1
|
Schlaeger L, Olejniczak I, Lehmann M, Schmidt CX, Astiz M, Oster H, Pilorz V. Estrogen-mediated coupling via gap junctions in the suprachiasmatic nucleus. Eur J Neurosci 2024; 59:1723-1742. [PMID: 38326974 DOI: 10.1111/ejn.16270] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 01/11/2024] [Accepted: 01/22/2024] [Indexed: 02/09/2024]
Abstract
The circadian clock orchestrates many physiological and behavioural rhythms in mammals with 24-h periodicity, through a hierarchical organisation, with the central clock located in the suprachiasmatic nucleus (SCN) in the hypothalamus. The circuits of the SCN generate circadian rhythms with precision, relying on intrinsic coupling mechanisms, for example, neurotransmitters like arginine vasopressin (AVP), vasoactive intestinal peptide (VIP), neuronal gamma-aminobutyric acid (GABA) signalling and astrocytes connected by gap junctions composed of connexins (Cx). In female rodents, the presence of estrogen receptors (ERs) in the dorsal SCN suggests an influence of estrogen (E2) on the circuit timekeeping that could regulate circadian rhythm and coupling. To investigate this, we used SCN explants together with hypothalamic neurons and astrocytes. First, we showed that E2 stabilised the circadian amplitude in the SCN when rAVPs (receptor-associated vasopressin peptides) were inhibited. However, the phase delay induced by VIPAC2 (VIP receptors) inhibition remained unaffected by E2. We then showed that E2 exerted its effects in the SCN via ERβ (estrogen receptor beta), resulting in increased expression of Cx36 and Cx43. Notably, specific inhibition of both connexins resulted in a significant reduction in circadian amplitude within the SCN. Remarkably, E2 restored the period with inhibited Cx36 but not with Cx43 inhibition. This implies that the network between astrocytes and neurons, responsible for coupling in the SCN, can be reinforced through E2. In conclusion, these findings provide new insights into how E2 regulates circadian rhythms ex vivo in an ERβ-dependent manner, underscoring its crucial role in fortifying the SCN's rhythm.
Collapse
Affiliation(s)
- Lina Schlaeger
- Institute of Neurobiology, Center of Brain, Behaviour and Metabolism, Marie-Curie-Strasse, University of Lübeck, Lübeck, Germany
| | - Iwona Olejniczak
- Institute of Neurobiology, Center of Brain, Behaviour and Metabolism, Marie-Curie-Strasse, University of Lübeck, Lübeck, Germany
| | - Marianne Lehmann
- Institute of Neurobiology, Center of Brain, Behaviour and Metabolism, Marie-Curie-Strasse, University of Lübeck, Lübeck, Germany
| | - Cosima Xenia Schmidt
- Institute of Neurobiology, Center of Brain, Behaviour and Metabolism, Marie-Curie-Strasse, University of Lübeck, Lübeck, Germany
| | - Mariana Astiz
- Institute of Neurobiology, Center of Brain, Behaviour and Metabolism, Marie-Curie-Strasse, University of Lübeck, Lübeck, Germany
- Achucarro Basque Center for Neuroscience, Leioa, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Henrik Oster
- Institute of Neurobiology, Center of Brain, Behaviour and Metabolism, Marie-Curie-Strasse, University of Lübeck, Lübeck, Germany
| | - Violetta Pilorz
- Institute of Neurobiology, Center of Brain, Behaviour and Metabolism, Marie-Curie-Strasse, University of Lübeck, Lübeck, Germany
| |
Collapse
|
2
|
Comas M, De Pietri Tonelli D, Berdondini L, Astiz M. Ontogeny of the circadian system: a multiscale process throughout development. Trends Neurosci 2024; 47:36-46. [PMID: 38071123 DOI: 10.1016/j.tins.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 10/02/2023] [Accepted: 11/12/2023] [Indexed: 01/12/2024]
Abstract
The 24 h (circadian) timing system develops in mammals during the perinatal period. It carries out the essential task of anticipating daily recurring environmental changes to identify the best time of day for each molecular, cellular, and systemic process. Although significant knowledge has been acquired about the organization and function of the adult circadian system, relatively little is known about its ontogeny. During the perinatal period, the circadian system progressively gains functionality under the influence of the early environment. This review explores current evidence on the development of the circadian clock in mammals, highlighting the multilevel complexity of the process and the importance of gaining a better understanding of its underlying biology.
Collapse
Affiliation(s)
- Maria Comas
- Circadian Physiology of Neurons and Glia Laboratory, Achucarro Basque Center for Neuroscience, 48940 Leioa, Basque Country, Spain
| | | | - Luca Berdondini
- Microtechnology for Neuroelectronics, Fondazione Istituto Italiano di Tecnologia (IIT), 16163 Genova, Italy
| | - Mariana Astiz
- Circadian Physiology of Neurons and Glia Laboratory, Achucarro Basque Center for Neuroscience, 48940 Leioa, Basque Country, Spain; Ikerbasque - Basque Foundation for Science, Bilbao, Spain; Institute of Neurobiology, University of Lübeck, 23562 Lübeck, Germany.
| |
Collapse
|
3
|
Lee CH, Murrell CE, Chu A, Pan X. Circadian Regulation of Apolipoproteins in the Brain: Implications in Lipid Metabolism and Disease. Int J Mol Sci 2023; 24:17415. [PMID: 38139244 PMCID: PMC10743770 DOI: 10.3390/ijms242417415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/08/2023] [Accepted: 12/10/2023] [Indexed: 12/24/2023] Open
Abstract
The circadian rhythm is a 24 h internal clock within the body that regulates various factors, including sleep, body temperature, and hormone secretion. Circadian rhythm disruption is an important risk factor for many diseases including neurodegenerative illnesses. The central and peripheral oscillators' circadian clock network controls the circadian rhythm in mammals. The clock genes govern the central clock in the suprachiasmatic nucleus (SCN) of the brain. One function of the circadian clock is regulating lipid metabolism. However, investigations of the circadian regulation of lipid metabolism-associated apolipoprotein genes in the brain are lacking. This review summarizes the rhythmic expression of clock genes and lipid metabolism-associated apolipoprotein genes within the SCN in Mus musculus. Nine of the twenty apolipoprotein genes identified from searching the published database (SCNseq and CircaDB) are highly expressed in the SCN. Most apolipoprotein genes (ApoE, ApoC1, apoA1, ApoH, ApoM, and Cln) show rhythmic expression in the brain in mice and thus might be regulated by the master clock. Therefore, this review summarizes studies on lipid-associated apolipoprotein genes in the SCN and other brain locations, to understand how apolipoproteins associated with perturbed cerebral lipid metabolism cause multiple brain diseases and disorders. This review describes recent advancements in research, explores current questions, and identifies directions for future research.
Collapse
Affiliation(s)
- Chaeeun Hannah Lee
- Department of Foundations of Medicine, New York University Grossman Long Island School of Medicine, Mineola, NY 11501, USA
| | - Charlotte Ellzabeth Murrell
- Department of Foundations of Medicine, New York University Grossman Long Island School of Medicine, Mineola, NY 11501, USA
| | - Alexander Chu
- Department of Foundations of Medicine, New York University Grossman Long Island School of Medicine, Mineola, NY 11501, USA
| | - Xiaoyue Pan
- Department of Foundations of Medicine, New York University Grossman Long Island School of Medicine, Mineola, NY 11501, USA
- Diabetes and Obesity Research Center, NYU Langone Hospital-Long Island, Mineola, NY 11501, USA
| |
Collapse
|
4
|
Giantomasi L, Ribeiro JF, Barca-Mayo O, Malerba M, Miele E, De Pietri Tonelli D, Berdondini L. Astrocytes actively support long-range molecular clock synchronization of segregated neuronal populations. Sci Rep 2023; 13:4815. [PMID: 36964220 PMCID: PMC10038999 DOI: 10.1038/s41598-023-31966-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 03/20/2023] [Indexed: 03/26/2023] Open
Abstract
In mammals, the suprachiasmatic nucleus of the hypothalamus is the master circadian pacemaker that synchronizes the clocks in the central nervous system and periphery, thus orchestrating rhythms throughout the body. However, little is known about how so many cellular clocks within and across brain circuits can be effectively synchronized. In this work, we investigated the implication of two possible pathways: (i) astrocytes-mediated synchronization and (ii) neuronal paracrine factors-mediated synchronization. By taking advantage of a lab-on-a-chip microfluidic device developed in our laboratory, here we report that both pathways are involved. We found the paracrine factors-mediated synchronization of molecular clocks is diffusion-limited and, in our device, effective only in case of a short distance between neuronal populations. Interestingly, interconnecting astrocytes define an active signaling channel that can synchronize molecular clocks of neuronal populations also at longer distances. At mechanism level, we found that astrocytes-mediated synchronization involves both GABA and glutamate, while neuronal paracrine factors-mediated synchronization occurs through GABA signaling. These findings identify a previously unknown role of astrocytes as active cells that might distribute long-range signals to synchronize the brain clocks, thus further strengthening the importance of reciprocal interactions between glial and neuronal cells in the context of circadian circuitry.
