1
|
Pei T, Li W, Zhou Z, Zhang Q, Yu G, Yin S, Chen H, Tang J. The relationship between tryptophan metabolism and gut microbiota: Interaction mechanism and potential effects in infection treatment. Microbiol Res 2025; 298:128211. [PMID: 40393170 DOI: 10.1016/j.micres.2025.128211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 04/29/2025] [Accepted: 05/05/2025] [Indexed: 05/22/2025]
Abstract
Human health is influenced by the gut microbiota, particularly in aspects of host immune homeostasis and intestinal immune response. Tryptophan (Trp) not only acts as a nutrient enhancer but also plays a critical role in the balance between host immune tolerance and gut microbiota maintenance. Both endogenous and bacterial metabolites of Trp, exert significant effects on gut microbial composition, microbial metabolism, the host immunity and the host-microbiome interface. Trp metabolites regulate host immunity by activating aryl hydrocarbon receptor (AhR), thereby contributing to immune homeostasis. Among Trp metabolites, AhR ligands include endogenous metabolites (such as kynurenine), and bacterial metabolites (such as indole and its derivatives). Here, we present a comprehensive analysis of the relationships between Trp metabolism and 14 key microbiota, encompassing fungi (e.g., Candida albicans, Aspergillus), bacteria (e.g., Ruminococcus gnavus, Bacteroides, Prevotella copri, Clostridium difficile, Escherichia coli, lactobacilli, Mycobacterium tuberculosis, Pseudomonas aeruginosa, Staphylococcus aureus, Helicobacter. Pylori), and viruses (e.g., SARS-CoV-2, influenza virus). This review clarifies how the gut microbiota regulates Trp metabolism and uncovers the underlying mechanisms of these interactions. And increased mechanistic insight into how the microbiota modulate the host immune system through Trp metabolism may allow for the identification of innovative therapies that are specifically designed to target Trp absorption, Trp metabolites, the gut microbiota, or interactions between Trp and gut microbiota to treat both intestinal and extra-intestinal inflammation as well as microbial infections.
Collapse
Affiliation(s)
- Tongchao Pei
- Department of Trauma-Emergency & Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, China
| | - Wenweiran Li
- Department of Trauma-Emergency & Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, China
| | - Ziyang Zhou
- Department of Trauma-Emergency & Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, China
| | - Qinyu Zhang
- Department of Trauma-Emergency & Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, China
| | - Guohong Yu
- Department of Emergency Medicine, Baoshan Second People's Hospital, Baoshan College of Traditional Chinese Medicine, Baoshan 678000, China
| | - Sokun Yin
- Department of Emergency Medicine, Luoping County People's Hospital, Qujing 655800, China
| | - Hui Chen
- Department of Trauma-Emergency & Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, China.
| | - Jianguo Tang
- Department of Trauma-Emergency & Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, China.
| |
Collapse
|
2
|
Aboudalle A, Barthomeuf M, Castel X, Le Gendre L, Pissavin C. Antibacterial activity of photocatalytic titanium dioxide (TiO 2) thin films for Listeria monocytogenes biofilms disinfection. Photochem Photobiol 2025. [PMID: 40275714 DOI: 10.1111/php.14105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 04/04/2025] [Accepted: 04/08/2025] [Indexed: 04/26/2025]
Abstract
The presence of microbial biofilms on equipment surfaces is a recurrent problem in the food industry. To reduce the risk of biofilm development, a preventive method based on photoactive antibacterial surfaces is proposed. In the present study, crystalline rutile form titanium dioxide (TiO2) thin layers are deposited on stainless steel substrates by RF sputtering under reactive plasma. Such layers are assessed for their bactericidal activity on two strains of Listeria monocytogenes. After 1 h of irradiation under UV-A at 365 nm, a decrease of 2 log of the number of adherent Listeria cells is observed. Analysis with scanning electron microscopy suggests damages to the bacterial walls. Moreover, the peroxidation of the membrane lipids of L. monocytogenes by the radical species formed by photocatalysis is confirmed since malondialdehyde was detected after irradiation. Furthermore, the present work investigates the role of the redox species generated by photocatalysis. Indeed, experiments carried out in the presence of scavenger molecules (DMSO, EDTA-2Na, superoxide dismutase) show that holes are the main redox species involved in the antibacterial activity of the deposited layers. These results allow a better understanding of the role of the redox species generated by the photocatalytic activity of the rutile TiO2 thin layers.
Collapse
Affiliation(s)
- Arwa Aboudalle
- Biological Engineering Department, Univ Rennes, IUT Saint-Brieuc, Saint-Brieuc, France
| | - Marion Barthomeuf
- Biological Engineering Department, Univ Rennes, IUT Saint-Brieuc, Saint-Brieuc, France
| | - Xavier Castel
- Univ Rennes, CNRS, IETR - UMR 6164, Saint-Brieuc, France
| | | | - Christine Pissavin
- Biological Engineering Department, Univ Rennes, IUT Saint-Brieuc, Saint-Brieuc, France
| |
Collapse
|
3
|
Solomon M, Holban AM, Bălăceanu-Gurău B, Dițu LM, Alberts A, Grumezescu AM, Manolescu LSC, Mihai MM. Silver Nanoparticles Functionalized with Polymeric Substances to Reduce the Growth of Planktonic and Biofilm Opportunistic Pathogens. Int J Mol Sci 2025; 26:3930. [PMID: 40362173 PMCID: PMC12071338 DOI: 10.3390/ijms26093930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2025] [Revised: 04/14/2025] [Accepted: 04/19/2025] [Indexed: 05/15/2025] Open
Abstract
The global rise in antimicrobial resistance, particularly among ESKAPE pathogens, has intensified the demand for alternative therapeutic strategies. Silver nanoparticles (AgNPs) have exhibited broad-spectrum antimicrobial activity and represent a promising approach to combat multidrug-resistant infections. This study aimed to synthesize and functionalize AgNPs using various polymeric agents-ethylene glycol (EG), polyethylene glycol (PEG), polyvinylpyrrolidone (PVP), and their combinations-and to evaluate their antimicrobial and antibiofilm efficacy against clinically relevant bacterial strains. AgNPs were synthesized via chemical reduction and functionalized as Ag@EG, Ag@PEG, Ag@EG/PVP, and Ag@PEG/PVP. A total of 68 clinical isolates-including Staphylococcus aureus, Staphylococcus epidermidis, Staphylococcus lugdunensis, Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa-were tested. Antimicrobial susceptibility was assessed using disc diffusion and broth microdilution assays, while antibiofilm activity was evaluated via the crystal violet method. Among all tested formulations, Ag@EG/PVP exhibited the highest antimicrobial and antibiofilm activity, with notably low minimum inhibitory concentrations (MIC50) and minimum biofilm eradication concentrations (MBEC50) for Ps. aeruginosa and K. pneumoniae. In contrast, AgNPs functionalized with PEG or EG alone showed limited efficacy. Biofilm-forming isolates, particularly Staphylococcus spp., required higher concentrations for inhibition. These results highlight the critical role of functionalization in modulating the antimicrobial properties of AgNPs, with Ag@EG/PVP demonstrating potent activity against both planktonic and biofilm-associated multidrug-resistant bacteria. Overall, this study supports further developing AgNPs-based formulations as adjuncts or alternatives to conventional antibiotics, particularly for managing biofilm-related infections. Future research should focus on formulation optimization, safety assessment, and translational potential.
Collapse
Affiliation(s)
- Mădălina Solomon
- Department of Microbiology, Parasitology and Virology, Faculty of Midwives and Nursing, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (M.S.); (L.S.C.M.)
- Clinical Laboratory of Medical Microbiology, Marius Nasta Institute of Pneumology, 050159 Bucharest, Romania
| | - Alina Maria Holban
- Department of Botany-Microbiology, Faculty of Biology, University of Bucharest, 030018 Bucharest, Romania; (L.M.D.); (A.M.G.)
- Research Institute of the University of Bucharest, University of Bucharest, 050663 Bucharest, Romania;
| | - Beatrice Bălăceanu-Gurău
- Department of Oncologic Dermatology, “Elias” Emergency University Hospital, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Lia Mara Dițu
- Department of Botany-Microbiology, Faculty of Biology, University of Bucharest, 030018 Bucharest, Romania; (L.M.D.); (A.M.G.)
- Research Institute of the University of Bucharest, University of Bucharest, 050663 Bucharest, Romania;
| | - Adina Alberts
- Department of Public Health and Management, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania;
| | - Alexandru Mihai Grumezescu
- Department of Botany-Microbiology, Faculty of Biology, University of Bucharest, 030018 Bucharest, Romania; (L.M.D.); (A.M.G.)
- Department of Science and Engineering of Oxidic Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, Polizu Street No. 1–7, 011061 Bucharest, Romania
| | - Loredana Sabina Cornelia Manolescu
- Department of Microbiology, Parasitology and Virology, Faculty of Midwives and Nursing, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (M.S.); (L.S.C.M.)
- Clinical Laboratory of Medical Microbiology, Marius Nasta Institute of Pneumology, 050159 Bucharest, Romania
| | - Mara Mădălina Mihai
- Research Institute of the University of Bucharest, University of Bucharest, 050663 Bucharest, Romania;
- Department of Oncologic Dermatology, “Elias” Emergency University Hospital, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
| |
Collapse
|
4
|
Kim S, Jin YH, Mah JH. Inhibitory effects of garlic, cinnamon, and rosemary on viability, heat resistance, and biofilm formation of Bacillus cereus spores in the broth of a fermented soybean paste stew, Cheonggukjang jjigae. Food Res Int 2025; 206:116078. [PMID: 40058924 DOI: 10.1016/j.foodres.2025.116078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 01/22/2025] [Accepted: 02/22/2025] [Indexed: 05/13/2025]
Abstract
Foods prepared through heating, including broths, have the potential and risk of survival of Bacillus cereus, which has the ability to form spores and biofilms. This study evaluated the efficacy of various natural products (particularly spices) in mitigating B. cereus contamination in Cheonggukjang jjigae (CJ) broth. The following characteristics of B. cereus were examined: viability of vegetative cells (including other pathogenic bacteria) and planktonic spores, heat resistance of planktonic spores and spores in intact biofilms, and biofilm formation and persistence. In an antimicrobial test to evaluate the inhibitory effects of spice and cruciferous vegetable extracts on B. cereus CH3 vegetative cells, cinnamon, garlic, and rosemary extracts were selected as they have shown significant inhibitory effects, with inhibition zones of 20-29 mm in diameter at the highest concentration tested (160 mg/mL, unless otherwise stated). These spice extracts also exhibited antimicrobial activity against other foodborne pathogens, including Staphylococcus aureus, Listeria monocytogenes, Salmonella Typhimurium, and Escherichia coli O157:H7. Garlic extract showed the greatest inhibitory effect on the viability and heat resistance of planktonic spores of B. cereus CH3, and cinnamon and rosemary extracts exhibited similar effects. Garlic extract reduced B. cereus CH3 spore counts in phosphate buffer solution (PBS) and CJ broth by 20.22 % and 14.08 %, respectively, compared to control (treated with the same ethanol amount instead of the extract), and effectively weakened spore heat resistance, reducing the D100°C-values of planktonic spores of B. cereus CH3 in PBS and CJ broth by 32.89 % and 23.08 %, respectively, compared to control. As for the characteristics related to biofilm, garlic extract showed the highest inhibitory effect on biofilm formation and persistence and heat resistance of spores in intact biofilms, followed by rosemary and cinnamon extracts. All three spice extracts completely inhibited biofilm formation even at the lowest concentration (20 mg/mL) at the early stage of biofilm formation. They completely eradicated biofilm persistence formed in brain heart infusion (BHI) and CJ broth at the highest concentration. A high garlic extract concentration (80 mg/mL) also reduced the D100°C-values of spores in biofilms formed in BHI and CJ broth by 16.34 % and 9.00 %, respectively, compared to control. Taken together, garlic extract was most effective in mitigating B. cereus contamination in a concentration-dependent manner in in vitro-menstrua and CJ broth. This study may provide one of the promising strategies to reduce the risk of B. cereus in soybean stews such as CJ.
Collapse
Affiliation(s)
- Sohyeon Kim
- Department of Food and Biotechnology, Korea University, Sejong 30019, Republic of Korea
| | - Young Hun Jin
- Department of Food and Biotechnology, Korea University, Sejong 30019, Republic of Korea
| | - Jae-Hyung Mah
- Department of Food and Biotechnology, Korea University, Sejong 30019, Republic of Korea.
| |
Collapse
|
5
|
Tuytschaever T, Raes K, Sampers I. Biofilm detection in the food industry: Challenges in identifying biofilm eps markers and analytical techniques with insights for Listeria monocytogenes. Int J Food Microbiol 2025; 432:111091. [PMID: 39923351 DOI: 10.1016/j.ijfoodmicro.2025.111091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 01/30/2025] [Accepted: 01/31/2025] [Indexed: 02/11/2025]
Abstract
Extracellular polymeric substances (EPS) in biofilms are promising targets for eradicating biofilms and monitoring their presence, especially in the food industry. For this understanding, the composition of the EPS matrix is crucial. Ideally, a biofilm marker is found serving both purposes, but such a compound has not yet been discovered. This review aims to identify general biofilm EPS markers distinct from planktonic cells, focusing on macromolecules in the EPS matrix. It also evaluates the feasibility of this goal across different bacterial groups and environmental conditions and discusses EPS analysis methods. This review digs deeper into the EPS matrix starting with an introduction to the EPS matrix itself and describing some of its influencing factors. Next, a brief description of cell-to-cell communication within biofilms is provided, as these interactions significantly influence the EPS matrix. The main part of this review describes the macromolecules inside the EPS matrix and attempts to find biofilm EPS markers applied to bacteria in general and specifically to Listeria monocytogenes as biofilms are a major contributor to its persistence. The last part of the review focuses on the analytical techniques available to characterize the EPS matrix. The review revealed that although multiple candidates showed great potential as biofilm markers, none were unique but ubiquitous in all bacteria tested. To achieve easy biofilm detection with current techniques, it's necessary to identify markers specific to the environmental conditions and common bacterial groups within each food category, sector, or facility, due to the lack of standardization in these techniques. This tailored approach ensures more accurate and effective biofilm monitoring. Moreover, the lack of standardized analytical techniques, including quantification techniques, complexifies studying the EPS matrix and developing monitoring and intervention strategies. Optimizing analytical techniques is crucial for this tailored approach, as it requires refined methods for detection, characterization, and quantification. This ensures the accurate identification of biofilm markers specific to environmental conditions and bacterial groups within each food sector.
