resection using non-woven, biodegradable nanofiber meshes loaded with cisplatin. The meshes are fabricated using a scalable electrospinning process from two biocompatible polymers--polycaprolactone and poly(glycerol monostearate-co-caprolactone)--to afford favorable mechanical properties for use in a dynamic tissue such as the lung. Owing to their rough nanostructure and hydrophobic polymer composition, these meshes exhibit superhydrophobicity, and it is this non-wetting nature that sustains the release of cisplatin in a linear fashion over ∼90 days, with anti-cancer efficacy demonstrated using an in vitro Lewis Lung carcinoma (LLC) cell assay. The in vivo evaluation of cisplatin-loaded superhydrophobic meshes in the prevention of local cancer recurrence in a murine model of LLC surgical resection demonstrated a statistically significant increase (p = 0.0006) in median recurrence-free survival to >23 days, compared to standard intraperitoneal cisplatin therapy of equivalent dose. These results emphasize the importance of supplementing cytoreductive surgery with local drug delivery strategies to improve prognosis for lung cancer patients undergoing tumor resection.
Collapse
Affiliation(s)
- Jonah A Kaplan
- Department of Biomedical Engineering, Boston University, 590 Commonwealth Ave., Boston, MA 02215, USA; Department of Chemistry, Boston University, 590 Commonwealth Ave., Boston, MA 02215, USA; Department of Medicine, Boston University, 590 Commonwealth Ave., Boston, MA 02215, USA
| | - Rong Liu
- Department of Surgery, Brigham and Women's Hospital, 75 Francis St., Boston, MA 02115, USA
| | - Jonathan D Freedman
- Department of Biomedical Engineering, Boston University, 590 Commonwealth Ave., Boston, MA 02215, USA; Department of Chemistry, Boston University, 590 Commonwealth Ave., Boston, MA 02215, USA; Department of Medicine, Boston University, 590 Commonwealth Ave., Boston, MA 02215, USA
| | - Robert Padera
- Department of Pathology, Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115, USA
| | - John Schwartz
- AcuityBio Corp., 200 Upland Rd., Newton, MA 02460, USA
| | - Yolonda L Colson
- Department of Surgery, Brigham and Women's Hospital, 75 Francis St., Boston, MA 02115, USA.
| | - Mark W Grinstaff
- Department of Biomedical Engineering, Boston University, 590 Commonwealth Ave., Boston, MA 02215, USA; Department of Chemistry, Boston University, 590 Commonwealth Ave., Boston, MA 02215, USA; Department of Medicine, Boston University, 590 Commonwealth Ave., Boston, MA 02215, USA.
| |
Collapse
|
15
|
Lin Y, Luo J, Zhu WE, Srivastava M, Schaue D, Elashoff DA, Dubinett SM, Sharma S, Wu B, St John MA. A cytokine-delivering polymer is effective in reducing tumor burden in a head and neck squamous cell carcinoma murine model. Otolaryngol Head Neck Surg 2014; 151:447-53. [PMID: 24825873 DOI: 10.1177/0194599814533775] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVE This study aimed to evaluate the therapeutic efficacy of a novel polymer platform delivering cisplatin and cytokines in the treatment of head and neck squamous cell carcinoma (HNSCC). STUDY DESIGN In vivo study. SETTING Academic research laboratory. SUBJECTS AND METHODS Mice were randomized to receive implantation of (1) no polymer, (2) plain polymer, (3) plain polymer with local cisplatin injection, or (4) cisplatin polymer. The 2 groups of mice implanted with cisplatin polymer or no polymer were further randomized to receive (1) 4 Grays external beam radiation for 4 days or (2) no radiation. For cytokine studies, mice were grouped into (1) no polymer, (2) plain polymer, (3) plain polymer with intratumoral injection of recombinant CCL21 twice a week, (4) polymer containing parental dendritic cells, or (5) polymer containing dendritic cells secreting CCL21 (DC-CCL21). RESULTS The cisplatin-secreting polymer effectively reduced tumors in the mice by more than 16-fold (P < .01). We also observed a statistically significant lower tumor weight among mice treated with cisplatin polymer and concomitant radiation compared to control groups. The DC-CCL21 polymer reduced SCCVII/SF tumors in the C3H/HeJ mice by more than 41% (P < .01). CONCLUSION Herein, we demonstrate the efficacy of a novel polymer platform in delivering cisplatin and cytokines. We also demonstrate that we can effectively grow dendritic cells in the polymer that can actively secrete CCL21 for a minimum of 5 days. This polymer may represent a new therapeutic modality for patients with HNSCC. Once this polymer platform is optimized, we will plan to pursue prospective trials in patients with HNSCC.
Collapse
Affiliation(s)
- Yuan Lin
- Department of Head and Neck Surgery, University of California, Los Angeles, Los Angeles, California, USA UCLA Head and Neck Cancer Program, University of California, Los Angeles, Los Angeles, California, USA Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - Jie Luo
- Department of Head and Neck Surgery, University of California, Los Angeles, Los Angeles, California, USA UCLA Head and Neck Cancer Program, University of California, Los Angeles, Los Angeles, California, USA Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - Weichao Eric Zhu
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California, USA
| | - Minu Srivastava
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of California, Los Angeles, Los Angeles, California, USA Veterans' Affairs Greater Los Angeles Healthcare System, Los Angeles, California, USA
| | - Dorthe Schaue
- Department of Radiation Oncology, University of California, Los Angeles, Los Angeles, California, USA
| | - David A Elashoff
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, California, USA Department of Biostatistics, University of California, Los Angeles, Los Angeles, California, USA
| | - Steven M Dubinett
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of California, Los Angeles, Los Angeles, California, USA Veterans' Affairs Greater Los Angeles Healthcare System, Los Angeles, California, USA Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, California, USA
| | - Sherven Sharma
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of California, Los Angeles, Los Angeles, California, USA Veterans' Affairs Greater Los Angeles Healthcare System, Los Angeles, California, USA
| | - Benjamin Wu
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California, USA Division of Advanced Prosthodontics, Biomaterials, and Hospital Dentistry, University of California, Los Angeles, Los Angeles, California, USA Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, California, USA Department of Orthopedic Surgery, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Maie A St John
- Department of Head and Neck Surgery, University of California, Los Angeles, Los Angeles, California, USA UCLA Head and Neck Cancer Program, University of California, Los Angeles, Los Angeles, California, USA Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, California, USA
| |
Collapse
|
16
|
A novel drug delivery system of intraperitoneal chemotherapy for peritoneal carcinomatosis using gelatin microspheres incorporating cisplatin. Surgery 2013; 154:991-9. [PMID: 24008088 DOI: 10.1016/j.surg.2013.04.054] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Accepted: 04/25/2013] [Indexed: 01/22/2023]
Abstract
BACKGROUND Peritoneal carcinomatosis is a poor prognostic factor for patients with gastrointestinal, gynecologic, and pancreatic cancer. Cisplatin (CDDP) is among the most effective anti-cancer agents, although its adverse effects remain unresolved. For the treatment of peritoneal carcinomatosis with high-dose CDDP, it is necessary to design a new delivery system of CDDP that can decrease systemic toxicity and achieve a better targeted, high-dose chemotherapy. METHODS Microspheres were prepared from gelatin of a nontoxic, biodegradable material for the sustained release of CDDP. The gelatin microspheres incorporating CDDP (GM-CDDP) were injected intraperitoneally into a mouse model of peritoneal carcinomatosis; their therapeutic efficacy and adverse effects were evaluated in comparison with intraperitoneal administration of free CDDP. RESULTS GM-CDDP released CDDP in the peritoneal cavity as a result of gelatin biodegradation. Mice treated with microspheres in the peritoneal cavity lived longer than mice treated with free CDDP (74 ± 23 vs 40 ± 23 days; P < .05). The mice treated with GM-CDDP also lost no weight, whereas the free CDDP group lost approximately 20% body weight (106 ± 5% vs 80 ± 7%; P < .001; body weight on day 1 = 100%). GM-CDDP significantly decreased the nephrotoxicity and hematotoxicity of CDDP. CONCLUSION GM decreased the adverse effects of CDDP and allowed high-dose intraperitoneal chemotherapy with the control of CDDP. This technique of gradual local release may allow us to provide a high-dose, targeted, intraperitoneal chemotherapy with CDDP, resulting in enhanced anti-cancer effects. These gelatin microspheres may be useful as a drug carrier for the treatment of peritoneal carcinomatosis.
