1
|
Enhanced Ocular Surface and Intraoral Nociception via a Transient Receptor Potential Vanilloid 1 Mechanism in a Rat Model of Obstructive Sleep Apnea. Neuroscience 2021; 483:66-81. [PMID: 34883200 DOI: 10.1016/j.neuroscience.2021.12.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 11/29/2021] [Accepted: 12/01/2021] [Indexed: 12/28/2022]
Abstract
Obstructive sleep apnea (OSA), characterized by low arterial oxygen saturation during sleep, is associated with an increased risk of orofacial pain. In this study, we simulated chronic intermittent hypoxia (CIH) during the sleep/rest phase (light phase) to determine the role of transient receptor potential vanilloid 1 (TRPV1) in mediating enhanced orofacial nocifensive behavior and trigeminal spinal subnucleus caudalis (Vc) neuronal responses to capsaicin (a TRPV1 agonist) stimulation in a rat model of OSA. Rats were subjected to CIH (nadir O2, 5%) during the light phase for 8 or 16 consecutive days. CIH yielded enhanced behavioral responses to capsaicin after application to the ocular surface and intraoral mucosa, which was reversed under normoxic conditions. The percentage of TRPV1-immunoreactive trigeminal ganglion neurons was greater in CIH rats than in normoxic rats and recovered under normoxic conditions after CIH. The ratio of large-sized TRPV1-immunoreactive trigeminal ganglion neurons increased in CIH rats. The density of TRPV1 positive primary afferent terminals in the superficial laminae of Vc was higher in CIH rats. Phosphorylated extracellular signal-regulated kinase (pERK)-immunoreactive cells intermingled with the central terminal of TRPV1-positive afferents in the Vc. The number of pERK-immunoreactive cells following low-dose capsaicin (0.33 µM) application to the tongue was significantly greater in the middle portion of the Vc of CIH rats than of normoxic rats and recovered under normoxic conditions after CIH. These data suggest that CIH during the sleep (light) phase is sufficient to transiently enhance pain on the ocular surface and intraoral mucosa via TRPV1-dependent mechanisms.
Collapse
|
2
|
Ebert C, Bagdasarian K, Haidarliu S, Ahissar E, Wallach A. Interactions of Whisking and Touch Signals in the Rat Brainstem. J Neurosci 2021; 41:4826-4839. [PMID: 33893218 PMCID: PMC8260172 DOI: 10.1523/jneurosci.1410-20.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 11/21/2022] Open
Abstract
Perception is an active process, requiring the integration of both proprioceptive and exteroceptive information. In the rat's vibrissal system, a classical model for active sensing, the relative contribution of the two information streams was previously studied at the peripheral, thalamic, and cortical levels. Contributions of brainstem neurons were only indirectly inferred for some trigeminal nuclei according to their thalamic projections. The current work addressed this knowledge gap by performing the first comparative study of the encoding of proprioceptive whisking and exteroceptive touch signals in the oralis (SpVo), interpolaris (SpVi), and paratrigeminal (Pa5) brainstem nuclei. We used artificial whisking in anesthetized male rats, which allows a systematic analysis of the relative contribution of the proprioceptive and exteroceptive information streams along the ascending pathways in the absence of motor or cognitive top-down modulations. We found that (1) neurons in the rostral and caudal parts of the SpVi convey whisking and touch information, respectively, as predicted by their thalamic projections; (2) neurons in the SpVo encode both whisking and (primarily) touch information; and (3) neurons of the Pa5 encode a complex combination of whisking and touch information. In particular, the Pa5 contains a relatively large fraction of neurons that are inhibited by active touch, a response observed so far only in the thalamus. Overall, our systematic characterization of afferent responses to active touch in the trigeminal brainstem approves the hypothesized functions of SpVi neurons and presents evidence that SpVo and Pa5 neurons are involved in the processing of active vibrissal touch.SIGNIFICANCE STATEMENT The present work constitutes the first comparative study of the encoding of proprioceptive (whisking) and exteroceptive (touch) information in the rat's brainstem trigeminal nuclei, the first stage of vibrissal processing in the CNS. It shows that (1) as expected, the rostral and caudal interpolaris neurons convey primarily whisking and touch information, respectively; (2) the oralis nucleus, whose function was previously unknown, encodes both whisking and (primarily) touch touch information; (3) a subtractive computation, reported at the thalamic level, already occurs at the brainstem level; and (4) a novel afferent pathway probably ascends via the paratrigeminal nucleus, encoding both proprioceptive and exteroceptive information.
Collapse
Affiliation(s)
- Coralie Ebert
- Weizmann Institute of Science, Rehovot, Israel 7610001
| | | | | | - Ehud Ahissar
- Weizmann Institute of Science, Rehovot, Israel 7610001
| | | |
Collapse
|
3
|
Matsuo T, Isosaka T, Hayashi Y, Tang L, Doi A, Yasuda A, Hayashi M, Lee CY, Cao L, Kutsuna N, Matsunaga S, Matsuda T, Yao I, Setou M, Kanagawa D, Higasa K, Ikawa M, Liu Q, Kobayakawa R, Kobayakawa K. Thiazoline-related innate fear stimuli orchestrate hypothermia and anti-hypoxia via sensory TRPA1 activation. Nat Commun 2021; 12:2074. [PMID: 33824316 PMCID: PMC8024280 DOI: 10.1038/s41467-021-22205-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 02/22/2021] [Indexed: 01/09/2023] Open
Abstract
Thiazoline-related innate fear-eliciting compounds (tFOs) orchestrate hypothermia, hypometabolism, and anti-hypoxia, which enable survival in lethal hypoxic conditions. Here, we show that most of these effects are severely attenuated in transient receptor potential ankyrin 1 (Trpa1) knockout mice. TFO-induced hypothermia involves the Trpa1-mediated trigeminal/vagal pathways and non-Trpa1 olfactory pathway. TFOs activate Trpa1-positive sensory pathways projecting from trigeminal and vagal ganglia to the spinal trigeminal nucleus (Sp5) and nucleus of the solitary tract (NTS), and their artificial activation induces hypothermia. TFO presentation activates the NTS-Parabrachial nucleus pathway to induce hypothermia and hypometabolism; this activation was suppressed in Trpa1 knockout mice. TRPA1 activation is insufficient to trigger tFO-mediated anti-hypoxic effects; Sp5/NTS activation is also necessary. Accordingly, we find a novel molecule that enables mice to survive in a lethal hypoxic condition ten times longer than known tFOs. Combinations of appropriate tFOs and TRPA1 command intrinsic physiological responses relevant to survival fate.
Collapse
Affiliation(s)
- Tomohiko Matsuo
- Department of Functional Neuroscience, Institute of Biomedical Science, Kansai Medical University, Osaka, Japan
| | - Tomoko Isosaka
- Department of Functional Neuroscience, Institute of Biomedical Science, Kansai Medical University, Osaka, Japan
| | - Yuichiro Hayashi
- Department of Functional Neuroscience, Institute of Biomedical Science, Kansai Medical University, Osaka, Japan
| | - Lijun Tang
- Department of Functional Neuroscience, Institute of Biomedical Science, Kansai Medical University, Osaka, Japan
| | - Akihiro Doi
- Department of Functional Neuroscience, Institute of Biomedical Science, Kansai Medical University, Osaka, Japan
| | - Aiko Yasuda
- Department of Functional Neuroscience, Institute of Biomedical Science, Kansai Medical University, Osaka, Japan
| | - Mikio Hayashi
- Department of Cellular and Functional Biology, Institute of Biomedical Science, Kansai Medical University, Osaka, Japan
| | - Chia-Ying Lee
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Liqin Cao
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Natsumaro Kutsuna
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Chiba, Japan
- LPixel Inc., Tokyo, Japan
| | - Sachihiro Matsunaga
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Chiba, Japan
| | - Takeshi Matsuda
- Department of Optical Imaging, Institute for Medical Photonics Research, PMPERC and IMIC, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Ikuko Yao
- Department of Optical Imaging, Institute for Medical Photonics Research, PMPERC and IMIC, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Mitsuyoshi Setou
- Department of Cellular and Molecular Anatomy and IMIC, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Dai Kanagawa
- Department of Functional Neuroscience, Institute of Biomedical Science, Kansai Medical University, Osaka, Japan
| | - Koichiro Higasa
- Department of Genome Analysis, Institute of Biomedical Science, Kansai Medical University, Osaka, Japan
| | - Masahito Ikawa
- Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Qinghua Liu
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan.
- National Institute of Biological Sciences, Beijing, China.
| | - Reiko Kobayakawa
- Department of Functional Neuroscience, Institute of Biomedical Science, Kansai Medical University, Osaka, Japan.
| | - Ko Kobayakawa
- Department of Functional Neuroscience, Institute of Biomedical Science, Kansai Medical University, Osaka, Japan.
| |
Collapse
|
4
|
Katagiri A, Kato T. Multi-dimensional role of the parabrachial nucleus in regulating pain-related affective disturbances in trigeminal neuropathic pain. J Oral Sci 2020; 62:160-164. [DOI: 10.2334/josnusd.19-0432] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Ayano Katagiri
- Department of Oral Physiology, Osaka University Graduate School of Dentistry
| | - Takafumi Kato
- Department of Oral Physiology, Osaka University Graduate School of Dentistry
| |
Collapse
|
5
|
Tsujimura T, Inoue M. Evaluation of the association between orofacial pain and dysphagia. J Oral Sci 2020; 62:156-159. [DOI: 10.2334/josnusd.19-0408] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Takanori Tsujimura
- Division of Dysphagia Rehabilitation, Niigata University Graduate School of Medical and Dental Sciences
| | - Makoto Inoue
- Division of Dysphagia Rehabilitation, Niigata University Graduate School of Medical and Dental Sciences
| |
Collapse
|
6
|
Okada S, Saito H, Matsuura Y, Mikuzuki L, Sugawara S, Onose H, Asaka J, Ohara K, Lee J, Iinuma T, Katagiri A, Iwata K. Upregulation of calcitonin gene-related peptide, neuronal nitric oxide synthase, and phosphorylated extracellular signal-regulated kinase 1/2 in the trigeminal ganglion after bright light stimulation of the eye in rats. J Oral Sci 2019; 61:146-155. [PMID: 30918211 DOI: 10.2334/josnusd.18-0031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Bright light stimulation of the eye activates trigeminal subnucleus caudalis (Vc) neurons in rats. Sensory information is conveyed to the Vc via the trigeminal ganglion (TG). Thus, it is likely that TG neurons respond to photic stimulation and are involved in photic hypersensitivity. However, the mechanisms underlying this process are unclear. Therefore, the hypothesis in this study is bright light stimulation enhances the excitability of TG neurons involved in photic hypersensitivity. Expressions of calcitonin gene-related peptide (CGRP) and neuronal nitric oxide synthase (nNOS) were significantly higher in TG neurons from 5 min to 12 h after photic stimulation of the eye. Phosphorylation of extracellular signal-regulated kinase1/2 (pERK1/2) was enhanced in TG neurons within 5 min after photic stimulation, while pERK1/2 immunoreactivity in satellite glial cells (SGCs) persisted for more than 12 h after the stimulus. Activation of SGCs was observed from 5 min to 2 h. Expression of CGRP, nNOS, and pERK1/2 was observed in small and medium TG neurons, and activation of SGCs and pERK1/2-immunoreactive SGCs encircling large TG neurons was accelerated after stimulation. These results suggest that upregulation of CGRP, nNOS, and pERK1/2 within the TG is involved in photic hypersensitivity.