Collapse
Affiliation(s)
- Lidia Giantomasi
- Microtechnology for Neuroelectronics, Fondazione Istituto Italiano Di Tecnologia (IIT), 16163, Genova, Italy
| | - João F Ribeiro
- Microtechnology for Neuroelectronics, Fondazione Istituto Italiano Di Tecnologia (IIT), 16163, Genova, Italy
| | - Olga Barca-Mayo
- Neurobiology of miRNA, Fondazione Istituto Italiano Di Tecnologia (IIT), 16163, Genova, Italy
- Circadian and Glial Biology Lab, Physiology Department, Molecular Medicine, and Chronic Diseases Research Centre (CiMUS), University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Mario Malerba
- Microtechnology for Neuroelectronics, Fondazione Istituto Italiano Di Tecnologia (IIT), 16163, Genova, Italy
- Centre de Nanosciences et de Nanotechnologies (C2N), CNRS UMR 9001, Université Paris-Saclay, 91120, Palaiseau, France
| | - Ermanno Miele
- Microtechnology for Neuroelectronics, Fondazione Istituto Italiano Di Tecnologia (IIT), 16163, Genova, Italy
- NanoPhotonics Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, UK
| | | | - Luca Berdondini
- Microtechnology for Neuroelectronics, Fondazione Istituto Italiano Di Tecnologia (IIT), 16163, Genova, Italy.
| |
Collapse
|
5
|
Lawal O, Ulloa Severino FP, Eroglu C. The role of astrocyte structural plasticity in regulating neural circuit function and behavior. Glia 2022; 70:1467-1483. [PMID: 35535566 PMCID: PMC9233050 DOI: 10.1002/glia.24191] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 04/28/2022] [Accepted: 04/28/2022] [Indexed: 12/12/2022]
Abstract
Brain circuits undergo substantial structural changes during development, driven by the formation, stabilization, and elimination of synapses. Synaptic connections continue to undergo experience‐dependent structural rearrangements throughout life, which are postulated to underlie learning and memory. Astrocytes, a major glial cell type in the brain, are physically in contact with synaptic circuits through their structural ensheathment of synapses. Astrocytes strongly contribute to the remodeling of synaptic structures in healthy and diseased central nervous systems by regulating synaptic connectivity and behaviors. However, whether structural plasticity of astrocytes is involved in their critical functions at the synapse is unknown. This review will discuss the emerging evidence linking astrocytic structural plasticity to synaptic circuit remodeling and regulation of behaviors. Moreover, we will survey possible molecular and cellular mechanisms regulating the structural plasticity of astrocytes and their non‐cell‐autonomous effects on neuronal plasticity. Finally, we will discuss how astrocyte morphological changes in different physiological states and disease conditions contribute to neuronal circuit function and dysfunction.
Collapse
Affiliation(s)
- Oluwadamilola Lawal
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, USA.,Department of Neurobiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Francesco Paolo Ulloa Severino
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, USA.,Department of Neuroscience and Psychology, Duke University, Durham, North Carolina, USA.,Howard Hughes Medical Institute, Duke University, Durham, North Carolina, USA
| | - Cagla Eroglu
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, USA.,Department of Neurobiology, Duke University Medical Center, Durham, North Carolina, USA.,Howard Hughes Medical Institute, Duke University, Durham, North Carolina, USA.,Duke Institute for Brain Sciences, Durham, North Carolina, USA
| |
Collapse
|
6
|
Cheng AH, Cheng HYM. Genesis of the Master Circadian Pacemaker in Mice. Front Neurosci 2021; 15:659974. [PMID: 33833665 PMCID: PMC8021851 DOI: 10.3389/fnins.2021.659974] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/04/2021] [Indexed: 12/13/2022] Open
Abstract
The suprachiasmatic nucleus (SCN) of the hypothalamus is the central circadian clock of mammals. It is responsible for communicating temporal information to peripheral oscillators via humoral and endocrine signaling, ultimately controlling overt rhythms such as sleep-wake cycles, body temperature, and locomotor activity. Given the heterogeneity and complexity of the SCN, its genesis is tightly regulated by countless intrinsic and extrinsic factors. Here, we provide a brief overview of the development of the SCN, with special emphasis on the murine system.
Collapse
Affiliation(s)
- Arthur H. Cheng
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Hai-Ying Mary Cheng
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
7
|
Abstract
The endogenous timekeeping system evolved to anticipate the time of the day through the 24 hours cycle of the Earth's rotation. In mammals, the circadian clock governs rhythmic physiological and behavioral processes, including the daily oscillation in glucose metabolism, food intake, energy expenditure, and whole-body insulin sensitivity. The results from a series of studies have demonstrated that environmental or genetic alterations of the circadian cycle in humans and rodents are strongly associated with metabolic diseases such as obesity and type 2 diabetes. Emerging evidence suggests that astrocyte clocks have a crucial role in regulating molecular, physiological, and behavioral circadian rhythms such as glucose metabolism and insulin sensitivity. Given the concurrent high prevalence of type 2 diabetes and circadian disruption, understanding the mechanisms underlying glucose homeostasis regulation by the circadian clock and its dysregulation may improve glycemic control. In this review, we summarize the current knowledge on the tight interconnection between the timekeeping system, glucose homeostasis, and insulin sensitivity. We focus specifically on the involvement of astrocyte clocks, at the organism, cellular, and molecular levels, in the regulation of glucose metabolism.
Collapse
Affiliation(s)
- Olga Barca-Mayo
- Circadian and Glial Biology Lab, Physiology Department, Molecular Medicine and Chronic Diseases Research Centre (CiMUS), University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Miguel López
- NeurObesity Lab, Physiology Department, Molecular Medicine and Chronic Diseases Research Centre (CiMUS), University of Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
8
|
Sueviriyapan N, Tso CF, Herzog ED, Henson MA. Astrocytic Modulation of Neuronal Activity in the Suprachiasmatic Nucleus: Insights from Mathematical Modeling. J Biol Rhythms 2020; 35:287-301. [PMID: 32285754 PMCID: PMC7401727 DOI: 10.1177/0748730420913672] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The suprachiasmatic nucleus (SCN) of the hypothalamus consists of a highly heterogeneous neuronal population networked together to allow precise and robust circadian timekeeping in mammals. While the critical importance of SCN neurons in regulating circadian rhythms has been extensively studied, the roles of SCN astrocytes in circadian system function are not well understood. Recent experiments have demonstrated that SCN astrocytes are circadian oscillators with the same functional clock genes as SCN neurons. Astrocytes generate rhythmic outputs that are thought to modulate neuronal activity through pre- and postsynaptic interactions. In this study, we developed an in silico multicellular model of the SCN clock to investigate the impact of astrocytes in modulating neuronal activity and affecting key clock properties such as circadian rhythmicity, period, and synchronization. The model predicted that astrocytes could alter the rhythmic activity of neurons via bidirectional interactions at tripartite synapses. Specifically, astrocyte-regulated extracellular glutamate was predicted to increase neuropeptide signaling from neurons. Consistent with experimental results, we found that astrocytes could increase the circadian period and enhance neural synchronization according to their endogenous circadian period. The impact of astrocytic modulation of circadian rhythm amplitude, period, and synchronization was predicted to be strongest when astrocytes had periods between 0 and 2 h longer than neurons. Increasing the number of neurons coupled to the astrocyte also increased its impact on period modulation and synchrony. These computational results suggest that signals that modulate astrocytic rhythms or signaling (e.g., as a function of season, age, or treatment) could cause disruptions in circadian rhythm or serve as putative therapeutic targets.
Collapse
Affiliation(s)
- Natthapong Sueviriyapan
- Department of Chemical Engineering and the Institute for Applied Life Sciences, University of Massachusetts, Amherst, MA 01003, USA
| | - Chak Foon Tso
- Department of Biology, Washington University in St. Louis, Saint Louis, MO 63130, USA
- Current Affiliation: Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA
| | - Erik D. Herzog
- Department of Biology, Washington University in St. Louis, Saint Louis, MO 63130, USA
| | - Michael A. Henson
- Department of Chemical Engineering and the Institute for Applied Life Sciences, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
9
|
Barca Mayo O, Berdondini L, De Pietri Tonelli D. Astrocytes and Circadian Rhythms: An Emerging Astrocyte-Neuron Synergy in the Timekeeping System. Methods Mol Biol 2019; 1938:131-154. [PMID: 30617978 DOI: 10.1007/978-1-4939-9068-9_10] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Animals have an internal timekeeping system to anticipate daily changes associated with the transition of day to night, which is deeply involved in the regulation and maintenance of behavioral and physiological processes. Prevailing knowledge associated the control of circadian clocks to a network of neurons in the central pacemaker, the suprachiasmatic nucleus (SCN), but astrocytes are rapidly emerging as key cellular contributors to the timekeeping system. However, how these glial cells impact the neuronal clock to modulate rhythmic neurobehavioral outputs just begin to be investigated. Astrocyte-neuron cocultures are an excellent exploratory method to further characterize the critical role of circadian communication between nerve cells, as well as to address the role of astrocytes as modulators and targets of neuronal rhythmic behaviors. Here, we describe a robust method to study astrocyte rhythmic interactions with neurons by coculturing them with primary neurons in physically separated layers. This simple coculture system provides hints on in vivo signaling processes. Moreover, it allows investigating cell-type specific effects separately as well as the identification of extracellular astrocytic or neuronal factors involved in rhythm generation in both cell types.
