1
|
Zhang R, Wang J, Xue L, Kamran M, Wang Y, Wei X, Zhao G, Li C. The Impact of Bacterial Leaf Blight Disease ( Pantoea agglomerans) on Grain Yield and Nutritional Quality of Oat. Microorganisms 2025; 13:141. [PMID: 39858909 PMCID: PMC11767670 DOI: 10.3390/microorganisms13010141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/04/2025] [Accepted: 01/08/2025] [Indexed: 01/27/2025] Open
Abstract
As an important cereal and feed crop, oat has significant economic value and is widely cultivated throughout the world. However, leaf diseases have become a crucial factor limiting the increase in oat grain yield and the optimization of its nutritional quality. Among these, the bacterial leaf blight disease (LBD) caused by Pantoea agglomerans has been an emerging and prevalent oat disease in Northwest China in recent years and has become a major challenge for oat cultivation in this region. This study was designed to investigate the effects of LBD on grain yield and nutritional quality of two common oat varieties, i.e., Avena nuda "Baiyan 2" (B2) and A. sativa "Baiyan 7" (B7), in greenhouses. The results showed that after infection causing LBD, the growth, grain yield and nutritional indexes (except the fiber content) of B2 and B7 were significantly reduced (p < 0.05), with grains per spike, thousand grain weight, protein, and β-glucan reduced by 14.2%, 5.5%, 12.9% and 21.5%, respectively. In contrast, the average fiber content of the infected oats increased by 8.4%. In addition, both with and without infection, the grain yield of B7 was higher than that of B2, while the nutritional quality of B2 seeds was superior to that of B7 seeds. This study provides a scientific basis for LBD control and the variety selection of oat, promoting the sustainable development of the oat industry.
Collapse
Affiliation(s)
- Ruochen Zhang
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Key Laboratory of
Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, Gansu Tech Innovation Center of Western China Grassland Industry, College of Pastoral Agriculture Science and Technology, Lanzhou 730020, China; (R.Z.); (J.W.); (L.X.); (M.K.); (Y.W.); (X.W.)
| | - Jianjun Wang
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Key Laboratory of
Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, Gansu Tech Innovation Center of Western China Grassland Industry, College of Pastoral Agriculture Science and Technology, Lanzhou 730020, China; (R.Z.); (J.W.); (L.X.); (M.K.); (Y.W.); (X.W.)
| | - Longhai Xue
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Key Laboratory of
Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, Gansu Tech Innovation Center of Western China Grassland Industry, College of Pastoral Agriculture Science and Technology, Lanzhou 730020, China; (R.Z.); (J.W.); (L.X.); (M.K.); (Y.W.); (X.W.)
| | - Malik Kamran
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Key Laboratory of
Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, Gansu Tech Innovation Center of Western China Grassland Industry, College of Pastoral Agriculture Science and Technology, Lanzhou 730020, China; (R.Z.); (J.W.); (L.X.); (M.K.); (Y.W.); (X.W.)
| | - Yue Wang
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Key Laboratory of
Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, Gansu Tech Innovation Center of Western China Grassland Industry, College of Pastoral Agriculture Science and Technology, Lanzhou 730020, China; (R.Z.); (J.W.); (L.X.); (M.K.); (Y.W.); (X.W.)
| | - Xuekai Wei
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Key Laboratory of
Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, Gansu Tech Innovation Center of Western China Grassland Industry, College of Pastoral Agriculture Science and Technology, Lanzhou 730020, China; (R.Z.); (J.W.); (L.X.); (M.K.); (Y.W.); (X.W.)
| | - Guiqin Zhao
- Pratacultural College, Gansu Agricultural University, Lanzhou 730070, China;
| | - Chunjie Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Key Laboratory of
Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, Gansu Tech Innovation Center of Western China Grassland Industry, College of Pastoral Agriculture Science and Technology, Lanzhou 730020, China; (R.Z.); (J.W.); (L.X.); (M.K.); (Y.W.); (X.W.)
| |
Collapse
|
2
|
Achs A, Glasa M, Šubr Z. Potyvirus-Based Vectors for Heterologous Gene Expression in Plants. Viruses 2024; 16:1920. [PMID: 39772227 PMCID: PMC11680211 DOI: 10.3390/v16121920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/05/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
Over the past two decades, plant viral vectors have emerged as a powerful tool for the production of recombinant proteins in plants. Among the different plant viruses engineered to carry foreign genes of interest in their genomes, potyviruses have gained attention due to their polyprotein expression strategy and broad host range. To date, at least eleven different species belonging to the genus Potyvirus have been used for heterologous gene expression in both their natural and experimental hosts. This review article provides an overview of the current state of potyvirus-based plant viral vectors, discussing the advantages and limitations of these systems. We also discuss the future challenges and potential applications of potyvirus-based expression vectors, including the production of vaccines, nanoparticles, therapeutics, and metabolic engineering. Overall, we highlight the potential of potyvirus-based vectors as a versatile tool for recombinant protein production in plants.