Collapse
|
17
|
The antitumor efficiency of combined electrochemotherapy and single dose irradiation on a breast cancer tumor model. Radiol Oncol 2012; 46:226-32. [PMID: 23077461 PMCID: PMC3472947 DOI: 10.2478/v10019-012-0035-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Accepted: 05/05/2012] [Indexed: 02/04/2023] Open
Abstract
Background The aim of this study was to investigate the antitumor effectiveness of electrochemotherapy with cisplatin combined with suboptimal radiotherapy doses. Tumor radiosensitization was evaluated on large invasive ductal carcinoma tumors in Balb/C mice. Materials and methods Tumors of an average volume of 630 mm3 were treated with cisplatin, electric pulses, radiotherapy, electrochemotherapy, alone as well as in appropriate combinations. Tumors were irradiated with Cobalt-60 γ-rays at doses 3 Gy and 5 Gy in combination with electrochemotherapy using cisplatin. Controls included each of the treatments alone as well as the combination of the radiotherapy with electric pulses alone or with cisplatin alone. Antitumor effectiveness was evaluated by tumor growth delay, tumor-doubling time, inhibition ratio and the objective response rates. Results As anticipated, electrochemotherapy was more effective than the treatment with cisplatin alone or the application of the electric pulses alone. When treatments were combined with tumor irradiation at either 3 or 5 Gy, the combination with electrochemotherapy was more effective: at 5 Gy, 2 animals out of 8 were in complete remission 100 days later. In general the higher 5 Gy dose of γ-radiation was more effective than the lower one of 3 Gy. Conclusions The results of our study demonstrate that irradiation doses, 3 Gy or 5 Gy, increase the antitumor effectiveness of electrochemotherapy with cisplatin on invasive ductal carcinoma tumors. Good antitumor results were achieved in experimental tumors with a size comparable to clinical lesions, demonstrating that this three-modality combined treatment is useful for the treatment of large lesions even at sub-optimal radiotherapy doses.
Collapse
|
18
|
Hu D, Lau OD, Wang L, Wang G, Schaue D, Zhu L, Huang M, Lin Y, Dennis M, Abemayor E, Elashoff DA, Dubinett SM, McBride WH, Sharma S, Wu B, St John MA. A novel modular polymer platform for the treatment of head and neck squamous cell carcinoma in an animal model. ACTA ACUST UNITED AC 2012; 138:412-7. [PMID: 22508626 DOI: 10.1001/archoto.2012.20] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
OBJECTIVE To evaluate the therapeutic efficacy of a novel modular polymer platform in the treatment of head and neck squamous cell carcinoma (HNSCC). DESIGN In vivo study. SETTING Academic research laboratory. Subjects and METHODS C3H/HeJ mice and SCID/beige mice were randomized to receive implantation of no polymer, plain polymer, plain polymer with local cisplatin injection, or cisplatin polymer. The 2 groups of mice implanted with cisplatin polymer or no polymer were further randomized to receive 4 Gy of external beam radiation for 4 days or no radiation. Tumor size was measured until the mice were humanely killed. At necropsy, the tumors were excised and weighed. RESULTS There was a significant reduction in tumor growth using this novel polymer platform. The cisplatin-secreting polymer effectively reduced human head and neck tumor growth in SCID mice by 17-fold and SCC VII/SF tumors in C3H/HeJ mice by more than 16-fold compared with the control, plain polymer, and plain polymer + intratumoral cisplatin injection groups (P = .01 for both). We also observed a statistically significant lower tumor weight in mice treated with cisplatin polymer and concomitant radiation compared with the radiation alone and control groups. CONCLUSIONS We demonstrate the efficacy of a novel polymer platform in delivering cisplatin to a partially resected SCC in a murine model. This polymer may represent a new therapeutic modality for patients with HNSCC. Once this polymer platform is optimized, we will plan for validation in the context of a prospective trial in patients with unresectable advanced or recurrent HNSCC.
Collapse
Affiliation(s)
- David Hu
- Division of Head and Neck Surgery, Department of Surgery, Jonsson Comprehensive Cancer Center, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Hundt W, Yuh EL, Burbelko M, Kiessling A, Bednarski MD, Steinbach S. Gene expression analysis of SCC tumor cells in muscle tissue. Eur Arch Otorhinolaryngol 2011; 269:1653-63. [PMID: 22002462 DOI: 10.1007/s00405-011-1799-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Accepted: 09/26/2011] [Indexed: 10/17/2022]
Abstract
The purpose of this study was to evaluate microarray technology of HNSCC cells in muscle tissue. 200 SCCVII tumor cells were injected intramuscularly into the right flank of ten C3H/Km mice each. One week later the animals were killed and the tissue taken out. Histology (H&E staining) and microarray of the tissue were performed. Histology showed a few tumor cells between the muscle fibers. Microarray technology showed different gene expression pattern of the muscle tissue with SCCVII cells in comparison with normal muscle tissue. Only those genes showing a fold change difference of 5 or higher were considered. Gene expression analysis revealed changes in the expression levels of SCCVII cells in muscle tissue in 220 genes. Significant gene expression differences between SCCVII cells in muscle tissue and pure muscle tissue could be seen.