Collapse
Affiliation(s)
- Tessa Tuytschaever
- Research Unit VEG-i-TEC, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Campus Kortrijk, Sint-Martens-Latemlaan 2B, 8500 Kortrijk, Belgium.
| | - Katleen Raes
- Research Unit VEG-i-TEC, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Campus Kortrijk, Sint-Martens-Latemlaan 2B, 8500 Kortrijk, Belgium.
| | - Imca Sampers
- Research Unit VEG-i-TEC, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Campus Kortrijk, Sint-Martens-Latemlaan 2B, 8500 Kortrijk, Belgium.
| |
Collapse
|
6
|
Zore A, Jevšnik M, Roblek L, Štefanić G, Modic M, Čáslavský J, Trebše P, Bavcon Kralj M, Abram A, Kovačević D, Raspor P, Bohinc K, Mravcová L. Staphylococcus aureus detachment from linoleum surface: influence of liquid flow rate and cleaner type. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2025:1-13. [PMID: 40074708 DOI: 10.1080/09603123.2024.2424968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 10/30/2024] [Indexed: 03/14/2025]
Abstract
The aim of this research is to analyse the impact of surface cleaner type and hydrodynamic flow on bacterial detachment. For that purpose, a new liquid flow chamber was constructed and applied. In experiments, Staphylococcus aureus was grown on linoleum surfaces that are used in health care institutions. The bare surfaces were characterized by contact angle, zeta potential and surface roughness measurements. Material element analysis of linoleum was made. The main object is to determine how efficient different clearner type and strength of the liquid flow remove adhered bacteria from the linoleum surface. Bacterial detachment from linoleum surface was studied by turbulent liquid flow of cleaning solutions at room temperature. The impact of different surface cleaners on bacterial detachment was examined and compared to the effect of distilled water. For this reason, the exact identification of cleaner constituents was performed. Very realistic cleaning technique based on multiple swiping with a cloth was also applied. Results show that the turbulent flow can remove a significant number of bacteria adhered to the linoleum surface. The effect increases with the liquid flow rate and is cleaner specific.
Collapse
Affiliation(s)
- A Zore
- Faculty of Health Sciences, University of Ljubljana, Ljubljana, Slovenia
| | - M Jevšnik
- Faculty of Health Sciences, University of Ljubljana, Ljubljana, Slovenia
| | - L Roblek
- Faculty of Health Sciences, University of Ljubljana, Ljubljana, Slovenia
| | - G Štefanić
- Department of Chemistry, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - M Modic
- Department for Gaseous Electronics, Jožef Stefan Institute, Ljubljana, Slovenia
| | - J Čáslavský
- Faculty of Chemistry, Brno University of Technology, Brno, Czech Republic
| | - P Trebše
- Faculty of Health Sciences, University of Ljubljana, Ljubljana, Slovenia
| | - M Bavcon Kralj
- Faculty of Health Sciences, University of Ljubljana, Ljubljana, Slovenia
| | - A Abram
- Department for Nanostructured Materials, Jožef Stefan Institute, Ljubljana, Slovenia
| | - D Kovačević
- Department of Chemistry, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - P Raspor
- University of Ljubljana, Ljubljana, Slovenia
| | - K Bohinc
- Faculty of Health Sciences, University of Ljubljana, Ljubljana, Slovenia
| | - L Mravcová
- Faculty of Chemistry, Brno University of Technology, Brno, Czech Republic
| |
Collapse
|
7
|
Kang HED, Costalonga M, Vandereydt B, Varanasi KK. Design of Antibiofouling Lubricant-Impregnated Surfaces Robust to Cell-Growth-Induced Instability. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:5000-5008. [PMID: 39983042 DOI: 10.1021/acs.langmuir.4c03783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2025]
Abstract
Biofouling, commonly referred to as the unwanted deposition of cells on wetted solids, is a serious operational and environmental issue in many underwater and biomedical applications. Over the past decade, lubricant-impregnated surfaces (LIS) arose as a potential solution to prevent fouling, owing to their unique layer of lubricant masking the solid from the outer environment, thereby preventing biofouling. However, living microorganisms alter their environment by reproducing and secreting biomolecules, which can threaten the stability of such coatings over time. In this paper, we show that secretion of biomolecules from aquatic cells and subsequent changes in the interfacial tension of the surrounding media can trigger dewetting of the lubricant, ultimately exposing the surface to the outer solution and therefore becoming prone to fouling. By observing LIS immersed in Nannochloropsis oculata algae solutions at various stages of population growth, we establish a correlation between the decrease in interfacial tension and wetting states of the surface. We also visualize dewetting of the lubricant through confocal imaging performed in situ. Finally, we establish a diagram providing fundamental insights to design sturdy LIS circumventing such dewetting, therefore ensuring long-term protection against biofouling upon extended immersion in living cell solutions.
Collapse
Affiliation(s)
- Ha Eun David Kang
- Department of Mechanical Engineering, MIT, Cambridge, Massachusetts 02139, United States
| | - Maxime Costalonga
- Department of Mechanical Engineering, MIT, Cambridge, Massachusetts 02139, United States
| | - Bert Vandereydt
- Department of Mechanical Engineering, MIT, Cambridge, Massachusetts 02139, United States
| | - Kripa K Varanasi
- Department of Mechanical Engineering, MIT, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
8
|
Lee J, Park J, Baek J, Lee S, Seo E, Kim S, Choi H, Kang SS. Spent coffee ground disrupts Listeria monocytogenes biofilm formation through inhibition of motility and adhesion via quorum sensing regulation. Int J Food Microbiol 2025; 430:111066. [PMID: 39823805 DOI: 10.1016/j.ijfoodmicro.2025.111066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/10/2025] [Accepted: 01/12/2025] [Indexed: 01/20/2025]
Abstract
Spent coffee grounds (SCGs) have been explored for use as various bioresources, such as biofuels, and are known to possess biological functions, including antioxidant activity. However, the antibiofilm properties of SCGs against pathogenic bacteria have not been fully investigated. Therefore, this study aimed to highlight the inhibitory effects of SCG extract (SCGE) on biofilm formation in Listeria monocytogenes and investigated the underlying mechanisms. Treatment with SCGE disrupted both biofilm formation and architecture in L. monocytogenes. Furthermore, SCGE reduced autoaggregation and surface hydrophobicity. However, SCGE did not affect the viability of planktonic L. monocytogenes, suggesting that the decrease in biofilm formation was not attributed to decreased viability. Instead, SCGE downregulated motility- and adhesion-related genes in L. monocytogenes. Furthermore, SCGE impaired the swimming motility of L. monocytogenes. It also impaired adhesion to and invasion of intestinal epithelial cells. Moreover, SCGE suppressed the production of autoinducer-2, indicating the inhibition of quorum sensing signaling. Taken together, these findings suggest that SCGE inhibits biofilm formation in L. monocytogenes by modulating quorum sensing signaling, which regulates bacterial motility and adhesion.
Collapse
Affiliation(s)
- Jinho Lee
- Department of Food Science and Biotechnology, Dongguk University, Goyang 10326, Republic of Korea
| | - Jihyun Park
- Department of Food Science and Biotechnology, Dongguk University, Goyang 10326, Republic of Korea
| | - Jihyeon Baek
- Department of Food Science and Biotechnology, Dongguk University, Goyang 10326, Republic of Korea
| | - Suyeon Lee
- Department of Food Science and Biotechnology, Dongguk University, Goyang 10326, Republic of Korea
| | - Eunsu Seo
- Department of Food Science and Biotechnology, Dongguk University, Goyang 10326, Republic of Korea
| | - Seunghyeon Kim
- Department of Food Science and Biotechnology, Dongguk University, Goyang 10326, Republic of Korea
| | - Hyewon Choi
- Department of Food Science and Biotechnology, Dongguk University, Goyang 10326, Republic of Korea
| | - Seok-Seong Kang
- Department of Food Science and Biotechnology, Dongguk University, Goyang 10326, Republic of Korea.
| |
Collapse
|
9
|
Su LM, Huang RT, Hsiao HI. Biofilm formation comparison of Vibrio parahaemolyticus on stainless steel and polypropylene while minimizing environmental impacts and transfer to grouper fish fillets. Int J Food Microbiol 2025; 426:110913. [PMID: 39293097 DOI: 10.1016/j.ijfoodmicro.2024.110913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 09/07/2024] [Accepted: 09/10/2024] [Indexed: 09/20/2024]
Abstract
This study investigated the influence of food contact surface materials on the biofilm formation of Vibrio parahaemolyticus while attempting to minimize the impact of environmental factors. The response surface methodology (RSM), incorporating three controlled environmental factors (temperature, pH, and salinity), was employed to determine the optimal conditions for biofilm formation on stainless steel (SS) and polypropylene (PP) coupons. The RSM results demonstrated that pH was highly influential. After minimizing the impacts of environmental factors, initially V. parahaemolyticus adhered more rapidly on PP than SS. To adhere to SS, V. parahaemolyticus formed extra exopolysaccharide (EPS) and exhibited clustered stacking. Both PP and SS exhibited hydrophilic properties, but SS was more hydrophilic than PP. Finally, this study observed a higher transfer rate of biofilms from PP to fish fillets than from SS to fish fillets. The present findings suggest that the food industry should consider the material of food processing surfaces to prevent V. parahaemolyticus biofilm formation and thus to enhance food safety.
Collapse
Affiliation(s)
- Li-Ming Su
- Department of Food Science, National Taiwan Ocean University, Taiwan (R. O. C.)
| | - Rong-Tan Huang
- Department of Optoelectronics and Materials Technology, National Taiwan Ocean University, Taiwan (R. O. C.).
| | - Hsin-I Hsiao
- Department of Food Science, National Taiwan Ocean University, Taiwan (R. O. C.).
| |
Collapse
|
10
|
Didouh N, Saifi M, Aissaoui N, Medjahdi K, Khiri Z, Achek R, Moussa-Boudjemaa B, Araujo R. Essential oils application as Bacillus cereus antispore agent in food hygiene. JOURNAL OF AGRICULTURE AND FOOD RESEARCH 2024; 18:101454. [DOI: 10.1016/j.jafr.2024.101454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
|
11
|
Minasyan E, Aghajanyan A, Karapetyan K, Khachaturyan N, Hovhannisyan G, Yeghyan K, Tsaturyan A. Antimicrobial Activity of Melanin Isolated from Wine Waste. Indian J Microbiol 2024; 64:1528-1534. [PMID: 39678963 PMCID: PMC11645379 DOI: 10.1007/s12088-023-01155-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 11/16/2023] [Indexed: 12/17/2024] Open
Abstract
Melanins have immense application potential in the fields of agriculture, cosmetics and pharmaceutical industries. To determine the antimicrobial properties of melanin, conditionally pathogenic bacteria, belonging to different taxonomic groups were used. The results have shown that melanin solution exhibited bacteriostatic or bactericide activity depending on test culture and melanin concentration. Melanin at concentration of 20 mg/ml reduced the total number of cells of the Bacillus subtilis G 17-89, Salmonella typhimurium G 38 and Escherichia coli K 12 to about 20 percent. Melanin at the concentration of 40 mg/ml suppressed the growth of B. subtilis G17-89 and Candida gropengiesseri 10228 almost 100 percent. In the case of E. coli K 12 30 mg/ml concentration has the same effect as the 40 mg/ml and cell count decrease occurs about 50 percent. Lowest efficiency melanin showed against S. typhimurium G 38 and after 72 h of incubation the cell count decreases by log 1 degree. 30 mg/ml concentration of melanin on the growth of Candida bovina 10118 decreases about 80 percent. On the growth of the Fungi of Aspergillus fumigatus 8444, Aspergillus flavus 10559, Cladosporium herbarium 8270, Cladosporium elatum 8192, Fusarium oxysporum 12017, Fusarium solani 12018, Mucor hiemalis 12020, Mucor plumbeus 12021, Penicillium chrysogenum 8203, Penicillium expansum 8281 genus low concentration of melanin possessed bacteriostatic activity. The investigation of the efficiency of melanin to inhibit the growth of food-spoilage microorganisms shown, that it can be used as natural preservative agent for prevention contamination of food products and for extending of their shelf-life.
Collapse
Affiliation(s)
- Ela Minasyan
- Laboratory of BAS Purification and Certification, SPC “Armbiotechnology” Scientific and Production Center, National Academy of Science, Yerevan, Republic of Armenia
- Institute of Pharmacy, Scientific and Educational Center for Control and Monitoring of the Quality of Medicines, Yerevan State University, Yerevan, Republic of Armenia
| | - Armen Aghajanyan
- Laboratory of BAS Purification and Certification, SPC “Armbiotechnology” Scientific and Production Center, National Academy of Science, Yerevan, Republic of Armenia
| | - Kristina Karapetyan
- Laboratory of Probiotics Biotechnology, SPC “Armbiotechnology”, National Academy of Science, Yerevan, Republic of Armenia
| | - Nune Khachaturyan
- Microbial Depository Center (MDC), SPC “Armbiotechnology”, National Academy of Science, Yerevan, Republic of Armenia
| | - Gayane Hovhannisyan
- Laboratory of BAS Purification and Certification, SPC “Armbiotechnology” Scientific and Production Center, National Academy of Science, Yerevan, Republic of Armenia
| | - Karine Yeghyan
- Laboratory of BAS Purification and Certification, SPC “Armbiotechnology” Scientific and Production Center, National Academy of Science, Yerevan, Republic of Armenia
| | - Avetis Tsaturyan
- Laboratory of BAS Purification and Certification, SPC “Armbiotechnology” Scientific and Production Center, National Academy of Science, Yerevan, Republic of Armenia
- Institute of Pharmacy, Scientific and Educational Center for Control and Monitoring of the Quality of Medicines, Yerevan State University, Yerevan, Republic of Armenia
| |
Collapse
|
12
|
Goetz C, Sanschagrin L, Jubinville E, Jacques M, Jean J. Recent progress in antibiofilm strategies in the dairy industry. J Dairy Sci 2024:S0022-0302(24)01335-3. [PMID: 39603496 DOI: 10.3168/jds.2024-25554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 11/01/2024] [Indexed: 11/29/2024]
Abstract
Biofilm formation allows microorganisms including bacteria to persist on abiotic or biotic surfaces, to resist treatments with biocides (disinfectants and antibiotics) and to evade the immune response in animal hosts much more than they do in the planktonic form. Bacteria able to form biofilm can be troublesome in the dairy industry, both by causing clinical symptoms in livestock and by colonizing milking devices and milk processing equipment, resulting in dairy products of lower quality and sometimes raising serious food safety issues. In fact, most of the bacterial species isolated frequently in the dairy chain have the ability to form biofilm. Common examples include Staphylococcus aureus and other staphylococci that frequently infect mammary glands, but also Bacillus spp., Listeria monocytogenes and Pseudomonas spp. which cause spoilage of dairy products and sometimes foodborne illnesses. The economic losses due to biofilm formation in the dairy industry are considerable, and scientists are constantly solicited to develop new antibiofilm strategies, especially using biocides of natural origin. Although the number of studies in this subject area has exploded in recent years, the in vivo efficacy of most novel approaches remains to be explored. Used alone or to increase the efficacy of disinfectants or antibiotics, they could allow the implementation of strategies having less impact on the environment. Their use is expected to lead to less reliance on antibiotics to treat intramammary infections in dairy farms and to the use of lower concentrations of chemical disinfectants in dairy processing plants.