Collapse
Affiliation(s)
- Adam Achs
- Department of Virus Ecology, Institute of Virology, Biomedical Research Center of the Slovak Academy of Sciences, Dubravska Cesta 9, 845 05 Bratislava, Slovakia
| | - Miroslav Glasa
- Department of Virus Ecology, Institute of Virology, Biomedical Research Center of the Slovak Academy of Sciences, Dubravska Cesta 9, 845 05 Bratislava, Slovakia
- Faculty of Natural Sciences, University of Ss. Cyril and Methodius in Trnava, Námestie J. Herdu 2, 917 01 Trnava, Slovakia
| | - Zdeno Šubr
- Department of Virus Ecology, Institute of Virology, Biomedical Research Center of the Slovak Academy of Sciences, Dubravska Cesta 9, 845 05 Bratislava, Slovakia
| |
Collapse
|
3
|
Yang YZ, Xie L, Gao Q, Nie ZY, Zhang DL, Wang XB, Han CG, Wang Y. A potyvirus provides an efficient viral vector for gene expression and functional studies in Asteraceae plants. PLANT PHYSIOLOGY 2024; 196:842-855. [PMID: 38917205 DOI: 10.1093/plphys/kiae356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/29/2024] [Accepted: 05/24/2024] [Indexed: 06/27/2024]
Abstract
Plant virus-derived vectors are rapid and cost-effective for protein expression and gene functional studies in plants, particularly for species that are difficult to genetically transform. However, few efficient viral vectors are available for functional studies in Asteraceae plants. Here, we identified a potyvirus named zinnia mild mottle virus (ZiMMV) from common zinnia (Zinnia elegans Jacq.) through next-generation sequencing. Using a yeast homologous recombination strategy, we established a full-length infectious cDNA clone of ZiMMV under the control of the cauliflower mosaic virus 35S promoter. Furthermore, we developed an efficient expression vector based on ZiMMV for the persistent and abundant expression of foreign proteins in the leaf, stem, root, and flower tissues with mild symptoms during viral infection in common zinnia. We showed that the ZiMMV-based vector can express ZeMYB9, which encodes a transcript factor inducing dark red speckles in leaves and flowers. Additionally, the expression of a gibberellic acid (GA) biosynthesis gene from the ZiMMV vector substantially accelerated plant height growth, offering a rapid and cost-effective method. In summary, our work provides a powerful tool for gene expression, functional studies, and genetic improvement of horticultural traits in Asteraceae plant hosts.
Collapse
Affiliation(s)
- Yi-Zhou Yang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, 100193 Beijing, China
- Ministry of Agriculture and Rural Affairs Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Liang Xie
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, 100193 Beijing, China
| | - Qiang Gao
- College of Grassland Science and Technology, China Agricultural University, 100193 Beijing, China
| | - Zhang-Yao Nie
- Ministry of Agriculture and Rural Affairs Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Ding-Liang Zhang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, 100193 Beijing, China
| | - Xian-Bing Wang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, 100193 Beijing, China
| | - Cheng-Gui Han
- Ministry of Agriculture and Rural Affairs Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Ying Wang
- Ministry of Agriculture and Rural Affairs Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| |
Collapse
|
4
|
Martí M, Merwaiss F, Butković A, Daròs JA. Production of Potyvirus-Derived Nanoparticles Decorated with a Nanobody in Biofactory Plants. Front Bioeng Biotechnol 2022; 10:877363. [PMID: 35433643 PMCID: PMC9008781 DOI: 10.3389/fbioe.2022.877363] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 03/14/2022] [Indexed: 01/10/2023] Open
Abstract
Viral nanoparticles (VNPs) have recently attracted attention for their use as building blocks for novel materials to support a range of functions of potential interest in nanotechnology and medicine. Viral capsids are ideal for presenting small epitopes by inserting them at an appropriate site on the selected coat protein (CP). VNPs presenting antibodies on their surfaces are considered highly promising tools for therapeutic and diagnostic purposes. Due to their size, nanobodies are an interesting alternative to classic antibodies for surface presentation. Nanobodies are the variable domains of heavy-chain (VHH) antibodies from animals belonging to the family Camelidae, which have several properties that make them attractive therapeutic molecules, such as their small size, simple structure, and high affinity and specificity. In this work, we have produced genetically encoded VNPs derived from two different potyviruses—the largest group of RNA viruses that infect plants—decorated with nanobodies. We have created a VNP derived from zucchini yellow mosaic virus (ZYMV) decorated with a nanobody against the green fluorescent protein (GFP) in zucchini (Cucurbita pepo) plants. As reported for other viruses, the expression of ZYMV-derived VNPs decorated with this nanobody was only made possible by including a picornavirus 2A splicing peptide between the fused proteins, which resulted in a mixed population of unmodified and decorated CPs. We have also produced tobacco etch virus (TEV)-derived VNPs in Nicotiana benthamiana plants decorated with the same nanobody against GFP. Strikingly, in this case, VNPs could be assembled by direct fusion of the nanobody to the viral CP with no 2A splicing involved, likely resulting in fully decorated VNPs. For both expression systems, correct assembly and purification of the recombinant VNPs was confirmed by transmission electron microscope; the functionality of the CP-fused nanobody was assessed by western blot and binding assays. In sum, here we report the production of genetically encoded plant-derived VNPs decorated with a nanobody. This system may be an attractive alternative for the sustainable production in plants of nanobody-containing nanomaterials for diagnostic and therapeutic purposes.
Collapse
|
5
|
Soleimanizadeh M, Jalali Javaran M, Bagheri A, Behdani M. Apoplastic Production of Recombinant AntiVEGF Protein Using Plant-Virus Transient Expression Vector. Mol Biotechnol 2022; 64:1013-1021. [PMID: 35332419 DOI: 10.1007/s12033-022-00483-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 03/17/2022] [Indexed: 11/26/2022]
Abstract
Targeting of vascular endothelial growth factor (VEGF) using AntiVEGF can be a promising approach for angiogenesis inhibition and cancer therapy. In this study, we direct AntiVEGF recombinant protein accumulation to cucurbit plant apoplast using a suitable signal (Pr1b) sequence. After assembling the target gene construct and cloning into the expression vector, we infected the plants with the resulting pZYMV-AntiVEGF viral vector. Transcription of the target gene was confirmed with RT-PCR assays. The apoplast-targeted AntiVEGF recombinant protein was detected in infected plants by Dot-blot, western blot, and ELISA analysis. AntiVEGF protein accumulation in the apoplast resulted in levels of 1.2% of TSP (Total Soluble Protein) that demonstrated a two-order increase compared to the cytoplasm-targeted protein. After purification of AntiVEGF protein using aqueous two-phase system (ATPS), purified protein was analyzed with MTT assay. Our results reveal that production of biologically active and correctly processed apoplast-targeted AntiVEGF recombinant protein is possible in plant apoplast. The low level of cytoplasm-targeted AntiVEGF recombinant protein might result from the degradation of improperly folded protein.