Collapse
Affiliation(s)
- Shinji Okada
- Department of Complete Denture Prosthodontics, Nihon University School of Dentistry.,Department of Physiology, Nihon University School of Dentistry
| | - Hiroto Saito
- Department of Complete Denture Prosthodontics, Nihon University School of Dentistry.,Department of Physiology, Nihon University School of Dentistry
| | - Yutaka Matsuura
- Department of Oral Physiology, Osaka University Graduate School of Dentistry
| | - Lou Mikuzuki
- Department of Physiology, Nihon University School of Dentistry.,Department of Psychosomatic Dentistry, Tokyo Medical and Dental University, Graduate School
| | - Shiori Sugawara
- Department of Physiology, Nihon University School of Dentistry.,Department of Psychosomatic Dentistry, Tokyo Medical and Dental University, Graduate School
| | - Hiroki Onose
- Department of Physiology, Nihon University School of Dentistry
| | - Junichi Asaka
- Department of Physiology, Nihon University School of Dentistry
| | - Kinuyo Ohara
- Department of Endodontics, Nihon University School of Dentistry
| | - Jun Lee
- Department of Complete Denture Prosthodontics, Nihon University School of Dentistry
| | - Toshimitsu Iinuma
- Department of Complete Denture Prosthodontics, Nihon University School of Dentistry
| | - Ayano Katagiri
- Department of Physiology, Nihon University School of Dentistry.,Department of Oral Physiology, Osaka University Graduate School of Dentistry
| | - Koichi Iwata
- Department of Physiology, Nihon University School of Dentistry
| |
Collapse
|
7
|
Mikuzuki L, Saito H, Katagiri A, Okada S, Sugawara S, Kubo A, Ohara K, Lee J, Toyofuku A, Iwata K. Phenotypic change in trigeminal ganglion neurons associated with satellite cell activation via extracellular signal-regulated kinase phosphorylation is involved in lingual neuropathic pain. Eur J Neurosci 2017; 46:2190-2202. [PMID: 28834578 DOI: 10.1111/ejn.13667] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 07/21/2017] [Accepted: 07/21/2017] [Indexed: 12/22/2022]
Abstract
Iatrogenic trigeminal nerve injuries remain a common and complex clinical problem. Satellite glial cell (SGC) activation, associated phosphorylation of extracellular signal-regulated kinase (ERK), and neuropeptide expression in the trigeminal ganglion (TG) are known to be involved in trigeminal neuropathic pain related to trigeminal nerve injury. However, the involvement of these molecules in orofacial neuropathic pain mechanisms is still unknown. Phosphorylation of ERK1/2 in lingual nerve crush (LNC) rats was observed in SGCs. To evaluate the role of neuron-SGC interactions under neuropathic pain, calcitonin gene-related peptide (CGRP)-immunoreactive (IR), phosphorylated ERK1/2 (pERK1/2)-IR and glial fibrillary acidic protein (GFAP)-IR cells in the TG were studied in LNC rats. The number of CGRP-IR neurons and neurons encircled with pERK1/2-IR SGCs was significantly larger in LNC rats compared with sham rats. The percentage of large-sized CGRP-IR neurons was significantly higher in LNC rats. The number of CGRP-IR neurons, neurons encircled with pERK1/2-IR SGCs, and neurons encircled with GFAP-IR SGCs was decreased following CGRP receptor blocker CGRP8-37 or mitogen-activated protein kinase/ERK kinase 1 inhibitor PD98059 administration into the TG after LNC. Reduced thresholds to mechanical and heat stimulation to the tongue in LNC rats were also significantly recovered following CGRP8-37 or PD98059 administration. The present findings suggest that CGRP released from TG neurons activates SGCs through ERK1/2 phosphorylation and TG neuronal activity is enhanced, resulting in the tongue hypersensitivity associated with lingual nerve injury. The phenotypic switching of large myelinated TG neurons expressing CGRP may account for the pathogenesis of tongue neuropathic pain.
Collapse
Affiliation(s)
- Lou Mikuzuki
- Department of Physiology, Nihon University School of Dentistry, 1-8-13 Kandasurugadai, Chiyoda-ku, Tokyo, 101-8310, Japan.,Department of Psychosomatic Dentistry, Tokyo Medical and Dental University (TMDU) Graduate School, Bunkyo-ku, Tokyo, Japan
| | - Hiroto Saito
- Department of Physiology, Nihon University School of Dentistry, 1-8-13 Kandasurugadai, Chiyoda-ku, Tokyo, 101-8310, Japan.,Department of Complete Denture Prosthodontics, Nihon University School of Dentistry, Chiyoda-ku, Tokyo, Japan
| | - Ayano Katagiri
- Department of Physiology, Nihon University School of Dentistry, 1-8-13 Kandasurugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
| | - Shinji Okada
- Department of Physiology, Nihon University School of Dentistry, 1-8-13 Kandasurugadai, Chiyoda-ku, Tokyo, 101-8310, Japan.,Department of Complete Denture Prosthodontics, Nihon University School of Dentistry, Chiyoda-ku, Tokyo, Japan
| | - Shiori Sugawara
- Department of Physiology, Nihon University School of Dentistry, 1-8-13 Kandasurugadai, Chiyoda-ku, Tokyo, 101-8310, Japan.,Department of Psychosomatic Dentistry, Tokyo Medical and Dental University (TMDU) Graduate School, Bunkyo-ku, Tokyo, Japan
| | - Asako Kubo
- Department of Physiology, Nihon University School of Dentistry, 1-8-13 Kandasurugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
| | - Kinuyo Ohara
- Department of Endodontics, Nihon University School of Dentistry, Chiyoda-ku, Tokyo, Japan
| | - Jun Lee
- Department of Complete Denture Prosthodontics, Nihon University School of Dentistry, Chiyoda-ku, Tokyo, Japan
| | - Akira Toyofuku
- Department of Psychosomatic Dentistry, Tokyo Medical and Dental University (TMDU) Graduate School, Bunkyo-ku, Tokyo, Japan
| | - Koichi Iwata
- Department of Physiology, Nihon University School of Dentistry, 1-8-13 Kandasurugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
| |
Collapse
|
8
|
Nöbel M, Feistel S, Ellrich J, Messlinger K. ATP-sensitive muscle afferents activate spinal trigeminal neurons with meningeal afferent input in rat - pathophysiological implications for tension-type headache. J Headache Pain 2016; 17:75. [PMID: 27565510 PMCID: PMC5001961 DOI: 10.1186/s10194-016-0668-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 08/17/2016] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Tension-type headache and other primary headaches may be triggered or aggravated by disorders of pericranial muscles, which is possibly due to convergent or collateral afferent input from meningeal and muscular receptive areas. In rodent models high extracellular concentrations of ATP caused muscle nociception and central sensitization of second order neurons. In a rat model of meningeal nociception we asked if spinal trigeminal activity induced by ATP can be modulated by local anaesthesia of distinct muscles. METHODS Ongoing activity was recorded from spinal trigeminal neurons with afferent input from the cranial dura mater, the temporal muscle and neck muscles. The stable ATP analogue α,β-methylene adenosine 5'-triphosphate (α,β-meATP, 10 mM) was injected into the ipsilateral temporal muscle, 30 min later followed by injection of local anaesthetics (lidocaine, 2 %) into the ipsilateral neck muscles and/or the temporal muscle. RESULTS Injection of α,β-meATP into the temporal muscle caused progressive increase in ongoing activity of most of the spinal trigeminal neurons within 30 min. Injection of lidocaine into the neck muscles and/or the temporal muscle reduced this activation to previous levels within 10 min. CONCLUSIONS Distinct spinal trigeminal neurons processing meningeal nociceptive information are under the control of convergent afferent input from several pericranial muscles. Blockade of at least one of these inputs can normalize central trigeminal activity. This may explain why therapeutic manipulations of head muscles can be beneficial in primary headaches.
Collapse
Affiliation(s)
- Moritz Nöbel
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-University of Erlangen-Nürnberg, Universitätsstr. 17, 91054, Erlangen, Germany
| | - Stephan Feistel
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-University of Erlangen-Nürnberg, Universitätsstr. 17, 91054, Erlangen, Germany
| | - Jens Ellrich
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-University of Erlangen-Nürnberg, Universitätsstr. 17, 91054, Erlangen, Germany.,Department of Health Science and Technology, Medical Faculty, Aalborg University, Aalborg, Denmark
| | - Karl Messlinger
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-University of Erlangen-Nürnberg, Universitätsstr. 17, 91054, Erlangen, Germany.
| |
Collapse
|
9
|
Mermet-Joret N, Chatila N, Pereira B, Monconduit L, Dallel R, Antri M. Lamina specific postnatal development of PKCγ interneurons within the rat medullary dorsal horn. Dev Neurobiol 2016; 77:102-119. [PMID: 27346325 DOI: 10.1002/dneu.22414] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 06/21/2016] [Accepted: 06/22/2016] [Indexed: 01/17/2023]
Abstract
Protein kinase C gamma (PKCγ) interneurons, located in the superficial spinal (SDH) and medullary dorsal horns (MDH), have been shown to play a critical role in cutaneous mechanical hypersensitivity. However, a thorough characterization of their development in the MDH is lacking. Here, it is shown that the number of PKCγ-ir interneurons changes from postnatal day 3 (P3) to P60 (adult) and such developmental changes differ according to laminae. PKCγ-ir interneurons are already present at P3-5 in laminae I, IIo, and III. In lamina III, they then decrease from P11-P15 to P60. Interestingly, PKCγ-ir interneurons appear only at P6 in lamina IIi, and they conversely increase to reach adult levels at P11-15. Analysis of neurogenesis using bromodeoxyuridine (BrdU) does not detect any PKCγ-BrdU double-labeling in lamina IIi. Quantification of the neuronal marker, NeuN, reveals a sharp neuronal decline (∼50%) within all superficial MDH laminae during early development (P3-15), suggesting that developmental changes in PKCγ-ir interneurons are independent from those of other neurons. Finally, neonatal capsaicin treatment, which produces a permanent loss of most unmyelinated afferent fibers, has no effect on the development of PKCγ-ir interneurons. Together, the results show that: (i) the expression of PKCγ-ir interneurons in MDH is developmentally regulated with a critical period at P11-P15, (ii) PKCγ-ir interneurons are developmentally heterogeneous, (iii) lamina IIi PKCγ-ir interneurons appear less vulnerable to cell death, and (iv) postnatal maturation of PKCγ-ir interneurons is due to neither neurogenesis, nor neuronal migration, and is independent of C-fiber development. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 77: 102-119, 2017.
Collapse
Affiliation(s)
- Noemie Mermet-Joret
- Neuro-Dol, Clermont Université, Université D'Auvergne, BP 10448, F-63000, Clermont-Ferrand & Inserm U1107, Clermont-Ferrand, F-63100, France
| | - Nadwa Chatila
- Neuro-Dol, Clermont Université, Université D'Auvergne, BP 10448, F-63000, Clermont-Ferrand & Inserm U1107, Clermont-Ferrand, F-63100, France
| | - Bruno Pereira
- Biostatistics Unit (DRCI), CHU Clermont-Ferrand, Clermont-Ferrand, F-63100, France
| | - Lénaic Monconduit
- Neuro-Dol, Clermont Université, Université D'Auvergne, BP 10448, F-63000, Clermont-Ferrand & Inserm U1107, Clermont-Ferrand, F-63100, France
| | - Radhouane Dallel
- Neuro-Dol, Clermont Université, Université D'Auvergne, BP 10448, F-63000, Clermont-Ferrand & Inserm U1107, Clermont-Ferrand, F-63100, France.,Service D'Odontologie, CHU Clermont-Ferrand, Clermont-Ferrand, F-63000, France
| | - Myriam Antri
- Neuro-Dol, Clermont Université, Université D'Auvergne, BP 10448, F-63000, Clermont-Ferrand & Inserm U1107, Clermont-Ferrand, F-63100, France
| |
Collapse
|
10
|
Qu X, Yan J, Li X, Zhang P, Liu X. Topography of Synchronization of Somatosensory Evoked Potentials Elicited by Stimulation of the Sciatic Nerve in Rat. Front Comput Neurosci 2016; 10:43. [PMID: 27199728 PMCID: PMC4854893 DOI: 10.3389/fncom.2016.00043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 04/18/2016] [Indexed: 01/14/2023] Open
Abstract
Purpose: Traditionally, the topography of somatosensory evoked potentials (SEPs) is generated based on amplitude and latency. However, this operation focuses on the physical morphology and field potential-power, so it suffers from difficulties in performing identification in an objective manner. In this study, measurement of the synchronization of SEPs is proposed as a method to explore brain functional networks as well as the plasticity after peripheral nerve injury. Method: SEPs elicited by unilateral sciatic nerve stimulation in twelve adult male Sprague-Dawley (SD) rats in the normal group were compared with SEPs evoked after unilateral sciatic nerve hemisection in four peripheral nerve injured SD rats. The characterization of synchronized networks from SEPs was conducted using equal-time correlation, correlation matrix analysis, and comparison to randomized surrogate data. Eigenvalues of the correlation matrix were used to identify the clusters of functionally synchronized neuronal activity, and the participation index (PI) was calculated to indicate the involvement of each channel in the cluster. The PI value at the knee point of the PI histogram was used as a threshold to demarcate the cortical boundary. Results: Ten out of the twelve normal rats showed only one synchronized brain network. The remaining two normal rats showed one strong and one weak network. In the peripheral nerve injured group, only one synchronized brain network was found in each rat. In the normal group, all network shapes appear regular and the network is largely contained in the posterior cortex. In the injured group, the network shapes appear irregular, the network extends anteriorly and posteriorly, and the network area is significantly larger. There are considerable individual variations in the shape and location of the network after peripheral nerve injury. Conclusion: The proposed method can detect functional brain networks. Compared to the results of the traditional SEP-morphology-based analysis method, the synchronized functional network area is much larger. Furthermore, the proposed method can also characterize the rapid cortical plasticity after a peripheral nerve is acutely injured.