Collapse
Affiliation(s)
- Walter Hundt
- Department of Radiology, Philipps University Marburg, Marburg, Germany.
| | | | | | | | | | | |
Collapse
|
20
|
Zhang X, Yang H, Gu K, Chen J, Rui M, Jiang GL. In vitro and in vivo study of a nanoliposomal cisplatin as a radiosensitizer. Int J Nanomedicine 2011; 6:437-44. [PMID: 21499433 PMCID: PMC3075909 DOI: 10.2147/ijn.s15997] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Indexed: 12/18/2022] Open
Abstract
Objective: To investigate the in vitro and in vivo radiosensitization effect of an institutionally designed nanoliposome encapsulated cisplatin (NLE-CDDP). Materials and methods: NLE-CDDP was developed by our institute. In vitro radiosensitization of NLE-CDDP was evaluated by colony forming assay in A549 cells. In vivo radiosensitization was studied with tumor growth delay (TGD) in Lewis lung carcinoma. The radiosensitization for normal tissue was investigated by jejunal crypt survival. The radiosensitization studies were carried out with a 72 h interval between drug administration and irradiation. The mice were treated with 6 mg/kg of NLE-CDDP or CDDP followed by single doses of 2 Gy, 6 Gy, 16 Gy, and 28 Gy. Sensitization enhancement ratio (SER) was calculated by D0s of cell survival curves for A549 cells, doses needed to yield TGD of 20 days in Lewis lung carcinoma, or D0s of survival curves in crypt cells in radiation alone and radiation plus drug groups. Results: Our NLE-CDDP could inhibit A549 cells in vitro with half maximal inhibitory concentration of 1.12 μg/mL, and its toxicity was 2.35 times that observed in CDDP. For in vitro studies of A549 cells, SERs of NLE-CDDP and CDDP were 1.40 and 1.14, respectively, when combined with irradiation. For in vivo studies of Lewis lung carcinoma, the strongest radiosensitization was found in the 72 h interval between NLE-CDDP and irradiation. When given 72 h prior to irradiation, NLE-CDDP yielded higher radiosensitization than CDDP (SER of 4.92 vs 3.21) and slightly increased injury in jejunal crypt cells (SER of 1.15 vs 1.19). Therefore, NLE-CDDP resulted in a higher TGF than did CDDP (4.28 vs 2.70) when SERs were compared between experiments in vivo and in jejunal crypt cell studies. Conclusions: Our NLE-CDDP was demonstrated to have radiosensitization with TGF of 4.28 when administrated 72 h prior to irradiation.
Collapse
Affiliation(s)
- Xiaomeng Zhang
- Departments of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China
| | | | | | | | | | | |
Collapse
|
21
|
Hundt W, Yuh EL, Steinbach S, Bednarski MD. Effect of continuous high intensity focused ultrasound in a squamous cell carcinoma tumor model compared to muscle tissue evaluated by MRI, histology, and gene expression. Technol Cancer Res Treat 2009; 8:85-98. [PMID: 19334789 DOI: 10.1177/153303460900800201] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The purpose of this study was to investigate the effect of the continuous mode of high intensity focused ultrasound (HIFU) in a mouse head and neck cancer model (SCCVII) compared to muscle tissue. HIFU was applied to SCCVII tumors and to muscle tissue in C3H/Km mice using a dual ultrasound system (imaging 6 MHz/therapeutic 1 MHz). A continuous HIFU mode (total time 20 sec, intensity 6730.6 W/cm(2)) was applied. Three hours after HIFU treatment pre- and post-contrast T1-wt, T2-wt images, and a diffusion-wt STEAM sequence were obtained. After MR imaging, the animals were euthenized and the treated tumor and muscle tissue was taken out for histology and functional genomic analysis. T2 images showed increased signal intensity, post-contrast T1 showed a decreased contrast uptake in the central parts in the tumor tissue as well as in the muscle tissue. In addition a significant higher diffusion coefficient was found in both tissue types. Histological evaluation (H&E, Immunohistochemistry) of the tumors and the muscle tissue revealed areas of significant necrosis. In the tumor tissue 23 genes were up-regulated (> 2 fold change) and 4 genes were down-regulated (< -2 fold change). In the muscle tissue 29 genes were up-regulated and 17 genes down-regulated. Thirteen genes were up-regulated in both tissue types, 8 genes only in the SCCVII tissue, and 11 genes only in the muscle tissue. The use of HIFU treatment on tumor and muscle tissue results in dramatic changes in gene expression. The expression of some genes are tissue specific, the expression of other genes are independent of the tissue type.
Collapse
Affiliation(s)
- Walter Hundt
- Lucas MRS Research Center, Department of Radiology, Stanford University School of Medicine, Stanford, California 94305-5488, USA.
| | | | | | | |
Collapse
|
22
|
The use of biotinylated-EGF-modified gelatin nanoparticle carrier to enhance cisplatin accumulation in cancerous lungs via inhalation. Biomaterials 2009; 30:3476-85. [PMID: 19345990 DOI: 10.1016/j.biomaterials.2009.03.010] [Citation(s) in RCA: 181] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2009] [Accepted: 03/07/2009] [Indexed: 11/22/2022]
Abstract
To develop a polymer-anticancer drug conjugate, we employed gelatin nanoparticles (GPs) as carriers of cisplatin (CDDP) with anticipated improved therapeutic effect and reduced side effects. The anticancer activities of CDDP-incorporated in GPs (GP-Pt) with biotinylated-EGF (bEGF) modification (GP-Pt-bEGF) were studied. GP-Pt-bEGF with EGFR affinity produced much higher Pt concentrations in A549 cells (high EGFR expression) than in HFL1 cells (low EGFR expression). An in vitro anticancer study showed that GP-Pt-bEGF was more potent than free CDDP or GP-Pt because of its rapid effect on the cell cycle as well as a lower IC(50) (1.2microg/ml) that inhibits A549 cell growth. PI staining showed that cells treated with GP-Pt-bEGF for only 4h had the highest sub-G1 population. The CDDP formulations - free CDDP, GP-Pt, and GP-Pt-bEGF - were given by intratumorous injections to SCID mice in a subcutaneous model. This treatment showed that GP-Pt-bEGF had stronger anti-tumor activity and was less toxic than free CDDP in vivo. Mice treated with GP-Pt-bEGF showed slight body weight loss, whereas free CDDP treatment at the same dose caused a body weight loss of 20-30%. Furthermore, these formulations were given to mice with lung cancer via aerosol delivery. This treatment showed that inhaled GP-Pt-bEGF could target EGFR-overexpressing cells to achieve high cisplatin dosage in cancerous lungs. To summarize, gelatin nanoparticles loaded with CDDP and decorated with EGF tumor-specific ligand were successfully developed. Their in vitro and in vivo targeting ability and anticancer effect were confirmed. The aerosol delivery of the nanodrug carrier was demonstrated. Simple aerosol delivery of targeted drug carriers may prove useful for the clinical treatment of lung cancer patients.