Collapse
Affiliation(s)
- Mojgan Soleimanizadeh
- Department of Horticultural Science, Faculty of Agriculture and Natural Resources, University of Hormozgan, Bandar Abbas, Iran.
| | | | - Abdolreza Bagheri
- Department of Biotechnology and Plant Breeding, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mahdi Behdani
- Venom & Biotherapeutics Molecules Lab, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
6
|
Xie W, Marty DM, Xu J, Khatri N, Willie K, Moraes WB, Stewart LR. Simultaneous gene expression and multi-gene silencing in Zea mays using maize dwarf mosaic virus. BMC PLANT BIOLOGY 2021; 21:208. [PMID: 33952221 PMCID: PMC8097858 DOI: 10.1186/s12870-021-02971-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 04/13/2021] [Indexed: 05/28/2023]
Abstract
BACKGROUND Maize dwarf mosaic virus (MDMV), a member of the genus Potyvirus, infects maize and is non-persistently transmitted by aphids. Several plant viruses have been developed as tools for gene expression and gene silencing in plants. The capacity of MDMV for both gene expression and gene silencing were examined. RESULTS Infectious clones of an Ohio isolate of MDMV, MDMV OH5, were obtained, and engineered for gene expression only, and for simultaneous marker gene expression and virus-induced gene silencing (VIGS) of three endogenous maize target genes. Single gene expression in single insertion constructs and simultaneous expression of green fluorescent protein (GFP) and silencing of three maize genes in a double insertion construct was demonstrated. Constructs with GFP inserted in the N-terminus of HCPro were more stable than those with insertion at the N-terminus of CP in our study. Unexpectedly, the construct with two insertion sites also retained insertions at a higher rate than single-insertion constructs. Engineered MDMV expression and VIGS constructs were transmissible by aphids (Rhopalosiphum padi). CONCLUSIONS These results demonstrate that MDMV-based vector can be used as a tool for simultaneous gene expression and multi-gene silencing in maize.
Collapse
Affiliation(s)
- Wenshuang Xie
- Department of Plant Pathology, Ohio State University, OH, 44691, Wooster, USA
| | - Dee Marie Marty
- USDA-ARS Corn Soybean and Wheat Quality Research Unit, Wooster, OH, 44691, USA
| | - Junhuan Xu
- Department of Plant Pathology, Ohio State University, OH, 44691, Wooster, USA
| | - Nitika Khatri
- Department of Plant Pathology, Ohio State University, OH, 44691, Wooster, USA
| | - Kristen Willie
- USDA-ARS Corn Soybean and Wheat Quality Research Unit, Wooster, OH, 44691, USA
| | | | - Lucy R Stewart
- USDA-ARS Corn Soybean and Wheat Quality Research Unit, Wooster, OH, 44691, USA.
| |
Collapse
|
7
|
Kannan M, Zainal Z, Ismail I, Baharum SN, Bunawan H. Application of Reverse Genetics in Functional Genomics of Potyvirus. Viruses 2020; 12:v12080803. [PMID: 32722532 PMCID: PMC7472138 DOI: 10.3390/v12080803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/12/2020] [Accepted: 07/14/2020] [Indexed: 12/16/2022] Open
Abstract
Numerous potyvirus studies, including virus biology, transmission, viral protein function, as well as virus–host interaction, have greatly benefited from the utilization of reverse genetic techniques. Reverse genetics of RNA viruses refers to the manipulation of viral genomes, transfection of the modified cDNAs into cells, and the production of live infectious progenies, either wild-type or mutated. Reverse genetic technology provides an opportunity of developing potyviruses into vectors for improving agronomic traits in plants, as a reporter system for tracking virus infection in hosts or a production system for target proteins. Therefore, this review provides an overview on the breakthroughs achieved in potyvirus research through the implementation of reverse genetic systems.
Collapse
Affiliation(s)
- Maathavi Kannan
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia; (M.K.); (Z.Z.); (I.I.); (S.N.B.)
| | - Zamri Zainal
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia; (M.K.); (Z.Z.); (I.I.); (S.N.B.)
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, University Kebangsaan Malaysia, Bangi 43600, Malaysia
| | - Ismanizan Ismail
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia; (M.K.); (Z.Z.); (I.I.); (S.N.B.)
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, University Kebangsaan Malaysia, Bangi 43600, Malaysia
| | - Syarul Nataqain Baharum
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia; (M.K.); (Z.Z.); (I.I.); (S.N.B.)
| | - Hamidun Bunawan
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia; (M.K.); (Z.Z.); (I.I.); (S.N.B.)
- Correspondence: ; Tel.: +60-3-8921-4554
| |
Collapse
|
8
|
Utilization of infectious clones to visualize Cassava brown streak virus replication in planta and gain insights into symptom development. Virus Genes 2019; 55:825-833. [PMID: 31388891 PMCID: PMC6831539 DOI: 10.1007/s11262-019-01697-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 07/29/2019] [Indexed: 10/26/2022]
Abstract
Cassava brown streak disease (CBSD) is a leading cause of cassava yield losses across eastern and central Africa and is having a severe impact on food security across the region. Despite its importance, relatively little is known about the mechanisms behind CBSD viral infections. We have recently reported the construction of Cassava brown streak virus (CBSV) and Ugandan cassava brown streak virus (UCBSV) infectious clones (IC), which can be used to gain insights into the functions of viral proteins and sequences associated with symptom development. In this study, we perform the first reporter gene tagging of a CBSV IC, with the insertion of green fluorescent protein (GFP) sequence at two different genome positions. Nicotiana benthamiana infections with the CBSV_GFP ICs revealed active CBSV replication in inoculated leaves at 2-5 days post inoculation (dpi) and systemic leaves at 10-14 dpi. We also constructed the chimera CBSV_UCP IC, consisting of the CBSV genome with a UCBSV coat protein (CP) sequence replacement. N. benthamiana infections with CBSV_UCP revealed that the CBSV CP may be associated with high levels of viral accumulation and necrosis development during early infection. These initial manipulations pave the way for U/CBSV ICs to be used to understand U/CBSV biology that will inform vital CBSD control strategies.