Collapse
Affiliation(s)
- Xuefeng Qu
- Division of the Comprehensive Epilepsy Center and Neurofunctional Monitoring Laboratory, Department of Neurology, Peking University People's Hospital Beijing, China
| | - Jiaqing Yan
- School of Electrical and Control Engineering, North China University of Technology Beijing, China
| | - Xiaoli Li
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University Beijing, China
| | - Peixun Zhang
- Department of Trauma and Orthopaedics, Peking University People's Hospital Beijing, China
| | - Xianzeng Liu
- Division of the Comprehensive Epilepsy Center and Neurofunctional Monitoring Laboratory, Department of Neurology, Peking University People's Hospital Beijing, China
| |
Collapse
|
11
|
Expression of glycine receptor alpha 3 in the rat trigeminal neurons and central boutons in the brainstem. Brain Struct Funct 2016; 221:4601-4613. [PMID: 26832918 DOI: 10.1007/s00429-016-1190-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 01/14/2016] [Indexed: 10/22/2022]
Abstract
Increasing evidence shows that the homomeric glycine receptor is expressed in axon terminals and is involved in the presynaptic modulation of transmitter release. However, little is known about the expression of the glycine receptor, implicated in the presynaptic modulation of sensory transmission in the primary somatosensory neurons and their central boutons. To address this, we investigated the expression of glycine receptor subunit alpha 3 (GlyRα3) in the neurons in the trigeminal ganglion and axon terminals in the 1st relay nucleus of the brainstem by light- and electron-microscopic immunohistochemistry. Trigeminal primary sensory neurons were GlyRα3-immunopositive/gephyrin-immunonegative (indicating homomeric GlyR), whereas GlyRα3/gephyrin immunoreactivity (indicating heteromeric GlyR) was observed in dendrites. GlyRα3 immunoreactivity was also found in the central boutons of primary afferents but far from the presynaptic site and in dendrites at subsynaptic sites. Boutons expressing GlyRα3 contained small round vesicles, formed asymmetric synapses with dendrites and were immunoreactive for glutamate. These findings suggest that trigeminal primary afferent boutons receive presynaptic modulation via homomeric, extrasynaptic GlyRα3, and that different subtypes of GlyR may be involved in pre- and postsynaptic inhibition.
Collapse
|
12
|
Renton T, Egbuniwe O. Pain part 2a: trigeminal anatomy related to pain. ACTA ACUST UNITED AC 2015; 42:238-40, 242-4. [DOI: 10.12968/denu.2015.42.3.238] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Tara Renton
- Professor, Department of Oral Surgery, King's College London Dental Institute, King's College Hospital London, Bessemer Road, London SE5 9RS, UK
| | - Obi Egbuniwe
- Honorary Clinical Researcher, Department of Oral Surgery, King's College London Dental Institute, King's College Hospital London, Bessemer Road, London SE5 9RS, UK
| |
Collapse
|
13
|
Terayama R, Tsuchiya H, Omura S, Maruhama K, Mizutani M, Iida S, Sugimoto T. Possible involvement of convergent nociceptive input to medullary dorsal horn neurons in intraoral hyperalgesia following peripheral nerve injury. Cell Mol Neurobiol 2015; 35:417-423. [PMID: 25407627 PMCID: PMC11486244 DOI: 10.1007/s10571-014-0137-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 11/04/2014] [Indexed: 10/24/2022]
Abstract
Previous studies demonstrated that the number of c-Fos protein-like immunoreactive (c-Fos-IR) neurons in the medullary dorsal horn (MDH) evoked by noxious stimulation was increased after peripheral nerve injury, and such increase has been proposed to reflect the development of neuropathic pain state. The aim of this study was to examine the MDH for convergent collateral primary afferent input to second order neurons deafferented by peripheral nerve injury, and to explore a possibility of its contribution to the c-Fos hyperinducibility. Double immunofluorescence labeling for c-Fos and phosphorylated extracellular signal-regulated kinase (p-ERK) was performed to detect convergent synaptic input. c-Fos expression and the phosphorylation of ERK were induced by the intraoral application of capsaicin and by electrical stimulation of the inferior alveolar nerve (IAN), respectively. The number of c-Fos-IR neurons in the MDH induced by the intraoral application of capsaicin was increased after IAN injury, whereas the number of p-ERK immunoreactive neurons remained unchanged. The number of double-labeled neurons, that presumably received convergent primary afferent input from the lingual nerve and the IAN, was significantly increased after IAN injury. These results indicated that convergent primary nociceptive input through neighboring intact nerves may contribute to the c-Fos hyperinducibility in the MDH and the pathogenesis of neuropathic pain following trigeminal nerve injury.
Collapse
Affiliation(s)
- Ryuji Terayama
- Department of Oral Function and Anatomy, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan.
- Advanced Research Center for Oral and Craniofacial Sciences, Okayama University Dental School, Okayama, 700-8525, Japan.
| | - Hiroki Tsuchiya
- Department of Oral Function and Anatomy, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan
- ASAHI Medical College at Okayama, Okayama, 700-0028, Japan
| | - Shinji Omura
- ASAHI Medical College at Okayama, Okayama, 700-0028, Japan
| | - Kotaro Maruhama
- Department of Oral Function and Anatomy, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan
- Advanced Research Center for Oral and Craniofacial Sciences, Okayama University Dental School, Okayama, 700-8525, Japan
| | - Masahide Mizutani
- Department of Oral and Maxillofacial Reconstructive Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8525, Japan
- Advanced Research Center for Oral and Craniofacial Sciences, Okayama University Dental School, Okayama, 700-8525, Japan
| | - Seiji Iida
- Department of Oral and Maxillofacial Reconstructive Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8525, Japan
- Advanced Research Center for Oral and Craniofacial Sciences, Okayama University Dental School, Okayama, 700-8525, Japan
| | - Tomosada Sugimoto
- Department of Oral Function and Anatomy, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan
- Advanced Research Center for Oral and Craniofacial Sciences, Okayama University Dental School, Okayama, 700-8525, Japan
| |
Collapse
|
14
|
|
15
|
Assessment of intraoral mucosal pain induced by the application of capsaicin. Arch Oral Biol 2014; 59:1334-41. [PMID: 25189505 DOI: 10.1016/j.archoralbio.2014.08.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 07/10/2014] [Accepted: 08/18/2014] [Indexed: 11/23/2022]
Abstract
OBJECTIVE To develop an objective method for assessing nociceptive behaviour in an animal model of capsaicin-induced intraoral pain. Changes in nociceptive responses were also examined after injury to the inferior alveolar nerve (IAN). DESIGN Nociceptive responses evoked by the intraoral application of various doses of capsaicin were analyzed in lightly anaesthetized rats. The number of c-Fos protein-like immunoreactive (Fos-LI) neurons in the medullary dorsal horn (MDH) induced by the intraoral application of capsaicin was measured. Behavioural and c-Fos responses were also examined 14 days after injury to the IAN. RESULTS Larger doses of intraoral capsaicin (1, 10 and 100μg) induced vigorous licking behaviour and c-Fos response in the MDH in a reproducible manner. The magnitudes of both behavioural activity and the c-Fos response from the 10 and 100μg doses of capsaicin were significantly greater than that by the 1μg dose. Injury to the IAN exaggerated the behavioural and c-Fos responses evoked by intraoral capsaicin. CONCLUSIONS The intraoral application of capsaicin is a valid and reliable method for studying intraoral pain and hyperalgesia following nerve injury.
Collapse
|
16
|
Hermes SM, Colbert JF, Aicher SA. Differential content of vesicular glutamate transporters in subsets of vagal afferents projecting to the nucleus tractus solitarii in the rat. J Comp Neurol 2014; 522:642-53. [PMID: 23897509 DOI: 10.1002/cne.23438] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 05/15/2013] [Accepted: 07/11/2013] [Indexed: 11/06/2022]
Abstract
The vagus nerve contains primary visceral afferents that convey sensory information from cardiovascular, pulmonary, and gastrointestinal tissues to the nucleus tractus solitarii (NTS). The heterogeneity of vagal afferents and their central terminals within the NTS is a common obstacle for evaluating functional groups of afferents. To determine whether different anterograde tracers can be used to identify distinct subpopulations of vagal afferents within NTS, we injected cholera toxin B subunit (CTb) and isolectin B4 (IB4) into the vagus nerve. Confocal analyses of medial NTS following injections of both CTb and IB4 into the same vagus nerve resulted in labeling of two exclusive populations of fibers. The ultrastructural patterns were also distinct. CTb was found in both myelinated and unmyelinated vagal axons and terminals in medial NTS, whereas IB4 was found only in unmyelinated afferents. Both tracers were observed in terminals with asymmetric synapses, suggesting excitatory transmission. Because glutamate is thought to be the neurotransmitter at this first primary afferent synapse in NTS, we determined whether vesicular glutamate transporters (VGLUTs) were differentially distributed among the two distinct populations of vagal afferents. Anterograde tracing from the vagus with CTb or IB4 was combined with immunohistochemistry for VGLUT1 or VGLUT2 in medial NTS and evaluated with confocal microscopy. CTb-labeled afferents contained primarily VGLUT2 (83%), whereas IB4-labeled afferents had low levels of vesicular transporters, VGLUT1 (5%) or VGLUT2 (21%). These findings suggest the possibility that glutamate release from unmyelinated vagal afferents may be regulated by a distinct, non-VGLUT, mechanism.
Collapse
Affiliation(s)
- Sam M Hermes
- Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, Oregon, 97239-3098
| | | | | |
Collapse
|
17
|
Aicher SA, Hegarty DM, Hermes SM. Corneal pain activates a trigemino-parabrachial pathway in rats. Brain Res 2014; 1550:18-26. [PMID: 24418463 DOI: 10.1016/j.brainres.2014.01.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 01/02/2014] [Accepted: 01/03/2014] [Indexed: 02/02/2023]
Abstract
Corneal pain is mediated by primary afferent fibers projecting to the dorsal horn of the medulla, specifically the trigeminal nucleus caudalis. In contrast to reflex responses, the conscious perception of pain requires transmission of neural activity to higher brain centers. Ascending pain transmission is mediated primarily by pathways to either the thalamus or parabrachial nuclei. We previously showed that some corneal afferent fibers preferentially contact parabrachial-projecting neurons in the rostral pole of the trigeminal nucleus caudalis, but the role of these projection neurons in transmitting noxious information from the cornea has not been established. In the present study, we show that noxious stimulation of the corneal surface activates neurons in the rostral pole of the nucleus caudalis, including parabrachially projecting neurons that receive direct input from corneal afferent fibers. We used immunocytochemical detection of c-Fos protein as an index of neuronal activation after noxious ocular stimulation. Animals had previously received injections of a retrograde tracer into either thalamic or parabrachial nuclei to identify projection neurons in the trigeminal dorsal horn. Noxious stimulation of the cornea induced c-Fos in neurons sending projections to parabrachial nuclei, but not thalamic nuclei. We also confirmed that corneal afferent fibers identified with cholera toxin B preferentially target trigeminal dorsal horn neurons projecting to the parabrachial nucleus. The parabrachial region sends ascending projections to brain regions involved in emotional and homeostatic responses. Activation of the ascending parabrachial system may explain the extraordinary salience of stimulation of corneal nociceptors.