Collapse
Affiliation(s)
- Coralie Goetz
- INRAE, L'Institut Agro Rennes-Angers, UMR 1253 STLO, Rennes Cedex, France
| | - Laurie Sanschagrin
- Département des sciences des aliments, Institut sur la Nutrition et les Aliments Fonctionnels, Université Laval, Québec, QC, Canada
| | - Eric Jubinville
- Département des sciences des aliments, Institut sur la Nutrition et les Aliments Fonctionnels, Université Laval, Québec, QC, Canada
| | - Mario Jacques
- Regroupement de recherche pour un lait de qualité optimale (Op+lait), Faculté de médecine vétérinaire, Université de Montréal, St Hyacinthe, QC, Canada
| | - Julie Jean
- Département des sciences des aliments, Institut sur la Nutrition et les Aliments Fonctionnels, Université Laval, Québec, QC, Canada.
| |
Collapse
|
13
|
Sarkar S, Roy A, Mitra R, Kundu S, Banerjee P, Acharya Chowdhury A, Ghosh S. Escaping the ESKAPE pathogens: A review on antibiofilm potential of nanoparticles. Microb Pathog 2024; 194:106842. [PMID: 39117012 DOI: 10.1016/j.micpath.2024.106842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/31/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
ESKAPE pathogens, a notorious consortium comprising Enterococcusfaecium, Staphylococcusaureus, Klebsiellapneumoniae, Acinetobacterbaumannii, Pseudomonasaeruginosa, and Enterobacter species, pose formidable challenges in healthcare settings due to their multidrug-resistant nature. The increasing global cases of antimicrobial-resistant ESKAPE pathogens are closely related to their remarkable ability to form biofilms. Thus, understanding the unique mechanisms of antimicrobial resistance of ESKAPE pathogens and the innate resilience of biofilms against traditional antimicrobial agents is important for developing innovative strategies to establish effective control methods against them. This review offers a thorough analysis of biofilm dynamics, with a focus on the general mechanisms of biofilm formation, the significant contribution of persister cells in the resistance mechanisms, and the recurrence of biofilms in comparison to planktonic cells. Additionally, this review highlights the potential strategies of nanoparticles for managing biofilms in the ESKAPE group of pathogens. Nanoparticles, with their unique physicochemical properties, provide promising opportunities for disrupting biofilm structures and improving antimicrobial effectiveness. The review has explored interactions between nanoparticles and biofilms, covering a range of nanoparticle types such as metal, metal-oxide, surface-modified, and functionalized nanoparticles, along with organic nanoparticles and nanomaterials. The additional focus of this review also encompasses green synthesis techniques of nanoparticles that involve plant extract and supernatants from bacterial and fungal cultures as reducing agents. Furthermore, the use of nanocomposites and nano emulsions in biofilm management of ESKAPE is also discussed. To conclude, the review addresses the current obstacles and future outlooks in nanoparticle-based biofilm management, stressing the necessity for further research and development to fully exploit the potential of nanoparticles in addressing biofilm-related challenges.
Collapse
Affiliation(s)
| | - Ankita Roy
- Department of Biosciences, JIS University, Kolkata, India
| | - Rangan Mitra
- Department of Biosciences, JIS University, Kolkata, India
| | - Sweta Kundu
- Department of Biosciences, JIS University, Kolkata, India
| | | | | | - Suparna Ghosh
- Department of Biosciences, JIS University, Kolkata, India.
| |
Collapse
|
14
|
Sobieh SS, Elshazly RG, Tawab SA, Zaki SS. Estimating the expression levels of genes controlling biofilm formation and evaluating the effects of different conditions on biofilm formation and secreted aspartic proteinase activity in Candida albicans and Saccharomyces cerevisiae: a comparative study. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2024; 13:49. [DOI: 10.1186/s43088-024-00504-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 05/13/2024] [Indexed: 01/03/2025] Open
Abstract
Abstract
Background
Characterization of yeast virulence genes is an important tool for identifying the molecular pathways involved in switching yeast virulence. Biofilm formation (BF) and secreted aspartic proteinase (SAP) activity are essential virulence factors that contribute to yeast pathogenicity.
Results
Four Candida albicans and two Saccharomyces cerevisiae strains were tested for BF and SAP activity under optimum conditions, and the expression levels of several genes controlling BF were quantified under the optimal conditions. Biofilm formation was assessed by the microplate method at different pH values, incubation times and culture media. Similarly, SAP activity was assessed at different pH values and incubation periods. The expression levels of nine genes were determined via qRT-PCR technique. All tests were carried out in triplicate, and the values presented as the means ± standard deviations and were analysed with the SPSS programme. Only C. albicans (1), C. albicans (2) and S. cerevisiae 43 formed biofilms. The optimal BF was obtained after culture in sabouraud dextrose broth with 8% glucose at pH 7.5, 4 and 6, respectively, for 48h. Candida albicans biofilm production was more significant than that of S. cerevisiae 43. Moreover, the SAP activity was estimated under the optimum conditions. All yeasts showed optimal SAP activity at pH 4, but astonishingly the SAP activity of S. cerevisiae 44 was higher than that of C. albicans. The expression levels of EFG1 and ZAP1 (transcription factors); ALS3, HWP1and YWP1 (adhesion genes); SAP1 and SAP4 (aspartic proteinase) in C. albicans (1); and FLO11 (adhesion gene) and YPS3 (aspartic proteinase) in S. cerevisiae 43 were quantified during biofilm development at different time intervals. The expression levels of EFG1, ALS3, YWP1, SAP1, SAP4, FLO11 and YPS3 were upregulated at 8 h, while that of ZAP1 was upregulated at 48 h. Only HWP1 was downregulated.
Conclusions
The findings of the present study may provide information for overcoming yeast BF and pathogenicity by regulating specific genes at specific times. Additionally, this study revealed the virulence of the commensal S. cerevisiae, which may take the pathogenicity direction as C. albicans.
Collapse
|
15
|
Sukhareva K, Chernetsov V, Burmistrov I. A Review of Antimicrobial Polymer Coatings on Steel for the Food Processing Industry. Polymers (Basel) 2024; 16:809. [PMID: 38543414 PMCID: PMC10975896 DOI: 10.3390/polym16060809] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/08/2024] [Accepted: 03/11/2024] [Indexed: 11/12/2024] Open
Abstract
This article will focus on the issue of protection against the pathogenic biofilm development on steel surfaces within the food sectors, highlighting steel's prominence as a material choice in these areas. Pathogenic microorganism-based biofilms present significant health hazards in the food industry. Current scientific research offers a variety of solutions to the problem of protecting metal surfaces in contact with food from the growth of pathogenic microorganisms. One promising strategy to prevent bacterial growth involves applying a polymeric layer to metal surfaces, which can function as either an antiadhesive barrier or a bactericidal agent. Thus, the review aims to thoroughly examine the application of antibacterial polymer coatings on steel, a key material in contact with food, summarizing research advancements in this field. The investigation into polymer antibacterial coatings is organized into three primary categories: antimicrobial agent-releasing coatings, contact-based antimicrobial coatings, and antifouling coatings. Antibacterial properties of the studied types of coatings are determined not only by their composition, but also by the methods for applying them to metal and coating surfaces. A review of the current literature indicates that coatings based on polymers substantially enhance the antibacterial properties of metallic surfaces. Furthermore, these coatings contribute additional benefits including improved corrosion resistance, enhanced aesthetic appeal, and the provision of unique design elements.
Collapse
Affiliation(s)
- Ksenia Sukhareva
- Higher School of Engineering, Plekhanov Russian University of Economics, 36 Stremyanny Ln, 117997 Moscow, Russia;
- N.M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygin Str., 119991 Moscow, Russia
| | - Vasily Chernetsov
- ORELMETALLPOLYMER LLC., 1yu Avtomagistral Street, 303032 Mtsensk, Russia;
| | - Igor Burmistrov
- Higher School of Engineering, Plekhanov Russian University of Economics, 36 Stremyanny Ln, 117997 Moscow, Russia;
- Department of Functional Nanosystems and High-Temperature Materials, National University of Science and Technology “MISIS”, 4 Leninsky Pr, 119049 Moscow, Russia
| |
Collapse
|
16
|
Malone M, Nygren E, Hamberg T, Radzieta M, Jensen SO. In vitro and in vivo evaluation of the antimicrobial effectiveness of non-medicated hydrophobic wound dressings. Int Wound J 2024; 21:e14416. [PMID: 37770025 PMCID: PMC10824701 DOI: 10.1111/iwj.14416] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 10/03/2023] Open
Abstract
There is an increasing use of non-medicated wound dressing with claims of irreversible bacterial binding. Most of the data are from in vitro models which lack clinical relevance. This study employed a range of in vitro experiments to address this gap and we complemented our experimental designs with in vivo observations using dressings obtained from patients with diabetes-related foot ulcers. A hydrophobic wound dressing was compared with a control silicone dressing in vitro. Test dressings were placed on top of a Pseudomonas aeruginosa challenge suspension with increasing concentrations of suspension inoculum in addition to supplementation with phosphate buffered saline (PBS) or increased protein content (IPC). Next, we used the challenge suspensions obtained at the end of the first experiment, where bacterial loads from the suspensions were enumerated following test dressing exposure. Further, the time-dependent bacterial attachment was investigated over 1 and 24 h. Lastly, test dressings were exposed to a challenge suspension with IPC, with or without the addition of the bacteriostatic agent Deferiprone to assess the impacts of limiting bacterial growth in the experimental design. Lastly, two different wound dressings with claims of bacterial binding were obtained from patients with chronic diabetes-related foot ulcers after 72 h of application and observed using scanning electron microscope (SEM). Bacteria were enumerated from each dressing after a 1-h exposure time. There was no statistical difference in bacterial attachment between both test dressings when using different suspension inoculum concentrations or test mediums. Bacterial attachment to the two test dressings was significantly lower (p < 0.0001) when IPC was used instead of PBS. In the challenge suspension with PBS, only the hydrophobic dressing achieved a statistically significant reduction in bacterial loads (0.5 ± 0.05 log colony forming units; p = 0.001). In the presence of IPC, there was no significant reduction in bacterial loads for either test dressing. When bacterial growth was arrested, attachment to the test dressings did not increase over time, suggesting that the number of bacteria on the test dressings increases over time due to bacterial growth. SEM identified widespread adsorption of host fouling across the test dressings which occurred prior to microbial binding. Therein, microbial attachment occurred predominantly to host fouling and not directly to the dressings. Bacterial binding is not unique to dialkylcarbamoyl chloride (DACC) dressings and under clinically relevant in vitro conditions and in vivo observations, we demonstrate (in addition to previously published work) that the bacterial binding capabilities are not effective at reducing the number of bacteria in laboratory models or human wounds.
Collapse
Affiliation(s)
- Matthew Malone
- Research and DevelopmentMolnlycke Healthcare ABGothenburgSweden
- South West Sydney Limb Preservation and Wound ResearchSouth West Sydney Local Health DistrictSydneyNew South WalesAustralia
- Infectious Diseases and Microbiology, School of MedicineWestern Sydney UniversitySydneyNew South WalesAustralia
| | - Erik Nygren
- Research and DevelopmentMolnlycke Healthcare ABGothenburgSweden
| | - Tina Hamberg
- Research and DevelopmentMolnlycke Healthcare ABGothenburgSweden
| | - Michael Radzieta
- South West Sydney Limb Preservation and Wound ResearchSouth West Sydney Local Health DistrictSydneyNew South WalesAustralia
- Infectious Diseases and Microbiology, School of MedicineWestern Sydney UniversitySydneyNew South WalesAustralia
| | - Slade O. Jensen
- South West Sydney Limb Preservation and Wound ResearchSouth West Sydney Local Health DistrictSydneyNew South WalesAustralia
- Infectious Diseases and Microbiology, School of MedicineWestern Sydney UniversitySydneyNew South WalesAustralia
| |
Collapse
|
17
|
Kim HK, Baek HW, Park HH, Cho YS. Reusable mechano-bactericidal surface with echinoid-shaped hierarchical micro/nano-structure. Colloids Surf B Biointerfaces 2024; 234:113729. [PMID: 38160475 DOI: 10.1016/j.colsurfb.2023.113729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 12/09/2023] [Accepted: 12/23/2023] [Indexed: 01/03/2024]
Abstract
Biofilms formed owing to the attachment of bacteria to surfaces have caused various problems in industries such as marine transportation/logistics and medicine. In response, many studies have been conducted on bactericidal surfaces, and nanostructured surfaces mimicking cicada and dragonfly wings are emerging as candidates for mechano-bactericidal surfaces. In specific circumstances involving mechano-bactericidal activity, certain nanostructured surfaces could exhibit their bactericidal effects by directly deforming the membranes of bacteria that adhere to these nanostructures. Additionally, in most cases, debris of bacterial cells may accumulate on these nanostructured surfaces. Such accumulation poses a significant challenge: it diminishes the mechano-bactericidal effectiveness of the surface, as it hinders the direct interaction between the nanostructures and any new bacteria that attach subsequently. In specific circumstances involving mechano-bactericidal activity, certain nanostructured surfaces could exhibit their bactericidal effects by directly deforming the membranes of bacteria that adhere to these nanostructures. Additionally, in most cases, debris of bacterial cells may accumulate on these nanostructured surfaces. Such accumulation poses a significant challenge: it diminishes the mechano-bactericidal effectiveness of the surface, as it hinders the direct interaction between the nanostructures and any new bacteria that attach subsequently.In other words, there is a need for strategies to remove the accumulated bacterial debris in order to sustain the mechano-bactericidal effect of the nanostructured surface. In this study, hierarchical micro/nano-structured surface (echinoid-shaped nanotextures were formed on Al micro-particle's surfaces) was fabricated using a simple pressure-less sintering method, and effective bactericidal efficiency was shown against E. coli (97 ± 3.81%) and S. aureus (80 ± 9.34%). In addition, thermal cleaning at 500 °C effectively eliminated accumulated dead bacterial debris while maintaining the intact Al2O3 nanostructure, resulting in significant mechano-bactericidal activity (E. coli: 89 ± 6.86%, S. aureus: 75 ± 8.31%). As a result, thermal cleaning maintains the intact nanostructure and allows the continuance of the mechano-bactericidal effect. This effect was consistently maintained even after five repetitive use (E. coli: 80 ± 16.26%, S. aureus: 76 ± 12.67%).