Collapse
|
9
|
Mei Y, Liu G, Zhang C, Hill JH, Whitham SA. A sugarcane mosaic virus vector for gene expression in maize. PLANT DIRECT 2019; 3:e00158. [PMID: 31410390 PMCID: PMC6686331 DOI: 10.1002/pld3.158] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 07/18/2019] [Indexed: 05/09/2023]
Abstract
Zea mays L. ssp. mays (maize) is an important crop plant as well as model system for genetics and plant biology. The ability to select among different virus-based platforms for transient gene silencing or protein expression experiments is expected to facilitate studies of gene function in maize and complement experiments with stable transgenes. Here, we describe the development of a sugarcane mosaic virus (SCMV) vector for the purpose of protein expression in maize. An infectious SCMV cDNA clone was constructed, and heterologous genetic elements were placed between the protein 1 (P1) and helper component-proteinase (HC-Pro) cistrons in the SCMV genome. Recombinant SCMV clones engineered to express green fluorescent protein (GFP), β-glucuronidase (GUS), or bialaphos resistance (BAR) protein were introduced into sweet corn (Golden × Bantam) plants. Documentation of developmental time courses spanning maize growth from seedling to tasseling showed that the SCMV genome tolerates insertion of foreign sequences of at least 1,809 nucleotides at the P1/HC-Pro junction. Analysis of insert stability showed that the integrity of GFP and BAR coding sequences was maintained longer than that of the much larger GUS coding sequence. The SCMV isolate from which the expression vector is derived is able to infect several important maize inbred lines, suggesting that this SCMV vector has potential to be a valuable tool for gene functional analysis in a broad range of experimentally important maize genotypes.
Collapse
Affiliation(s)
- Yu Mei
- Department of Plant Pathology and MicrobiologyIowa State UniversityAmesIowa
| | - Guanjun Liu
- State Key Laboratory of Tree Genetics and BreedingNortheast Forestry UniversityHarbinChina
| | - Chunquan Zhang
- Department of AgricultureAlcorn State UniversityLormanMississippi
| | - John H. Hill
- Department of Plant Pathology and MicrobiologyIowa State UniversityAmesIowa
| | - Steven A. Whitham
- Department of Plant Pathology and MicrobiologyIowa State UniversityAmesIowa
| |
Collapse
|
10
|
Tomlinson KR, Pablo‐Rodriguez JL, Bunawan H, Nanyiti S, Green P, Miller J, Alicai T, Seal SE, Bailey AM, Foster GD. Cassava brown streak virus Ham1 protein hydrolyses mutagenic nucleotides and is a necrosis determinant. MOLECULAR PLANT PATHOLOGY 2019; 20:1080-1092. [PMID: 31154674 PMCID: PMC6640186 DOI: 10.1111/mpp.12813] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Cassava brown streak disease (CBSD) is a leading cause of cassava losses in East and Central Africa, and is currently having a severe impact on food security. The disease is caused by two viruses within the Potyviridae family: Cassava brown streak virus (CBSV) and Ugandan cassava brown streak virus (UCBSV), which both encode atypical Ham1 proteins with highly conserved inosine triphosphate (ITP) pyrophosphohydrolase (ITPase) domains. ITPase proteins are widely encoded by plant, animal, and archaea. They selectively hydrolyse mutagenic nucleotide triphosphates to prevent their incorporation into nucleic acid and thereby function to reduce mutation rates. It has previously been hypothesized that U/CBSVs encode Ham1 proteins with ITPase activity to reduce viral mutation rates during infection. In this study, we investigate the potential roles of U/CBSV Ham1 proteins. We show that both CBSV and UCBSV Ham1 proteins have ITPase activities through in vitro enzyme assays. Deep-sequencing experiments found no evidence of the U/CBSV Ham1 proteins providing mutagenic protection during infections of Nicotiana hosts. Manipulations of the CBSV_Tanza infectious clone were performed, including a Ham1 deletion, ITPase point mutations, and UCBSV Ham1 chimera. Unlike severely necrotic wild-type CBSV_Tanza infections, infections of Nicotiana benthamiana with the manipulated CBSV infectious clones do not develop necrosis, indicating that that the CBSV Ham1 is a necrosis determinant. We propose that the presence of U/CBSV Ham1 proteins with highly conserved ITPase motifs indicates that they serve highly selectable functions during infections of cassava and may represent a euphorbia host adaptation that could be targeted in antiviral strategies.
Collapse
Affiliation(s)
- Katie R. Tomlinson
- School of Biological SciencesUniversity of BristolLife Sciences Building, 24 Tyndall Avenue BristolBS8 1TQUK
| | - José Luis Pablo‐Rodriguez
- School of Biological SciencesUniversity of BristolLife Sciences Building, 24 Tyndall Avenue BristolBS8 1TQUK
- CINVESTAVCampus IrapuatoMexico
| | - Hamidun Bunawan
- School of Biological SciencesUniversity of BristolLife Sciences Building, 24 Tyndall Avenue BristolBS8 1TQUK
- Institute of Systems Biology (INBIOSIS)Universiti Kebangsaan Malaysia, UKMBangi43600Selangor Darul EhsanMalaysia
| | - Sarah Nanyiti
- School of Biological SciencesUniversity of BristolLife Sciences Building, 24 Tyndall Avenue BristolBS8 1TQUK
- National Crops Resources Research Institute (NaCRRI)P.O. Box 7084KampalaUganda
| | - Patrick Green
- School of Biological SciencesUniversity of BristolLife Sciences Building, 24 Tyndall Avenue BristolBS8 1TQUK
| | - Josie Miller
- School of Biological SciencesUniversity of BristolLife Sciences Building, 24 Tyndall Avenue BristolBS8 1TQUK
| | - Titus Alicai
- National Crops Resources Research Institute (NaCRRI)P.O. Box 7084KampalaUganda
| | - Susan E. Seal
- Natural Resources InstituteChatham Maritime, KentME4 4TBUK
| | - Andy M. Bailey
- School of Biological SciencesUniversity of BristolLife Sciences Building, 24 Tyndall Avenue BristolBS8 1TQUK
| | - Gary D. Foster
- School of Biological SciencesUniversity of BristolLife Sciences Building, 24 Tyndall Avenue BristolBS8 1TQUK
| |
Collapse
|
11
|
Narayanan KB, Han SS. Recombinant helical plant virus-based nanoparticles for vaccination and immunotherapy. Virus Genes 2018; 54:623-637. [PMID: 30008053 DOI: 10.1007/s11262-018-1583-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 06/23/2018] [Indexed: 01/15/2023]
Abstract
Plant virus-based nanoparticles (PVNs) are self-assembled capsid proteins of plant viruses, and can be virus-like nanoparticles (VLPs) or virus nanoparticles (VNPs). Plant viruses showing helical capsid symmetry are used as a versatile platform for the presentation of multiple copies of well-arrayed immunogenic antigens of various disease pathogens. Helical PVNs are non-infectious, biocompatible, and naturally immunogenic, and thus, they are suitable antigen carriers for vaccine production and can trigger humoral and/or cellular immune responses. Furthermore, recombinant PVNs as vaccines and adjuvants can be expressed in prokaryotic and eukaryotic systems, and plant expression systems can be used to produce cost-effective antigenic peptides on the surfaces of recombinant helical PVNs. This review discusses various recombinant helical PVNs based on different plant viral capsid shells that have been developed as prophylactic and/or therapeutic vaccines against bacterial, viral, and protozoal diseases, and cancer.