Collapse
|
23
|
Wang SX, Bao A, Phillips WT, Goins B, Herrera SJ, Santoyo C, Miller FR, Otto RA. Intraoperative therapy with liposomal drug delivery: retention and distribution in human head and neck squamous cell carcinoma xenograft model. Int J Pharm 2009; 373:156-64. [PMID: 19429301 DOI: 10.1016/j.ijpharm.2009.02.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2008] [Revised: 02/09/2009] [Accepted: 02/10/2009] [Indexed: 10/21/2022]
Abstract
The focus of this study is to investigate the retention and biodistribution of technetium-99m ((99m)Tc) labeled liposomes in a human head and neck squamous cell carcinoma (HNSCC) positive surgical margin animal xenograft model. Positive surgical margin (with margin<1mm) in HNSCC is associated with significant higher mortality and recurrence rate when compared to clear margin. An immediate intraoperative application of liposome-carried therapeutic agents may treat the residual disease intraoperatively and improve long term survival in these patients. To understand the feasibility of this intraoperative therapy in HNSCC, the in vivo behavior of liposomes after intraoperative administration of (99m)Tc-labeled liposomes using non-invasive nuclear imaging was investigated in an animal xenograft model. Neutral and cationic (99m)Tc-labeled liposomes of 100 nm, 1 microm and 2 microm in diameter (6 study groups with 4 rats per study group) were injected into a nude rat HNSCC positive surgical margin xenograft model. Intratumoral, locoregional, and systemic retention and distribution of the (99m)Tc-liposomes were determined using non-invasive nuclear imaging and post-mortem organ distribution. The (99m)Tc-liposomes demonstrated high locoregional retention rate of 55.9+/-3.7% to 72.9+/-2.4% at 44 h after intraoperative injection to allow significant radiation to the surgical cavity if therapeutic radionuclides were used. Overall, the cationic liposomes demonstrated higher intratumoral retention rate, and the neutral liposomes showed greater retention in the paratumoral cavity (p<0.05 respectively). In conclusion, intraoperative therapy with liposome carried radionuclide drug delivery system carries great potential in treating unresectable HNSCC, and further study using therapeutic radionuclide should be explored.
Collapse
Affiliation(s)
- Sean X Wang
- Department of Otolaryngology-Head and Neck Surgery, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Seo SH, Han HD, Noh KH, Kim TW, Son SW. Chitosan hydrogel containing GMCSF and a cancer drug exerts synergistic anti-tumor effects via the induction of CD8+ T cell-mediated anti-tumor immunity. Clin Exp Metastasis 2008; 26:179-87. [PMID: 19082918 DOI: 10.1007/s10585-008-9228-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2008] [Accepted: 12/02/2008] [Indexed: 12/22/2022]
Abstract
Cancer treatments consisting of a combination of chemotherapy and immunotherapy have been vigorously exploited to further improve the efficacy of cancer therapies. In this study, we utilized a chitosan hydrogel (CH) system loaded with GMCSF and a cancer drug as a chemo-immunotherapeutic agent in an effort to assess the effects on tumor growth in mice using TC-1 cervical tumor cells, which express the tumor-specific antigen, HPV-16 E7. The growth of TC-1 tumors was significantly reduced in mice treated with a CH harboring a cancer drug (doxorubicin (DOX), cisplatin (CDDP), or cyclophosphamide (CTX)) and GMCSF (CH-a cancer drug + GMCSF), as compared to other groups that were treated with CH containing only a cancer drug(CH-a cancer drug) or GMCSF(CH-GMCSF). Among the cancer drugs, CTX exerted the most potent anti-tumor effects. Interestingly, the intra-tumoral injection of CH-a cancer drug + GMCSF induced a significant E7-specific CD8(+) T cell immune response as compared to CH-GMCSF or CH-a cancer drug. This enhancement of tumor antigen-specific CD8(+) T cell immunity was associated principally with the anti-tumor effects induced by CH-CTX + GMCSF, as demonstrated by antibody depletion. Collectively, the aforementioned results indicate that co-treatment of tumors with a combination of GMCSF and a cancer drug incorporated into a CH system results in synergistic anti-tumor effects, which occur via the induction of a tumor antigen-specific CD8(+) T cell-mediated anti-tumor immunity. This study demonstrates the use of a biodegradable hydrogel system for the co-delivery of an immunoadjuvant and an anti-cancer drug for successful chemo-immunotherapy.
Collapse
Affiliation(s)
- Soo Hong Seo
- Department of Dermatology, Korea University Ansan Hospital, Korea University College of Medicine, Gojan 1-dong, Danwon-gu, Ansan-si, Gyeonggi-do, South Korea
| | | | | | | | | |
Collapse
|
25
|
Li X, Li R, Qian X, Ding Y, Tu Y, Guo R, Hu Y, Jiang X, Guo W, Liu B. Superior antitumor efficiency of cisplatin-loaded nanoparticles by intratumoral delivery with decreased tumor metabolism rate. Eur J Pharm Biopharm 2008; 70:726-34. [DOI: 10.1016/j.ejpb.2008.06.016] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2008] [Revised: 05/31/2008] [Accepted: 06/09/2008] [Indexed: 10/21/2022]
|
26
|
Kanekal S, Joo J, Bublik M, Bababeygy A, Loh C, Castro DJ, Sercarz JA, Paiva MB. Retention of intratumor injections of cisplatinum in murine tumors and the impact on laser thermal therapy for cancer treatment. Eur Arch Otorhinolaryngol 2008; 266:279-84. [PMID: 18607614 DOI: 10.1007/s00405-008-0736-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2007] [Accepted: 05/29/2008] [Indexed: 12/19/2022]
Abstract
Recent studies using murine models of human squamous cell carcinoma (SCCA) have revealed a significant improvement in survival and cure rate of animals transplanted with human SCCA when treated with a combination of intratumor injections of chemotherapy and laser induced thermal therapy (LITT). These preliminary results suggest that this novel combination therapy may lead to improved clinical response compared to either treatment modality alone. Using a murine model of human SCCA we investigated two different modes of intratumor injection of cisplatin: a sustained-release cisplatin gel implant (CDDP/gel) versus cisplatin in solution (CDDP) at varying doses (range 1-3 mg/ml). In addition, we tested CDDP/gel combined with LITT. Results showed optimal drug concentration (30-300 nM) at tumor margins up to 4 h after injection of CDDP/gel implant compared to 3 nM at 5 min after injection with CDDP solution. Combined CDDP/gel and laser therapy significantly decreased tumor volume (P<0.05), with recurrence in only 25% of animals tested, compared to 78% tumor regrowth after LITT alone. These results suggest that laser chemotherapy may be an effective treatment for head and neck SCCA.