Collapse
Affiliation(s)
- Olga Barca Mayo
- Neurobiology of miRNAs Laboratory, Neuroscience and Brain Technologies Department, Fondazione Istituto Italiano di Tecnologia, Genoa, Italy.
| | - Luca Berdondini
- Microtechnology for Neuroelectronics (Nets3) Laboratory, Neuroscience and Brain Technologies Department, Fondazione Istituto Italiano di Tecnologia, Genoa, Italy
| | - Davide De Pietri Tonelli
- Neurobiology of miRNAs Laboratory, Neuroscience and Brain Technologies Department, Fondazione Istituto Italiano di Tecnologia, Genoa, Italy
| |
Collapse
|
10
|
Karatsoreos IN. Circadian Regulation of the Brain and Behavior: A Neuroendocrine Perspective. Curr Top Behav Neurosci 2019; 43:323-351. [PMID: 31586337 PMCID: PMC7594017 DOI: 10.1007/7854_2019_115] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Neuroendocrine systems are key regulators of brain and body functions, providing an important nexus between internal states and the external world, which then modulates appropriate behavioral outputs. Circadian (daily) rhythms are endogenously generated rhythms of approximately 24 h that help to synchronize internal physiological processes and behavioral states to the external environmental light-dark cycle. Given the importance of timing (hours, days, annual) in many different neuroendocrine axes, understanding how the circadian timing system regulates neuroendocrine function is particularly critical. Similarly, neuroendocrine signals can significantly affect circadian timing, and understanding these mechanisms can provide insights into general concepts of neuroendocrine regulation of brain circuits and behavior. This chapter will review the circadian timing system and its control of two key neuroendocrine systems: the hypothalamic-pituitary-gonadal (HPG) axis and the hypothalamic-pituitary-adrenal (HPA) axis. It will also discuss how outputs from these axes feedback to affect the circadian clock. Given that disruption of circadian timing is a central component of many mental and physical health conditions and that neuroendocrine function is similarly implicated in many of the same conditions, understanding these links will help illuminate potentially shared causality and perhaps lead to a better understanding of how to manipulate these systems when they begin to malfunction.
Collapse
Affiliation(s)
- Ilia N Karatsoreos
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA, USA.
| |
Collapse
|
11
|
Schmal C, Myung J, Herzel H, Bordyugov G. Moran's I quantifies spatio-temporal pattern formation in neural imaging data. Bioinformatics 2018; 33:3072-3079. [PMID: 28575207 PMCID: PMC5870747 DOI: 10.1093/bioinformatics/btx351] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 05/30/2017] [Indexed: 12/20/2022] Open
Abstract
Motivation Neural activities of the brain occur through the formation of spatio-temporal patterns. In recent years, macroscopic neural imaging techniques have produced a large body of data on these patterned activities, yet a numerical measure of spatio-temporal coherence has often been reduced to the global order parameter, which does not uncover the degree of spatial correlation. Here, we propose to use the spatial autocorrelation measure Moran’s I, which can be applied to capture dynamic signatures of spatial organization. We demonstrate the application of this technique to collective cellular circadian clock activities measured in the small network of the suprachiasmatic nucleus (SCN) in the hypothalamus. Results We found that Moran’s I is a practical quantitative measure of the degree of spatial coherence in neural imaging data. Initially developed with a geographical context in mind, Moran’s I accounts for the spatial organization of any interacting units. Moran’s I can be modified in accordance with the characteristic length scale of a neural activity pattern. It allows a quantification of statistical significance levels for the observed patterns. We describe the technique applied to synthetic datasets and various experimental imaging time-series from cultured SCN explants. It is demonstrated that major characteristics of the collective state can be described by Moran’s I and the traditional Kuramoto order parameter R in a complementary fashion. Availability and implementation Python 2.7 code of illustrative examples can be found in the Supplementary Material. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Christoph Schmal
- Institute for Theoretical Biology, Charité Universitätsmedizin and Humboldt Universität, Berlin D-10115, Germany
| | - Jihwan Myung
- Institute for Theoretical Biology, Charité Universitätsmedizin and Humboldt Universität, Berlin D-10115, Germany.,Wissenschaftskolleg zu Berlin, Berlin D-14193, Germany.,Computational Neuroscience Unit, Okinawa Institute of Science and Technology, Okinawa 904-0495, Japan
| | - Hanspeter Herzel
- Institute for Theoretical Biology, Charité Universitätsmedizin and Humboldt Universität, Berlin D-10115, Germany
| | - Grigory Bordyugov
- Institute for Theoretical Biology, Charité Universitätsmedizin and Humboldt Universität, Berlin D-10115, Germany
| |
Collapse
|
12
|
Barca-Mayo O, Pons-Espinal M, Follert P, Armirotti A, Berdondini L, De Pietri Tonelli D. Astrocyte deletion of Bmal1 alters daily locomotor activity and cognitive functions via GABA signalling. Nat Commun 2017; 8:14336. [PMID: 28186121 PMCID: PMC5309809 DOI: 10.1038/ncomms14336] [Citation(s) in RCA: 164] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Accepted: 12/19/2016] [Indexed: 02/08/2023] Open
Abstract
Circadian rhythms are controlled by a network of clock neurons in the central pacemaker, the suprachiasmatic nucleus (SCN). Core clock genes, such as Bmal1, are expressed in SCN neurons and in other brain cells, such as astrocytes. However, the role of astrocytic clock genes in controlling rhythmic behaviour is unknown. Here we show that ablation of Bmal1 in GLAST-positive astrocytes alters circadian locomotor behaviour and cognition in mice. Specifically, deletion of astrocytic Bmal1 has an impact on the neuronal clock through GABA signalling. Importantly, pharmacological modulation of GABAA-receptor signalling completely rescues the behavioural phenotypes. Our results reveal a crucial role of astrocytic Bmal1 for the coordination of neuronal clocks and propose a new cellular target, astrocytes, for neuropharmacology of transient or chronic perturbation of circadian rhythms, where alteration of astrocytic clock genes might contribute to the impairment of the neurobehavioural outputs such as cognition.
Collapse
Affiliation(s)
- Olga Barca-Mayo
- Neurobiology of miRNA Lab, Neuroscience and Brain Technologies Department, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
- NetS3 Lab, Neuroscience and Brain Technologies Department, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| | - Meritxell Pons-Espinal
- Neurobiology of miRNA Lab, Neuroscience and Brain Technologies Department, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| | - Philipp Follert
- Neurobiology of miRNA Lab, Neuroscience and Brain Technologies Department, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| | - Andrea Armirotti
- D3 PharmaChemistry, Department of Drug Discovery and Development, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| | - Luca Berdondini
- NetS3 Lab, Neuroscience and Brain Technologies Department, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| | - Davide De Pietri Tonelli
- Neurobiology of miRNA Lab, Neuroscience and Brain Technologies Department, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| |
Collapse
|
13
|
Evans JA. Collective timekeeping among cells of the master circadian clock. J Endocrinol 2016; 230:R27-49. [PMID: 27154335 PMCID: PMC4938744 DOI: 10.1530/joe-16-0054] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 05/06/2016] [Indexed: 01/09/2023]
Abstract
The suprachiasmatic nucleus (SCN) of the anterior hypothalamus is the master circadian clock that coordinates daily rhythms in behavior and physiology in mammals. Like other hypothalamic nuclei, the SCN displays an impressive array of distinct cell types characterized by differences in neurotransmitter and neuropeptide expression. Individual SCN neurons and glia are able to display self-sustained circadian rhythms in cellular function that are regulated at the molecular level by a 24h transcriptional-translational feedback loop. Remarkably, SCN cells are able to harmonize with one another to sustain coherent rhythms at the tissue level. Mechanisms of cellular communication in the SCN network are not completely understood, but recent progress has provided insight into the functional roles of several SCN signaling factors. This review discusses SCN organization, how intercellular communication is critical for maintaining network function, and the signaling mechanisms that play a role in this process. Despite recent progress, our understanding of SCN circuitry and coupling is far from complete. Further work is needed to map SCN circuitry fully and define the signaling mechanisms that allow for collective timekeeping in the SCN network.
Collapse
Affiliation(s)
- Jennifer A Evans
- Department of Biomedical SciencesMarquette University, Milwaukee, WI, USA
| |
Collapse
|
14
|
Evans JA, Gorman MR. In synch but not in step: Circadian clock circuits regulating plasticity in daily rhythms. Neuroscience 2016; 320:259-80. [PMID: 26861419 DOI: 10.1016/j.neuroscience.2016.01.072] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 01/26/2016] [Accepted: 01/27/2016] [Indexed: 11/16/2022]
Abstract
The suprachiasmatic nucleus (SCN) is a network of neural oscillators that program daily rhythms in mammalian behavior and physiology. Over the last decade much has been learned about how SCN clock neurons coordinate together in time and space to form a cohesive population. Despite this insight, much remains unknown about how SCN neurons communicate with one another to produce emergent properties of the network. Here we review the current understanding of communication among SCN clock cells and highlight a collection of formal assays where changes in SCN interactions provide for plasticity in the waveform of circadian rhythms in behavior. Future studies that pair analytical behavioral assays with modern neuroscience techniques have the potential to provide deeper insight into SCN circuit mechanisms.