Collapse
Affiliation(s)
- Hee-Kyeong Kim
- Department of Mechanical Engineering, College of Engineering, Wonkwang University, 460 Iksandae-ro, Iksan, Jeonbuk 54538, Republic of Korea
| | - Hyeon Woo Baek
- Department of Mechanical Engineering, College of Engineering, Wonkwang University, 460 Iksandae-ro, Iksan, Jeonbuk 54538, Republic of Korea
| | - Hyun-Ha Park
- Department of Mechanical Engineering, College of Engineering, Wonkwang University, 460 Iksandae-ro, Iksan, Jeonbuk 54538, Republic of Korea; MECHABIO Group, Wonkwang University, 460 Ikandae-ro, Iksan, Jeonbuk 54538, Republic of Korea.
| | - Young-Sam Cho
- Department of Mechanical Design Engineering, College of Engineering, Wonkwang University, 460 Iksandae-ro, Iksan, Jeonbuk 54538, Republic of Korea; MECHABIO Group, Wonkwang University, 460 Ikandae-ro, Iksan, Jeonbuk 54538, Republic of Korea.
| |
Collapse
|
18
|
Duan M, Zhong X, Wang B, Khelif A, Lee YK, Bermak A. A Highly Integrated Lab-on-a-CMOS Platform for Real-Time Monitoring of E. Coli Growth Kinetics. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2024; 18:174-185. [PMID: 37708011 DOI: 10.1109/tbcas.2023.3315671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
Existing miniaturized and cost-effective solutions for bacterial growth monitoring usually require offline incubators with constant temperature to culture the bio-samples prior to measurement. Such a separated sample preparation and detection scheme requires extensive human intervention, risks contamination, and suffers from poor temporal resolution. To achieve integrated sample preparation and real-time bacterial growth monitoring, this article presents a lab-on-a-CMOS platform incorporates an optical sensor array, temperature sensor array, micro-heaters, and readout circuits. Escherichia coli's (E. coli) optimum growth temperature of 37 °C is achieved through a heat regulation system consisting of two micro-heaters and an on-chip temperature sensor array. A photodiode array with an in-pixel capacitive trans-impedance amplifier to reduce inter-pixel cross-coupling is designed to extract the optical information during bacterial growth. To balance the footprint, power consumption, and quantization speed, a 10 b column successive-approximation register (SAR)/single-slope (SS) dual-mode analog-to-digital converter (ADC) is designed to digitize the temperature and optical signals. Fabricated in a standard 0.18 um CMOS process, the proposed platform can regulate the sample temperature to 37 +/- 0.2/0.3 °C within 32 mins. Enabled by an on-chip heat regulation system and photodetectors, the prototype demonstrates a real-time monitoring of bacterial growth kinetics and antibiotic responses. Minute-level temporal resolution is achieved as this proposed platform is free of extensive and time-consuming human intervention. The proposed platform can be viably used in contamination sensitive applications such as antibiotic tests, stem cell cultures, and organ-on-chips.
Collapse
|
19
|
Finn L, Onyeaka H, O’Neill S. Listeria monocytogenes Biofilms in Food-Associated Environments: A Persistent Enigma. Foods 2023; 12:3339. [PMID: 37761048 PMCID: PMC10529182 DOI: 10.3390/foods12183339] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023] Open
Abstract
Listeria monocytogenes (LM) is a bacterial pathogen responsible for listeriosis, a foodborne illness associated with high rates of mortality (20-30%) and hospitalisation. It is particularly dangerous among vulnerable groups, such as newborns, pregnant women and the elderly. The persistence of this organism in food-associated environments for months to years has been linked to several devastating listeriosis outbreaks. It may also result in significant costs to food businesses and economies. Currently, the mechanisms that facilitate LM persistence are poorly understood. Unravelling the enigma of what drives listerial persistence will be critical for developing more targeted control and prevention strategies. One prevailing hypothesis is that persistent strains exhibit stronger biofilm production on abiotic surfaces in food-associated environments. This review aims to (i) provide a comprehensive overview of the research on the relationship between listerial persistence and biofilm formation from phenotypic and whole-genome sequencing (WGS) studies; (ii) to highlight the ongoing challenges in determining the role biofilm development plays in persistence, if any; and (iii) to propose future research directions for overcoming these challenges.
Collapse
Affiliation(s)
| | - Helen Onyeaka
- School of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, UK
| | | |
Collapse
|
20
|
Abdelhamid AG, Yousef AE. Combating Bacterial Biofilms: Current and Emerging Antibiofilm Strategies for Treating Persistent Infections. Antibiotics (Basel) 2023; 12:1005. [PMID: 37370324 DOI: 10.3390/antibiotics12061005] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 05/29/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
Biofilms are intricate multicellular structures created by microorganisms on living (biotic) or nonliving (abiotic) surfaces. Medically, biofilms often lead to persistent infections, increased antibiotic resistance, and recurrence of infections. In this review, we highlighted the clinical problem associated with biofilm infections and focused on current and emerging antibiofilm strategies. These strategies are often directed at disrupting quorum sensing, which is crucial for biofilm formation, preventing bacterial adhesion to surfaces, impeding bacterial aggregation in viscous mucus layers, degrading the extracellular polymeric matrix, and developing nanoparticle-based antimicrobial drug complexes which target persistent cells within the biofilm core. It is important to acknowledge, however, that the use of antibiofilm agents faces obstacles, such as limited effectiveness in vivo, potential cytotoxicity to host cells, and propensity to elicit resistance in targeted biofilm-forming microbes. Emerging next generation antibiofilm strategies, which rely on multipronged approaches, were highlighted, and these benefit from current advances in nanotechnology, synthetic biology, and antimicrobial drug discovery. The assessment of current antibiofilm mitigation approaches, as presented here, could guide future initiatives toward innovative antibiofilm therapeutic strategies. Enhancing the efficacy and specificity of some emerging antibiofilm strategies via careful investigations, under conditions that closely mimic biofilm characteristics within the human body, could bridge the gap between laboratory research and practical application.
Collapse
Affiliation(s)
- Ahmed G Abdelhamid
- Department of Food Science and Technology, The Ohio State University, 2015 Fyffe Court, Columbus, OH 43210, USA
- Botany and Microbiology Department, Faculty of Science, Benha University, Benha 13518, Egypt
| | - Ahmed E Yousef
- Department of Food Science and Technology, The Ohio State University, 2015 Fyffe Court, Columbus, OH 43210, USA
- Department of Microbiology, The Ohio State University, 105 Biological Sciences Building, 484 West 12th Avenue, Columbus, OH 43210, USA
| |
Collapse
|
21
|
Boodoo C, Dester E, David J, Patel V, Kc R, Alocilja EC. Multi-Probe Nano-Genomic Biosensor to Detect S. aureus from Magnetically-Extracted Food Samples. BIOSENSORS 2023; 13:608. [PMID: 37366975 DOI: 10.3390/bios13060608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/18/2023] [Accepted: 05/10/2023] [Indexed: 06/28/2023]
Abstract
One of the most prevalent causes of foodborne illnesses worldwide is staphylococcal food poisoning. This study aimed to provide a robust method to extract the bacteria Staphylococcus aureus from food samples using glycan-coated magnetic nanoparticles (MNPs). Then, a cost-effective multi-probe genomic biosensor was designed to detect the nuc gene of S. aureus rapidly in different food matrices. This biosensor utilized gold nanoparticles and two DNA oligonucleotide probes combined to produce a plasmonic/colorimetric response to inform users if the sample was positive for S. aureus. In addition, the specificity and sensitivity of the biosensor were determined. For the specificity trials, the S. aureus biosensor was compared with the extracted DNA of Escherichia coli, Salmonella enterica serovar Enteritidis (SE), and Bacillus cereus. The sensitivity tests showed that the biosensor could detect as low as 2.5 ng/µL of the target DNA with a linear range of up to 20 ng/µL of DNA. With further research, this simple and cost-effective biosensor can rapidly identify foodborne pathogens from large-volume samples.
Collapse
Affiliation(s)
- Chelsie Boodoo
- Nano-Biosensors Lab, Department of Biosystems and Agricultural Engineering, Michigan State University, East Lansing, MI 48824, USA
- Global Alliance for Rapid Diagnostics, Michigan State University, East Lansing, MI 48824, USA
| | - Emma Dester
- Nano-Biosensors Lab, Department of Biosystems and Agricultural Engineering, Michigan State University, East Lansing, MI 48824, USA
- Global Alliance for Rapid Diagnostics, Michigan State University, East Lansing, MI 48824, USA
| | - Jeswin David
- Nano-Biosensors Lab, Department of Biosystems and Agricultural Engineering, Michigan State University, East Lansing, MI 48824, USA
- Department of Human Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Vedi Patel
- Nano-Biosensors Lab, Department of Biosystems and Agricultural Engineering, Michigan State University, East Lansing, MI 48824, USA
- Department of Mechanical Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Rabin Kc
- Statistical Consulting Center, College of Agriculture and Natural Resources, Michigan State University, East Lansing, MI 48824, USA
| | - Evangelyn C Alocilja
- Nano-Biosensors Lab, Department of Biosystems and Agricultural Engineering, Michigan State University, East Lansing, MI 48824, USA
- Global Alliance for Rapid Diagnostics, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
22
|
Er Raouan S, Abed SE, Zouine N, Lachkar M, Koraichi SI. Anti-adhesive activity of some secondary metabolites against Staphylococcus aureus on 3D printing medical materials. Arch Microbiol 2023; 205:243. [PMID: 37209212 DOI: 10.1007/s00203-023-03562-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/16/2023] [Accepted: 04/20/2023] [Indexed: 05/22/2023]
Abstract
Recent improvements in 3D printing technology have increased the usage of 3D printed materials in several areas. An exciting and emerging area of applying these next-generation manufacturing strategies is the development of devices for biomedical applications. The main aim of this work was to investigate the effect of tannic acid, gallic acid, and epicatechin gallate on the physicochemical characteristics of acrylonitrile butadiene-styrene (ABS) and Nylon 3D printing materials using the contact angle method. The adhesion of Staphylococcus aureus on untreated and treated materials was evaluated by scanning electron microscopy (SEM) analysis and the images were treated by MATLAB software. The results of the contact angle measurements showed a significant change in the physicochemical properties of both surfaces, indicated an increase in the electron donor character of 3D printing materials following treatment. Thus, the ABS surfaces treated with tannic acid, gallic acid, and epicatechin gallate have become more electron donating. Furthermore, our results proved the ability of S. aureus to adhere on all materials with a percentage of 77.86% for ABS and 91.62% for nylon. The SEM has shown that all actives molecules were sufficient to obtain better inhibition of bacterial adhesion, which tannic acid has shown a total inhibition of S. aureus on ABS. From these results, our treatment presents a high potential for utilization as an active coating to prevent bacterial attachment and the eventual biofilm development in medical field.
Collapse
Affiliation(s)
- Safae Er Raouan
- Laboratory of Microbial Biotechnology and Bioactive Molecules, Faculty of Sciences and Technologies, Sidi Mohamed Ben Abdellah University of Fez, Fez, Morocco
| | - Soumya El Abed
- Laboratory of Microbial Biotechnology and Bioactive Molecules, Faculty of Sciences and Technologies, Sidi Mohamed Ben Abdellah University of Fez, Fez, Morocco.
| | - Nouhaila Zouine
- Laboratory of Microbial Biotechnology and Bioactive Molecules, Faculty of Sciences and Technologies, Sidi Mohamed Ben Abdellah University of Fez, Fez, Morocco
| | - Mohammed Lachkar
- Faculty of Science, Engineering Laboratory of Organometallic, Molecular Materials and Environment, Sidi Mohammed Ben Abdellah University, Fez, Morocco
| | - Saad Ibnsouda Koraichi
- Laboratory of Microbial Biotechnology and Bioactive Molecules, Faculty of Sciences and Technologies, Sidi Mohamed Ben Abdellah University of Fez, Fez, Morocco
| |
Collapse
|
23
|
Bajaj A, Abutoama M, Isaacs S, Abuleil MJ, Yaniv K, Kushmaro A, Modic M, Cvelbar U, Abdulhalim I. Biofilm growth monitoring using guided wave ultralong-range Surface Plasmon Resonance: A proof of concept. Biosens Bioelectron 2023; 228:115204. [PMID: 36913883 DOI: 10.1016/j.bios.2023.115204] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 03/01/2023] [Accepted: 03/05/2023] [Indexed: 03/15/2023]
Abstract
Unwelcomed biofilms are problematic in food industries, surgical devices, marine applications, and wastewater treatment plants, essentially everywhere where there is moisture. Very recently, label-free advanced sensors such as localized and extended surface plasmon resonance (SPR) have been explored as tools for monitoring biofilm formation. However, conventional noble metal SPR substrates suffer from low penetration depth (100-300 nm) into the dielectric medium above the surface, preventing the reliable detection of large entities of single or multi-layered cell assemblies like biofilms which can grow up to a few micrometers or more. In this study, we propose using a plasmonic insulator-metal-insulator (IMI) structure (SiO2-Ag-SiO2) with a higher penetration depth based on a diverging beam single wavelength format of Kretschmann configuration in a portable SPR device. An SPR line detection algorithm for locating the reflectance minimum of the device helps to view changes in refractive index and accumulation of the biofilm in real-time down to 10-7 RIU precision. The optimized IMI structure exhibits strong penetration dependence on wavelength and incidence angle. Within the plasmonic resonance, different angles penetrate different depths, showing a maximum near the critical angle. At the wavelength of 635 nm, a high penetration depth of more than 4 μm was obtained. Compared to a thin gold film substrate, for which the penetration depth is only ∼200 nm, the IMI substrate provides more reliable results. The average thickness of the biofilm after 24 h of growth was found to be between 6 and 7 μm with ∼63% live cell volume, as estimated from confocal microscopic images using an image processing tool. To explain this saturation thickness, a graded index biofilm structure is proposed in which the refractive index decreases with the distance from the interface. Furthermore, when plasma-assisted degeneration of biofilms was studied in a semi-real-time format, there was almost no effect on the IMI substrate compared to the gold substrate. The growth rate over the SiO2 surface was higher than on gold, possibly due to differences between surface charge effects. On the gold, the excited plasmon generates an oscillating cloud of electrons, while for the SiO2 case, this does not happen. This methodology can be utilized to detect and characterize biofilms with better signal reliability with respect to concentration and size dependence.