Collapse
|
27
|
Antitumor efficacy of cisplatin-loaded glycol chitosan nanoparticles in tumor-bearing mice. J Control Release 2007; 127:41-9. [PMID: 18234388 DOI: 10.1016/j.jconrel.2007.12.014] [Citation(s) in RCA: 251] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2007] [Revised: 12/04/2007] [Accepted: 12/13/2007] [Indexed: 01/05/2023]
Abstract
To make a tumor targeting nano-sized drug delivery system, biocompatible and biodegradable glycol chitosan (M(w)=250 kDa) was modified with hydrophobic cholanic acid. The resulting hydrophobically modified glycol chitosans (HGCs) that formed nano-sized self-aggregates in an aqueous medium were investigated as an anticancer drug carrier in cancer treatment. Insoluble anticancer drug, cisplatin (CDDP), was easily encapsulated into the hydrophobic cores of HGC nanoparticles by a dialysis method, wherein the drug loading efficiency was about 80%. The CCDP-encapsulated HGC (CDDP-HGC) nanoparticles were well-dispersed in aqueous media and they formed a nanoparticles structure with a mean diameter about 300-500 nm. As a nano-sized drug carrier, the CDDP-HGC nanoparticles released the drug in a sustained manner for a week and they were also less cytotoxic than was free CDDP, probably because of sustained release of CDDP from the HGC nanoparticles. The tumor targeting ability of CDDP-HGC nanoparticles was confirmed by in vivo live animal imaging with near-infrared fluorescence Cy5.5-labeled CDDP-HGC nanoparticles. It was observed that CDDP-HGC nanoparticles were successfully accumulated by tumor tissues in tumor-bearing mice, because of the prolonged circulation and enhanced permeability and retention (EPR) effect of CDDP-HGC nanoparticles in tumor-bearing mice. As expected, the CDDP-HGC nanoparticles showed higher antitumor efficacy and lower toxicity compared to free CDDP, as shown by changes in tumor volumes, body weights, and survival rates, as well as by immunohistological TUNEL assay data. Collectively, the present results indicate that HGC nanoparticles are a promising carrier for the anticancer drug CDDP.
Collapse
|
28
|
Abstract
Porous chitosan-silicate hybrids were prepared by freeze-drying the precursor sol
solutions synthesized from chitosan and 3-glycidoxypropyltrimethoxysilane (GPTMS).
Degradability of and the release of cytochrome C in to phosphate buffer saline solution (PBS) were
examined as a function of the GPTMS content. The hybrids were less degradable with larger
GPTMS contents, and the cytochrome C release profile was so controllable as to give either burst
release or slow one due to the GPTMS content. Thus, the present porous chitosan-silicate hybrids
were considered applicable to drug delivery systems.
Collapse
|
29
|
Hundt W, Yuh EL, Bednarski MD, Guccione S. Gene Expression Profiles, Histologic Analysis, and Imaging of Squamous Cell Carcinoma Model Treated with Focused Ultrasound Beams. AJR Am J Roentgenol 2007; 189:726-36. [PMID: 17715123 DOI: 10.2214/ajr.07.2371] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
OBJECTIVE The purpose of our study was to evaluate the effect of short-pulse high-intensity focused ultrasound (HIFU) on inducing cell death in a head and neck cancer model (SCCVII [squamous cell carcinoma]) compared with continuous HIFU to get a better understanding of the biologic changes caused by HIFU therapy. MATERIALS AND METHODS HIFU was applied to 12 SCCVII tumors in C3H/Km mice using a dual sonography system (imaging, 6 MHz; therapeutic, 1 MHz). A continuous HIFU mode (total time, 20 seconds; intensity, 6,730.6 W/cm2) and a short-pulse HIFU mode (frequency, 0.5 Hz; pulse duration, 50 milliseconds; total time, 16.5 minutes; intensity, 134.4 W/cm2) was applied. Three hours later, MR images were obtained on a 1.5-T scanner. After imaging, the treated and untreated control tumor tissue samples were taken out for histology and oligonucleotide microarray analysis. RESULTS Prominent changes were observed in the MR images in the continuous HIFU mode, whereas the short-pulse HIFU mode showed no discernible changes. Histology (H and E, TUNEL [terminal deoxynucleotidyl transferase-mediated dUTP {deoxyuridine triphosphate} nick-end labeling], and immunohistochemistry) of the tumors treated with the continuous HIFU mode revealed areas of significant necrosis. In the short-pulse HIFU mode, the H and E staining showed multifocal areas of coagulation necrosis. TUNEL staining showed a high apoptotic index in both modes. Gene expression analysis revealed profound differences. In the continuous HIFU mode, 23 genes were up-regulated (> twofold change) and five genes were down-regulated (< twofold change), and in the short-pulse HIFU mode, 32 different genes were up-regulated and 16 genes were down-regulated. CONCLUSION Genomic analysis might be included when investigating tissue changes after interventional therapy because it offers the potential to find molecular targets for imaging and therapeutic applications.
Collapse
Affiliation(s)
- Walter Hundt
- Department of Radiology, Lucas MRS Research Center, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | | | |
Collapse
|
30
|
Miura M, Blattmann H, Bräuer-Krisch E, Bravin A, Hanson AL, Nawrocky MM, Micca PL, Slatkin DN, Laissue JA. Radiosurgical palliation of aggressive murine SCCVII squamous cell carcinomas using synchrotron-generated X-ray microbeams. Br J Radiol 2006; 79:71-5. [PMID: 16421408 DOI: 10.1259/bjr/50464795] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Microbeam radiosurgery (MBRS), also referred to as microbeam radiation therapy (MRT), was tested at the European Synchrotron Radiation Facility (ESRF). The left tibiofibular thigh of a mouse bearing a subcutaneously (sc) implanted mouse model (SCCVII) of aggressive human squamous-cell carcinoma was irradiated in two orthogonal exposures with or without a 16 mm aluminium filter through a multislit collimator (MSC) by arrays of nearly parallel microbeams spaced 200 microm on centre (oc). The peak skin-entrance dose from each exposure was 442 Gy, 625 Gy, or 884 Gy from 35 microm wide beams or 442 Gy from 70 microm wide beams. The 442/35, 625/35, 884/35 and 442/70 MBRSs yielded 25 day, 29 day, 37 day and 35 day median survival times (MST) (post-irradiation), respectively, exceeding the 20 day MST from 35 Gy-irradiation of SCCVIIs with a seamless 100 kVp X-ray beam.
Collapse
Affiliation(s)
- M Miura
- Medical Department, Brookhaven National Laboratory, Upton, NY 11973-5000, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Kranjc S, Cemazar M, Grosel A, Sentjurc M, Sersa G. Radiosensitising effect of electrochemotherapy with bleomycin in LPB sarcoma cells and tumors in mice. BMC Cancer 2005; 5:115. [PMID: 16168056 PMCID: PMC1261257 DOI: 10.1186/1471-2407-5-115] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2005] [Accepted: 09/16/2005] [Indexed: 12/21/2022] Open
Abstract
Background Bleomycin is poorly permeant but potent cytotoxic and radiosensitizing drug. The aim of the study was to evaluate whether a physical drug delivery system – electroporation can increase radiosensitising effect of bleomycin in vitro and in vivo. Methods LPB sarcoma cells and tumors were treated either with bleomycin, electroporation or ionizing radiation, and combination of these treatments. In vitro, response to different treatments was determined by colony forming assay, while in vivo, treatment effectiveness was determined by local tumor control (TCD50). Time dependence of partial oxygen pressure in LPB tumors after application of electric pulses was measured by electron paramagnetic oxyimetry. Results Electroporation of cells in vitro increased radiosensitising effect of bleomycin for 1.5 times, in vivo radiation response of tumors was enhanced by 1.9 fold compared to response of tumors that were irradiated only. Neither treatment of tumors with bleomycin nor application of electric pulses only, affected radiation response of tumors. Application of electric pulses to the tumors induced profound but transient reduction of tumor oxygenation. Although tumor oxygenation after electroporation partially restored at the time of irradiation, it was still reduced at the level of radiobiologically relevant hypoxia. Conclusion Our study shows that application of electric pulses to cells and tumors increases radiosensitising effect of bleomycin. Furthermore, our results demonstrate that the radiobiologically relevant hypoxia induced by electroporation of tumors did not counteract the pronounced radiosensitising effect of electrochemotherapy with bleomycin.