Collapse
Affiliation(s)
- J A Evans
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI, USA.
| | - M R Gorman
- Department of Psychology, University of San Diego, La Jolla, CA, USA
| |
Collapse
|
15
|
Koo J, Choe HK, Kim HD, Chun SK, Son GH, Kim K. Effect of Mefloquine, a Gap Junction Blocker, on Circadian Period2 Gene Oscillation in the Mouse Suprachiasmatic Nucleus Ex Vivo. Endocrinol Metab (Seoul) 2015; 30:361-70. [PMID: 25491783 PMCID: PMC4595362 DOI: 10.3803/enm.2015.30.3.361] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 07/31/2014] [Accepted: 10/17/2014] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND In mammals, the master circadian pacemaker is localized in an area of the ventral hypothalamus known as the suprachiasmatic nucleus (SCN). Previous studies have shown that pacemaker neurons in the SCN are highly coupled to one another, and this coupling is crucial for intrinsic self-sustainability of the SCN central clock, which is distinguished from peripheral oscillators. One plausible mechanism underlying the intercellular communication may involve direct electrical connections mediated by gap junctions. METHODS We examined the effect of mefloquine, a neuronal gap junction blocker, on circadian Period 2 (Per2) gene oscillation in SCN slice cultures prepared from Per2::luciferase (PER2::LUC) knock-in mice using a real-time bioluminescence measurement system. RESULTS Administration of mefloquine causes instability in the pulse period and a slight reduction of amplitude in cyclic PER2::LUC expression. Blockade of gap junctions uncouples PER2::LUC-expressing cells, in terms of phase transition, which weakens synchrony among individual cellular rhythms. CONCLUSION These findings suggest that neuronal gap junctions play an important role in synchronizing the central pacemaker neurons and contribute to the distinct self-sustainability of the SCN master clock.
Collapse
Affiliation(s)
- Jinmi Koo
- Department of Biological Sciences and Brain Research Center for 21st Frontier Program in Neuroscience, Seoul National University College of Natural Sciences, Seoul, Korea
| | - Han Kyoung Choe
- Department of Biological Sciences and Brain Research Center for 21st Frontier Program in Neuroscience, Seoul National University College of Natural Sciences, Seoul, Korea
| | - Hee Dae Kim
- Department of Biological Sciences and Brain Research Center for 21st Frontier Program in Neuroscience, Seoul National University College of Natural Sciences, Seoul, Korea
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Korea
| | - Sung Kook Chun
- Department of Biological Sciences and Brain Research Center for 21st Frontier Program in Neuroscience, Seoul National University College of Natural Sciences, Seoul, Korea
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Korea
| | - Gi Hoon Son
- Department of Biological Sciences and Brain Research Center for 21st Frontier Program in Neuroscience, Seoul National University College of Natural Sciences, Seoul, Korea
- Department of Legal Medicine, Korea University College of Medicine, Seoul, Korea
| | - Kyungjin Kim
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Korea
- Department of Biological Sciences and Brain Research Center for 21st Frontier Program in Neuroscience, Seoul National University College of Natural Sciences, Seoul, Korea.
| |
Collapse
|
16
|
Wang MH, Chen N, Wang JH. The coupling features of electrical synapses modulate neuronal synchrony in hypothalamic superachiasmatic nucleus. Brain Res 2014; 1550:9-17. [PMID: 24440632 DOI: 10.1016/j.brainres.2014.01.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 01/06/2014] [Accepted: 01/07/2014] [Indexed: 10/25/2022]
Abstract
Electrical synapses (gap junctions) exist in many types of neurons in the mammalian brain, especially during early development period; one of the most important roles of electrical synapses is to mediate the synchrony of the neuronal networks and to coordinate the neural circuits function precisely. Previous reports show that electrical coupling is involved in modulating synchronous activity among coupled neurons, but related dynamics and mechanisms are still poorly understood. Here, in order to investigate the correlation between gap junctions and synchrony we focus on the electrically coupled neurons in suprachiasmatic nucleus (SCN) by using calcium imaging with two-photon microscopy and electrophysiology. We observed that coupled neurons in SCN present a dynamic regulation on synchrony based on their coupling strengths and are modulated by vasoactive intestinal peptide (VIP) - a neuropeptide whose receptors are expressed throughout the SCN. Modification of coupling efficiency of electrical synapses changes the synchrony level of the neuronal networks in the SCN. Our results provide new insights into the causal relationship between gap junctions and synchrony in the SCN. We further demonstrate the importance of VIP in coordinating the gap junctions-mediated signal transmission and implicate that a homeostasis environment is important for SCN to modulate the rhythmic circadian activities.
Collapse
Affiliation(s)
- Ming-Hui Wang
- Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China; University School of the Chinese Academy of Sciences, Beijing 100049, China
| | - Na Chen
- Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China
| | - Jin-Hui Wang
- Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China.
| |
Collapse
|
17
|
Anzai M, Iijima N, Higo S, Takumi K, Matsuo I, Mori K, Ohe Y, Kadota K, Akimoto T, Sakamoto A, Ozawa H. Direct and specific effect of sevoflurane anesthesia on rat Per2 expression in the suprachiasmatic nucleus. PLoS One 2013; 8:e59454. [PMID: 23555676 PMCID: PMC3605447 DOI: 10.1371/journal.pone.0059454] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Accepted: 02/14/2013] [Indexed: 01/08/2023] Open
Abstract
Background Our previous studies revealed that application of the inhalation anesthetic, sevoflurane, reversibly repressed the expression of Per2 in the mouse suprachiasmatic nucleus (SCN). We aimed to examine whether sevoflurane directly affects the SCN. Methods We performed in vivo and in vitro experiments to investigate rat Per2 expression under sevoflurane-treatment. The in vivo effects of sevoflurane on rPer2 expression were examined by quantitative in situ hybridization with a radioactively-labeled cRNA probe. Additionally, we examined the effect of sevoflurane anesthesia on rest/activity rhythms in the rat. In the in vitro experiments, we applied sevoflurane to SCN explant cultures from Per2-dLuc transgenic rats, and monitored luciferase bioluminescence, representing Per2 promoter activity. Bioluminescence from two peripheral organs, the kidney cortex and the anterior pituitary gland, were also analyzed. Results Application of sevoflurane in rats significantly suppressed Per2 expression in the SCN compared with untreated animals. We observed no sevoflurane-induced phase-shift in the rest/activity rhythms. In the in vitro experiments, the intermittent application of sevoflurane repressed the increase of Per2-dLuc luminescence and led to a phase delay in the Per2-dLuc luminescence rhythm. Sevoflurane treatment did not suppress bioluminescence in the kidney cortex or the anterior pituitary gland. Conclusion The suppression of Per2-dLuc luminescence by sevoflurane in in vitro SCN cultures isolated from peripheral inputs and other nuclei suggest a direct action of sevoflurane on the SCN itself. That sevoflurane has no such effect on peripheral organs suggests that this action might be mediated through a neuron-specific cellular mechanism or a regulation of the signal transduction between neurons.
Collapse
Affiliation(s)
- Megumi Anzai
- Department of Anatomy and Neurobiology, Graduate School of Medicine, Nippon Medical School, Bunkyo-ku, Tokyo, Japan
- Department of Anesthesiology, Graduate School of Medicine, Nippon Medical School, Bunkyo-ku, Tokyo, Japan
| | - Norio Iijima
- Department of Anatomy and Neurobiology, Graduate School of Medicine, Nippon Medical School, Bunkyo-ku, Tokyo, Japan
- * E-mail:
| | - Shimpei Higo
- Department of Anatomy and Neurobiology, Graduate School of Medicine, Nippon Medical School, Bunkyo-ku, Tokyo, Japan
| | - Ken Takumi
- Department of Anatomy and Neurobiology, Graduate School of Medicine, Nippon Medical School, Bunkyo-ku, Tokyo, Japan
| | - Izumi Matsuo
- Department of Anatomy and Neurobiology, Graduate School of Medicine, Nippon Medical School, Bunkyo-ku, Tokyo, Japan
- Department of Anesthesiology, Graduate School of Medicine, Nippon Medical School, Bunkyo-ku, Tokyo, Japan
| | - Keisuke Mori
- Department of Anatomy and Neurobiology, Graduate School of Medicine, Nippon Medical School, Bunkyo-ku, Tokyo, Japan
- Department of Anesthesiology, Graduate School of Medicine, Nippon Medical School, Bunkyo-ku, Tokyo, Japan
| | - Yumiko Ohe
- Department of Anesthesiology, Graduate School of Medicine, Nippon Medical School, Bunkyo-ku, Tokyo, Japan
| | - Kana Kadota
- Department of Anesthesiology, Graduate School of Medicine, Nippon Medical School, Bunkyo-ku, Tokyo, Japan
| | - Toshio Akimoto
- Division of Laboratory Animal Science, Nippon Medical School, Bunkyo-ku, Tokyo, Japan
| | - Atsuhiro Sakamoto
- Department of Anesthesiology, Graduate School of Medicine, Nippon Medical School, Bunkyo-ku, Tokyo, Japan
| | - Hitoshi Ozawa
- Department of Anatomy and Neurobiology, Graduate School of Medicine, Nippon Medical School, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
18
|
Chen H, Zhao L, Chu G, Kito G, Yamauchi N, Shigeyoshi Y, Hashimoto S, Hattori MA. FSH induces the development of circadian clockwork in rat granulosa cells via a gap junction protein Cx43-dependent pathway. Am J Physiol Endocrinol Metab 2013; 304:E566-75. [PMID: 23299500 DOI: 10.1152/ajpendo.00432.2012] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The present study was designed to assess the relationship between gap junctions and the maturation of a clock system in rat granulosa cells stimulated by follicle-stimulating hormone (FSH). Immature and mature granulosa cells were prepared by puncturing the ovaries of diethylstilbestrol- and equine chorionic gonadotropin (eCG)-treated mouse Period2 (Per2)-dLuc reporter gene transgenic rats, respectively. Mature granulosa cells exposed to dexamethasone (DXM) synchronization displayed several Per2-dLuc oscillations and a rhythmic expression of clock genes. Intriguingly, we observed clear evidence that the FSH stimulation significantly increased the amplitude of Per2 oscillations in the granulosa cells, which was confirmed by the elevation of the Per2 and Rev-erbα (Nr1d1) mRNA levels. FSH also induced a major phase-advance shift of Per2 oscillations. The mature granulosa cells cultured for 2 days with FSH expressed higher mRNA levels of Per2, Rev-erbα, Bmal1 (Arnt1), Lhcgr, and connexin (Cx) 43 (Gja1) compared with the immature granulosa cells. Consistently, our immunofluorescence results revealed abundant Cx43 protein in antral follicles stimulated with eCG and weak or no fluorescence signal of Cx43 in primary and preantral follicles. Similar results were confirmed by Western blotting analysis. Two gap junction blockers, lindane and carbenoxolone (CBX), significantly decreased the amplitude of Per2 oscillations, which further adhered significant decreases in Per2 and Rev-erbα transcript levels. In addition, both lindane and CBX induced a clear phase-delay shift of Per2 oscillations. These findings suggest that FSH induces the development of the clock system by increasing the expression of Cx43.