Collapse
Affiliation(s)
- Kannan Badri Narayanan
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
- Department of Nano, Medical & Polymer Materials, College of Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | - Sung Soo Han
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk, 38541, Republic of Korea.
- Department of Nano, Medical & Polymer Materials, College of Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk, 38541, Republic of Korea.
| |
Collapse
|
12
|
Leibman D, Kravchik M, Wolf D, Haviv S, Weissberg M, Ophir R, Paris HS, Palukaitis P, Ding S, Gaba V, Gal‐On A. Differential expression of cucumber RNA-dependent RNA polymerase 1 genes during antiviral defence and resistance. MOLECULAR PLANT PATHOLOGY 2018; 19:300-312. [PMID: 27879040 PMCID: PMC6637986 DOI: 10.1111/mpp.12518] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 11/20/2016] [Accepted: 11/20/2016] [Indexed: 05/21/2023]
Abstract
RNA-dependent RNA polymerase 1 (RDR1) plays a crucial role in plant defence against viruses. In this study, it was observed that cucumber, Cucumis sativus, uniquely encodes a small gene family of four RDR1 genes. The cucumber RDR1 genes (CsRDR1a, CsRDR1b and duplicated CsRDR1c1/c2) shared 55%-60% homology in their encoded amino acid sequences. In healthy cucumber plants, RDR1a and RDR1b transcripts were expressed at higher levels than transcripts of RDR1c1/c2, which were barely detectable. The expression of all four CsRDR1 genes was induced by virus infection, after which the expression level of CsRDR1b increased 10-20-fold in several virus-resistant cucumber cultivars and in a broad virus-resistant transgenic cucumber line expressing a high level of transgene small RNAs, all without alteration in salicylic acid (SA) levels. By comparison, CsRDR1c1/c2 genes were highly induced (25-1300-fold) in susceptible cucumber cultivars infected with RNA or DNA viruses. Inhibition of RDR1c1/c2 expression led to increased virus accumulation. Ectopic application of SA induced the expression of cucumber RDR1a, RDR1b and RDRc1/c2 genes. A constitutive high level of RDR1b gene expression independent of SA was found to be associated with broad virus resistance. These findings show that multiple RDR1 genes are involved in virus resistance in cucumber and are regulated in a coordinated fashion with different expression profiles.
Collapse
Affiliation(s)
- Diana Leibman
- Department of Plant Pathology and Weed ResearchAgricultural Research Organization, Volcani CenterBet Dagan50250Israel
| | - Michael Kravchik
- Department of Plant Pathology and Weed ResearchAgricultural Research Organization, Volcani CenterBet Dagan50250Israel
| | - Dalia Wolf
- Department of Vegetable and Field CropsAgricultural Research Organization, Volcani CenterBet Dagan50250Israel
| | - Sabrina Haviv
- Department of Plant Pathology and Weed ResearchAgricultural Research Organization, Volcani CenterBet Dagan50250Israel
| | - Mira Weissberg
- Department of Fruit Tree SciencesAgricultural Research Organization, Volcani CenterBet Dagan50250Israel
| | - Ron Ophir
- Department of Fruit Tree SciencesAgricultural Research Organization, Volcani CenterBet Dagan50250Israel
| | - Harry S. Paris
- Department of Vegetable Crops and Plant GeneticsAgricultural Research Organization, Newe Ya'ar Research Center, PO Box 1021RamatYishay30‐095Israel
| | - Peter Palukaitis
- Department of Horticultural SciencesSeoul Women's UniversityNowon‐guSeoul01797South Korea
| | - Shou‐Wei Ding
- Department of Plant Pathology and Microbiology & Institute for Integrative Genome BiologyUniversity of CaliforniaRiverside, CA92521USA
| | - Victor Gaba
- Department of Plant Pathology and Weed ResearchAgricultural Research Organization, Volcani CenterBet Dagan50250Israel
| | - Amit Gal‐On
- Department of Plant Pathology and Weed ResearchAgricultural Research Organization, Volcani CenterBet Dagan50250Israel
| |
Collapse
|
13
|
Abstract
Potyviruses are plant viruses with elongated, flexuous virions amenable to modifications in the only viral structural protein, the coat protein (CP). Out of the several theoretically possible modifications to the CP, the one most exploited for peptide presentation is the genetic fusion of the peptide-to-be-expressed, to the CP N-terminus. Successful high-level expression of the modified CP has been achieved this way. The purified recombinant viral particles incorporate most, if not all, the properties of the expressed peptides. For many purposes, the recombinant virus particles present in extracts of infected plants should be purified for further use. Procedures for carrying out the whole process, from cloning to purification are described in the chapter.