Collapse
Affiliation(s)
- Aabha Bajaj
- Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Mohammad Abutoama
- Department of Electro-optics and Photonics Engineering, ECE School, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Sivan Isaacs
- Department of Electro-optics and Photonics Engineering, ECE School, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Marwan J Abuleil
- Department of Electro-optics and Photonics Engineering, ECE School, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Karin Yaniv
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Faculty of Engineering Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Ariel Kushmaro
- Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel; Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Faculty of Engineering Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel; School of Sustainability and Climate Change, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Martina Modic
- Department of Gaseous Electronics (F6), Jožef Stefan Institute, Jamova cesta 39, SI-1000, Ljubljana, Slovenia
| | - Uroš Cvelbar
- Department of Gaseous Electronics (F6), Jožef Stefan Institute, Jamova cesta 39, SI-1000, Ljubljana, Slovenia
| | - Ibrahim Abdulhalim
- Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel; Department of Electro-optics and Photonics Engineering, ECE School, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel.
| |
Collapse
|
24
|
Doulgeraki AI, Kamarinou CS, Nychas GJE, Argyri AA, Tassou CC, Moulas G, Chorianopoulos N. Role of Microbial Interactions across Food-Related Bacteria on Biofilm Population and Biofilm Decontamination by a TiO 2-Nanoparticle-Based Surfactant. Pathogens 2023; 12:pathogens12040573. [PMID: 37111459 PMCID: PMC10141041 DOI: 10.3390/pathogens12040573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/28/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
Microbial interactions play an important role in initial cell adhesion and the endurance of biofilm toward disinfectant stresses. The present study aimed to evaluate the effect of microbial interactions on biofilm formation and the disinfecting activity of an innovative photocatalytic surfactant based on TiO2 nanoparticles. Listeria monocytogenes, Salmonella Enteritidis, Escherichia coli, Leuconostoc spp., Latilactobacillus sakei, Serratia liquefaciens, Serratia proteomaculans, Citrobacter freundii, Hafnia alvei, Proteus vulgaris, Pseudomonas fragi, and Brochothrix thermosphacta left to form mono- or dual-species biofilms on stainless steel (SS) coupons. The effectiveness of the photocatalytic disinfectant after 2 h of exposure under UV light on biofilm decontamination was evaluated. The effect of one parameter i.e., exposure to UV or disinfectant, was also determined. According to the obtained results, the microbial load of a mature biofilm depended on the different species or dual species that had adhered to the surface, while the presence of other species could affect the biofilm population of a specific microbe (p < 0.05). The disinfectant strengthened the antimicrobial activity of UV, as, in most cases, the remaining biofilm population was below the detection limit of the method. Moreover, the presence of more than one species affected the resistance of the biofilm cells to UV and the disinfectant (p < 0.05). In conclusion, this study confirms that microbial interactions affected biofilm formation and decontamination, and it demonstrates the effectiveness of the surfactant with the photocatalytic TiO2 agent, suggesting that it could be an alternative agent with which to disinfect contaminated surfaces.
Collapse
Affiliation(s)
- Agapi I Doulgeraki
- Institute of Technology of Agricultural Products, Hellenic Agricultural Organization-DIMITRA, S. Venizelou 1, 14123 Lycovrissi, Greece
| | - Christina S Kamarinou
- Institute of Technology of Agricultural Products, Hellenic Agricultural Organization-DIMITRA, S. Venizelou 1, 14123 Lycovrissi, Greece
- Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - George-John E Nychas
- Laboratory of Microbiology and Biotechnology of Foods, Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, 11855 Athens, Greece
| | - Anthoula A Argyri
- Institute of Technology of Agricultural Products, Hellenic Agricultural Organization-DIMITRA, S. Venizelou 1, 14123 Lycovrissi, Greece
| | - Chrysoula C Tassou
- Institute of Technology of Agricultural Products, Hellenic Agricultural Organization-DIMITRA, S. Venizelou 1, 14123 Lycovrissi, Greece
| | | | - Nikos Chorianopoulos
- Laboratory of Microbiology and Biotechnology of Foods, Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, 11855 Athens, Greece
| |
Collapse
|
25
|
Elgoulli M, Zahir H, Ellouali M, Latrache H. Disruption of Pseudomonas aeruginosa Adherent Cells by NaCl and NaOCl in Drinking Water. Curr Microbiol 2023; 80:138. [PMID: 36920670 DOI: 10.1007/s00284-023-03241-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 02/23/2023] [Indexed: 03/16/2023]
Abstract
The aim of this study was to compare and explain the disruptive effect of sodium chloride and sodium hypochlorite on the adherent cells of P. aeruginosa on glass slides. To this end, the surface characteristics of glass slides and P. aeruginosa were estimated using the contact angle method. In addition, the effects of NaCl and NaOCl on the attachment of the adherent cells were revealed using optical microscopy. The contact angle data showed moderate effects of NaCl and NaOCl on the P. aeruginosa surface, which became faintly more hydrophilic (21.9 mJ/m2, 51.1 mJ/m2) and a stronger electrons donor (53.4 mJ/m2, 54.3 mJ/m2). NaCl reversed the hydrophobicity of glass, with its surface becoming very hydrophobic (- 31.7 mJ/m2) and a weak electrons donor (7.4 mJ/m2), whereas NaOCl enhanced the hydrophobicity of glass (49.3 mJ/m2) and its electrons donor character (62.7 mJ/m2). The optical microscopy showed that NaCl caused a clear and progressive disruption of the colonization, while NaOCl had no effect. Briefly, this study suggests that a combination of NaCl and NaOCl may solve the problem of P. aeruginosa installation in water tracks.
Collapse
Affiliation(s)
- Mourad Elgoulli
- Industrial and Surface Engineering Laboratory Team: Bioprocesses and Biointerfaces, Faculty of Science and Techniques, Sultan Moulay Slimane University, BP 523, Beni Mellal, Morocco
| | - Hafida Zahir
- Industrial and Surface Engineering Laboratory Team: Bioprocesses and Biointerfaces, Faculty of Science and Techniques, Sultan Moulay Slimane University, BP 523, Beni Mellal, Morocco
| | - Mostafa Ellouali
- Industrial and Surface Engineering Laboratory Team: Bioprocesses and Biointerfaces, Faculty of Science and Techniques, Sultan Moulay Slimane University, BP 523, Beni Mellal, Morocco
| | - Hassan Latrache
- Industrial and Surface Engineering Laboratory Team: Bioprocesses and Biointerfaces, Faculty of Science and Techniques, Sultan Moulay Slimane University, BP 523, Beni Mellal, Morocco.
| |
Collapse
|
26
|
Prasad A, Roopesh MS. Bacterial biofilm reduction by 275 and 455 nm light pulses emitted from light emitting diodes. J Food Saf 2023. [DOI: 10.1111/jfs.13049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Affiliation(s)
- Amritha Prasad
- Department of Agricultural Food and Nutritional Science, University of Alberta Edmonton Alberta Canada
| | - M. S. Roopesh
- Department of Agricultural Food and Nutritional Science, University of Alberta Edmonton Alberta Canada
| |
Collapse
|
27
|
More PR, Pandit S, Filippis AD, Franci G, Mijakovic I, Galdiero M. Silver Nanoparticles: Bactericidal and Mechanistic Approach against Drug Resistant Pathogens. Microorganisms 2023; 11:369. [PMID: 36838334 PMCID: PMC9961011 DOI: 10.3390/microorganisms11020369] [Citation(s) in RCA: 142] [Impact Index Per Article: 71.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/11/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
This review highlights the different modes of synthesizing silver nanoparticles (AgNPs) from their elemental state to particle format and their mechanism of action against multidrug-resistant and biofilm-forming bacterial pathogens. Various studies have demonstrated that the AgNPs cause oxidative stress, protein dysfunction, membrane disruption, and DNA damage in bacteria, ultimately leading to bacterial death. AgNPs have also been found to alter the adhesion of bacterial cells to prevent biofilm formation. The benefits of using AgNPs in medicine are, to some extent, counter-weighted by their toxic effect on humans and the environment. In this review, we have compiled recent studies demonstrating the antibacterial activity of AgNPs, and we are discussing the known mechanisms of action of AgNPs against bacterial pathogens. Ongoing clinical trials involving AgNPs are briefly presented. A particular focus is placed on the mechanism of interaction of AgNPs with bacterial biofilms, which are a significant pathogenicity determinant. A brief overview of the use of AgNPs in other medical applications (e.g., diagnostics, promotion of wound healing) and the non-medical sectors is presented. Finally, current drawbacks and limitations of AgNPs use in medicine are discussed, and perspectives for the improved future use of functionalized AgNPs in medical applications are presented.
Collapse
Affiliation(s)
- Pragati Rajendra More
- Department of Experimental Medicine, Section of Microbiology and Clinical Microbiology, University of Campania “L. Vanvitelli”, Via De Crecchio, 7, 80138 Naples, Italy
- Systems and Synthetic Biology Division, Department of Biology and Biological Engineering, Chalmers University of Technology, 41296 Gothenburg, Sweden
| | - Santosh Pandit
- Systems and Synthetic Biology Division, Department of Biology and Biological Engineering, Chalmers University of Technology, 41296 Gothenburg, Sweden
| | - Anna De Filippis
- Department of Experimental Medicine, Section of Microbiology and Clinical Microbiology, University of Campania “L. Vanvitelli”, Via De Crecchio, 7, 80138 Naples, Italy
| | - Gianluigi Franci
- Department of Medicine, Surgery and Dentistry, Scuola Medica Salernitana, University of Salerno, 84081 Baronissi, Italy
| | - Ivan Mijakovic
- Systems and Synthetic Biology Division, Department of Biology and Biological Engineering, Chalmers University of Technology, 41296 Gothenburg, Sweden
- Novo Nordisk Foundation Center for Bio Sustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Massimiliano Galdiero
- Department of Experimental Medicine, Section of Microbiology and Clinical Microbiology, University of Campania “L. Vanvitelli”, Via De Crecchio, 7, 80138 Naples, Italy
| |
Collapse
|
28
|
Vapor-phase synthesis of a robust polysulfide film for transparent, biocompatible, and long-term stable anti-biofilm coating. KOREAN J CHEM ENG 2023. [DOI: 10.1007/s11814-022-1275-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
29
|
Catalan RE, Fragkopoulos AA, von Trott N, Kelterborn S, Baidukova O, Hegemann P, Bäumchen O. Light-regulated adsorption and desorption of Chlamydomonas cells at surfaces. SOFT MATTER 2023; 19:306-314. [PMID: 36520090 DOI: 10.1039/d2sm01039a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Microbial colonization of surfaces represents the first step towards biofilm formation, which is a recurring phenomenon in nature with beneficial and detrimental implications in technological and medical settings. Consequently, there is interest in elucidating the fundamental aspects of the initial stages of biofilm formation of microorganisms on solid surfaces. While most of the research is oriented to understand bacterial surface colonization, the fundamental principles of surface colonization of motile, photosynthetic microbes remain largely unexplored so far. Recent single-cell studies showed that the flagellar adhesion of Chlamydomonas reinhardtii is switched on in blue light and switched off under red light [Kreis et al., Nat. Phys., 2018, 14, 45-49]. Here, we study this light-switchable surface association on the population level and measure the kinetics of adsorption and desorption of suspensions of motile C. reinhardtii cells on glass surfaces using bright-field optical microscopy. We observe that both processes exhibit a response lag relative to the time at which the blue- and red-light conditions are set and model this feature using time-delayed Langmuir-type kinetics. We find that cell adsorption occurs significantly faster than desorption, which we attribute to the protein-mediated molecular adhesion mechanism of the cells. Adsorption experiments using phototactically blind C. reinhardtii mutants demonstrate that phototaxis does not affect the cell adsorption kinetics. Hence, this framework can be used as an assay for characterizing the dynamics of the surface colonization of microbial species exhibiting light-regulated surface adhesion under precisely controlled environmental conditions.