Collapse
Affiliation(s)
- Huatao Chen
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
Although circadian rhythms in mammalian physiology and behavior are dependent upon a biological clock in the suprachiasmatic nuclei (SCN) of the hypothalamus, the molecular mechanism of this clock is in fact cell autonomous and conserved in nearly all cells of the body. Thus, the SCN serves in part as a "master clock," synchronizing "slave" clocks in peripheral tissues, and in part directly orchestrates circadian physiology. In this chapter, we first consider the detailed mechanism of peripheral clocks as compared to clocks in the SCN and how mechanistic differences facilitate their functions. Next, we discuss the different mechanisms by which peripheral tissues can be entrained to the SCN and to the environment. Finally, we look directly at how peripheral oscillators control circadian physiology in cells and tissues.
Collapse
Affiliation(s)
- Steven A Brown
- Institute of Pharmacology and Toxicology, 190 Winterthurerstrasse, 8057 Zürich, Switzerland.
| | | |
Collapse
|
20
|
Topological specificity and hierarchical network of the circadian calcium rhythm in the suprachiasmatic nucleus. Proc Natl Acad Sci U S A 2012; 109:21498-503. [PMID: 23213253 DOI: 10.1073/pnas.1214415110] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The circadian pacemaker in the hypothalamic suprachiasmatic nucleus (SCN) is a hierarchical multioscillator system in which neuronal networks play crucial roles in expressing coherent rhythms in physiology and behavior. However, our understanding of the neuronal network is still incomplete. Intracellular calcium mediates the input signals, such as phase-resetting stimuli, to the core molecular loop involving clock genes for circadian rhythm generation and the output signals from the loop to various cellular functions, including changes in neurotransmitter release. Using a unique large-scale calcium imaging method with genetically encoded calcium sensors, we visualized intracellular calcium from the entire surface of SCN slice in culture including the regions where autonomous clock gene expression was undetectable. We found circadian calcium rhythms at a single-cell level in the SCN, which were topologically specific with a larger amplitude and more delayed phase in the ventral region than the dorsal. The robustness of the rhythm was reduced but persisted even after blocking the neuronal firing with tetrodotoxin (TTX). Notably, TTX dissociated the circadian calcium rhythms between the dorsal and ventral SCN. In contrast, a blocker of gap junctions, carbenoxolone, had only a minor effect on the calcium rhythms at both the single-cell and network levels. These results reveal the topological specificity of the circadian calcium rhythm in the SCN and the presence of coupled regional pacemakers in the dorsal and ventral regions. Neuronal firings are not necessary for the persistence of the calcium rhythms but indispensable for the hierarchical organization of rhythmicity in the SCN.
Collapse
|
21
|
Morin LP. Neuroanatomy of the extended circadian rhythm system. Exp Neurol 2012; 243:4-20. [PMID: 22766204 DOI: 10.1016/j.expneurol.2012.06.026] [Citation(s) in RCA: 200] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Revised: 06/19/2012] [Accepted: 06/24/2012] [Indexed: 01/09/2023]
Abstract
The suprachiasmatic nucleus (SCN), site of the primary clock in the circadian rhythm system, has three major afferent connections. The most important consists of a retinohypothalamic projection through which photic information, received by classical rod/cone photoreceptors and intrinsically photoreceptive retinal ganglion cells, gains access to the clock. This information influences phase and period of circadian rhythms. The two other robust afferent projections are the median raphe serotonergic pathway and the geniculohypothalamic (GHT), NPY-containing pathway from the thalamic intergeniculate leaflet (IGL). Beyond this simple framework, the number of anatomical routes that could theoretically be involved in rhythm regulation is enormous, with the SCN projecting to 15 regions and being directly innervated by about 35. If multisynaptic afferents to the SCN are included, the number expands to approximately brain 85 areas providing input to the SCN. The IGL, a known contributor to circadian rhythm regulation, has a still greater level of complexity. This nucleus connects abundantly throughout the brain (to approximately 100 regions) by pathways that are largely bilateral and reciprocal. Few of these sites have been evaluated for their contributions to circadian rhythm regulation, although most have a theoretical possibility of doing so via the GHT. The anatomy of IGL connections suggests that one of its functions may be regulation of eye movements during sleep. Together, neural circuits of the SCN and IGL are complex and interconnected. As yet, few have been tested with respect to their involvement in rhythm regulation.
Collapse
Affiliation(s)
- Lawrence P Morin
- Department of Psychiatry, Stony Brook University Medical Center, Stony Brook, NY 11794-8101, USA.
| |
Collapse
|
22
|
Abstract
The appearance of multicellular organisms imposed the development of several mechanisms for cell-to-cell communication, whereby different types of cells coordinate their function. Some of these mechanisms depend on the intercellular diffusion of signal molecules in the extracellular spaces, whereas others require cell-to-cell contact. Among the latter mechanisms, those provided by the proteins of the connexin family are widespread in most tissues. Connexin signaling is achieved via direct exchanges of cytosolic molecules between adjacent cells at gap junctions, for cell-to-cell coupling, and possibly also involves the formation of membrane "hemi-channels," for the extracellular release of cytosolic signals, direct interactions between connexins and other cell proteins, and coordinated influence on the expression of multiple genes. Connexin signaling appears to be an obligatory attribute of all multicellular exocrine and endocrine glands. Specifically, the experimental evidence we review here points to a direct participation of the Cx36 isoform in the function of the insulin-producing β-cells of the endocrine pancreas, and of the Cx40 isoform in the function of the renin-producing juxtaglomerular epithelioid cells of the kidney cortex.
Collapse
Affiliation(s)
- Domenico Bosco
- Department of Surgery, University of Geneva Medical School, Geneva, Switzerland
| | | | | |
Collapse
|
23
|
Karatsoreos IN, Butler MP, Lesauter J, Silver R. Androgens modulate structure and function of the suprachiasmatic nucleus brain clock. Endocrinology 2011; 152:1970-8. [PMID: 21363939 PMCID: PMC3075936 DOI: 10.1210/en.2010-1398] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Gonadal hormones can modulate circadian rhythms in rodents and humans, and androgen receptors are highly localized within the core region of the mouse suprachiasmatic nucleus (SCN) brain clock. Although androgens are known to modulate neural plasticity in other CNS compartments, the role of androgens and their receptors on plasticity in the SCN is unexplored. In the present study, we ask whether androgens influence the structure and function of the mouse SCN by examining the effects of gonadectomy (GDX) on the structure of the SCN circuit and its responses to light, including induction of clock genes and behavioral phase shifting. We found that after GDX, glial fibrillary acidic protein increased with concomitant decreases in the expression of the synaptic proteins synaptophysin and postsynaptic density 95. We also found that GDX exerts effects on the molecular and behavioral responses to light that are phase dependent. In late night [circadian time (CT)21], GDX increased light-induced mPer1 but not mPer2 expression compared with intact (INT) controls. In contrast, in early night (CT13.5), GDX decreased light induced mPer2 but had no effect on mPer1. At CT13.5, GDX animals also showed larger phase delays than did INT. Treatment of GDX animals with the nonaromatizable androgen dihydrotestosterone restored glial fibrillary acidic protein, postsynaptic density 95, and synaptophysin in the SCN and reinstated the INT pattern of molecular and behavioral responses to light. Together, the results reveal a role for androgens in regulating circuitry in the mouse SCN, with functional consequences for clock gene expression and behavioral responses to photic phase resetting stimuli.