Collapse
|
14
|
Narayanan KB, Han SS. Helical plant viral nanoparticles-bioinspired synthesis of nanomaterials and nanostructures. BIOINSPIRATION & BIOMIMETICS 2017; 12:031001. [PMID: 28524069 DOI: 10.1088/1748-3190/aa6bfd] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Viral nanotechnology is revolutionizing the biomimetic and bioinspired synthesis of novel nanomaterials. Bottom-up nanofabrication by self-assembly of individual molecular components of elongated viral nanoparticles (VNPs) and virus-like particles (VLPs) has resulted in the production of superior materials and structures in the nano(bio)technological fields. Viral capsids are attractive materials, because of their symmetry, monodispersity, and polyvalency. Helical VNPs/VLPs are unique prefabricated nanoscaffolds with large surface area to volume ratios and high aspect ratios, and enable the construction of exquisite supramolecular nanostructures. This review discusses the genetic and chemical modifications of outer, inner, and interface surfaces of a viral protein cage that will almost certainly lead to the development of superior next-generation targeted drug delivery and imaging systems, biosensors, energy storage and optoelectronic devices, therapeutics, and catalysts.
Collapse
Affiliation(s)
- Kannan Badri Narayanan
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea. Department of Nano, Medical & Polymer Materials, College of Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| | | |
Collapse
|
15
|
Błażejewska K, Kapusta M, Zielińska E, Tukaj Z, Chincinska IA. Mature Luffa Leaves ( Luffa cylindrica L.) as a Tool for Gene Expression Analysis by Agroinfiltration. FRONTIERS IN PLANT SCIENCE 2017; 8:228. [PMID: 28270826 PMCID: PMC5318407 DOI: 10.3389/fpls.2017.00228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 02/06/2017] [Indexed: 05/23/2023]
Abstract
We exploited the potential of cucurbits for ectopic gene expression. Agroinfiltration is a simple and commonly used method to obtain transient expression of foreign genes in plants. In contrast to in vitro transformation techniques, agroinfiltration can be used for genetic modification of mature plant tissues. Although the cucurbits are commonly used as model plants for molecular biology and biotechnology studies, to date there are no literature sources on the possibility of transient gene expression in mature cucurbit tissues. Our research has shown that mature leaves of Luffa cylindrica L. (luffa), in contrast to other cucurbit species, can be successfully transiently transformed with Agrobacterium tumefaciens. We efficiently transformed luffa leaves with a reporter gene encoding β-glucuronidase (GUS). The GUS activity in transiently transformed leaf tissues was detected within 24 h after the infiltration with bacteria. Additionally, we have shown that the activity of a transiently expressed the GUS gene can be monitored directly in the EDTA-exudates collected from the cut petioles of the agroinfiltrated leaves. The results suggest that luffa leaves can be useful as a plant expression system for studies of physiological and biochemical processes in cucurbits.
Collapse
Affiliation(s)
- Kamila Błażejewska
- Department of Plant Physiology and Biotechnology, Faculty of Biology, University of GdańskGdańsk, Poland
| | - Małgorzata Kapusta
- Department of Plant Cytology and Embryology, Faculty of Biology, University of GdańskGdańsk, Poland
| | - Elżbieta Zielińska
- Department of Plant Physiology and Biotechnology, Faculty of Biology, University of GdańskGdańsk, Poland
| | - Zbigniew Tukaj
- Department of Plant Physiology and Biotechnology, Faculty of Biology, University of GdańskGdańsk, Poland
| | - Izabela A. Chincinska
- Department of Plant Physiology and Biotechnology, Faculty of Biology, University of GdańskGdańsk, Poland
| |
Collapse
|
16
|
Seo JK, Choi HS, Kim KH. Engineering of soybean mosaic virus as a versatile tool for studying protein-protein interactions in soybean. Sci Rep 2016; 6:22436. [PMID: 26926710 PMCID: PMC4772626 DOI: 10.1038/srep22436] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 02/15/2016] [Indexed: 12/29/2022] Open
Abstract
Transient gene expression approaches are valuable tools for rapid introduction of genes of interest and characterization of their functions in plants. Although agroinfiltration is the most effectively and routinely used method for transient expression of multiple genes in various plant species, this approach has been largely unsuccessful in soybean. In this study, we engineered soybean mosaic virus (SMV) as a dual-gene delivery vector to simultaneously deliver and express two genes in soybean cells. We further show the application of the SMV-based dual vector for a bimolecular fluorescence complementation assay to visualize in vivo protein-protein interactions in soybean and for a co-immunoprecipitation assay to identify cellular proteins interacting with SMV helper component protease. This approach provides a rapid and cost-effective tool for transient introduction of multiple traits into soybean and for in vivo characterization of the soybean cellular protein interaction network.
Collapse
Affiliation(s)
- Jang-Kyun Seo
- Crop Protection Division, National Academy of Agricultural Science, Rural Development Administration, Wanju 565-851, Republic of Korea
| | - Hong-Soo Choi
- Crop Protection Division, National Academy of Agricultural Science, Rural Development Administration, Wanju 565-851, Republic of Korea
| | - Kook-Hyung Kim
- Department of Agricultural Biotechnology and Plant Genomics and Breeding Institute, Seoul National University, Seoul 151-921, Republic of Korea
| |
Collapse
|
17
|
Kang M, Seo JK, Choi H, Choi HS, Kim KH. Establishment of a Simple and Rapid Gene Delivery System for Cucurbits by Using Engineered of Zucchini yellow mosaic virus. THE PLANT PATHOLOGY JOURNAL 2016; 32:70-6. [PMID: 26889118 PMCID: PMC4755678 DOI: 10.5423/ppj.nt.08.2015.0173] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 09/30/2015] [Accepted: 10/02/2015] [Indexed: 05/06/2023]
Abstract
The infectious full-length cDNA clone of zucchini yellow mosaic virus (ZYMV) isolate PA (pZYMV-PA), which was isolated from pumpkin, was constructed by utilizing viral transcription and processing signals to produce infectious in vivo transcripts. Simple rub-inoculation of plasmid DNAs of pZYMV-PA was successful to cause infection of zucchini plants (Cucurbita pepo L.). We further engineered this infectious cDNA clone of ZYMV as a viral vector for systemic expression of heterologous proteins in cucurbits. We successfully expressed two reporter genes including gfp and bar in zucchini plants by simple rub-inoculation of plasmid DNAs of the ZYMV-based expression constructs. Our method of the ZYMV-based viral vector in association with the simple rub-inoculation provides an easy and rapid approach for introduction and evaluation of heterologous genes in cucurbits.