Collapse
Affiliation(s)
- Sue A Aicher
- Department of Physiology and Pharmacology, Oregon Health & Science University, Mail code: L334, 3181 Sam Jackson Park Road, Portland, OR 97239-3098, United States.
| | - Deborah M Hegarty
- Department of Physiology and Pharmacology, Oregon Health & Science University, Mail code: L334, 3181 Sam Jackson Park Road, Portland, OR 97239-3098, United States.
| | - Sam M Hermes
- Department of Physiology and Pharmacology, Oregon Health & Science University, Mail code: L334, 3181 Sam Jackson Park Road, Portland, OR 97239-3098, United States.
| |
Collapse
|
18
|
GABAergic influence on temporomandibular joint-responsive spinomedullary neurons depends on estrogen status. Neuroscience 2013; 259:53-62. [PMID: 24316475 DOI: 10.1016/j.neuroscience.2013.11.053] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 11/25/2013] [Accepted: 11/25/2013] [Indexed: 12/19/2022]
Abstract
Sensory input from the temporomandibular joint (TMJ) to neurons in superficial laminae at the spinomedullary (Vc/C1-2) region is strongly influenced by estrogen status. This study determined if GABAergic mechanisms play a role in estrogen modulation of TMJ nociceptive processing in ovariectomized female rats treated with high- (HE) or low-dose (LE) estradiol (E2) for 2days. Superficial laminae neurons were activated by ATP (1mM) injections into the joint space. The selective GABAA receptor antagonist, bicuculline methiodide (BMI, 5 or 50μM, 30μl), applied at the site of recording greatly enhanced the magnitude and duration of ATP-evoked responses in LE rats, but not in units from HE rats. The convergent cutaneous receptive field (RF) area of TMJ neurons was enlarged after BMI in LE but not HE rats, while resting discharge rates were increased after BMI independent of estrogen status. By contrast, the selective GABAA receptor agonist, muscimol (50μM, 30μl), significantly reduced the magnitude and duration of ATP-evoked activity, resting discharge rate, and cutaneous RF area of TMJ neurons in LE and HE rats, whereas lower doses (5μM) affected only units from LE rats. Protein levels of GABAA receptor β3 isoform at the Vc/C1-2 region were similar for HE and LE rats. These results suggest that GABAergic mechanisms contribute significantly to background discharge rates and TMJ-evoked input to superficial laminae neurons at the Vc/C1-2 region. Estrogen status may gate the magnitude of GABAergic influence on TMJ neurons at the earliest stages of nociceptive processing at the spinomedullary region.
Collapse
|
19
|
Oka A, Yamamoto M, Takeda R, Ohara H, Sato F, Akhter F, Haque T, Kato T, Sessle BJ, Takada K, Yoshida A. Jaw-opening and -closing premotoneurons in the nucleus of the solitary tract making contacts with laryngeal and pharyngeal afferent terminals in rats. Brain Res 2013; 1540:48-63. [DOI: 10.1016/j.brainres.2013.10.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 09/26/2013] [Accepted: 10/04/2013] [Indexed: 01/01/2023]
|
20
|
Abe T, Shimoda T, Urade M, Hasegawa M, Sugiyo S, Takemura M. c-Fos induction in the brainstem following electrical stimulation of the trigeminal ganglion of chronically mandibular nerve-transected rats. Somatosens Mot Res 2013; 30:175-84. [DOI: 10.3109/08990220.2013.790805] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
21
|
Okamoto K, Thompson R, Katagiri A, Bereiter DA. Estrogen status and psychophysical stress modify temporomandibular joint input to medullary dorsal horn neurons in a lamina-specific manner in female rats. Pain 2013; 154:1057-64. [PMID: 23607965 DOI: 10.1016/j.pain.2013.03.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 02/20/2013] [Accepted: 03/08/2013] [Indexed: 12/12/2022]
Abstract
Estrogen status and psychological stress contribute to the expression of several chronic pain conditions including temporomandibular muscle and joint disorders (TMJD). Sensory neurons that supply the temporomandibular joint (TMJ) region terminate in laminae I and V of the spinal trigeminal nucleus (Vc/C1-2 region); however, little is known about lamina-specificity and environmental influences on the encoding properties of TMJ brainstem neurons. To test the hypothesis that Vc/C1-2 neurons integrate both interoceptive and exteroceptive signals relevant for TMJ nociception, we recorded TMJ-evoked activity in superficial and deep laminae of ovariectomized rats under high and low estradiol (E2) and stress conditions. Rats received daily injections of low (LE) or high (HE) dose E2 and were subjected to forced swim (FS) or sham swim conditioning for 3days. The results revealed marked lamina-specificity in that HE rats displayed enhanced TMJ-evoked activity in superficial, but not deep, laminae independent of stress conditioning. By contrast, FS conditioned rats displayed increased background firing and TMJ-evoked activity of neurons in deep, but not superficial, laminae independent of E2 status. FS also enhanced TMJ-evoked masseter muscle activity and suggested the importance of deep dorsal horn neurons in mediating evoked jaw muscle activity. In conclusion, E2 status and psychophysical stress play a significant role in modifying the encoding properties of TMJ-responsive medullary dorsal horn neurons with a marked lamina-specificity.
Collapse
Affiliation(s)
- Keiichiro Okamoto
- Department of Diagnostic and Biological Sciences, University of Minnesota School of Dentistry, SE Minneapolis, MN 55455, USA.
| | | | | | | |
Collapse
|
22
|
Teramoto K, Tsuboi Y, Shinoda M, Hitomi S, Abe K, Kaji K, Tamagawa T, Suzuki A, Noma N, Kobayashi M, Komiyama O, Urata K, Iwata K. Changes in expression of growth-associated protein-43 in trigeminal ganglion neurons and of the jaw opening reflex following inferior alveolar nerve transection in rats. Eur J Oral Sci 2013; 121:86-91. [DOI: 10.1111/eos.12021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2012] [Indexed: 11/28/2022]
Affiliation(s)
- Kohei Teramoto
- Department of Dysphagia Rehabilitation; Nihon University School of Dentistry; Tokyo; Japan
| | | | | | - Suzuro Hitomi
- Division of Physiology; Kyushu Dental University; Fukuoka; Japan
| | - Kimiko Abe
- Department of Dysphagia Rehabilitation; Nihon University School of Dentistry; Tokyo; Japan
| | - Kaori Kaji
- Department of Orthodontics; Nihon University School of Dentistry; Tokyo; Japan
| | - Takaaki Tamagawa
- Department of Oral and Maxillofacial Surgery; Nihon University School of Dentistry; Tokyo; Japan
| | - Azumi Suzuki
- Department of Pediatric Dentistry; Nihon University School of Dentistry; Tokyo; Japan
| | - Noboru Noma
- Department of Oral Diagnosis; Nihon University School of Dentistry; Tokyo; Japan
| | - Masayuki Kobayashi
- Department of Pharmacology; Nihon University School of Dentistry; Tokyo; Japan
| | - Osamu Komiyama
- Department of Oral Function and Rehabilitation; Nihon University School of Dentistry at Matsudo; Chiba; Japan
| | - Kentaro Urata
- Department of Complete Denture Prosthodontics; Nihon University School of Dentistry; Tokyo; Japan
| | | |
Collapse
|
23
|
Projections from the insular cortex to pain-receptive trigeminal caudal subnucleus (medullary dorsal horn) and other lower brainstem areas in rats. Neuroscience 2013; 233:9-27. [DOI: 10.1016/j.neuroscience.2012.12.024] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 12/13/2012] [Accepted: 12/17/2012] [Indexed: 11/18/2022]
|
24
|
Katagiri A, Shinoda M, Honda K, Toyofuku A, Sessle BJ, Iwata K. Satellite glial cell P2Y12 receptor in the trigeminal ganglion is involved in lingual neuropathic pain mechanisms in rats. Mol Pain 2012; 8:23. [PMID: 22458630 PMCID: PMC3386019 DOI: 10.1186/1744-8069-8-23] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Accepted: 03/30/2012] [Indexed: 01/01/2023] Open
Abstract
Background It has been reported that the P2Y12 receptor (P2Y12R) is involved in satellite glial cells (SGCs) activation, indicating that P2Y12R expressed in SGCs may play functional roles in orofacial neuropathic pain mechanisms. However, the involvement of P2Y12R in orofacial neuropathic pain mechanisms is still unknown. We therefore studied the reflex to noxious mechanical or heat stimulation of the tongue, P2Y12R and glial fibrillary acidic protein (GFAP) immunohistochemistries in the trigeminal ganglion (TG) in a rat model of unilateral lingual nerve crush (LNC) to evaluate role of P2Y12R in SGC in lingual neuropathic pain. Results The head-withdrawal reflex thresholds to mechanical and heat stimulation of the lateral tongue were significantly decreased in LNC-rats compared to sham-rats. These nocifensive effects were apparent on day 1 after LNC and lasted for 17 days. On days 3, 9, 15 and 21 after LNC, the mean relative number of TG neurons encircled with GFAP-immunoreactive (IR) cells significantly increased in the ophthalmic, maxillary and mandibular branch regions of TG. On day 3 after LNC, P2Y12R expression occurred in GFAP-IR cells but not neuronal nuclei (NeuN)-IR cells (i.e. neurons) in TG. After 3 days of successive administration of the P2Y12R antagonist MRS2395 into TG in LNC-rats, the mean relative number of TG neurons encircled with GFAP-IR cells was significantly decreased coincident with a significant reversal of the lowered head-withdrawal reflex thresholds to mechanical and heat stimulation of the tongue compared to vehicle-injected rats. Furthermore, after 3 days of successive administration of the P2YR agonist 2-MeSADP into the TG in naïve rats, the mean relative number of TG neurons encircled with GFAP-IR cells was significantly increased and head-withdrawal reflex thresholds to mechanical and heat stimulation of the tongue were significantly decreased in a dose-dependent manner compared to vehicle-injected rats. Conclusions The present findings provide the first evidence that the activation of P2Y12R in SGCs of TG following lingual nerve injury is involved in the enhancement of TG neuron activity and nocifensive reflex behavior, resulting in neuropathic pain in the tongue.
Collapse
Affiliation(s)
- Ayano Katagiri
- Department of Physiology, Nihon University School of Dentistry, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
25
|
DaSilva A, DosSantos M. The role of sensory fiber demography in trigeminal and postherpetic neuralgias. J Dent Res 2012; 91:17-24. [PMID: 21670221 PMCID: PMC3232114 DOI: 10.1177/0022034511411300] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Revised: 03/31/2011] [Accepted: 04/27/2011] [Indexed: 11/17/2022] Open
Abstract
In this study, we systematically investigated fiber demography, based on function and distribution, from the periphery to their destinations in the various central (sub) nuclei in the trigeminal brainstem nuclear sensory complex. Conventional and novel compelling information is provided, demonstrating that the ratio and somatotopy of types A and C sensory fibers at the site of a lesion can elucidate important puzzles in TNP disorders. For instance, we explain how of a major shift in the fibers' direction and ratio at the level of the trigeminal root entry zone (REZ) influences the pathophysiology of pre- and typical trigeminal neuralgia. As a result, there is a high A/C ratio of oral and peri-oral fibers in the supero-medial region of the REZ, which is mostly susceptible to vascular compression. However, this A/C ratio varies considerably at lower proportions in other areas along the peripheral trigeminal pathway, where an injury (viral, vessel compression, or trauma) can lead to a broader spectrum of fiber involvement and, consequently, pain outcome. In summary, we explain how fiber demography can influence pain quality, location, temporal features, progress, and treatment prognosis of TNP in those patients who develop it.
Collapse
Affiliation(s)
- A.F. DaSilva
- Headache & Orofacial Pain Effort (H.O.P.E.), Department of Biologic and Materials Sciences and MCOHR, School of Dentistry, University of Michigan, 1011 N. University Ave., Room 1014A, Ann Arbor, MI 48109-1078, USA
- Molecular and Behavioral Neuroscience Institute (MBNI), 205 Zina Pitcher, Room 1021, Ann Arbor, MI 48104, USA
| | - M.F. DosSantos
- Headache & Orofacial Pain Effort (H.O.P.E.), Department of Biologic and Materials Sciences and MCOHR, School of Dentistry, University of Michigan, 1011 N. University Ave., Room 1014A, Ann Arbor, MI 48109-1078, USA
- Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Brazil
| |
Collapse
|
26
|
Pan YA, Choy M, Prober DA, Schier AF. Robo2 determines subtype-specific axonal projections of trigeminal sensory neurons. Development 2011; 139:591-600. [PMID: 22190641 DOI: 10.1242/dev.076588] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
How neurons connect to form functional circuits is central to the understanding of the development and function of the nervous system. In the somatosensory system, perception of sensory stimuli to the head requires specific connections between trigeminal sensory neurons and their many target areas in the central nervous system. Different trigeminal subtypes have specialized functions and downstream circuits, but it has remained unclear how subtype-specific axonal projection patterns are formed. Using zebrafish as a model system, we followed the development of two trigeminal sensory neuron subtypes: one that expresses trpa1b, a nociceptive channel important for sensing environmental chemicals; and a distinct subtype labeled by an islet1 reporter (Isl1SS). We found that Trpa1b and Isl1SS neurons have overall similar axon trajectories but different branching morphologies and distributions of presynaptic sites. Compared with Trpa1b neurons, Isl1SS neurons display reduced branch growth and synaptogenesis at the hindbrain-spinal cord junction. The subtype-specific morphogenesis of Isl1SS neurons depends on the guidance receptor Robo2. robo2 is preferentially expressed in the Isl1SS subset and inhibits branch growth and synaptogenesis. In the absence of Robo2, Isl1SS afferents acquire many of the characteristics of Trpa1b afferents. These results reveal that subtype-specific activity of Robo2 regulates subcircuit morphogenesis in the trigeminal sensory system.