Collapse
Affiliation(s)
- Ilia N Karatsoreos
- Department of Psychology, Columbia University, New York, New York 10027, USA
| | | | | | | |
Collapse
|
24
|
Immunocytochemical evidence for different patterns in daily rhythms of VIP and AVP peptides in the suprachiasmatic nucleus of diurnal Funambulus palmarum. Brain Res 2010; 1373:39-47. [PMID: 21156164 DOI: 10.1016/j.brainres.2010.12.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Revised: 12/03/2010] [Accepted: 12/07/2010] [Indexed: 12/25/2022]
Abstract
The suprachiasmatic nucleus (SCN) is the principal pacemaker that coordinates circadian rhythmicity in mammals. The studies on understanding the circadian system in diurnal rodents are limited. In this study, we have used the 3 striped South Indian Palm Squirrel (Funambulus palmarum). The locomotor activity showed a diurnal pattern of activity in LD 12:12, constant darkness (DD) and light (LL) conditions with circadian periods (τ) of 24.19 ± 0.1, 24.11 ± 0.03 and 24.92 ± 0.35 h respectively. Anatomical study of the brain revealed that this animal had short, thick and stout optic nerves with SCN elliptical in shape with a higher neuronal population as distinct from nocturnal rodents. Since the neuropeptides, vasoactive intestinal polypeptide (VIP) and arginine vasopressin (AVP) play important roles in photic entrainment and relay of information respectively in nocturnal rodents, we studied the distribution and daily rhythms of VIP-ir and AVP-ir in squirrel SCN. The VIP-ir and AVP-ir cells in the SCN showed a ventrolateral and dorsomedial distribution with daily rhythmicity in their levels. The peak time of VIP-ir rhythm was found ahead of AVP-ir. The VIP-ir levels were higher for longer duration than AVP-ir levels. The maximum and minimum VIP-ir levels were at ZT-6 and ZT-0 respectively and AVP-ir levels at ZT-12 and ZT-0 respectively. Thus, VIP and AVP maximum and minimum levels appeared 6 and 12h apart respectively in squirrel, though 12 and 8h apart in rat. These findings in the present report could be a step towards underpinning the mechanisms regulating diurnality.
Collapse
|
25
|
Drouyer E, LeSauter J, Hernandez AL, Silver R. Specializations of gastrin-releasing peptide cells of the mouse suprachiasmatic nucleus. J Comp Neurol 2010; 518:1249-63. [PMID: 20151358 PMCID: PMC2880332 DOI: 10.1002/cne.22272] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The suprachiasmatic nucleus (SCN) of the hypothalamus regulates daily rhythms in physiology and behavior. It is composed of a heterogeneous population of cells that together form the circuits underlying its master clock function. Numerous studies suggest the existence of two regions that have been termed core and shell. At a gross level, differences between these regions map to distinct functional differences, although the specific role(s) of various peptidergic cellular phenotypes remains unknown. In mouse, gastrin-releasing peptide (GRP) cells lie in the core, are directly retinorecipient, and lack detectable rhythmicity in clock gene expression, raising interest in their role in the SCN. Here, we provide evidence that calbindin-expressing cells of perinatal mouse SCN express GRP, identified by a green fluorescent protein (GFP+), but lack detectable calbindin later in development. To explore the intra-SCN network in which GRP neurons participate, individual GFP+ cells were filled with tracer and their morphological characteristics, processes, and connections, as well as those of their non-GFP-containing immediate neighbors, were compared. The results show that GFP+ neurons form a dense network of local circuits within the core, revealed by appositions on other GFP+ cells and by the presence of dye-coupled cells. Dendrites and axons of GFP+ cells make appositions on arginine vasopressin neurons, whereas non-GFP cells have a less extensive fiber network, largely confined to the region of GFP+ cells. The results point to specialized circuitry within the SCN, presumably supporting synchronization of neural activity and reciprocal communication between core and shell regions.
Collapse
Affiliation(s)
- Elise Drouyer
- INSERM, U846, Stem Cell and Brain Research Institute, Department of Chronobiology, F-69500, Bron, France
- University of Lyon, Lyon I, UMR-S 846, 69003, Lyon, France
| | - Joseph LeSauter
- Department of Psychology, Barnard College, 3009 Broadway, New York, NY 10027
| | - Amanda L. Hernandez
- Department of Psychology, Columbia University, 1190 Amsterdam Avenue, New York, NY 10027
| | - Rae Silver
- Department of Psychology, Barnard College, 3009 Broadway, New York, NY 10027
- Department of Psychology, Columbia University, 1190 Amsterdam Avenue, New York, NY 10027
- Department of Anatomy and Cell Biology, Columbia University, New York, NY 10032, USA
| |
Collapse
|
26
|
Abstract
The suprachiasmatic nucleus (SCN) is the primary circadian pacemaker in mammals. Individual SCN neurons in dispersed culture can generate independent circadian oscillations of clock gene expression and neuronal firing. However, SCN rhythmicity depends on sufficient membrane depolarization and levels of intracellular calcium and cAMP. In the intact SCN, cellular oscillations are synchronized and reinforced by rhythmic synaptic input from other cells, resulting in a reproducible topographic pattern of distinct phases and amplitudes specified by SCN circuit organization. The SCN network synchronizes its component cellular oscillators, reinforces their oscillations, responds to light input by altering their phase distribution, increases their robustness to genetic perturbations, and enhances their precision. Thus, even though individual SCN neurons can be cell-autonomous circadian oscillators, neuronal network properties are integral to normal function of the SCN.
Collapse
Affiliation(s)
- David K Welsh
- Department of Psychiatry, University of California-San Diego, La Jolla, CA 92093, USA.
| | | | | |
Collapse
|
27
|
Abstract
The mammalian circadian pacemaker, the suprachiasmatic nucleus (SCN), contains receptors to the adipose tissue hormone leptin. In the present study, the effects of leptin on the electrophysiological activity of the SCN cells were characterised in vitro in rat brain slices. During extracellular recording, application of 20 nm leptin (n = 36) decreased mean spike frequency (Wilcoxon signed rank test, z = -3.390, P < 0.001) and increased the irregularity of firing measured by the entropy of the log interspike interval distribution (Student's paired t-test, t = 2.377, P = 0.023), but had no consistent effect on spike patterning as measured by the mutual information between adjacent log interspike intervals (z = 0.745, P = 0.456). Intracellular current-clamp recordings (n = 25) revealed a hyperpolarising effect of 20 nm leptin on SCN neurones (z = -2.290, P = 0.022). The hyperpolarisation largely resulted from the effect of leptin on the subgroup of cells (n = 13) that generated 'rebound' spikes upon termination of a hyperpolarising current pulse (z = -2.697, P = 0.007). Leptin application also increased the group mean duration of the afterhyperpolarisation (n = 25, t = 2.512, P = 0.023). The effects of leptin on extracellularly recorded spike activity were consistent with the changes in membrane potential and spike shape. They suggest that leptin can directly modulate the electrical properties of SCN neurones and, in this way, contribute to the mechanism by which metabolic processes influence the circadian clock.
Collapse
Affiliation(s)
- A N Inyushkin
- Department of Physiology Development and Neuroscience, University of Cambridge, Cambridge, UK
| | | | | |
Collapse
|
28
|
Tremere LA, Pinaud R, Irwin RP, Allen CN. Postinhibitory rebound spikes are modulated by the history of membrane hyperpolarization in the SCN. Eur J Neurosci 2008; 28:1127-35. [PMID: 18783377 DOI: 10.1111/j.1460-9568.2008.06410.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The suprachiasmatic nucleus (SCN) of the hypothalamus regulates biological circadian time thereby directly impacting numerous physiological processes. The SCN is composed almost exclusively of gamma-aminobutyric acid (GABA)ergic neurons, many of which synapse with other GABAergic cells in the SCN to exert an inhibitory influence on their postsynaptic targets for most, if not all, phases of the circadian cycle. The overwhelmingly GABAergic nature of the SCN, along with its internal connectivity properties, provide a strong model to examine how inhibitory neurotransmission generates output signals. In the present work we show that hyperpolarizations that range from 5 to 1000 ms elicit rebound spikes in 63% of all SCN neurons tested in voltage-clamp in the SCN of adult rats and hamsters. In current-clamp recordings, hyperpolarizations led to rebound spike formation in all cells; however, low-amplitude or short-duration current injections failed to consistently activate rebound spikes. Increasing the duration of hyperpolarization from 5 to 1000 ms is strongly and positively correlated with enhanced spike probability. Additionally, the magnitude of hyperpolarization exerts a strong influence on both the amplitude of the spike, as revealed by voltage-clamp recordings, and the latency to peak current obtained in either voltage- or current-clamp mode. Our results suggest that SCN neurons may use rebound spikes as one means of producing output signals from a largely interconnected network of GABAergic neurons.
Collapse
|
29
|
Vosko AM, Schroeder A, Loh DH, Colwell CS. Vasoactive intestinal peptide and the mammalian circadian system. Gen Comp Endocrinol 2007; 152:165-75. [PMID: 17572414 PMCID: PMC1994114 DOI: 10.1016/j.ygcen.2007.04.018] [Citation(s) in RCA: 146] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2006] [Revised: 04/17/2007] [Accepted: 04/19/2007] [Indexed: 11/25/2022]
Abstract
In mammals, the circadian oscillators that drive daily behavioral and endocrine rhythms are located in the hypothalamic suprachiasmatic nucleus (SCN). While the SCN is anatomically well-situated to receive and transmit temporal cues to the rest of the brain and periphery, there are many holes in our understanding of how this temporal regulation occurs. Unanswered questions include how cell autonomous circadian oscillations within the SCN remain synchronized to each other as well as communicate temporal information to downstream targets. In recent years, it has become clear that neuropeptides are critically involved in circadian timekeeping. One such neuropeptide, vasoactive intestinal peptide (VIP), defines a cell population within the SCN and is likely used as a signaling molecule by these neurons. Converging lines of evidence suggest that the loss of VIP or its receptor has a major influence on the ability of the SCN neurons to generate circadian oscillations as well as synchronize these cellular oscillations. VIP, acting through the VPAC(2) receptor, exerts these effects in the SCN by activating intracellular signaling pathways and, consequently, modulating synaptic transmission and intrinsic membrane currents. Anatomical evidence suggests that these VIP expressing neurons connect both directly and indirectly to endocrine and other output targets. Striking similarities exist between the role of VIP in mammals and the role of Pigment Dispersing Factor (PDF), a functionally related neuropeptide, in the Drosophila circadian system. Work in both mammals and insects suggests that further research into neuropeptide function is necessary to understand how circadian oscillators work as a coordinated system to impose a temporal structure on physiological processes within the organism.