Collapse
Affiliation(s)
- Simona Kranjc
- Institute of Oncology Ljubljana, Department of Experimental Oncology, Zaloska 2, SI-1000 Ljubljana, Slovenia
| | - Maja Cemazar
- Institute of Oncology Ljubljana, Department of Experimental Oncology, Zaloska 2, SI-1000 Ljubljana, Slovenia
| | - Alenka Grosel
- Institute of Oncology Ljubljana, Department of Experimental Oncology, Zaloska 2, SI-1000 Ljubljana, Slovenia
| | | | - Gregor Sersa
- Institute of Oncology Ljubljana, Department of Experimental Oncology, Zaloska 2, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
32
|
Konishi M, Tabata Y, Kariya M, Hosseinkhani H, Suzuki A, Fukuhara K, Mandai M, Takakura K, Fujii S. In vivo anti-tumor effect of dual release of cisplatin and adriamycin from biodegradable gelatin hydrogel. J Control Release 2004; 103:7-19. [PMID: 15710496 DOI: 10.1016/j.jconrel.2004.11.014] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2004] [Revised: 10/29/2004] [Accepted: 11/01/2004] [Indexed: 01/22/2023]
Abstract
The objective of this paper is to investigate the in vivo anti-tumor effect by dual release of cisplatin (CDDP) and adriamycin (ADM) from a biodegradable hydrogel. Hydrogels with different water contents were prepared through the chemical crosslinking of gelatin by various concentrations of glutaraldehyde. Aqueous solution of CDDP, ADM or their mixture (CDDP+ADM) was impregnated into the freeze-dried hydrogel, followed by air-drying to obtain the dried hydrogel incorporating the corresponding drug. Irrespective of the hydrogel water content, 8-20% of CDDP incorporated and 60-80% of ADM was released from the hydrogel in the phosphate-buffered saline solution (PBS) at 37 degrees C within the initial 6 h and thereafter little release was observed. When intratumorally applied into mice carrying a mass of Meth-AR-1 tumor cells, the hydrogel incorporating CDDP+ADM showed significant higher anti-tumor effect on the tumor growth suppression and on survival period than other drug applications. Combination effect assay revealed that the hydrogel incorporating CDDP+ADM showed a synergistic effect between the CDDP and ADM, while the solution form showed antagonistic. The concentration of CDDP and ADM in the tumor tissue maintained at higher levels over 14 days after application. The time course of in vivo CDDP retention was in a good accordance with that of hydrogel remaining, whereas ADM was released faster, followed by the sustained release for 14 days. No practically problematic change in the mouse body and blood biochemical parameters was observed by application of the hydrogel incorporating CDDP+ADM. We conclude that dual sustained release of CDDP and ADM attached to the tumor synergistically enhanced their in vivo anti-tumor effect through the trans-tissue delivery.
Collapse
Affiliation(s)
- Mitsunaga Konishi
- Department of Gynecology and Obstetrics, Faculty of Medicine, Kyoto University, 54 Kawara-cho Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
|
34
|
Yang YS, Guccione S, Bednarski MD. Comparing genomic and histologic correlations to radiographic changes in tumors: a murine SCC VII model study. Acad Radiol 2004; 10:1165-75. [PMID: 14587635 DOI: 10.1016/s1076-6332(03)00327-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
RATIONALE AND OBJECTIVES To investigate the correlation between the temporal changes in T1- and T2-weighted contrast-enhanced magnetic resonance imaging (MRI), histologic evaluation, and genomic analysis using oligonucleotide microarrays in a murine squamous cell carcinoma tumor models. MATERIALS AND METHODS The squamous cell carcinoma (SCC VII) cell line was used to initiate subcutaneous tumors in mice. This mouse model has been used as a model for human head and neck carcinomas. Animals were imaged using contrast enhanced MRI (CE-MRI). Different stages of tumor growth were defined based on changes in the T1- and T2-weighted MRI patterns. The contrast enhancing (CE) and nonenhancing (NE) regions of the tumors were marked and biopsied for oligonucleotide microarray and histologic analysis. Tumors with no differential contrast enhancement were used as controls. RESULTS Distinct temporal stages of tumor progression can be defined using both T1- and T2-weighted CE-MRI and microarray analysis. The early stage tumors show a homogeneous contrast enhancement pattern in the T1- and T2-weighted images with no significant differential gene expression from the center and periphery of the tumor. The more advanced tumors that show discrete regions of contrast enhancement in the post-contrast T1-weighted MRIs and tissues from the CE and NE regions show distinctly differential gene expression profiles. Histologic analysis (hematoxylin-eosin stain) showed that the samples obtained from the periphery and center of the early stage tumors and the CE and NE regions from these more advanced tumors were similar. The gene expression profiles of late-stage tumors that showed changes in T2-weighted MRI signal intensity were consistent with tissue degradation in the NE region, which also showed characteristic signs of tissue necrosis in histologic analysis. CONCLUSION These results show that temporal changes in T1- and T2-weighted CE-MRI are related to distinct gene expression profiles, and histologic analysis may not be sufficient to detect these detailed changes. As tumors progress, discrete regions of post-contrast T1 enhancement are identified; these regions have distinct gene expression patterns despite similar histologic features. In late-stage tumors, regions of T2 signal changes are observed which correspond with tissue necrosis.
Collapse
Affiliation(s)
- Yi-Shan Yang
- Lucas MRS Research Center, Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA
| | | | | |
Collapse
|
35
|
Konishi M, Tabata Y, Kariya M, Suzuki A, Mandai M, Nanbu K, Takakura K, Fujii S. In vivo anti-tumor effect through the controlled release of cisplatin from biodegradable gelatin hydrogel. J Control Release 2003; 92:301-13. [PMID: 14568411 DOI: 10.1016/s0168-3659(03)00364-x] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
This paper is an investigation to achieve the in vivo controlled release of cisplatin (CDDP) from a biodegradable hydrogel. Hydrogels with different water contents were prepared through the chemical crosslinking of gelatin by various concentrations of glutaraldehyde. The gelatin hydrogel incorporating CDDP (CDDP-hydrogel) was prepared by allowing CDDP aqueous solution to sorb into the freeze-dried hydrogel. Irrespective of the hydrogel water content, approximately 10-30% of incorporated CDDP was released from the hydrogel in phosphate-buffered saline solution (PBS) at 37 degrees C within the initial 6 h, while little release was observed thereafter. The amount of CDDP released initially decreased with an increase in the time period of CDDP sorption. When intratumorally applied into Meth-AR-1 tumor-bearing mice, CDDP-hydrogel suppressed in vivo tumor growth to a significantly higher extent than free CDDP at the same dose. The survival rate was significantly higher by the application of CDDP-hydrogel of 40 microg CDDP. The CDDP concentration in the tumor tissue was maintained at a higher level for a longer time period than that of free CDDP. However, no problematic change in the mouse body and blood biochemical parameters was observed on the application of the CDDP-hydrogel. The time course of in vivo CDDP retention was in a good accordance with that of hydrogel remaining. Larger CDDP release was observed from the front surface of hydrogel onto which free CDDP was sorbed, than the back surface of hydrogel. These findings demonstrate that the controlled release of CDDP was based on biodegradation of the hydrogel carrier, but not simple diffusion of CDDP. It is possible that the CDDP molecules immobilized in the gelatin hydrogel were released from the hydrogel only when the hydrogel was degraded to generate some water-soluble gelatin fragments.