Collapse
Affiliation(s)
- Y Albert Pan
- Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA.
| | | | | | | |
Collapse
|
27
|
Fried K, Sessle BJ, Devor M. The paradox of pain from tooth pulp: low-threshold "algoneurons"? Pain 2011; 152:2685-2689. [PMID: 21889261 DOI: 10.1016/j.pain.2011.08.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Revised: 07/24/2011] [Accepted: 08/02/2011] [Indexed: 11/29/2022]
Affiliation(s)
- Kaj Fried
- Department of Dental Medicine, Karolinska Institutet, S-141 04 Huddinge, Sweden Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada M5G 1G6 Department of Cell and Developmental Biology, Institute of Life Sciences and Center for Research on Pain, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel
| | | | | |
Collapse
|
28
|
Iwata K, Miyachi S, Imanishi M, Tsuboi Y, Kitagawa J, Teramoto K, Hitomi S, Shinoda M, Kondo M, Takada M. Ascending multisynaptic pathways from the trigeminal ganglion to the anterior cingulate cortex. Exp Neurol 2010; 227:69-78. [PMID: 20854814 DOI: 10.1016/j.expneurol.2010.09.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Revised: 08/25/2010] [Accepted: 09/14/2010] [Indexed: 12/27/2022]
Abstract
By means of retrograde transneuronal transport of rabies virus, ascending multisynaptic pathways from the trigeminal ganglion (TG) to the anterior cingulate cortex (ACC) were identified in the rat. After rabies injection into an electrophysiologically defined trigeminal projection region of the ACC, transsynaptic labeling of second-order neurons via the medial thalamus (including the parafascicular nucleus) was located in the spinal trigeminal nucleus pars caudalis. Third-order neuron labeling occurred in the TG. Most of these TG neurons were medium- or large-sized cells giving rise to myelinated Aδ or Aβ afferent fibers, respectively. By contrast, TG neurons labeled transsynaptically from the orofacial region of the primary somatosensory cortex contained many small cells associated with unmyelinated C afferent fibers. Furthermore, the TG neurons retrogradely labeled with fluorogold injected into the mental nerve were smaller in their sizes compared to those labeled with rabies. Our extracellular unit recordings revealed that a majority of ACC neurons responded to trigeminal nerve stimulation with latencies of shorter than 20ms. Thus, somatosensory information conveyed to the ACC by multisynaptic ascending pathways derived predominantly from myelinated primary afferents (i.e., the medial nociceptive system) and may be used to subserve affective-motivational aspects of pain. Lack of overlap with the lateral nociceptive system is notable and suggests that the medial and lateral nociceptive systems perform separate and non-overlapping functions.
Collapse
Affiliation(s)
- Koichi Iwata
- Department of Physiology, Nihon University School of Dentistry, 1-8-13 Kandasurugadai, Chiyoda-ku, Tokyo, 101-8310, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Distinct central representations for sensory fibers innervating either the conjunctiva or cornea of the rat. Exp Eye Res 2009; 90:388-96. [PMID: 20004193 DOI: 10.1016/j.exer.2009.11.018] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2009] [Revised: 11/19/2009] [Accepted: 11/30/2009] [Indexed: 10/20/2022]
Abstract
The laminar sheet of epithelium (e.g., skin and mucous membrane) enclosing our bodies is represented in the dorsal horns of the medulla and spinal cord. The eyeball however indents this laminar sheet and is shrouded by different layers: the cornea/sclera, the conjunctiva, and hairy skin. This involution of the orb confounds defining the central representation of the cornea and its surrounding mucosa and skin. We used herein the transganglionic transport of a cocktail of HRP conjugated to cholera toxin and wheat germ agglutinin to determine the central representation of these epithelia in the dorsal horns of the rat. The HRP cocktail was injected either into the stroma of the cornea, the mucosa of the conjunctiva, or the supraorbital and infraorbital nerves. Injections of the cornea produced dense label in the interstitial islands in the ventral medullary dorsal horn (MDH), probably lamina I, and in neuropil in the ventromedial tip of the MDH, probably lamina II. There sometimes was variable, diffuse label in the C1 dorsal horn after corneal injections but more rostral parts of the trigeminal sensory complex were never labeled. Injections of the conjunctiva densely labeled laminae I-III in the C1 dorsal horn, while laminae IV-V were diffusely labeled. Sparser reaction product also was seen in lamina I in positions similar to the cornea projection. Label was seen ventrally in subnuclei interpolaris and oralis, as well as the principal trigeminal nucleus. Projections of the infraorbital nerve included all laminae in the trigeminocervical complex as well as large portions of the rostral subnuclei in the spinal trigeminal nucleus. The projections of the supraorbital nerve were similar, but were restricted to ventral parts of the trigeminal sensory complex. In other cases the cornea was injected either after cutting the supraorbital and infraorbital nerves or the conjunctiva was injected after enucleating the eyeball. Any reaction product from corneal injections was reduced dramatically in the C1 dorsal horn after transection of the infraorbital and supraorbital nerves. Injecting the conjunctiva after enucleating the eyeball densely labeled the C1 projection to the dorsal horn, a small patch in lamina I in the MDH, as well as the rostral trigeminal complex. We propose that the cornea has but a single representation in the trigeminocervical complex in its ventral part near the caudal end of the medulla. We also propose the palpebral conjunctiva mucosa is represented in the C1 dorsal horn, and speculate that the bulbar conjunctiva overlaps with that of the cornea in lamina I. We discuss these projections in relation to the circuitry for the supraorbital-evoked and corneal-evoked blink reflexes. The relationship of the cornea and conjunctiva is intimate, and investigators must be very careful when attempting to stimulate them in isolation.
Collapse
|
30
|
Hollandsworth MP, DiNovo KM, McCulloch PF. Unmyelinated fibers of the anterior ethmoidal nerve in the rat co-localize with neurons in the medullary dorsal horn and ventrolateral medulla activated by nasal stimulation. Brain Res 2009; 1298:131-44. [PMID: 19732757 DOI: 10.1016/j.brainres.2009.08.077] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2009] [Accepted: 08/19/2009] [Indexed: 11/18/2022]
Abstract
The anterior ethmoidal nerve (AEN) innervates the nasal passages and external nares, and serves as the afferent limb of the nasopharyngeal and diving responses. However, although 65% of the AEN is composed of unmyelinated fibers, it has not been determined whether this afferent signal is carried by unmyelinated or myelinated fibers. We used the transganglionic tracers WGA-HRP, IB4-HRP, and CTB-HRP to trace the central projections of the AEN of the rat. Interpretation of the labeling patterns suggests that AEN unmyelinated fibers project primarily to the ventral tip of the ipsilateral medullary dorsal horn (MDH) at the level of the area postrema. Other unmyelinated projections were to the ventral paratrigeminal nucleus and ventrolateral medulla, specifically the Bötzinger and RVLM/C1 regions. Myelinated AEN fibers projected to the ventral paratrigeminal and mesencephalic trigeminal nuclei. Stimulating the nasal passages of urethane-anesthetized rats with ammonia vapors produced the nasopharyngeal response that included apnea, bradycardia and an increase in arterial blood pressure. Central projections of the AEN co-localized with neurons within both MDH and RVLM/C1 that were activated by nasal stimulation. Within the ventral MDH the density of AEN terminal projections positively correlated with the rostral-caudal location of activated neurons, especially at and just caudal to the obex. We conclude that unmyelinated AEN terminal projections are involved in the activation of neurons in the MDH and ventrolateral medulla that participate in the nasopharyngeal response in the rat. We also found that IB4-HRP was a much less robust tracer than WGA-HRP.
Collapse
Affiliation(s)
- Michael P Hollandsworth
- Department of Physiology, Midwestern University, 555 31st Street, Downers Grove, IL 60515, USA
| | | | | |
Collapse
|
31
|
Saito K, Hitomi S, Suzuki I, Masuda Y, Kitagawa J, Tsuboi Y, Kondo M, Sessle BJ, Iwata K. Modulation of Trigeminal Spinal Subnucleus Caudalis Neuronal Activity Following Regeneration of Transected Inferior Alveolar Nerve in Rats. J Neurophysiol 2008; 99:2251-63. [DOI: 10.1152/jn.00794.2007] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Modulation of trigeminal spinal subnucleus caudalis neuronal activity following regeneration of transected inferior alveolar nerve in rats. To clarify the neuronal mechanisms of abnormal pain in the face innervated by the regenerated inferior alveolar nerve (IAN), nocifensive behavior, trigeminal ganglion neuronal labeling following Fluorogold (FG) injection into the mental skin, and trigeminal spinal subnucleus caudalis (Vc) neuronal properties were examined in rats with IAN transection. The mechanical escape threshold was significantly higher at 3 days and lower at 14 days after IAN transection, whereas head withdrawal latency to heat was significantly longer at 3, 14, and 60 days after IAN transection. The number of FG-labeled ganglion neurons was significantly reduced at 3 days after IAN transection but increased at 14 and 60 days. The number of wide dynamic range (WDR) neurons with background (BG) activity was significantly higher at 14 and 60 days after IAN transection compared with naïve rats, and the number of WDR and low-threshold mechanoreceptive (LTM) neurons with irregularly bursting BG activity was increased at these two time points. Mechanically evoked responses were significantly larger in WDR and LTM neurons 14 days after IAN transection compared with naïve rats. Heat- and cold-evoked responses in WDR neurons were significantly lower at 14 days after transection compared with naïve rats. Mechanoreceptive fields were also significantly larger in WDR and LTM neurons at 14 and 60 days after IAN transection. These findings suggest that these alterations may be involved in the development of mechanical allodynia in the cutaneous region innervated by the regenerated IAN.
Collapse
|
32
|
Moulton EA, Pendse G, Morris S, Strassman A, Aiello-Lammens M, Becerra L, Borsook D. Capsaicin-induced thermal hyperalgesia and sensitization in the human trigeminal nociceptive pathway: an fMRI study. Neuroimage 2007; 35:1586-600. [PMID: 17407825 PMCID: PMC2034350 DOI: 10.1016/j.neuroimage.2007.02.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2006] [Revised: 02/05/2007] [Accepted: 02/06/2007] [Indexed: 12/16/2022] Open
Abstract
The aim of this study was to differentiate the processing of nociceptive information, matched for pain intensity, from capsaicin-induced hyperalgesic vs. control skin at multiple levels in the trigeminal nociceptive pathway. Using an event-related fMRI approach, 12 male subjects underwent three functional scans beginning 1 h after topical application of capsaicin to a defined location on the maxillary skin, when pain from capsaicin application had completely subsided. Brush and two levels of painful heat (low-Thermal-1 and high-Thermal-2) were applied to the site of capsaicin application and to the mirror image region on the opposite side. Temperatures for each side were set to evoke perceptually matched pain (mean temperatures [capsaicin/control]: Thermal-1=38.4/42.8 degrees C; Thermal-2=44.9/47.8 degrees C). We found differences in activation patterns following stimuli to treated and untreated sides in sensory circuits across all stimulus conditions. Across the trigeminal nociceptive pathway, Thermal-2 stimulation of hyperalgesic skin evoked greater activation in trigeminal ganglion and nucleus, thalamus, and somatosensory cortex than the control side. Thus, trigeminal nociceptive regions showed increased activation in the context of perceptually equal pain levels. Beyond these regions, contrast analyses of capsaicin vs. control skin stimulation indicated significant changes in bilateral dorsolateral prefrontal cortex and amygdala. The involvement of these emotion-related regions suggests that they may be highly sensitive to context, such as prior experience (application of capsaicin) and the specific pain mechanism (hyperalgesic vs. normal skin).