Collapse
Affiliation(s)
- Andrew M Vosko
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience, University of California--Los Angeles, 760 Westwood Plaza, Los Angeles, CA 90024-1759, USA
| | | | | | | |
Collapse
|
30
|
Reghunandanan V, Reghunandanan R. Neurotransmitters of the suprachiasmatic nuclei. J Circadian Rhythms 2006; 4:2. [PMID: 16480518 PMCID: PMC1402333 DOI: 10.1186/1740-3391-4-2] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2005] [Accepted: 02/16/2006] [Indexed: 12/04/2022] Open
Abstract
There has been extensive research in the recent past looking into the molecular basis and mechanisms of the biological clock, situated in the suprachiasmatic nuclei (SCN) of the anterior hypothalamus. Neurotransmitters are a very important component of SCN function. Thorough knowledge of neurotransmitters is not only essential for the understanding of the clock but also for the successful manipulation of the clock with experimental chemicals and therapeutical drugs. This article reviews the current knowledge about neurotransmitters in the SCN, including neurotransmitters that have been identified only recently. An attempt was made to describe the neurotransmitters and hormonal/diffusible signals of the SCN efference, which are necessary for the master clock to exert its overt function. The expression of robust circadian rhythms depends on the integrity of the biological clock and on the integration of thousands of individual cellular clocks found in the clock. Neurotransmitters are required at all levels, at the input, in the clock itself, and in its efferent output for the normal function of the clock. The relationship between neurotransmitter function and gene expression is also discussed because clock gene transcription forms the molecular basis of the clock and its working.
Collapse
Affiliation(s)
- Vallath Reghunandanan
- Department of Basic Medical Science, Faculty of Medicine and Health Sciences, University of Malaysia, 93150 Kuching, Malaysia
| | - Rajalaxmy Reghunandanan
- Department of Basic Medical Science, Faculty of Medicine and Health Sciences, University of Malaysia, 93150 Kuching, Malaysia
| |
Collapse
|
31
|
Gonze D, Bernard S, Waltermann C, Kramer A, Herzel H. Spontaneous synchronization of coupled circadian oscillators. Biophys J 2005; 89:120-9. [PMID: 15849258 PMCID: PMC1366510 DOI: 10.1529/biophysj.104.058388] [Citation(s) in RCA: 248] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In mammals, the circadian pacemaker, which controls daily rhythms, is located in the suprachiasmatic nucleus (SCN). Circadian oscillations are generated in individual SCN neurons by a molecular regulatory network. Cells oscillate with periods ranging from 20 to 28 h, but at the tissue level, SCN neurons display significant synchrony, suggesting a robust intercellular coupling in which neurotransmitters are assumed to play a crucial role. We present a dynamical model for the coupling of a population of circadian oscillators in the SCN. The cellular oscillator, a three-variable model, describes the core negative feedback loop of the circadian clock. The coupling mechanism is incorporated through the global level of neurotransmitter concentration. Global coupling is efficient to synchronize a population of 10,000 cells. Synchronized cells can be entrained by a 24-h light-dark cycle. Simulations of the interaction between two populations representing two regions of the SCN show that the driven population can be phase-leading. Experimentally testable predictions are: 1), phases of individual cells are governed by their intrinsic periods; and 2), efficient synchronization is achieved when the average neurotransmitter concentration would dampen individual oscillators. However, due to the global neurotransmitter oscillation, cells are effectively synchronized.
Collapse
Affiliation(s)
- Didier Gonze
- Institute for Theoretical Biology, Humboldt Universität zu Berlin, Berlin, Germany
| | | | | | | | | |
Collapse
|
32
|
Zhang Y, Semple-Rowland SL. Rhythmic expression of clock-controlled genes in retinal photoreceptors is sensitive to 18-beta-glycyrrhetnic acid and 18-alpha-glycyrrhetnic acid-3-hemisuccinate. ACTA ACUST UNITED AC 2005; 135:30-9. [PMID: 15857666 DOI: 10.1016/j.molbrainres.2004.11.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2004] [Revised: 11/15/2004] [Accepted: 11/18/2004] [Indexed: 11/25/2022]
Abstract
Chicken retina contains circadian oscillators that drive rhythmic transcription of several genes expressed in photoreceptor cells. To determine if gap junctions assist in coordinating these transcript rhythms, we examined the effects of two compounds, 18alpha-glycyrrhetnic acid-3-hemisuccinate (ACO) and 18beta-glycyrrhetnic acid (18beta-GA), on photoreceptor iodopsin and arylalkylamine N-acetyltransferase (AANAT) transcript rhythms in embryonic chicken retinal explant cultures that were maintained under different lighting conditions. Both compounds, whose actions include reversibly block gap junction permeability, produced rapid and sustained reductions in iodopsin and AANAT mRNA levels, but did not alter the levels of guanylate cyclase activating protein-1 (GCAP1) mRNA, a noncircadian-regulated, photoreceptor-specific gene. The iodopsin and AANAT mRNA rhythms re-emerged in the cultured retinas within 24 h of removal of the compounds. These results show that the effects of ACO and 18beta-GA on iodopsin and AANAT mRNA levels were not due to generalized suppression of gene transcription. The dramatic reduction in the levels of iodopsin and AANAT mRNA induced by these compounds suggests a mechanism of action that directly affects the synthesis and/or degradation of these transcripts rather than the synchronization or function of the retinal oscillators that drive transcription of these genes.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Neuroscience, University of Florida McKnight Brain Institute, 100 Newell Drive, Building 59, Room L1-100, Box 100244 JHMHC, Gainesville, FL 32611, USA
| | | |
Collapse
|
33
|
Kalló I, Kalamatianos T, Wiltshire N, Shen S, Sheward WJ, Harmar AJ, Coen CW. Transgenic approach reveals expression of the VPAC2 receptor in phenotypically defined neurons in the mouse suprachiasmatic nucleus and in its efferent target sites. Eur J Neurosci 2004; 19:2201-11. [PMID: 15090046 DOI: 10.1111/j.0953-816x.2004.03335.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Circadian rhythms in mammals depend on the properties of cells in the suprachiasmatic nucleus (SCN). The retino-recipient core of the mouse SCN is characterized by vasoactive intestinal peptide (VIP) neurons. Expression within the SCN of VPAC2, a VIP receptor, is required for circadian rhythmicity. Using transgenic mice with beta-galactosidase as a marker for VPAC2, we have phenotyped VPAC2-expressing cells within the SCN and investigated expression of the VPAC2 marker at sites previously shown to receive VIP-containing SCN efferents. In situ hybridization and immunohistochemistry demonstrated identical distributions for VPAC2 mRNA and beta-galactosidase and coexpression of the two signals in the SCN. Double-label confocal immunofluorescence identified beta-galactosidase in 32% of the VIP and 31% of the calretinin neurons in the SCN core. Of the arginine-vasopressin neurons that characterize the SCN shell, 45% expressed beta-galactosidase. In contrast, this marker was not apparent in astrocytes within the SCN core or shell. Cell bodies containing beta-galactosidase were detected at sites reportedly receiving VIP-containing SCN efferents, including the subparaventricular zone and lateral septum and the anteroventral periventricular, preoptic suprachiasmatic, medial preoptic and paraventricular hypothalamic nuclei. The detection of a marker for VPAC2 expression in the SCN in almost one-third of the VIP and calretinin core neurons and nearly half of the arginine-vasopressin shell neurons and also in cell bodies at sites receiving VIP-immunoreactive projections from the SCN indicates that VPAC2 may contribute to autoregulation and/or coupling within the SCN core and to the control of the SCN shell and sites distal to this nucleus.
Collapse
Affiliation(s)
- Imre Kalló
- Centre for Neuroscience Research, King's College London SE1 1UL, UK
| | | | | | | | | | | | | |
Collapse
|
34
|
Honma S, Nakamura W, Shirakawa T, Honma KI. Diversity in the circadian periods of single neurons of the rat suprachiasmatic nucleus depends on nuclear structure and intrinsic period. Neurosci Lett 2004; 358:173-6. [PMID: 15039109 DOI: 10.1016/j.neulet.2004.01.022] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2003] [Revised: 01/08/2004] [Accepted: 01/10/2004] [Indexed: 11/21/2022]
Abstract
The circadian periods of single cultured neurons of the hypothalamic suprachiasmatic nucleus (SCN) in rats were assessed by means of multi-electrode array dish. Although the mean circadian period was not different between the dispersed cell culture and organotypic slice culture, the periods distributed in a wide range from 20.0 to 30.9 h in the former whereas concentrated in a narrow range in the latter. The same difference was also detected within each culture dish. There is a significant correlation between the period length and variation of circadian rhythm, where the more the mean circadian period in a culture dish deviates from the overall mean, the larger the standard deviation of period in a dish becomes. Such a correlation was not observed in the organotypic slice culture. These findings indicate that the diversity of circadian periods in the individual SCN neurons depends on the maintenance of SCN structure and the circadian period, suggesting that not only cell-to-cell communication but also the intrinsic circadian period plays a significant role in synchronizing the constitutional oscillators in the SCN.