Collapse
Affiliation(s)
- Mitsunaga Konishi
- Department of Gynecology and Obstetrics, Faculty of Medicine, Kyoto University, 54 Kawara-cho Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | | | | | | | | | | | | | | |
Collapse
|
36
|
He YC, Chen JW, Cao J, Pan DY, Qiao JG. Toxicities and therapeutic effect of 5-fluorouracil controlled release implant on tumor-bearing rats. World J Gastroenterol 2003; 9:1795-8. [PMID: 12918123 PMCID: PMC4611546 DOI: 10.3748/wjg.v9.i8.1795] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the toxicities, biodistribution and anticancer effect of 5-fluorouracil controlled release implant (5-FUCI) on Walker 256 carcinosarcoma cells in Wistar rats.
METHODS: Experiment 1: Wistar rats were randomly divided into three groups (27 rats per group). Blank implant was implanted in left lobe of the liver, and rats were treated with saline solution (in group A) or 5-fluorouracil (subcutaneous injection, group B). 5-FUCI was inserted in left lobe of the liver (group C). The gastrointestinal and hematological toxicities were observed and contents of element F in group C were assayed. Experiment 2: on day 6 after Walker-256 carcinosarcoma transplantation in left lobe of the liver, 5-FUCI was implanted in right lobe of the liver (group E) or left lobe (group F), and rats in control group (group D) were inserted blank implant. Tumor inhibition rate and survival time were investigated.
RESULTS: 5-FUCI showed no obvious toxic effect, extraction of Evan’s blue from gastrointestinal tissue was normal, the peripheral white blood cells and bone marrow nucleated cells were not reduced, compared with control group (P > 0.05). Histological examination revealed that there were no visible changes in small intestinal mucosa, The concentration of 5-fluorouracil in left lobe of the liver was 9.84, 28, 34 times as much as those of right lobe of the liver, heart and kidney respectively after the implantation in group C. They kept a high level of fluorouracil in left lobe of the liver, ranging from (4.414% ± 0.482%) to (7.800% ± 0.804%), for eight weeks. Survival days were 28.0 ± 2.2, 30.0 ± 3.2 and 38.7 ± 6.7 d in group D, E and F, respectively.
CONCLUSION: 5-FUCI shows no obvious toxicities to gastrointestinal tract and myelotoxicity. After implantation, it kept a high level of 5- fluorouracil in surrounding tissues of the implant for eight weeks. Its antitumor effect on Walker-256 carcinosarcoma is demonstrated.
Collapse
Affiliation(s)
- Yin-Cheng He
- Department of General Surgery, Zhongnan Hospital, Wuhan University, Wuhan 430071, Hubei Province, China.
| | | | | | | | | |
Collapse
|
37
|
Guccione S, Yang YS, Shi G, Lee DY, Li KCP, Bednarski MD. Functional genomics guided with MR imaging: mouse tumor model study. Radiology 2003; 228:560-8. [PMID: 12821773 DOI: 10.1148/radiol.2282020907] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
To gain a better understanding of gene expression patterns in tumors, the authors used contrast material-enhanced magnetic resonance (MR) imaging to noninvasively characterize regions within the same tumor to provide a correlate for genomic analysis. Gene expression profiles of samples from a mouse tumor model obtained from contrast-enhanced and nonenhanced regions within the same tumor were compared with MR imaging and functional genomics. From these samples, 11000 genes were analyzed: 10 genes were up-regulated in the contrast-enhanced areas, and one gene was up-regulated in the nonenhanced regions. Several of these genes encode extracellular matrix proteins. Findings in this study demonstrate that MR imaging can serve as a powerful noninvasive tool for characterizing different regions of tumors to guide genomic analysis with high spatial and temporal resolution.
Collapse
Affiliation(s)
- Samira Guccione
- Department of Radiology, Stanford University School of Medicine, 1201 Welch Rd, P260, Stanford, CA 94305-5488, USA
| | | | | | | | | | | |
Collapse
|
38
|
Goldberg EP, Hadba AR, Almond BA, Marotta JS. Intratumoral cancer chemotherapy and immunotherapy: opportunities for nonsystemic preoperative drug delivery. J Pharm Pharmacol 2002; 54:159-80. [PMID: 11848280 DOI: 10.1211/0022357021778268] [Citation(s) in RCA: 136] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The recent literature documents the growing interest in local intratumoral chemotherapy as well as systemic preoperative chemotherapy with evidence for improved outcomes using these therapeutic modalities. Nevertheless, with few exceptions, the conventional wisdom and standard of care for clinical and surgical oncology remains surgery followed by radiation and/or systemic chemotherapy, as deemed appropriate based on clinical findings. This, in spite of the fact that the toxicity of conventional systemic chemotherapy and immunotherapy affords limited effectiveness and frequently compromises the quality of life for patients. Indeed, with systemic chemotherapy, the oncologist (and the patient) often walks a fine line between attempting tumour remission with prolonged survival and damaging the patient's vital functions to the point of death. In this context, it has probably been obvious for more than 100 years, due in part to the pioneering work of Ehrlich (1878), that targeted or localized drug delivery should be a major goal of chemotherapy. However, there is still only limited clinical use of nonsystemic intratumoral chemotherapy for even those high mortality cancers which are characterized by well defined primary lesions i.e. breast, colorectal, lung, prostate, and skin. There has been a proliferation of intratumoral chemotherapy and immunotherapy research during the past two to three years. It is therefore the objective of this review to focus much more attention upon intratumoral therapeutic concepts which could limit adverse systemic events and which might combine clinically feasible methods for localized preoperative chemotherapy and/or immunotherapy with surgery. Since our review of intratumoral chemoimmunotherapy almost 20 years ago (McLaughlin & Goldberg 1983), there have been few comprehensive reviews of this field; only one of broad scope (Brincker 1993), three devoted specifically to gliomas (Tomita 1991; Walter et al. 1995; Haroun & Brem 2000), one on hepatomas (Venook 2000), one concerning veterinary applications (Theon 1998), and one older review of dermatological applications (Goette 1981). However, none have shed light on practical opportunities for combining intratumoral therapy with subsequent surgical resection. Given the state-of-the-art in clinical and surgical oncology, and the advances that have been made in intratumoral drug delivery, minimally invasive tumour access i.e. fine needle biopsy, new drugs and drug delivery systems, and preoperative chemotherapy, it is timely to present a review of studies which may suggest future opportunities for safer, more effective, and clinically practical non-systemic therapy.