Collapse
Affiliation(s)
- Rodrigo E Catalan
- Max Planck Institute for Dynamics and Self-Organization (MPIDS), Am Faßberg 17, 37077 Göttingen, Germany
- Experimental Physics V, University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany.
| | - Alexandros A Fragkopoulos
- Max Planck Institute for Dynamics and Self-Organization (MPIDS), Am Faßberg 17, 37077 Göttingen, Germany
- Experimental Physics V, University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany.
| | - Nicolas von Trott
- Max Planck Institute for Dynamics and Self-Organization (MPIDS), Am Faßberg 17, 37077 Göttingen, Germany
| | - Simon Kelterborn
- Institute of Biology, Experimental Biophysics, Humboldt-Universität, Invalidenstraße 42, 10115 Berlin, Germany
- Institute of Translational Physiology, Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Olga Baidukova
- Institute of Biology, Experimental Biophysics, Humboldt-Universität, Invalidenstraße 42, 10115 Berlin, Germany
| | - Peter Hegemann
- Institute of Biology, Experimental Biophysics, Humboldt-Universität, Invalidenstraße 42, 10115 Berlin, Germany
| | - Oliver Bäumchen
- Max Planck Institute for Dynamics and Self-Organization (MPIDS), Am Faßberg 17, 37077 Göttingen, Germany
- Experimental Physics V, University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany.
| |
Collapse
|
30
|
Wang H, Xiong C, Yu Z, Zhang J, Huang Y, Zhou X. Research Progress on Antibacterial Coatings for Preventing Implant-Related Infection in Fractures: A Literature Review. COATINGS 2022; 12:1921. [DOI: 10.3390/coatings12121921] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2025]
Abstract
Implant-related infection is a difficult problem in orthopaedics as it not only leads to failure in internal fixation, but also increases the financial burden and perioperative risk on patients. In the past, orthopaedic implants were designed as mechanical fixation devices simply to maintain mechanical and biological properties, not to regulate the surrounding biological microenvironment. More recently, antimicrobial biocoatings have been incorporated into orthopaedic implants to prevent and treat implant-related infections through the modulation of the local environment. This article reviews the application of orthopaedic-implant biocoating in the prevention of implant-caused infection. Although there are many candidate coatings, they are still in the preclinical testing stage, and thus additional research by biomaterials and clinicians is necessary to identify the ideal implant coatings for patients who require fracture surgery.
Collapse
Affiliation(s)
- Hao Wang
- Department of Orthopedics, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou 213000, China
- Graduate School of Dalian Medical University, Dalian 116000, China
| | - Chenwei Xiong
- Department of Orthopedics, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou 213000, China
- Graduate School of Dalian Medical University, Dalian 116000, China
| | - Zhentang Yu
- Department of Orthopedics, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou 213000, China
- Graduate School of Dalian Medical University, Dalian 116000, China
| | - Junjie Zhang
- Department of Orthopedics, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou 213000, China
| | - Yong Huang
- Department of Orthopedics, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou 213000, China
| | - Xindie Zhou
- Department of Orthopedics, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou 213000, China
- Department of Orthopedics, Gonghe County Hospital of Traditional Chinese Medicine, Hainan Tibetan Autonomous Prefecture 811800, China
| |
Collapse
|
31
|
Antimicrobial Efficiency of Chitosan and Its Methylated Derivative against Lentilactobacillus parabuchneri Biofilms. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248647. [PMID: 36557784 PMCID: PMC9786053 DOI: 10.3390/molecules27248647] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/02/2022] [Accepted: 12/04/2022] [Indexed: 12/12/2022]
Abstract
Antimicrobial materials are considered potential alternatives to prevent the development of biofilm-associated contaminations. Concerns regarding synthetic preservatives necessitate the development of innovative and safe natural antimicrobials. In the present study, we discuss the in situ infrared attenuated total reflection spectroscopy (IR-ATR) investigations of the selective antimicrobial efficiency of chitosan in controlling the growth of Lentilactobacillus parabuchneri biofilms. The protonated charges of chitosan were additionally amplified by structural modification via methylation, yielding quaternized derivative TMC (i.e., N, N, N-trimethyl chitosan). To evaluate antimicrobial effectiveness against L. parab. biofilms, IR-ATR spectroscopy provided information on molecular mechanisms and insights into chemical changes during real-time biofilm inhibition studies. The integrated fiberoptic oxygen microsensors enabled monitoring oxygen (O2) concentration gradients within biofilms, thereby confirming the metabolic oxygen depletion dropping from 4.5 to 0.7 mg L-1. IR studies revealed strong electrostatic interactions between chitosan/its water-soluble derivative and bacteria, indicating that a few hours were sufficient to affect biofilm disruption. The significant decrease in the IR bands is related to the characteristic spectral information of amide I, II, III, nucleic acid, and extracellular polymeric matrix (EPS) produced by L. parabuchneri biofilms. Cell clusters of biofilms, microcolonies, and destabilization of the EPS matrix after the addition of biopolymers were visualized using optical microscopy. In addition, scanning electron microscopy (SEM) of biofilms grown on polystyrene and stainless-steel surfaces was used to examine morphological changes, indicating the disintegration of the biofilm matrix into individual cells. Quantification of the total biofilm formation correlated with the CV assay results, indicating cell death and lysis. The electrostatic interactions between chitosan and the bacterial cell wall typically occur between protonated amino groups and negatively charged phospholipids, which promote permeabilization. Biofilm growth inhibition was assessed by a viability assay for a period of 72 h and in the range of low MIC values (varying 0.01-2%). These results support the potential of chitosan and TMC for bacterial growth prevention of the foodborne contaminant L. parabuchneri in the dairy industry and for further implementation in food packaging.
Collapse
|
32
|
Simoni C, de Campos Ausani T, Laviniki V, Lopes GV, de Itapema Cardoso MR. Salmonella Derby from pig production chain over a 10-year period: antimicrobial resistance, biofilm formation, and genetic relatedness. Braz J Microbiol 2022; 53:2185-2194. [PMID: 36279095 PMCID: PMC9679096 DOI: 10.1007/s42770-022-00846-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 10/04/2022] [Indexed: 01/13/2023] Open
Abstract
The aim of this study was to evaluate 140 Salmonella Derby isolates collected over a 10-year period from porcine origins (environment, pig carcass, lymph nodes, intestinal content, and pork) for their phenotypic and genotypic antimicrobial resistance, their ability to produce biofilm, and their genetic relatedness. The minimum inhibitory concentration (MIC) was determined using microdilution broth method and antimicrobial resistance genes were investigated by PCR. The quantification of biofilm formation was performed in sterile polystyrene microtiter plates. Genetic relatedness was determined by Xba-I macrorestriction analysis. The highest frequencies of non-wildtype (nWT) populations were observed against tetracycline (75.7%), streptomycin (70%), and colistin (11.4%), whereas wildtype populations were observed against ciprofloxacin, ceftazidime, and gentamicin. The resistance genes found were blaTEM (ampicillin), aadA variant (streptomycin/spectinomycin), tetA (tetracycline), and floR (florfenicol). On 96-well polystyrene microtiter plate, 68.6% of the isolates proved to be biofilm producers. Among 36 S. Derby isolates selected to PFGE analysis, 22 were clustered with 83.6% of similarity. Additionally, 27 isolates were clustered in 11 pulsotypes, which presented more than one strain with 100% of similarity. Most of S. Derby isolates were able to form biofilm and were classified as nWT or resistant to tetracycline, streptomycin, and colistin. PFGE allowed the identification of closely related S. Derby isolates that circulated in pig slaughterhouses and pork derived products along a decade.
Collapse
Affiliation(s)
- Cintia Simoni
- Preventive Veterinary Medicine Department, Faculty of Veterinary, Federal University of Rio Grande Do Sul (UFRGS), Av. Bento Gonçalves, Porto Alegre, Rio Grande do Sul, 9090, 91540-000, Brazil
| | - Thais de Campos Ausani
- Preventive Veterinary Medicine Department, Faculty of Veterinary, Federal University of Rio Grande Do Sul (UFRGS), Av. Bento Gonçalves, Porto Alegre, Rio Grande do Sul, 9090, 91540-000, Brazil
| | - Vanessa Laviniki
- Preventive Veterinary Medicine Department, Faculty of Veterinary, Federal University of Rio Grande Do Sul (UFRGS), Av. Bento Gonçalves, Porto Alegre, Rio Grande do Sul, 9090, 91540-000, Brazil
| | - Graciela Volz Lopes
- Agroindustrial Science and Technology Department, Faculty of Agronomy Eliseu Maciel, Federal University of Pelotas (UFPel), Rio Grande do Sul, Brazil
| | - Marisa Ribeiro de Itapema Cardoso
- Preventive Veterinary Medicine Department, Faculty of Veterinary, Federal University of Rio Grande Do Sul (UFRGS), Av. Bento Gonçalves, Porto Alegre, Rio Grande do Sul, 9090, 91540-000, Brazil.
| |
Collapse
|
33
|
Bajrami D, Fischer S, Barth H, Sarquis MA, Ladero VM, Fernández M, Sportelli MC, Cioffi N, Kranz C, Mizaikoff B. In situ monitoring of Lentilactobacillus parabuchneri biofilm formation via real-time infrared spectroscopy. NPJ Biofilms Microbiomes 2022; 8:92. [PMID: 36402858 PMCID: PMC9675856 DOI: 10.1038/s41522-022-00353-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 10/26/2022] [Indexed: 11/20/2022] Open
Abstract
Foodborne pathogenic microorganisms form biofilms at abiotic surfaces, which is a particular challenge in food processing industries. The complexity of biofilm formation requires a fundamental understanding on the involved molecular mechanisms, which may then lead to efficient prevention strategies. In the present study, biogenic amine producing bacteria, i.e., Lentilactobacillus parabuchneri DSM 5987 strain isolated from cheese were studied in respect with biofilm formation, which is of substantial relevance given their contribution to the presence of histamine in dairy products. While scanning electron microscopy was used to investigate biofilm adhesion at stainless steel surfaces, in situ infrared attenuated total reflection spectroscopy (IR-ATR) using a custom flow-through assembly was used for real-time and non-destructive observations of biofilm formation during a period of several days. The spectral window of 1700-600 cm-1 provides access to vibrational signatures characteristic for identifying and tracking L. parabuchneri biofilm formation and maturation. Especially, the amide I and II bands, lactic acid produced as the biofilm matures, and a pronounced increase of bands characteristic for extracellular polymeric substances (EPS) provide molecular insight into biofilm formation, maturation, and changes in biofilm architecture. Finally, multivariate data evaluation strategies were applied facilitating the unambiguous classification of the observed biofilm changes via IR spectroscopic data.
Collapse
Affiliation(s)
- Diellza Bajrami
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, Albert Einstein-Allee 11, 89081, Ulm, Germany
| | - Stephan Fischer
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, Albert Einstein-Allee 11, 89081, Ulm, Germany
| | - Holger Barth
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, Albert Einstein-Allee 11, 89081, Ulm, Germany
| | - María A Sarquis
- Dairy Research Institute (IPLA-CSIC), Paseo Rio Linares s/n, 33300, Villaviciosa, Spain
| | - Victor M Ladero
- Dairy Research Institute (IPLA-CSIC), Paseo Rio Linares s/n, 33300, Villaviciosa, Spain
| | - María Fernández
- Dairy Research Institute (IPLA-CSIC), Paseo Rio Linares s/n, 33300, Villaviciosa, Spain
| | - Maria C Sportelli
- Chemistry Department, University of Bari ''Aldo Moro", V. Orabona, 4, 70126, Bari, Italy
| | - Nicola Cioffi
- Chemistry Department, University of Bari ''Aldo Moro", V. Orabona, 4, 70126, Bari, Italy
| | - Christine Kranz
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, Albert Einstein-Allee 11, 89081, Ulm, Germany
| | - Boris Mizaikoff
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, Albert Einstein-Allee 11, 89081, Ulm, Germany.
| |
Collapse
|
34
|
Nguyen D, Balasubramanian R, Richardson A. Adhesion energy, spreading coefficient and interfacial tension as an efficient tool for assessing biocide performance. J SURFACTANTS DETERG 2022. [DOI: 10.1002/jsde.12639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
35
|
Gracia-Vallés N, Ruiz-Torrubia F, Mitchell SG, Nerín C, Silva F. Developing ethyl lauroyl arginate antimicrobial films to combat Listeria monocytogenes in cured ham. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
36
|
Singh D, Anand S. Efficacy of a typical clean-in-place protocol against in vitro membrane biofilms. J Dairy Sci 2022; 105:9417-9425. [DOI: 10.3168/jds.2022-21712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 07/22/2022] [Indexed: 11/07/2022]
|
37
|
Kang T, Yim D, Baek KH, Lee YE, Kim HJ, Jo C. The inactivation efficacy of plasma-activated acetic acid against Salmonella Typhimurium cells and biofilm. J Appl Microbiol 2022; 133:3007-3019. [PMID: 35916587 DOI: 10.1111/jam.15757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/30/2022] [Accepted: 07/31/2022] [Indexed: 11/30/2022]
Abstract
AIM This study aimed to examine the inactivation efficacy of plasma-activated acetic acid (PAAA) against Salmonella Typhimurium cells and biofilm and elucidate the underlying the chemical inactivation pathway. METHODS AND RESULTS PAAA was prepared by discharging plasma to 20 ml of 0.2% (v/v) acetic acid (AA) for 20 min (2.2 kHz and 8.4 kVpp). The count of cells and biofilms decreased by 5.71 log CFU ml-1 and 4 log CFU/cm2 after 10 min of treatment with 0.2% PAAA and 0.4% PAAA compared with control group (without any treatment), respectively. In 0.2% PAAA, the concentrations of hydrogen peroxide (H2 O2 ) and nitrate anions were directly proportional to the plasma discharge time, while nitrite anions (NO2 - ) was not detected. However, the pH values of both 0.2% PAAA and plasma-activated water were inversely proportional to the plasma discharge time. Treatment with catalase, L-histidine, D-mannitol, and sodium azide inhibited the antibacterial activity of PAAA. CONCLUSION H2 O2 , Singlet oxygen, Hydroxyl radical, and NO2 - are involved in the generation and decomposition of peroxynitrous acid generated from PAAA functioned as intermediate agent, which could diffuse through cell membranes of bacteria and induce cell injury. SIGNIFICANCE AND IMPACT OF STUDY This study provides the understanding of efficacy and selectivity of PAAA which could be a novel decontamination agent.