Collapse
Affiliation(s)
- Minji Kang
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 151-921,
Korea
| | - Jang-Kyun Seo
- Crop Protection Division, National Academy of Agricultural Science, Wanju 565-852,
Korea
| | - Hoseong Choi
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 151-921,
Korea
| | - Hong-Soo Choi
- Crop Protection Division, National Academy of Agricultural Science, Wanju 565-852,
Korea
| | - Kook-Hyung Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 151-921,
Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul 151-921,
Korea
- Corresponding author. Phone) +82-2-880-4677, FAX) +82-2-873-2317, E-mail)
| |
Collapse
|
18
|
Maistrenko OM, Luchakivska YS, Zholobak NM, Spivak MY, Kuchuk MV. Obtaining of the transgenic Heliantus tuberosus L. plants, callus and “hairy” root cultures able to express the recombinant human interferon alpha-2b gene. CYTOL GENET+ 2015. [DOI: 10.3103/s0095452715050060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
19
|
Majer E, Navarro JA, Daròs JA. A potyvirus vector efficiently targets recombinant proteins to chloroplasts, mitochondria and nuclei in plant cells when expressed at the amino terminus of the polyprotein. Biotechnol J 2015; 10:1792-802. [PMID: 26147811 DOI: 10.1002/biot.201500042] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 05/11/2015] [Accepted: 07/03/2015] [Indexed: 01/29/2023]
Abstract
Plant virus-based expression systems allow quick and efficient production of recombinant proteins in plant biofactories. Among them, a system derived from tobacco etch virus (TEV; genus potyvirus) permits coexpression of equimolar amounts of several recombinant proteins. This work analyzed how to target recombinant proteins to different subcellular localizations in the plant cell using this system. We constructed TEV clones in which green fluorescent protein (GFP), with a chloroplast transit peptide (cTP), a nuclear localization signal (NLS) or a mitochondrial targeting peptide (mTP) was expressed either as the most amino-terminal product or embedded in the viral polyprotein. Results showed that cTP and mTP mediated efficient translocation of GFP to the corresponding organelle only when present at the amino terminus of the viral polyprotein. In contrast, the NLS worked efficiently at both positions. Viruses expressing GFP in the amino terminus of the viral polyprotein produced milder symptoms. Untagged GFPs and cTP and NLS tagged amino-terminal GFPs accumulated to higher amounts in infected tissues. Finally, viral progeny from clones with internal GFPs maintained the extra gene better. These observations will help in the design of potyvirus-based vectors able to coexpress several proteins while targeting different subcellular localizations, as required in plant metabolic engineering.
Collapse
Affiliation(s)
- Eszter Majer
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia), Valencia, Spain
| | - José-Antonio Navarro
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia), Valencia, Spain
| | - José-Antonio Daròs
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia), Valencia, Spain.
| |
Collapse
|
20
|
Gerasymenko IM, Mazur MG, Sheludko YV, Kuchuk NV. Multiplex PCR assay for detection of human somatotropin and interferon alpha2b genes in plant material. CYTOL GENET+ 2015. [DOI: 10.3103/s0095452715030068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
21
|
Abstract
Potyvirus is the largest genus of plant viruses causing significant losses in a wide range of crops. Potyviruses are aphid transmitted in a nonpersistent manner and some of them are also seed transmitted. As important pathogens, potyviruses are much more studied than other plant viruses belonging to other genera and their study covers many aspects of plant virology, such as functional characterization of viral proteins, molecular interaction with hosts and vectors, structure, taxonomy, evolution, epidemiology, and diagnosis. Biotechnological applications of potyviruses are also being explored. During this last decade, substantial advances have been made in the understanding of the molecular biology of these viruses and the functions of their various proteins. After a general presentation on the family Potyviridae and the potyviral proteins, we present an update of the knowledge on potyvirus multiplication, movement, and transmission and on potyvirus/plant compatible interactions including pathogenicity and symptom determinants. We end the review providing information on biotechnological applications of potyviruses.
Collapse
|
22
|
Lico C, Santi L, Twyman RM, Pezzotti M, Avesani L. The use of plants for the production of therapeutic human peptides. PLANT CELL REPORTS 2012; 31:439-51. [PMID: 22218674 DOI: 10.1007/s00299-011-1215-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 12/13/2011] [Accepted: 12/13/2011] [Indexed: 05/17/2023]
Abstract
Peptides have unique properties that make them useful drug candidates for diverse indications, including allergy, infectious disease and cancer. Some peptides are intrinsically bioactive, while others can be used to induce precise immune responses by defining a minimal immunogenic region. The limitations of peptides, such as metabolic instability, short half-life and low immunogenicity, can be addressed by strategies such as multimerization or fusion to carriers, to improve their pharmacological properties. The remaining major drawback is the cost of production using conventional chemical synthesis, which is also difficult to scale-up. Over the last 15 years, plants have been shown to produce bioactive and immunogenic peptides economically and with the potential for large-scale synthesis. The production of peptides in plants is usually achieved by the genetic fusion of the corresponding nucleotide sequence to that of a carrier protein, followed by stable nuclear or plastid transformation or transient expression using bacterial or viral vectors. Chimeric plant viruses or virus-like particles can also be used to display peptide antigens, allowing the production of polyvalent vaccine candidates. Here we review progress in the field of plant-derived peptides over the last 5 years, addressing new challenges for diverse pathologies.