Collapse
Affiliation(s)
- Eric A Moulton
- P.A.I.N. Group, Brain Imaging Center, McLean Hospital, 115 Mill Street, Belmont, MA 02478, USA.
| | | | | | | | | | | | | |
Collapse
|
33
|
Worsley MA, Davies SL, Clayton NM, Bountra C, Loescher AR, Robinson PP, Boissonade FM. The effect of inflammation on Fos expression in the ferret trigeminal nucleus. Eur J Oral Sci 2007; 115:40-7. [PMID: 17305715 DOI: 10.1111/j.1600-0722.2007.00411.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
We have previously carried out detailed characterization and identification of Fos expression within the trigeminal nucleus after tooth pulp stimulation in ferrets. The aim of this study was to determine the effect of pulpal inflammation on the excitability of central trigeminal neurons following tooth pulp stimulation. Adult ferrets were prepared under anesthesia to allow tooth pulp stimulation, recording from the digastric muscle, and intravenous injections at a subsequent experiment. In some animals, pulpal inflammation was induced by introducing human caries into a deep buccal cavity. After 5 d, animals were re-anaethetized, and the teeth were stimulated at 10 times the threshold of the jaw-opening reflex. Stimulation of all tooth pulps induced ipsilateral Fos in the trigeminal subnuclei caudalis and oralis. All non-stimulated animals showed negligible Fos labeling, with no differences recorded between inflamed and non-inflamed groups. Following tooth pulp stimulation, Fos expression was greater in animals with inflamed teeth than in animals with non-inflamed teeth, with the greatest effect seen in the subnucleus caudalis. These results suggest that inflammation increases the number of trigeminal brainstem neurons activated by tooth pulp stimulation; this may be mediated by peripheral or central mechanisms.
Collapse
Affiliation(s)
- Matthew A Worsley
- Department of Oral and Maxillofacial Medicine and Surgery, School of Clinical Dentistry, University of Sheffield, UK.
| | | | | | | | | | | | | |
Collapse
|
34
|
Ma WL, Zhang WB, Xiong KH, Guo F. Visceral and orofacial somatic afferent fiber terminals converge onto the same neuron in paratrigeminal nucleus: An electron microscopic study in rats. Auton Neurosci 2007; 131:45-9. [PMID: 16962830 DOI: 10.1016/j.autneu.2006.06.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2006] [Revised: 06/17/2006] [Accepted: 06/26/2006] [Indexed: 01/02/2023]
Abstract
The paratrigeminal nucleus (Pa5) receives visceral sensory inputs through the vagus (X) and glossopharyngeal (IX) nerves and somatic sensory inputs through the trigeminal (V) nerve. In the present study, transganglionic transport of the WGA-HRP and Wallerian degeneration was used to identify whether two kinds of primary afferent fiber terminals converge onto a single neuron in the Pa5 at the utrastructural level. It was found that HRP-labeled and degenerated terminals originating from the IX and/or X nerves and infraorbital nerve formed asymmetrical synapses with unlabeled dendrites in the Pa5. Furthermore, approximately 7% (43/630) HRP-labeled and 31% (43/137) degenerated terminals formed synaptic connections with the same dendritic profiles simultaneously in the dorsal division of the Pa5. These results may provide a neuroanatomical substrate for integration of viscerosomatic sensory inputs associated with visceral and cardiovascular reflexes in the Pa5.
Collapse
Affiliation(s)
- Wen-Ling Ma
- Department of Anatomy and K K Leung Brain Research Centre, Fourth Military Medical University, Xi'an 710032, P R China.
| | | | | | | |
Collapse
|
35
|
Li J, Xiong K, Pang Y, Dong Y, Kaneko T, Mizuno N. Medullary dorsal horn neurons providing axons to both the parabrachial nucleus and thalamus. J Comp Neurol 2006; 498:539-51. [PMID: 16874804 DOI: 10.1002/cne.21068] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
It has often been suggested that the trigemino- and spino-thalamic pathways are highly implicated in sensory-discriminative aspects of pain, whereas the trigemino- and spino-parabrachial pathways are strongly implicated in affective/emotional aspects of pain. On the other hand, the superficial laminae of the spinal dorsal horn, where many nociceptive neurons are distributed, have been reported to contain projection neurons innervating both the parabrachial nucleus (PBN) and thalamus by way of axon collaterals (Hylden et al., 1989). For the medullary dorsal horn (caudal subnucleus of spinal trigeminal nucleus: Vc), however, the existence of such neurons has not been reported. Thus, in the present study, we examined whether the Vc might contain projection neurons sending their axons to both the thalamus and PBN. Dual retrograde labeling with fluorescence dyes was attempted. In each rat, tetramethylrhodamine-dextran amine and Fluoro-gold were stereotaxically injected into the PBN and thalamic regions, respectively. The proportion of the dually labeled Vc cells in the total population of all labeled Vc cells was about 20%. More than 90% of the dually labeled neurons were distributed in lamina I (marginal zone), less than 10% of them were located in lamina II (substantia gelatinosa), and only a few (about 1%) were found in lamina III (magnocellular zone). The results indicate that some Vc neurons in the superficial laminae mediate nociceptive information directly to the PBN and thalamus by way of axon collaterals and that the vast majority of them project to the ipsilateral PBN and contralateral thalamus.
Collapse
Affiliation(s)
- Jinlian Li
- Department of Anatomy and K.K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an 710032, China
| | | | | | | | | | | |
Collapse
|
36
|
Sugiyo S, Takemura M, Dubner R, Ren K. Trigeminal transition zone/rostral ventromedial medulla connections and facilitation of orofacial hyperalgesia after masseter inflammation in rats. J Comp Neurol 2006; 493:510-23. [PMID: 16304628 DOI: 10.1002/cne.20797] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Recent studies have implicated a role for the trigeminal interpolaris/caudalis (Vi/Vc) transition zone in response to orofacial injury. Using combined neuronal tracing and Fos protein immunocytochemistry, we investigated functional connections between the Vi/Vc transition zone and rostral ventromedial medulla (RVM), a key structure in descending pain modulation. Rats were injected with a retrograde tracer, FluoroGold, into the RVM 7 days before injection of an inflammatory agent, complete Freund's adjuvant, into the masseter muscle and perfused at 2 hours postinflammation. A population of neurons in the ventral Vi/Vc overlapping with caudal ventrolateral medulla, and lamina V of the trigeminal subnucleus caudalis (Vc), exhibited FluoroGold/Fos double staining, suggesting the activation of the trigeminal-RVM pathway after inflammation. No double-labeled neurons were found in the dorsal Vi/Vc and laminae I-IV of Vc. Injection of an anterograde tracer, Phaseolus vulgaris leucoagglutinin, into the RVM resulted in labeling profiles overlapped with the region that showed FluoroGold/Fos double labeling, suggesting reciprocal connections between RVM and Vi/Vc. Lesions of Vc with a soma-selective neurotoxin, ibotenic acid, significantly reduced inflammation-induced Fos expression as well as the number of FluoroGold/Fos double-labeled neurons in the ventral Vi/Vc (P<0.05). Compared with control rats, lesions of the RVM (n=6) or Vi/Vc (n=6) with ibotenic acid led to the elimination or attenuation of masseter hyperalgesia/allodynia developed after masseter inflammation (P<0.05-0.01). The present study demonstrates reciprocal connections between the ventral Vi/Vc transition zone and RVM. The Vi/Vc-RVM pathway is activated after orofacial deep tissue injury and plays a critical role in facilitating orofacial hyperalgesia.
Collapse
Affiliation(s)
- Shinichi Sugiyo
- Department of Biomedical Sciences, Dental School, and Program in Neuroscience, University of Maryland, Baltimore, Maryland 21201-1586, USA
| | | | | | | |
Collapse
|
37
|
Aita M, Maeda T, Takagi R, Seo K. Postnatal development of substance P-immunoreaction in the trigeminal caudalis of neonatally capsaicin-treated mice. ACTA ACUST UNITED AC 2006; 68:311-20. [PMID: 16477150 DOI: 10.1679/aohc.68.311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The trigeminal subnucleus caudalis (Vc) is a critical relay site for processing nociceptive afferent input from the orofacial area in addition to its modulation by neuroplastic change. Although an administration of capsaicin in neonates induces a selective destruction of substance P (SP)-immunoreactive nerve fibers, little information is available regarding its detailed effects on the Vc, particularly during postnatal development. The present study examined postnatal changes in the distribution of SP in the Vc and trigeminal ganglion (TG) by immunohistochemical techniques in naïve (NV) and neonatally capsaicin-treated (CP) mice, combined with a quantitative analysis. The neonatal mice received a single subcutaneous injection of capsaicin (50 mg/kg) at 48 hours after birth. The neural density of the SP-immunoreaction decreased to approximately a quarter of that in 1-week-old NV mice but increased to three-quarters of that in the NV in the superficial area after postnatal week 2. A double staining with SP and myelin basic protein confirmed the absence of any SP-immunoreaction in the myelinated nerve fibers in both NV and CP mice. The SP-immunoreaction never overlapped with non-peptidergic IB4-labeled neurons in the Vc and TG of either group. Neither the size distribution of SP-positive neurons nor their relative ratio in the TG differed between NV and CP mice at the ages of postnatal weeks 1 and 8. These findings indicate two putative origins for the emergent SP-immunoreaction in the superficial layer of the Vc of the CP mice: the surviving trigeminal neurons with SP against capsaicin treatment and/or intrinsic neurons/interneurons in the Vc without SP under normal conditions.
Collapse
Affiliation(s)
- Megumi Aita
- Division of Oral and Maxillofacial Surgery, Niigata University Graduate School of Medical and Dental Sciences, Japan
| | | | | | | |
Collapse
|
38
|
Takemura M, Sugiyo S, Moritani M, Kobayashi M, Yonehara N. Mechanisms of orofacial pain control in the central nervous system. ACTA ACUST UNITED AC 2006; 69:79-100. [PMID: 16819148 DOI: 10.1679/aohc.69.79] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Recent advances in the study of pain have revealed somatotopic- and modality-dependent processing and the integration of nociceptive signals in the brain and spinal cord. This review summarizes the uniqueness of the trigeminal sensory nucleus (TSN) in structure and function as it relates to orofacial pain control. The oral nociceptive signal is primarily processed in the rostral TSN above the obex, the nucleus principalis (Vp), and the subnuclei oralis (SpVo) and interpolaris (SpVi), while secondarily processed in the subnucleus caudalis (SpVc). In contrast, the facial nociceptive signal is primarily processed in the SpVc. The neurons projecting to the thalamus are localized mostly in the Vp, moderately in the SpVi, and modestly in the ventrolateral SpVo and the SpVc. Orofacial sensory inputs are modulated in many different ways: by interneurons in the TSN proper, through reciprocal connection between the TSN and rostral ventromedial medulla, and by the cerebral cortex. A wide variety of neuroactive substances, including substance P, gamma-aminobutyric acid, serotonin and nitric oxide (NO) could be involved in the modulatory functions of these curcuits. The earliest expression of NO synthase (NOS) in the developing rat brain is observed in a discrete neuronal population in the SpVo at embryonic day 15. NOS expression in the SpVc is late at postnatal day 10. The neurons receiving intraoral signals are intimately related with the sensorimotor reflexive function through the SpVo. In summary, a better understanding of the trigeminal sensory system--which differs from the spinal system--will help to find potential therapeutic targets and lend to developing new analgesics for orofacial-specific pain with high efficacy and fewer side effects.