Collapse
Affiliation(s)
- Taemin Kang
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Science, Seoul National University, 08826, Seoul, Republic of Korea
| | - Donggyun Yim
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Science, Seoul National University, 08826, Seoul, Republic of Korea
| | - Ki Ho Baek
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Science, Seoul National University, 08826, Seoul, Republic of Korea.,Department of Nano-Bio Convergence, Korea Institute of Materials Science, 51508, Changwon, Republic of Korea
| | - Yee Eun Lee
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Science, Seoul National University, 08826, Seoul, Republic of Korea
| | - Hyun-Jun Kim
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Science, Seoul National University, 08826, Seoul, Republic of Korea
| | - Cheorun Jo
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Science, Seoul National University, 08826, Seoul, Republic of Korea.,Institute of Green Bio Science and Technology, Seoul National University, 25354, Pyeongchang, Korea
| |
Collapse
|
38
|
Ripolles-Avila C, Guitan-Santamaria M, Pizarro-Giménez K, Mazaheri T, Rodríguez-Jerez J. Dual-species biofilms formation between dominant microbiota isolated from a meat processing industry with Listeria monocytogenes and Salmonella enterica: Unraveling their ecological interactions. Food Microbiol 2022; 105:104026. [DOI: 10.1016/j.fm.2022.104026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 03/08/2022] [Accepted: 03/11/2022] [Indexed: 12/11/2022]
|
39
|
Ma X, Liu Z, Zeng W, Lin T, Tian X, Cheng X. Crack patterns of drying dense bacterial suspensions. SOFT MATTER 2022; 18:5239-5248. [PMID: 35771131 DOI: 10.1039/d2sm00012a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Drying of bacterial suspensions is frequently encountered in a plethora of natural and engineering processes. However, the evaporation-driven mechanical instabilities of dense consolidating bacterial suspensions have not been explored heretofore. Here, we report the formation of two different crack patterns of drying suspensions of Escherichia coli (E. coli) with distinct motile behaviors. Circular cracks are observed for wild-type E. coli with active swimming, whereas spiral-like cracks form for immotile bacteria. Using the elastic fracture mechanics and the poroelastic theory, we show that the formation of the circular cracks is determined by the tensile nature of the radial drying stress once the cracks are initiated by the local order structure of bacteria due to their collective swimming. Our study demonstrates the link between the microscopic swimming behaviors of individual bacteria and the mechanical instabilities and macroscopic pattern formation of drying bacterial films. The results shed light on the dynamics of active matter in a drying process and provide useful information for understanding various biological processes associated with drying bacterial suspensions.
Collapse
Affiliation(s)
- Xiaolei Ma
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Zhengyang Liu
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Wei Zeng
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, USA.
- College of Life Science and Technology, Guangxi University, Nanning 530004, Guangxi, China
| | - Tianyi Lin
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Xin Tian
- Department of Physics & Astronomy, University of Wyoming, Laramie, WY 82071, USA
| | - Xiang Cheng
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
40
|
Vahdati SN, Behboudi H, Navasatli SA, Tavakoli S, Safavi M. New insights into the inhibitory roles and mechanisms of D-amino acids in bacterial biofilms in medicine, industry, and agriculture. Microbiol Res 2022; 263:127107. [PMID: 35843196 DOI: 10.1016/j.micres.2022.127107] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 06/24/2022] [Accepted: 06/24/2022] [Indexed: 11/26/2022]
Abstract
Biofilms are complex aggregates of microbes that are tightly protected by an extracellular matrix (ECM) and may attach to a surface or adhere together. A higher persistence of bacteria on biofilms makes them resistant not only to harsh conditions but also to various antibiotics which led to the emergence of problems in different applications. Recently, it has been discovered that many bacteria produce and release various D-amino acids (D-AAs) to inhibit biofilm formation, which made a great deal of interest in research into the control of bacterial biofilms in diverse fields, such as human health, industrial settings, and medical devices. D-AAs have various mechanisms to inhibit bacterial biofilms such as: (i) interfering with protein synthesis (ii) Inhibition of extracellular polymeric materials (EPS) productions (protein, eDNA, and polysaccharide) (iii) Inhibition of quorum sensing (autoinducers), and (iv) interfere with peptidoglycan synthesis, these various modes of action, enables these small molecules to inhibit both Gram-negative and Gram-positive bacterial biofilms. Since most biofilms are multi-species, D-AAs in combination with other antimicrobial agents are good choices to combat a variety of bacterial biofilms without displaying toxicity on human cells. This review article addressed the role of D-AAs in controlling several bacterial biofilms and described the possible or definite mechanisms involved in this process.
Collapse
Affiliation(s)
- Saeed Niazi Vahdati
- Institute of Biochemistry and Biophysics, Department of Biochemistry, University of Tehran, Tehran, Iran
| | - Hossein Behboudi
- Department of Biology, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran.
| | - Sepideh Aliniaye Navasatli
- Institute of Biochemistry and Biophysics, Department of Biochemistry, University of Tehran, Tehran, Iran
| | - Sara Tavakoli
- Department of Biotechnology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| | - Maliheh Safavi
- Department of Biotechnology, Iranian Research Organization for Science and Technology, Tehran, Iran
| |
Collapse
|
41
|
A Magnetic Abrasive Finishing Process with an Auxiliary Magnetic Machining Tool for the Internal Surface Finishing of a Thick-Walled Tube. MACHINES 2022. [DOI: 10.3390/machines10070529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This paper proposes a novel magnetic abrasive finishing (MAF) process that uses an auxiliary magnetic machining tool for the internal surface finishing of a thick-walled tube. The auxiliary magnetic machining tool and external poles form a closed magnetic field circuit. Thus, a stronger magnetic force can be generated during the process. In the current study, we focus on analyzing the distribution of the magnetic field and magnetic flux density and investigating the finishing characteristics of a mixed magnetic abrasive finishing process and speed of relative revolutions. Based on the finishing characteristics, we also conduct a stage-by-stage finishing process by changing the combinations of the mixed magnetic abrasive finishing process. The finishing quality of the internal surface was mainly evaluated by the measured roundness and surface roughness. The experimental results show that the roundness and surface roughness Ra are affected when the total amount of WA abrasive and iron powder is too much; a better surface roughness could be obtained when the difference in the speed of relative revolutions is considerable, but the roundness is the worst. Furthermore, the original roundness measurement of 270 µm can reach 10 µm, and the surface roughness Ra can increase from an original surface roughness of 4.1 µm to reach 10 nm after 105 min of the stage-by-stage finishing process.
Collapse
|
42
|
Nan Y, Rodas-Gonzalez A, Stanford K, Nadon C, Yang X, McAllister T, Narváez-Bravo C. Formation and Transfer of Multi-Species Biofilms Containing E. coli O103:H2 on Food Contact Surfaces to Beef. Front Microbiol 2022; 13:863778. [PMID: 35711784 PMCID: PMC9196126 DOI: 10.3389/fmicb.2022.863778] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 05/02/2022] [Indexed: 11/13/2022] Open
Abstract
Interactions of Shiga toxin–producing E. coli (STEC; O103:H2) with lactic acid bacteria (LAB) or spoilage bacteria (SP) multispecies biofilms on polyurethane (TPU) and stainless-steel (SS) were assessed at 10 and 25°C under wet and dry conditions after 6, 30, and 60 days of storage. One LAB T1: Carnobacterium piscicola + Lactobacillus bulgaricus, and two SP T2: Comamonas koreensis + Raoultella terrigena; T3: Pseudomonas aeruginosa + C. koreensis were assessed for their ability to form multispecies biofilms with O103:H2. O103:H2 single-species biofilms served as a control positive (T4). Coupons were stored dry (20–50% relative humidity; RH) or moist (60–90% RH) for up to 60 days, at which point O103:H2 transfer to beef and survival was evaluated. At 25°C, T3 decreased beef contamination with O103:H2 by 2.54 log10 CFU/g (P < 0.001). Overall, at 25°C contamination of beef with O103:H2 decreased (P < 0.001) from 3.17 log10 CFU/g on Day 6 to 0.62 log10 CFU/g on Day 60. With 60 days dry biofilms on TPU, an antagonistic interaction was observed among O103:H2 and multispecies biofilm T1 and T3. E. coli O103:H2 was not recovered from T1 and T3 after 60 days but it was recovered (33%) from T2 and T4 dry biofilms. At 10°C, contamination of beef with O103:H2 decreased (P < 0.001) from 1.38 log10 CFU/g after 6 days to 0.47 log10 CFU/g after 60 days. At 10°C, recovery of O103:H2 from 60 days dry biofilms could only be detected after enrichment and was always higher for T2 than T4 biofilms. Regardless of temperature, the transfer of O103:H2 to beef from the biofilm on TPU was greater (P < 0.001) than SS. Moist biofilms also resulted in greater (P < 0.001) cell transfer to beef than dry biofilms at 10 and 25°C. Development of SP or LAB multispecies biofilms with O103:H2 can either increase or diminish the likelihood of beef contamination. Environmental conditions such as humidity, contact surface type, as well as biofilm aging all can influence the risk of beef being contaminated by STEC within multi-species biofilms attached to food contact surfaces.
Collapse
Affiliation(s)
- Yuchen Nan
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB, Canada
| | | | - Kim Stanford
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, Canada
| | - Celine Nadon
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Xianqin Yang
- Agriculture and Agri-Food Canada, Lacombe Research and Development Centre, Lacombe, AB, Canada
| | - Tim McAllister
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB, Canada.,Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, AB, Canada
| | - Claudia Narváez-Bravo
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
43
|
El Bourakadi K, Qaiss AEK, Bouhfid R. Bio-films based on alginate/modified clay through spray drying: Mechanical, rheological, morphological, and transport properties for potential use as active food packaging. Int J Biol Macromol 2022; 210:663-668. [PMID: 35513091 DOI: 10.1016/j.ijbiomac.2022.04.222] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/16/2022] [Accepted: 04/28/2022] [Indexed: 01/08/2023]
Abstract
In this study, encapsulated modified montmorillonite with alginate (MMT-TBZC16/Alg) content and its incorporation into the biopolymer on morphological, mechanical, rheological, and transport properties of bio-based films based on chitosan were analyzed. The spray-drying approach was used to create organo-modified montmorillonite with alginate as a biopolymer. These encapsulating materials were then described and used as reinforcing agents for chitosan in the second step of this investigation to produce new reinforced biofilms with improved performance. This study aimed to study the effect of the addition of encapsulated organo-montmorillonite into the chitosan solution on the mechanical, rheological, and transport properties of the elaborated films. Films reinforced with encapsulated modified montmorillonite were characterized using Fourier transform infrared spectroscopy (FTIR), Water vapor transmission rate (WVTR) as well as mechanical and rheological properties. Adding encapsulated reinforcing agents to chitosan-based films is an option for improving mechanical and water barrier qualities. These results suggest that the developed MMT-TBZC16/Alginate-based chitosan films with higher performances could be used in designing potential packaging films.
Collapse
Affiliation(s)
- Khadija El Bourakadi
- Moroccan Foundation for Advanced Science, Innovation and Research (MAScIR), Composites and Nanocomposites Center, Rabat Design Center, Rue Mohamed El Jazouli, Madinat El Irfane, 10100 Rabat, Morocco
| | - Abou El Kacem Qaiss
- Moroccan Foundation for Advanced Science, Innovation and Research (MAScIR), Composites and Nanocomposites Center, Rabat Design Center, Rue Mohamed El Jazouli, Madinat El Irfane, 10100 Rabat, Morocco
| | - Rachid Bouhfid
- Moroccan Foundation for Advanced Science, Innovation and Research (MAScIR), Composites and Nanocomposites Center, Rabat Design Center, Rue Mohamed El Jazouli, Madinat El Irfane, 10100 Rabat, Morocco.
| |
Collapse
|
44
|
Didouh N, Bendimered N, Postellec F, Deperieux E, Leguerinel I, Boudjemâa BM. Effect of Hydrophobic or Hydrophilic Characteristics of B. cereus Spores on Their Resistance to Detergents. J Food Prot 2022; 85:706-711. [PMID: 35113985 DOI: 10.4315/jfp-21-286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 01/28/2022] [Indexed: 11/11/2022]
Abstract
ABSTRACT Bacillus cereus spores have the ability to adhere to solid surfaces, including stainless steel, a material widely used in food industries. Adhesion of spores allows recontamination during food processing, and cleaning and disinfection are largely used by industries to control them. Hence, this study aims to assess the detachment capacity (or removing activity) of detergents based on sodium hydroxide, nitric acid, phosphoric acid, and chlorine against two adhered B. cereus spores (one hydrophobic and other hydrophilic) to stainless steel surfaces. Microorganism adhesion on the surfaces reached 5.5 log CFU/cm2 for the two strains studied. Two protocols composed of combinations of chemical compounds, concentration, temperature, and contact time were tested. The inactivation kinetics shapes were convex and modeled by the Weibull model. The effects of temperature and biocide concentration were quantified using a Bigelow-like model. The temperature applied during the cleaning-in-place treatment is an important factor acting on the speed of inactivation or detachment of B. cereus spores. However, this efficiency depends on the hydrophobic characteristics of B. cereus spores. The concentration of detergent and acid also affects the inactivation rate, whereas the characteristic of hydrophobicity does not intervene for the chlorine alkaline treatments. HIGHLIGHTS
Collapse
Affiliation(s)
- N Didouh
- Université Djilali-Bounaama, 44000 Khemis-Miliana, Algeria.,Laboratoire de Microbiologie Appliqué à l'Agroalimentaire au Biomédical et à l'Environnement, 13000 Tlemcen, Algeria
| | - N Bendimered
- Laboratoire de Microbiologie Appliqué à l'Agroalimentaire au Biomédical et à l'Environnement, 13000 Tlemcen, Algeria
| | - F Postellec
- Adria Developpement, UMT14.01 SPORE-RISK, Zone Artisanale de Creach Gwen, 29196 Quimper, France
| | - E Deperieux
- Institute of Life, Earth and Environment, Université de Namur, 61 rue de Bruxelles, 5000 Namur, Belgium
| | - I Leguerinel
- Université de Brest, EA3882, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, UMT14.01 SPORE-RISK, IBSAM, 6 rue de l'Université, 29000 Quimper, France
| | - B Moussa Boudjemâa
- Laboratoire de Microbiologie Appliqué à l'Agroalimentaire au Biomédical et à l'Environnement, 13000 Tlemcen, Algeria
| |
Collapse
|
45
|
Polito F, Amato G, Caputo L, De Feo V, Fratianni F, Candido V, Nazzaro F. Chemical Composition and Agronomic Traits of Allium sativum and Allium ampeloprasum Leaves and Bulbs and Their Action against Listeria monocytogenes and Other Food Pathogens. Foods 2022; 11:foods11070995. [PMID: 35407082 PMCID: PMC8997483 DOI: 10.3390/foods11070995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 01/05/2023] Open
Abstract
In this work, we aimed to study the chemical composition of the essential oils from bulbs and leaves of two cultivars of Allium sativum L. and two of A. ampeloprasum L. var. holmense. Moreover, we investigated their activity against four common bacterial strains responsible for food contamination (Listeria monocytogenes, Escherichia coli, Acinetobacter baumannii, and Staphylococcus aureus) by formation of biofilms. The susceptibility of bacterial biofilms was evaluated by crystal violet assay, whereas the metabolic changes occurring in the bacterial cells were ascertained through the MTT test. The essential oils were characterized by the presence of most characteristic components, although with different composition between the species and the cultivars. The essential oils inhibited the capacity of the pathogenic bacteria to form biofilms (up to 79.85 against L. monocytogenes) and/or acted on their cell metabolism (with inhibition of 68.57% and 68.89% against L. monocytogenes and S. aureus, respectively). The capacity of the essential oils to act against these foodborne bacteria could suggests further ideas for industrial applications and confirms the versatility of these essential oils as food preservatives.