Collapse
Affiliation(s)
- Sato Honma
- Department of Physiology, Hokkaido University, Graduate School of Medicine, North-15, West-7, Kita-ku, Sapporo 060-8638, Japan.
| | | | | | | |
Collapse
|
35
|
Schaap J, Albus H, VanderLeest HT, Eilers PHC, Détári L, Meijer JH. Heterogeneity of rhythmic suprachiasmatic nucleus neurons: Implications for circadian waveform and photoperiodic encoding. Proc Natl Acad Sci U S A 2003; 100:15994-9. [PMID: 14671328 PMCID: PMC307681 DOI: 10.1073/pnas.2436298100] [Citation(s) in RCA: 170] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2003] [Indexed: 11/18/2022] Open
Abstract
Circadian rhythms in neuronal ensemble, subpopulations, and single unit activity were recorded in the suprachiasmatic nuclei (SCN) of rat hypothalamic slices. Decomposition of the ensemble pattern revealed that neuronal subpopulations and single units within the SCN show surprisingly short periods of enhanced electrical activity of approximately 5 h and show maximal activity at different phases of the circadian cycle. The summed activity accounts for the neuronal ensemble pattern of the SCN, indicating that circadian waveform of electrical activity is a composed tissue property. The recorded single unit activity pattern was used to simulate the responsiveness of SCN neurons to different photoperiods. We inferred predictions on changes in peak width, amplitude, and peak time in the multiunit activity pattern and confirmed these predictions with hypothalamic slices from animals that had been kept in a short or long photoperiod. We propose that the animals' ability to code for day length derives from plasticity in the neuronal network of oscillating SCN neurons.
Collapse
Affiliation(s)
- Jeroen Schaap
- Departments of Neurophysiology and Medical Statistics, Leiden University Medical Center, Wassenaarseweg 62, Leiden, The Netherlands
| | | | | | | | | | | |
Collapse
|
36
|
Vacher CM, Frétier P, Créminon C, Seif I, De Maeyer E, Calas A, Hardin-Pouzet H. Monoaminergic control of vasopressin and VIP expression in the mouse suprachiasmatic nucleus. J Neurosci Res 2003; 71:791-801. [PMID: 12605405 DOI: 10.1002/jnr.10529] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We studied the effects of serotonin and noradrenaline on the expression of arginine-vasopressin (AVP) and vasoactive intestinal peptide (VIP) in the suprachiasmatic nucleus (SCN). We used transgenic Tg8 mice knockout for the MAO-A (monoamine oxidase A) gene, which are characterized by increased amounts of serotonin and noradrenaline in brain compared to wild-type mice (C3H). The MAO-A deficiency caused an increase in AVP and VIP expression (determined by immunohistochemistry, enzyme immunoassay, and in situ hybridization) compared to C3H mice. The number of peptidergic neurons was also increased. Inhibiting serotonin or noradrenaline synthesis in Tg8 mice by the administration of parachlorophenylalanine or alpha-methylparatyrosine, respectively, the amounts of AVP, VIP and their mRNAs were decreased, but not the number of peptidergic neurons. This study indicates that serotonin and noradrenaline stimulate AVP and VIP expression, and could participate in the differentiation of the neurochemical phenotype in the mouse SCN.
Collapse
Affiliation(s)
- C M Vacher
- Laboratoire de Neurobiologie des Signaux Intercellulaires, CNRS UMR 7101, Université Pierre et Marie Curie, Paris, France.
| | | | | | | | | | | | | |
Collapse
|
37
|
Yasuo S, Yoshimura T, Bartell PA, Iigo M, Makino E, Okabayashi N, Ebihara S. Effect of melatonin administration on qPer2, qPer3, and qClock gene expression in the suprachiasmatic nucleus of Japanese quail. Eur J Neurosci 2002; 16:1541-6. [PMID: 12405968 DOI: 10.1046/j.1460-9568.2002.02222.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Temporal changes of mRNA expression of three clock genes, qPer2, qPer3 and qClock, were studied in the suprachiasmatic nucleus (SCN) of Japanese quail under different light conditions, as well as under the condition of continuous melatonin. In addition, the expression of melatonin receptor genes, Mel1a and Mel1c, in the SCN were also examined. The expression of qPer2 mRNA showed robust oscillation during both light and dark (LD) 12:12 cycles and under constant dark conditions (DD), but did not exhibit circadian rhythmicity in constant light conditions (LL), instead being expressed at a consistently high level. Expression of qPer3 also showed robust oscillation under both LD and DD conditions. Unlike qPer2 however, qPer3 mRNA expression remained rhythmic under LL conditions. Contrary to the findings on the other clock genes, no remarkable rhythmicity was detectable in either light condition. Both Mel1a and Mel1c mRNAs were detected in the SCN, however, Mel1a mRNA levels were higher than Mel1c and showed daily rhythmicity. Although implantation of melatonin tubes caused constant high levels of plasma melatonin and consequently masked the endogenous daily melatonin rhythm, no significant differences in the expression pattern of any of the three clock genes were observed between birds with and without constant melatonin. In addition, a single injection of melatonin did not affect mRNA expression of these clock genes. These results suggest that melatonin does not affect transcription of clock genes, but may act on the mechanism of synchronization among SCN oscillatory cells.
Collapse
Affiliation(s)
- Shinobu Yasuo
- Division of Biomodeling, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
Many daily biological rhythms are governed by an innate timekeeping mechanism or clock. Endogenous, temperature-compensated circadian clocks have been localized to discrete sites within the nervous systems of a number of organisms. In mammals, the master circadian pacemaker is the bilaterally paired suprachiasmatic nucleus (SCN) in the anterior hypothalamus. The SCN is composed of multiple single cell oscillators that must synchronize to each other and the environmental light schedule. Other tissues, including those outside the nervous system, have also been shown to express autonomous circadian periodicities. This review examines 1) how intracellular regulatory molecules function in the oscillatory mechanism and in its entrainment to environmental cycles; 2) how individual SCN cells interact to create an integrated tissue pacemaker with coherent metabolic, electrical, and secretory rhythms; and 3) how such clock outputs are converted into temporal programs for the whole organism.
Collapse
Affiliation(s)
- Erik D Herzog
- Department of Biology, Washington University, St. Louis, Missouri 63130, USA
| | | |
Collapse
|
39
|
Shinohara K, Funabashi T, Nakamura TJ, Kimura F. Effects of estrogen and progesterone on the expression of connexin-36 mRNA in the suprachiasmatic nucleus of female rats. Neurosci Lett 2001; 309:37-40. [PMID: 11489541 DOI: 10.1016/s0304-3940(01)02022-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
To determine the effects of ovarian steroid hormones on gap junction communication in the suprachiasmatic nucleus (SCN), we examined the effects of estrogen and/or progesterone on the expression of connexin-36 mRNA in the SCN and cerebral cortex (CX) of female rats. Ovariectomized adult rats were injected with 20 microg 17beta-Estradiol or sesame oil 48 h before sacrifice and further injected with 1.5 mg progesterone or sesame oil 24 h before sacrifice. Northern blot revealed that estrogen significantly increased the expression of connexin-36 mRNA in the SCN and this increase was inhibited by progesterone. On the other hand, the connexin-36 mRNA level in the CX was not affected by estrogen or progesterone. These results suggest that the gap junction with connexin-36 in the SCN is specifically regulated by ovarian steroid hormones of female rats.
Collapse
Affiliation(s)
- K Shinohara
- Department of Physiology, Yokohama City University School of Medicine, 236-0004, Yokohama, Japan.
| | | | | | | |
Collapse
|
40
|
Abstract
In mammals, the part of the nervous system responsible for most circadian behavior can be localized to a pair of structures in the hypothalamus known as the suprachiasmatic nucleus (SCN). Importantly, when SCN neurons are removed from the organism and maintained in a brain slice preparation, they continue to generate 24h rhythms in electrical activity, secretion, and gene expression. Previous studies suggest that the basic mechanism responsible for the generation of these rhythms is intrinsic to individual cells in the SCN. If we assume that individual cells in the SCN are competent circadian oscillators, it is obviously important to understand how these cells communicate and remain synchronized with each other. Cell-to-cell communication is clearly necessary for conveying inputs to and outputs from the SCN and may be involved in ensuring the high precision of the observed rhythm. In addition, there is a growing body of evidence that a number of systems-level phenomena could be dependent on the cellular communication between circadian pacemaker neurons. It is not yet known how this cellular synchronization occurs, but it is likely that more than one of the already proposed mechanisms is utilized. The purpose of this review is to summarize briefly the possible mechanisms by which the oscillatory cells in the SCN communicate with each other.
Collapse
Affiliation(s)
- S Michel
- Institut für Zoologie, Universität Leipzig, Germany
| | | |
Collapse
|