Collapse
Affiliation(s)
- Eugene P Goldberg
- Biomaterials Center, Department of Materials Science and Engineering, University of Florida, Gainesville 32611, USA.
| | | | | | | |
Collapse
|
39
|
Abstract
1. Cisplatin/epinephrine injectable gel is a preparation for intratumoural injection containing cisplatin 4 mg/ml, epinephrine (adrenaline) 0.1 mg/ml and bovine collagen as a protein carrier matrix. It has been evaluated for the palliative treatment of accessible inoperable metastatic or recurrent solid tumours. 2. The vasoconstrictor action of epinephrine limits the diffusion of cisplatin into the systemic circulation. Intratumoural injection of cisplatin/epinephrine injectable gel achieves high concentrations of cisplatin in the tumour with very low concentrations in plasma and other tissues. 3. In double-blind randomised trials, cisplatin/epinephrine injectable gel was more efficacious than placebo in the palliative treatment of recurrent and resistant head and neck squamous cell carcinoma. 4. Cisplatin/epinephrine injectable gel reduced tumour size and improved local symptoms in patients with metastatic breast cancer, metastatic malignant melanoma, oesophageal carcinoma and hepatic tumours in a number of noncomparative clinical trials. 5. Adverse events with the use of cisplatin/epinephrine injectable gel are mainly limited to the local site of injection. No systemic adverse events such as nephrotoxicity, neurotoxicity or ototoxicity have been reported with use of this preparation.
Collapse
Affiliation(s)
- H Malhotra
- Adis International Limited, Auckland, New Zealand
| | | |
Collapse
|
40
|
Abstract
Postreplicational mismatch repair (MMR) proteins are capable of recognizing and processing not only single base-pair mismatches and insertion-deletion loops (IDLs) that occur during DNA replication, but also adducts in DNA resulting from treatment with cancer chemotherapy agents. These include widely varying types of DNA adducts resulting from methylating agents such as MNNG, MNU, temozolomide, and procarbazine; CpG crosslinks resulting from cisplatin and carboplatin; and S(6)-thioguanine and S(6)-methylthioguanine residues in DNA. Although MMR proteins can recognize both replicational errors and chemotherapy-induced adducts in DNA, the end results of this recognition are very different. Base-base mismatches and IDLs can be repaired by MMR, restoring genomic integrity, whereas MMR-mediated recognition and processing of chemotherapy-induced adducts in DNA results in apoptosis. After the loss of MMR, the inability of cells to recognize and correct single base-pair mismatches and insertion-deletion loops can lead to secondary mutations in proto-oncogenes and tumor-suppressor genes, thereby contributing to the development of cancer. In addition, the inability of MMR-deficient cells to recognize chemotherapy-induced adducts in DNA can result in a damage-tolerant phenotype that translates to clinically significant resistance by allowing for selection of MMR-deficient cancer cells. We have shown recently that these MMR-deficient, drug-resistant cells can be targeted for radiosensitization by the halogenated thymidine analogs iododeoxyuridine (IdUrd) and bromodeoxyuridine (BrdUrd). These thymidine (dThd) analogs become incorporated into DNA and form reactive uracil radicals after ionizing radiation (IR), increasing strand breaks. IdUrd and BrdUrd appear to be removed from DNA in MMR-proficient cells with limited toxicity or disruption of the cell cycle, while accumulating at much higher levels in MMR-deficient cells. As a result, it is possible to effectively increase the radiosensitization of MMR-deficient cells at levels of halogenated dThd analog that demonstrate limited toxicity to MMR-proficient cells. This indicates that a combined approach of IdUrd or BrdUrd with IR may be effective in killing MMR-deficient tumors in patients, which are resistant to many cancer chemotherapy agents commonly used in the clinic.
Collapse
Affiliation(s)
- S E Berry
- Department of Radiation Oncology, Case Western Reserve University, School of Medicine, Cleveland, OH, USA
| | | |
Collapse
|
41
|
Cortesi R, Nastruzzi C. Delivery systems for DNA-binding drugs as gene expression modulators. Drug Discov Today 2001; 6:893-904. [PMID: 11522518 DOI: 10.1016/s1359-6446(01)01893-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Despite the large number of publications describing the synthesis and physicocharacterization of the binding between drugs and DNA, relatively few examine drug delivery systems (DDSs) for these molecules. The aim to find DDSs for DNA-binding drugs (DBDs) was prompted mainly to reduce the toxicity and/or enhance the tumor specificity of systemically administered drugs. With this in mind, we have reviewed the biological effects of some DBDs that are currently used as antitumor drugs and describe a brief selection of DDSs currently in clinical trials or on the market.
Collapse
Affiliation(s)
- R Cortesi
- Dipartimento di Scienze Farmaceutiche, via Fossato di Mortara 19, 44100, Tel.: +39 0532 291259; fax: +39 0532 291296, Ferrara, Italy
| | | |
Collapse
|
42
|
Sersa G, Kranjc S, Cemazar M. Improvement of combined modality therapy with cisplatin and radiation using electroporation of tumors. Int J Radiat Oncol Biol Phys 2000; 46:1037-41. [PMID: 10705027 DOI: 10.1016/s0360-3016(99)00464-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
PURPOSE To evaluate whether a local drug delivery method, i.e., electroporation of tumors, increases the radiosensitizing effect of cisplatin. METHODS AND MATERIALS Subcutaneous Ehrlich-Lettre ascites (EAT) tumors in CBA mice were treated either by cisplatin, electric pulses, or ionizing radiation. In electrochemotherapy protocol, electric pulses were given to the tumor 3 min after intravenous injection of cisplatin. The interval between electrochemotherapy and irradiation was 20 min. Treatment effectiveness was evaluated by tumor growth delay and local tumor curability. RESULTS Electrochemotherapy of EAT tumors proved to be effective treatment, resulting in 12% tumor cures, whereas treatment with cisplatin or electric pulses alone did not yield any tumor cures. As expected, injection of cisplatin 20 min prior to irradiation, increased radioresponse of tumors from 27% to 73% tumor cures. Electroporation of tumors also increased radiation response of tumors to 54% tumor cures. Electrochemotherapy given prior to irradiation increased radioresponsiveness of tumors, resulting in 92% tumor cures. CONCLUSIONS This study shows that delivery of cisplatin into the cells by electroporation of tumors increases the radiosensitizing effect of cisplatin. However, some effect may also be ascribed to application of electric pulses to the tumors that in our study also predisposed tumor cells to radiation damage.
Collapse
Affiliation(s)
- G Sersa
- Department of Tumor Biology, Institute of Oncology, Ljubljana, Slovenia.
| | | | | |
Collapse
|