Collapse
Affiliation(s)
- Flavio Polito
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (F.P.); (L.C.); (V.D.F.)
| | - Giuseppe Amato
- Institute of Food Science, National Research Council, Via Roma 64, 83100 Avellino, Italy; (G.A.); (F.F.)
| | - Lucia Caputo
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (F.P.); (L.C.); (V.D.F.)
| | - Vincenzo De Feo
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (F.P.); (L.C.); (V.D.F.)
- Institute of Food Science, National Research Council, Via Roma 64, 83100 Avellino, Italy; (G.A.); (F.F.)
| | - Florinda Fratianni
- Institute of Food Science, National Research Council, Via Roma 64, 83100 Avellino, Italy; (G.A.); (F.F.)
| | - Vincenzo Candido
- Department of European and Mediterranean Culture, University of Basilicata, Via San Biagio, 75100 Matera, Italy;
| | - Filomena Nazzaro
- Institute of Food Science, National Research Council, Via Roma 64, 83100 Avellino, Italy; (G.A.); (F.F.)
- Correspondence: ; Tel.: +39-0825-299-102
| |
Collapse
|
46
|
Govaert M, Smet C, Acquah C, Walsh JL, Van Impe JFM. Behavior of the Surviving Population of Listeria monocytogenes and Salmonella Typhimurium Biofilms Following a Direct Helium-Based Cold Atmospheric Plasma Treatment. Front Microbiol 2022; 13:831434. [PMID: 35401458 PMCID: PMC8988229 DOI: 10.3389/fmicb.2022.831434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 03/07/2022] [Indexed: 12/04/2022] Open
Abstract
Although the Cold Atmospheric Plasma (CAP) technology proved promising for inactivation of biofilms present on abiotic food contact surfaces, more research is required to examine the behavior of the CAP surviving biofilm-associated cells. It was therefore examined whether (i) CAP treated (Listeria monocytogenes and Salmonella Typhimurium) biofilm-associated cells were able to further colonize the already established biofilms during a subsequent incubation period and (ii) isolates of the surviving population became less susceptible toward CAP when the number of biofilm development—CAP treatment cycles increased. For this purpose, a direct treatment was applied using a helium-based Dielectric Barrier Discharge electrode configuration. Results indicated that the surviving population was able to further colonize the already established biofilms, since the cell density of the CAP treated + incubated biofilms equaled the initial density of the untreated biofilms. For the L. monocytogenes biofilms, also the total biomass proved to further increase, which might result in an even further increased resistance. The susceptibility of the biofilm-associated cells proved to be influenced by the specific number of CAP treatment cycles, which might potentially result in an overestimation of the CAP treatment efficacy and, consequently, an increased risk of food contamination.
Collapse
Affiliation(s)
- Marlies Govaert
- CPMF2 - Flemish Cluster Predictive Microbiology in Foods, Ghent, Belgium
- OPTEC - Optimization in Engineering Center-of-Excellence, KU Leuven, Ghent, Belgium
- BioTeC+ - Chemical and Biochemical Process Technology and Control, Department of Chemical Engineering, KU Leuven, Ghent, Belgium
| | - Cindy Smet
- CPMF2 - Flemish Cluster Predictive Microbiology in Foods, Ghent, Belgium
- OPTEC - Optimization in Engineering Center-of-Excellence, KU Leuven, Ghent, Belgium
- BioTeC+ - Chemical and Biochemical Process Technology and Control, Department of Chemical Engineering, KU Leuven, Ghent, Belgium
| | - Cyril Acquah
- BioTeC+ - Chemical and Biochemical Process Technology and Control, Department of Chemical Engineering, KU Leuven, Ghent, Belgium
| | - James L. Walsh
- Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool, United Kingdom
| | - Jan F. M. Van Impe
- CPMF2 - Flemish Cluster Predictive Microbiology in Foods, Ghent, Belgium
- OPTEC - Optimization in Engineering Center-of-Excellence, KU Leuven, Ghent, Belgium
- BioTeC+ - Chemical and Biochemical Process Technology and Control, Department of Chemical Engineering, KU Leuven, Ghent, Belgium
- *Correspondence: Jan F. M. Van Impe,
| |
Collapse
|
47
|
Chitlapilly Dass S, Wang R. Biofilm through the Looking Glass: A Microbial Food Safety Perspective. Pathogens 2022; 11:346. [PMID: 35335670 PMCID: PMC8954374 DOI: 10.3390/pathogens11030346] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/08/2022] [Accepted: 03/10/2022] [Indexed: 02/06/2023] Open
Abstract
Food-processing facilities harbor a wide diversity of microorganisms that persist and interact in multispecies biofilms, which could provide an ecological niche for pathogens to better colonize and gain tolerance against sanitization. Biofilm formation by foodborne pathogens is a serious threat to food safety and public health. Biofilms are formed in an environment through synergistic interactions within the microbial community through mutual adaptive response to their long-term coexistence. Mixed-species biofilms are more tolerant to sanitizers than single-species biofilms or their planktonic equivalents. Hence, there is a need to explore how multispecies biofilms help in protecting the foodborne pathogen from common sanitizers and disseminate biofilm cells from hotspots and contaminate food products. This knowledge will help in designing microbial interventions to mitigate foodborne pathogens in the processing environment. As the global need for safe, high-quality, and nutritious food increases, it is vital to study foodborne pathogen behavior and engineer new interventions that safeguard food from contamination with pathogens. This review focuses on the potential food safety issues associated with biofilms in the food-processing environment.
Collapse
Affiliation(s)
| | - Rong Wang
- Roman L. Hruska U.S. Meat Animal Research Center, Agricultural Research Service, U.S. Department of Agriculture, Clay Center, NE 68933, USA;
| |
Collapse
|
48
|
Sourri P, Tassou CC, Nychas GJE, Panagou EZ. Fruit Juice Spoilage by Alicyclobacillus: Detection and Control Methods—A Comprehensive Review. Foods 2022; 11:foods11050747. [PMID: 35267380 PMCID: PMC8909780 DOI: 10.3390/foods11050747] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/22/2022] [Accepted: 03/02/2022] [Indexed: 12/03/2022] Open
Abstract
Fruit juices have an important place in humans’ healthy diet. They are considered to be shelf stable products due to their low pH that prevents the growth of most bacteria. However thermo-acidophilic endospore forming bacteria of the genus Alicyclobacillus have the potential to cause spoilage of commercially pasteurized fruit juices. The flat sour type spoilage, with absence of gas production but presence of chemical spoilage compounds (mostly guaiacol) and the ability of Alicyclobacillus spores to survive after pasteurization and germinate under favorable conditions make them a major concern for the fruit juice industry worldwide. Their special characteristics and presence in the fruit juice industry has resulted in the development of many isolation and identification methods based on cell detection (plating methods, ELISA, flow cytometry), nucleic acid analysis (PCR, RAPD-PCR, ERIC-PCR, DGGE-PCR, RT-PCR, RFLP-PCR, IMS-PCR, qPCR, and 16S rRNA sequencing) and measurement of their metabolites (HPLC, GC, GC-MS, GC-O, GC-SPME, Electronic nose, and FTIR). Early detection is a big challenge that can reduce economic loss in the industry while the development of control methods targeting the inactivation of Alicyclobacillus is of paramount importance as well. This review includes a discussion of the various chemical (oxidants, natural compounds of microbial, animal and plant origin), physical (thermal pasteurization), and non-thermal (High Hydrostatic Pressure, High Pressure Homogenization, ultrasound, microwaves, UV-C light, irradiation, ohmic heating and Pulse Electric Field) treatments to control Alicyclobacillus growth in order to ensure the quality and the extended shelf life of fruit juices.
Collapse
Affiliation(s)
- Patra Sourri
- Institute of Technology of Agricultural Products, Hellenic Agricultural Organization DIMITRA, Sofokli Venizelou 1, 14123 Lycovrissi, Greece;
| | - Chrysoula C. Tassou
- Institute of Technology of Agricultural Products, Hellenic Agricultural Organization DIMITRA, Sofokli Venizelou 1, 14123 Lycovrissi, Greece;
- Correspondence: (C.C.T.); (E.Z.P.)
| | - George-John E. Nychas
- Laboratory of Microbiology and Biotechnology of Foods, Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece;
| | - Efstathios Z. Panagou
- Laboratory of Microbiology and Biotechnology of Foods, Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece;
- Correspondence: (C.C.T.); (E.Z.P.)
| |
Collapse
|
49
|
Tuck B, Watkin E, Somers A, Forsyth M, Machuca LL. Conditioning of metal surfaces enhances Shewanella chilikensis adhesion. BIOFOULING 2022; 38:207-222. [PMID: 35345940 DOI: 10.1080/08927014.2022.2039349] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Microbiologically influenced corrosion and biofouling of steels depend on the adsorption of a conditioning film and subsequent attachment of bacteria. Extracellular deoxyribonucleic acid (eDNA) and amino acids are biologically critical nutrient sources and are ubiquitous in marine environments. However, little is known about their role as conditioning film molecules in early biofilm formation on metallic surfaces. The present study evaluated the capacity for eDNA and amino acids to form a conditioning film on carbon steel (CS), and subsequently, the influence of these conditioning films on bacterial attachment using a marine bacterial strain. Conditioning films of eDNA or amino acids were formed on CS through physical adsorption. Biochemical and microscopic analysis of eDNA conditioning, amino acid conditioning and control CS surfaces demonstrated that organic conditioning surfaces promoted bacterial attachment. The results highlight the importance of conditioning the surface in initial bacterial attachment to steel.
Collapse
Affiliation(s)
- Benjamin Tuck
- Curtin Corrosion Centre, WA School of Mines: Minerals, Energy and Chemical Engineering, Curtin University, Bentley, WA, Australia
| | - Elizabeth Watkin
- Curtin Medical School, Curtin University, Bentley, WA, Australia
| | - Anthony Somers
- Institute for Frontier Materials, Deakin University, Geelong, VIC, Australia
| | - Maria Forsyth
- Institute for Frontier Materials, Deakin University, Geelong, VIC, Australia
| | - Laura L Machuca
- Curtin Corrosion Centre, WA School of Mines: Minerals, Energy and Chemical Engineering, Curtin University, Bentley, WA, Australia
| |
Collapse
|
50
|
Noronha VT, Jackson JC, Camargos CHM, Paula AJ, Rezende CA, Faria AF. "Attacking-Attacking" Anti-biofouling Strategy Enabled by Cellulose Nanocrystals-Silver Materials. ACS APPLIED BIO MATERIALS 2022; 5:1025-1037. [PMID: 35176855 DOI: 10.1021/acsabm.1c00929] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The development of high-performance anti-biofouling surfaces is paramount for controlling bacterial attachment and biofilm growth in biomedical devices, food packing, and filtration membranes. Cellulose nanocrystals (CNCs), a carbon-nanotube-like nanomaterial, have emerged as renewable and sustainable antimicrobial agents. However, CNCs inactivate bacteria under contact-mediated mechanisms, limiting its antimicrobial property mostly to the attached bacteria. This study describes the combination of CNCs with silver nanoparticles (CNC/Ag) as a strategy to increase their toxicity and anti-biofouling performance. CNC/Ag-coated surfaces inactivated over 99% of the attached Escherichia coli and Bacillus subtilis cells compared to 66.9 and 32.9% reduction shown by the pristine CNC, respectively. CNC/Ag was also very toxic to planktonic cells, displaying minimal inhibitory of 25 and 100 μg/mL against B. subtilis and E. coli, respectively. CNC/Ag seems to inactivate bacteria through an "attacking-attacking" mechanism where CNCs and silver nanoparticles play different roles. CNCs can kill bacteria by piercing the cell membrane. This physical membrane stress-mediated mechanism is demonstrated as lipid vesicles release their encapsulated dye upon contact with CNCs. Once the cell membrane is punctured, silver ions can enter the cell passively and compromise the integrity of DNA and other organelles. Inside the cells, Ag+ may damage the cell membrane by selectively interacting with sulfur and nitrogen groups of enzymes and proteins or by harming DNA via accumulation of reactive oxygen species. Therefore, CNC/Ag toxicity seems to combine the puncturing effect of the needle-like CNC and the silver's ability to impair the cell membrane and DNA functionalities.
Collapse
Affiliation(s)
- Victor T Noronha
- Engineering School of Sustainable Infrastructure & Environment, Department of Environmental Engineering Sciences, University of Florida, Gainesville, Florida 32611-6540, United States.,Solid-Biological Interfaces Group, Department of Physics, Federal University of Ceará─UFC, P.O. Box 3151, Fortaleza, Ceará 60455-900, Brazil
| | - Jennifer C Jackson
- Engineering School of Sustainable Infrastructure & Environment, Department of Environmental Engineering Sciences, University of Florida, Gainesville, Florida 32611-6540, United States
| | - Camilla H M Camargos
- Physical Chemistry Department, Institute of Chemistry, University of Campinas─UNICAMP, P.O. Box 6154, Campinas, São Paulo 13083-970, Brazil
| | - Amauri J Paula
- Solid-Biological Interfaces Group, Department of Physics, Federal University of Ceará─UFC, P.O. Box 3151, Fortaleza, Ceará 60455-900, Brazil.,Ilum School of Science, Centro Nacional de Pesquisa em Energia e Materiais─CNPEM, Campinas, São Paulo 13087-548, Brazil
| | - Camila A Rezende
- Physical Chemistry Department, Institute of Chemistry, University of Campinas─UNICAMP, P.O. Box 6154, Campinas, São Paulo 13083-970, Brazil
| | - Andreia F Faria
- Engineering School of Sustainable Infrastructure & Environment, Department of Environmental Engineering Sciences, University of Florida, Gainesville, Florida 32611-6540, United States
| |
Collapse
|