Collapse
Affiliation(s)
- Motohide Takemura
- Department of Oral Anatomy and Neurobiology, Osaka University Graduate School of Dentistry, Yamadaoka, Suita, Japan.
| | | | | | | | | |
Collapse
|
39
|
Liang YC, Huang CC, Hsu KS. Characterization of long-term potentiation of primary afferent transmission at trigeminal synapses of juvenile rats: essential role of subtype 5 metabotropic glutamate receptors. Pain 2005; 114:417-428. [PMID: 15777867 DOI: 10.1016/j.pain.2005.01.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2004] [Revised: 10/28/2004] [Accepted: 01/14/2005] [Indexed: 11/29/2022]
Abstract
Recent work has demonstrated that a brief high-frequency conditioning stimulation to the primary afferent nerve fibers can induce a long-term potentiation (LTP) of synaptic transmission in neurons in the superficial layer of the trigeminal caudal nucleus; however, the cellular and molecular mechanisms underlying this synaptic potentiation remain unclear. Using both extracellular field potential and whole-cell patch-clamp recordings in brainstem parasagital slices of juvenile rat with the mandibular nerve attached, we show here that the induction of trigeminal primary afferent LTP: (1) does not require the activation of ionotropic glutamate receptors; (2) is dependent on extracellular Ca(2+) and the release of Ca(2+) from intracellular stores; (3) is specifically prevented by the metabotropic glutamate receptor subtype 5 (mGluR5) antagonist 2-methyl-6-(phenylethynyl)pyridine but not the mGluR1 antagonist LY367385, group II mGluR antagonist LY341495 or group III mGluR antagonist MAP4; (4) is mimicked by the bath-applied group I mGluR agonist (S)-3,5-dihydroxyphenylglycine and mGluR5 agonist (RS)-2-chloro-5-hydroxyphenylglycine; (5) requires the activation of phospholipase C (PLC) and protein kinase C (PKC); and (6) is concomitantly with a decrease in paired-pulse depression. These results demonstrate that the activation of mGluR5 and in turn triggering a PLC/PKC-dependent signaling cascade may contribute to the induction of LTP of primary afferent synaptic transmission in the superficial layer of trigeminal caudal nucleus of juvenile rats. This may be relevant to the processing of nociceptive information.
Collapse
Affiliation(s)
- Ying-Ching Liang
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan, ROC Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan, ROC
| | | | | |
Collapse
|
40
|
Ma WL, Zhang WB, Feng G, Cai YL. Calbindin D28k-containing neurons in the paratrigeminal nucleus receive convergent nociceptive information and project to nucleus of the solitary tract in rat. Brain Res 2005; 1038:132-40. [PMID: 15757629 DOI: 10.1016/j.brainres.2005.01.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2004] [Revised: 12/21/2004] [Accepted: 01/01/2005] [Indexed: 11/21/2022]
Abstract
The paratrigeminal nucleus (PTN) receives orofacial somatic and visceral afferent fibers and contains many calbindin-D28k neurons (CB-containing neurons) that project to nucleus of the solitary tract (NTS). In the present study, retrograde and transganglionic tracing methods combined with immunofluorescence histochemistry and confocal laser scanning microscopy were used. After Fluoro-gold (FG) injection into the unilateral NTS, 74.4% FG-labeled neurons of ipsilateral PTN were double-labeled with CB. Furthermore, 41.0% and 32.5% FG/CB double-labeled neurons co-existed with Fos induced by nociceptive stimulation of the lips and the upper alimentary tract, respectively. In the PTN unilateral to FG injection site, 26.6% CB-LI neurons were double-labeled with PAG, 61.5% and 79.0% CB/PAG double-labeled neurons were triple-labeled with FG and Fos, and 22.9% FG/CB double-labeled neurons were triple-labeled with PAG, 84.3% FG/PAG double-labeled neurons expressed Fos induced by the upper alimentary tract stimulation. In the intact animals, 62.8% CB-LI neurons and 88.3% PAG-LI neurons co-existed with GABA(B)R, respectively. In addition, some terminals from the inferior alveolar nerve (IAN) were closely apposed to CB/Fos double-labeled or CB single-labeled neurons. These results suggested that CB-containing neurons in the PTN receive the nociceptive information converge from the orofacial area and visceral organs, and comprising the glutamatergic excitatory transmission pathway from the PTN to the NTS. This pathway might be modulated by GABA via the GABA(B) receptor.
Collapse
Affiliation(s)
- Wen-Ling Ma
- Department of Anatomy and K.K. Leung Brain Research Centre, Fourth Military Medical University, Xi'an 710032, PR China.
| | | | | | | |
Collapse
|
41
|
Panneton WM, Gan Q, Juric R. The central termination of sensory fibers from nerves to the gastrocnemius muscle of the rat. Neuroscience 2005; 134:175-87. [PMID: 15953682 DOI: 10.1016/j.neuroscience.2005.02.032] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2004] [Revised: 02/02/2005] [Accepted: 02/12/2005] [Indexed: 11/25/2022]
Abstract
Peripheral nerves innervating muscles have sensory fibers that relay information into the CNS information about proprioception, pain, and the metabolic state of the muscle. The present study shows the primary afferent projections into the spinal cord of the nerves innervating the gastrocnemius muscle of the rat using the transganglionic transport of a cocktail of horseradish peroxidase (HRP) conjugated to cholera toxin and wheat germ agglutinin; these markers have been shown to label large and small fibers, respectively. A dense projection into lamina I of the lumbar dorsal horn and a more moderate projection into lamina V were seen. Moreover, dense reaction product was found in the most medial aspect of lamina II, especially lamina II inner part, and less in lamina III and IV of levels L3-L5. Lamina VI had dense reaction product from the rostral sacral levels of the spinal cord that continued into Clarke's column at rostral lumbar levels. The nucleus gracilis also was labeled. Other nerves emerging from the popliteal fossa, including the tibial, peroneal, and sural nerves, also were injected with the HRP cocktail and their projections compared with those from the gastrocnemius muscle. Projections from the gastrocnemius muscle only partially overlapped with those from the tibial nerve, from which the nerves to the gastrocnemius muscle branch. However, the topology of projections from these nerves to laminae II-IV of the dorsal horn differed from that of the nerves of the gastrocnemius muscle, suggesting there was little spread to other nerves in the popliteal fossa. It was also noted that large labeled processes, presumably dendrites of retrogradely labeled motoneurons, entered the dorsal horn. These data provide information on the central projections of both the large and small fibers innervating the gastrocnemius muscle, and may aid in determining the circuitry utilized in the exercise pressor reflex as well as muscle pain.
Collapse
Affiliation(s)
- W M Panneton
- Department of Pharmacological and Physiological Science, St. Louis University School of Medicine, 1402 South Grand Boulevard, St. Louis, MO 63104-1004, USA.
| | | | | |
Collapse
|
42
|
Abe T, Ohshita N, Sugiyo S, Moritani M, Kobayashi M, Takemura M. Elimination of neurokinin-1 receptor neurons in caudal nucleus reverses the effects of systemic bicuculline on c-Fos expression in rat trigeminal sensory nucleus: I. High intensity electrical stimulation of the trigeminal ganglion. Neuroscience 2005; 133:739-47. [PMID: 15896914 DOI: 10.1016/j.neuroscience.2005.03.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2004] [Revised: 03/04/2005] [Accepted: 03/24/2005] [Indexed: 10/25/2022]
Abstract
Although neurokinin-1 receptor (NK-1)-bearing neurons are distributed in lamina I of the trigeminal caudal nucleus (Vc) and constitute major projection neurons, little is known about their fundamental role(s) in nociceptive processing. This study examines the effect of intra cisterna magna injection of substance P (SP) conjugated to saporin (SP-Sap; 5 microM, 5 microl) [with/without systemic administration of bicuculline] on c-Fos expression in the trigeminal sensory nucleus (TSN) induced 2 h after 10 min repetitive electrical stimulation of the trigeminal ganglion (TG) at high intensity (1.0 mA, 5 Hz, 5 ms) in the urethane-anesthetized rat. In the SP-Sap-treated rats, the numbers of NK-1-immunopositive neurons in laminae I and III of the Vc decreased compared with rats similarly pretreated with saline (Sal; 5 microl) or blank-saporin (Bl-Sap; 5 microM, 5 microl). In Sal- or Bl-Sap-treated controls, high intensity stimulation induced c-Fos expression in neurons throughout the full extent of ipsilateral superficial layers of the Vc (VcI/II), magnocellular zone of the Vc (VcIII/IV) and the dorsal or dorsomedial subdivisions of the rostral TSN above the obex (trigeminal principal, oral (Vo) and interpolar nuclei). Preadministration of bicuculline (2 mg/kg, i.p.) decreased the numbers of c-Fos-immunopositive neurons in the VcI/II, VcIII/IV and Vo in Sal- or Bl-Sap-treated controls. In contrast, high intensity stimulation induced less c-Fos-immunopositive neurons in the VcI/II and Vo of rats treated with SP-Sap compared with those in Sal- or Bl-Sap-treated controls. In SP-Sap-treated rats preadministered with bicuculline, the numbers of c-Fos-immunopositive neurons in the VcI/II and Vo were increased compared with the SP-Sap-treated rats preadministered with Sal. These results suggest that NK-1-immunopositive neurons in laminae I and III of Vc play a pivotal role in the nociceptive specific processing in the TSN through GABA(A) receptors.
Collapse
Affiliation(s)
- T Abe
- Department of Oral Anatomy and Neurobiology, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | |
Collapse
|
43
|
Abstract
Transganglionic transport of horseradish peroxidase (HRP) was used to investigate trigeminal primary afferent endings in the peribrachial area of the guinea pig. After HRP application to several nerve branches of the three divisions of the trigeminal nerve, a projection to the caudal region of the ipsilateral peribrachial region was found for the infratrochlear, ethmoidal, supraorbital, zygomatic, zygomaticofacial, zygomaticotemporal and infraorbital-superior alveolar nerves. Random and scarce endings were also observed for the mental, inferior alveolar, buccal and mylohyoid nerves. No trigeminal primary projection to the peribrachial area was detected when HRP was applied to the sphenopalatine, lingual and auriculotemporal nerves. With the exception of the ethmoidal endings described in the muskrat, a primary afferent projection to the peribrachial region from the other trigeminal nerves has not hitherto been reported in mammals.
Collapse
Affiliation(s)
- Luis A G Segade
- Department of Morphological Sciences, Faculty of Medicine and Odontology, University of Santiago de Compostela, Santiago de Compostela, E-15705, Spain.
| |
Collapse
|
44
|
Bae YC, Oh JM, Hwang SJ, Shigenaga Y, Valtschanoff JG. Expression of vanilloid receptor TRPV1 in the rat trigeminal sensory nuclei. J Comp Neurol 2004; 478:62-71. [PMID: 15334649 DOI: 10.1002/cne.20272] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Little is known about the central projection patterns of trigeminal afferent neurons expressing the vanilloid receptor TRPV1 and their coexpression of neuromodulatory peptides. To address these issues, we examined the distribution of TRPV1-positive neurons in the trigeminal ganglion (TG) and trigeminal sensory nuclei principalis (Vp), oralis (Vo), interpolaris (Vi), and caudalis (Vc) in the rat via light and electron microscopy. In addition, we studied the colocalization of TRPV1-positive neurons with substance P (SP) and calcitonin gene-related peptide (CGRP) via confocal microscopy. In TG, only small and medium-sized neurons were immunopositive for TRPV1. The staining for TRPV1 was found in axon collaterals in the dorsal parts of Vp, Vo, and Vi and in terminals and fibers throughout lamina I and the outer zone of lamina II (IIo) of Vc. With electron microscopy, TRPV1-positive fibers in the ascending and descending trigeminal tracts were found to be unmyelinated. Almost all TRPV1-positive terminals in Vc contained numerous large dense-core vesicles and formed synaptic contacts with single small dendrites. Multiple immunofluorescence revealed a high degree of colocalization of TRPV1 with SP and CGRP in TG neurons as well as in fibers and terminals confined to laminae I and IIo of Vc. These results suggest that the central projections of unmyelinated (C) afferents sensitive to noxious heat and capsaicin are organized differently between Vc and the rostral trigeminal nuclei and that Vc may play a role in the development of hyperalgesia.
Collapse
Affiliation(s)
- Yong Chul Bae
- Department of Oral Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu 700-412, Korea.
| | | | | | | | | |
Collapse
|
45
|
Liang YC, Huang CC, Hsu KS, Takahashi T. Cannabinoid-induced presynaptic inhibition at the primary afferent trigeminal synapse of juvenile rat brainstem slices. J Physiol 2003; 555:85-96. [PMID: 14673184 PMCID: PMC1664814 DOI: 10.1113/jphysiol.2003.056986] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Systemic or intraventricular administration of cannabinoids causes analgesic effects, but relatively little is known for their cellular mechanism. Using brainstem slices with the mandibular nerve attached, we examined the effect of cannabinoids on glutamatergic transmission in superficial trigeminal caudal nucleus of juvenile rats. The exogenous cannabinoid receptor agonist WIN 55,212-2 (WIN), as well as the endogenous agonist anandamide, hyperpolarized trigeminal caudal neurones and depressed the amplitude of excitatory postsynaptic potentials (EPSPs) or currents (EPSCs) monosynaptically evoked by stimulating mandibular nerves in a concentration-dependent manner. The inhibitory action of WIN was blocked or fully reversed by the CB1 receptor antagonist SR 141716A. WIN had no effect on the amplitude of miniature excitatory postsynaptic currents (mEPSCs) recorded in the presence of tetrodotoxin or cadmium. The inhibitory effect of WIN on EPSCs was greater for those with longer synaptic latency, suggesting that cannabinoids have a stronger effect on C-fibre EPSPs than on Adelta-fibre EPSPs. Ba2+ (100 microm) blocked the hyperpolarizing effect of cannabinoids, but did not affect their inhibitory effect on EPSPs. The N-type Ca2+ channel blocker omega-conotoxin GVIA (omega-CgTX) occluded the WIN-mediated presynaptic inhibition, whereas the P/Q-type Ca2+ channel blocker omega-agatoxin TK (omega-Aga) had no effect. These results suggest that cannabinoids preferentially activate CB1 receptors at the nerve terminal of small-diameter primary afferent fibres. Upon activation, CB1 receptors may selectively inhibit presynaptic N-type Ca2+ channels and exocytotic release machinery, thereby attenuating the transmitter release at the trigeminal nociceptive synapses.
Collapse
Affiliation(s)
- Ying-Ching Liang
- Department of Pharmacology, College of Medicine, National Cheng Kung University, No. 1, Ta-Hsiue Road, Tainan City 701, Taiwan
| | | | | | | |
Collapse
|
46
|
Is tooth extraction a good model for dental pain? a critic to Sabino et al. (Pain 2002;95:175–86). Pain 2002. [DOI: 10.1016/s0304-3959(02)00309-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
47
|
Sabino MAC, Honore P, Rogers SD, Mach DB, Luger NM, Mantyh PW. Tooth extraction-induced internalization of the substance P receptor in trigeminal nucleus and spinal cord neurons: imaging the neurochemistry of dental pain. Pain 2002; 95:175-86. [PMID: 11790480 DOI: 10.1016/s0304-3959(01)00397-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Although pains arising from the craniofacial complex can be severe and debilitating, relatively little is known about the peripheral and central mechanisms that generate and maintain orofacial pain. To better understand the neurons in the trigeminal complex and spinal cord that are activated following nociceptive stimuli to the orofacial complex, we examined substance P (SP) induced internalization of substance P receptors (SPR) in neurons following dental extraction in the rat. Unilateral gingival reflection or surgical extraction of a rat maxillary incisor or molar was performed and tissues harvested at various time points post-extraction. Immunohistochemical analysis of brainstem and cervical spinal cord sections was performed using an anti-SPR antibody and confocal imaging. Both the number and location of neurons showing SPR internalization was dependent on the location and extent of tissue injury. Whereas extraction of the incisor induced internalization of SPR in neurons bilaterally in nucleus caudalis and the spinal cord, extraction of the molar induced strictly unilateral internalization of SPR-expressing neurons in the same brain structures. Minor tissue injury (retraction of the gingiva) activated SPR neurons located in lamina I whereas more extensive and severe tissue injury (incisor or molar extraction) induced extensive SPR internalization in neurons located in both laminae I and III-V. The rostrocaudal extent of the SPR internalization was also correlated with the extent of tissue injury. Thus, following relatively minor tissue injury (gingival reflection) neurons showing SPR internalization were confined to the nucleus caudalis while procedures which cause greater tissue injury (incisor or molar extraction), neurons showing SPR internalization extended from the interpolaris/caudalis transition zone through the C7 spinal level. Defining the population of neurons activated in orofacial pain and whether analgesics modify the activation of these neurons should provide insight into the mechanisms that generate and maintain acute and chronic orofacial pain.
Collapse
Affiliation(s)
- Mary Ann C Sabino
- Department of Preventive Sciences, University of Minnesota, 18-208 Moos Tower, 515 Delaware Street SE, Minneapolis, MN 55455, USA
| | | | | | | | | | | |
Collapse
|
48
|
Ichikawa H, Yamashita K, Takano-Yamamoto T, Sugimoto T. Osteopontin-immunoreactivity in the rat trigeminal ganglion and trigeminal sensory nuclei. Brain Res 2001; 919:147-54. [PMID: 11689172 DOI: 10.1016/s0006-8993(01)03019-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Osteopontin-immunoreactivity (OPN-ir) was examined in the oro-facial tissues and trigeminal sensory nuclei (principal sensory nucleus and spinal trigeminal nucleus) to ascertain the peripheral ending and central projection of OPN-containing primary sensory neurons in the trigeminal ganglion (TG). No staining was observed using mouse monoclonal anti-OPN antibody preabsorbed with recombinant mature OPN. OPN-immunoreactive (ir) peripheral endings were classified into two types: encapsulated and unencapsulated types. Unencapsulated endings were subdivided into two types: simple and complex types. Simple endings were characterized by the thin neurite that was usually devoid of ramification. These endings were seen in the hard plate and gingiva. The complex type was characterized by the thick ramified neurite, and observed in the vibrissa, hard palate, and molar periodontal ligament. Encapsulated endings were found only in the hard palate. The trigeminal sensory nuclei contained OPN-ir cell bodies and neuropil. The neuropil was devoid of ir in laminae I and II of the medullary dorsal horn (MDH), and had various staining intensities in other regions of the trigeminal sensory nuclei. Transection of the infraorbital and inferior alveolar nerves caused an increase of OPN-ir intensity in ipsilateral TG neurons. The staining intensity of the neuropil also increased in the trigeminal sensory nuclei ipsilateral to the neurotomy excepting laminae I and II of the MDH. The present study indicates that OPN-ir primary sensory neurons in the TG innervate encapsulated and unencapsulated corpuscular endings. Such neurons probably project their central terminals to the trigeminal sensory nuclei except for the superficial laminae of the MDH.
Collapse
Affiliation(s)
- H Ichikawa
- Department of Oral Function and Anatomy, Okayama University, Graduate School of Medicine and Dentistry, 2-5-1 Shikata-cho, 700-8525, Okayama, Japan.
| | | | | | | |
Collapse
|
49
|
Takuma S. Effect of neonatal capsaicin treatment on neural activity in the medullary dorsal horn of neonatal rats evoked by electrical stimulation to the trigeminal afferents: an optical, electrophysiological, and quantitative study. Brain Res 2001; 906:1-12. [PMID: 11430856 DOI: 10.1016/s0006-8993(01)02448-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
To elucidate which glutamate receptors, NMDA or non-NMDA, have the main role in synaptic transmission via unmyelinated afferents in the trigeminal subnucleus caudalis (the medullary dorsal horn), and to examine the early functional effects of neonatal capsaicin treatment to the subnucleus caudalis, optical recording, field potential recording, and quantitative study using electron micrographs were employed. A medulla oblongata isolated from a rat 5--7 days old was sectioned horizontally 400-microm thick or parasagittally and stained with a voltage-sensitive dye, RH482 or RH795. Single-pulse stimulation with high intensity to the trigeminal afferents evoked optical responses mainly in the subnucleus caudalis. The optical signals were composed of two phases, a fast component followed by a long-lasting component. The spatiotemporal properties of the optical signals were well correlated to those of the field potentials recorded simultaneously. The fast component was eliminated by 6-cyano-7-nitro-quinoxaline-2,3-dione (CNQX; 10 microM), while the long-lasting component was not. The latter increased in amplitude under a condition of low Mg(2+) but was significantly reduced by DL-2-amino-5-phosphonovaleric acid (AP5; 30 microM). Neonatal capsaicin treatment also reduced the long-lasting component markedly. In addition, the decreases in the ratio of unmyelinated axons to myelinated axons and in the ratio of unmyelinated axons to Schwann cell subunits of trigeminal nerve roots both showed significant differences (P<0.05, Student's t-test) between the control group and the neonatal capsaicin treatment group. This line of evidence indirectly suggests that synaptic transmission via unmyelinated afferents in the subnucleus caudalis is mediated substantially by NMDA glutamate receptors and documented that neonatal capsaicin treatment induced a functional alteration of the neural transmission in the subnucleus caudalis as well as a morphological alteration of primary afferents within several days after the treatment.
Collapse
MESH Headings
- 2-Amino-5-phosphonovalerate/pharmacology
- 6-Cyano-7-nitroquinoxaline-2,3-dione/pharmacology
- Action Potentials/drug effects
- Action Potentials/physiology
- Afferent Pathways/drug effects
- Afferent Pathways/growth & development
- Afferent Pathways/ultrastructure
- Animals
- Animals, Newborn/anatomy & histology
- Animals, Newborn/growth & development
- Animals, Newborn/metabolism
- Capsaicin/pharmacology
- Cell Count
- Electric Stimulation
- Electronic Data Processing
- Excitatory Amino Acid Antagonists/pharmacology
- Fluorescent Dyes/pharmacokinetics
- Magnesium Deficiency/physiopathology
- Medulla Oblongata/drug effects
- Medulla Oblongata/growth & development
- Medulla Oblongata/ultrastructure
- Microscopy, Electron
- Nerve Fibers/drug effects
- Nerve Fibers/metabolism
- Nerve Fibers/ultrastructure
- Nerve Fibers, Myelinated/ultrastructure
- Neurons, Afferent/drug effects
- Neurons, Afferent/metabolism
- Neurons, Afferent/ultrastructure
- Nociceptors/drug effects
- Nociceptors/metabolism
- Nociceptors/ultrastructure
- Rats
- Rats, Wistar
- Receptors, N-Methyl-D-Aspartate/drug effects
- Receptors, N-Methyl-D-Aspartate/metabolism
- Styrenes/pharmacokinetics
- Synaptic Transmission/drug effects
- Synaptic Transmission/physiology
- Trigeminal Caudal Nucleus/drug effects
- Trigeminal Caudal Nucleus/growth & development
- Trigeminal Caudal Nucleus/ultrastructure
Collapse
Affiliation(s)
- S Takuma
- Department of Dental Anesthesiology, Hokkaido University Graduate School of Dental Medicine, Sapporo 060-8586, Japan.
| |
Collapse
|
50
|
Hayakawa T, Takanaga A, Maeda S, Seki M, Yajima Y. Subnuclear distribution of afferents from the oral, pharyngeal and laryngeal regions in the nucleus tractus solitarii of the rat: a study using transganglionic transport of cholera toxin. Neurosci Res 2001; 39:221-32. [PMID: 11223468 DOI: 10.1016/s0168-0102(00)00218-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The central distributions of afferents from the oral cavity, the pharynx, the larynx and the esophagus to the nucleus tractus solitarii (NTS) were examined by using transganglionic anterograde transport of the cholera toxin B subunit (CT-b). Injections of CT-b into the body of the tongue and the hard palate resulted in heavy labeling of the lateral subnucleus (l-NTS) of the NTS rostral to the area postrema. Injection into the root of the tongue resulted in heavy labeling of the l-NTS, the dorsal half of the medial (m-NTS), the intermediate (im-NTS) and the interstitial (is-NTS) subnuclei rostral to the area postrema. Injections into the soft palate and the pharynx resulted in a similar labeling pattern in the is-NTS, im-NTS and m-NTS to that in the case of the root of the tongue, but this labeling extended rostrocaudally. Heavy labeling of the medial aspect of the l-NTS was found in the case of the soft palate, but the labeling was sparse in the case of the pharynx. Moderate labeling was also found in the commissural subnucleus (co-NTS). Injection into the larynx resulted in labeling of the is-NTS throughout the NTS, and of the rostral half of im-NTS. Injection into the esophagus resulted in heavy labeling of the central subnucleus, and moderate labeling of the co-NTS and the caudal half of im-NTS. A few but consistent anterogradely labeled terminals were found to appose retrogradely labeled small neurons in the rostral tip of the dorsal motor nucleus of vagus in the cases of injections into the root of the tongue, the soft palate, the pharynx, and the larynx. These results have characterized the viscerotopic representation of afferent projections from the oral and the cervical visceral organs to the subnuclei of the NTS.
Collapse
Affiliation(s)
- T Hayakawa
- Department of Anatomy, Hyogo College of Medicine, Mukogawa, Nishinomiya, 663-8501, Hyogo, Japan.
| | | | | | | | | |
Collapse
|