Collapse
Affiliation(s)
- Chiara Lico
- Laboratorio di Biotecnologie, Unità Tecnica BIORAD, ENEA CR Casaccia, 00123 Rome, Italy
| | | | | | | | | |
Collapse
|
23
|
Recombinant cytokines from plants. Int J Mol Sci 2011; 12:3536-52. [PMID: 21747693 PMCID: PMC3131577 DOI: 10.3390/ijms12063536] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Revised: 05/11/2011] [Accepted: 05/27/2011] [Indexed: 11/21/2022] Open
Abstract
Plant-based platforms have been successfully applied for the last two decades for the efficient production of pharmaceutical proteins. The number of commercialized products biomanufactured in plants is, however, rather discouraging. Cytokines are small glycosylated polypeptides used in the treatment of cancer, immune disorders and various other related diseases. Because the clinical use of cytokines is limited by high production costs they are good candidates for plant-made pharmaceuticals. Several research groups explored the possibilities of cost-effective production of animal cytokines in plant systems. This review summarizes recent advances in this field.
Collapse
|
24
|
Luchakivskaya Y, Kishchenko O, Gerasymenko I, Olevinskaya Z, Simonenko Y, Spivak M, Kuchuk M. High-level expression of human interferon alpha-2b in transgenic carrot (Daucus carota L.) plants. PLANT CELL REPORTS 2011; 30:407-15. [PMID: 21046110 DOI: 10.1007/s00299-010-0942-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Revised: 09/27/2010] [Accepted: 10/19/2010] [Indexed: 05/25/2023]
Abstract
In this study, we report the obtaining of carrot plants expressing human interferon alpha-2b via Agrobacterium-mediated transformation using two vector constructs containing the sequence coding for interferon gene fused with Nicotiana plumbagenifolia calreticulin apoplast targeting signal driven by 35S CaMV promoter and root-specific Mll promoter. The human interferon alpha-2b gene was correctly translated in carrot plants according to Western blot analysis. The recombinant protein exhibited antiviral activity in vitro by inhibition of vesicular stomatitis virus replication in established piglet testicular cells. The results demonstrated the higher activity of interferon accumulated in carrot plants for young leaves (up to 50.7 × 10(3) IU/g FW) compared to the mature ones probably due to the degradation-susceptible nature of this protein. The taproot-expressing system could have also provided the sufficient protein amounts (up to 16.5 × 10(3) IU/g FW) and could possibly be used for generating interferon alpha-2b protein in planta for preventing and curing infectious diseases.
Collapse
Affiliation(s)
- Yu Luchakivskaya
- Institute of Cell Biology and Genetic Engineering, National Academy of Sciences of Ukraine, Zabolotnogo str 148, Kyiv 03680, Ukraine.
| | | | | | | | | | | | | |
Collapse
|
25
|
Sindarovska YR, Gerasymenko IM, Sheludko YV, Olevinskaya ZM, Spivak NY, Kuchuk NV. Production of human interferon ALPHA 2b in plants of Nicotiana excelsior by Agrobacterium-mediated transient expression. CYTOL GENET+ 2010. [DOI: 10.3103/s0095452710050099] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
26
|
Fukuzawa N, Tabayashi N, Okinaka Y, Furusawa R, Furuta K, Kagaya U, Matsumura T. Production of biologically active Atlantic salmon interferon in transgenic potato and rice plants. J Biosci Bioeng 2010; 110:201-7. [DOI: 10.1016/j.jbiosc.2010.02.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2010] [Revised: 02/02/2010] [Accepted: 02/06/2010] [Indexed: 10/19/2022]
|
27
|
Zhou B, Zhang Y, Wang X, Dong J, Wang B, Han C, Yu J, Li D. Oral administration of plant-based rotavirus VP6 induces antigen-specific IgAs, IgGs and passive protection in mice. Vaccine 2010; 28:6021-7. [DOI: 10.1016/j.vaccine.2010.06.094] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2009] [Revised: 06/24/2010] [Accepted: 06/29/2010] [Indexed: 02/03/2023]
|
28
|
A novel natural mutation in HC-Pro responsible for mild symptomatology of Zucchini yellow mosaic virus (ZYMV, Potyvirus) in cucurbits. Arch Virol 2010; 155:397-401. [DOI: 10.1007/s00705-009-0569-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2009] [Accepted: 11/04/2009] [Indexed: 10/19/2022]
|
29
|
Mbanzibwa DR, Tian Y, Mukasa SB, Valkonen JPT. Cassava brown streak virus (Potyviridae) encodes a putative Maf/HAM1 pyrophosphatase implicated in reduction of mutations and a P1 proteinase that suppresses RNA silencing but contains no HC-Pro. J Virol 2009; 83:6934-40. [PMID: 19386713 PMCID: PMC2698530 DOI: 10.1128/jvi.00537-09] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2009] [Accepted: 04/15/2009] [Indexed: 11/20/2022] Open
Abstract
The complete positive-sense single-stranded RNA genome of Cassava brown streak virus (CBSV; genus Ipomovirus; Potyviridae) was found to consist of 9,069 nucleotides and predicted to produce a polyprotein of 2,902 amino acids. It was lacking helper-component proteinase but contained a single P1 serine proteinase that strongly suppressed RNA silencing. Besides the exceptional structure of the 5'-proximal part of the genome, CBSV also contained a Maf/HAM1-like sequence (678 nucleotides, 226 amino acids) recombined between the replicase and coat protein domains in the 3'-proximal part of the genome, which is highly conserved in Potyviridae. HAM1 was flanked by consensus proteolytic cleavage sites for ipomovirus NIaPro cysteine proteinase. Homology of CBSV HAM1 with cellular Maf/HAM1 pyrophosphatases suggests that it may intercept noncanonical nucleoside triphosphates to reduce mutagenesis of viral RNA.
Collapse
Affiliation(s)
- Deusdedith R Mbanzibwa
- Department of Applied Biology, University of Helsinki, P.O. Box 27, Helsinki FIN-00014, Finland
| | | | | | | |
Collapse
|
30
|
Seo JK, Lee HG, Kim KH. Systemic gene delivery into soybean by simple rub-inoculation with plasmid DNA of a Soybean mosaic virus-based vector. Arch Virol 2008; 154:87-99. [PMID: 19096905 DOI: 10.1007/s00705-008-0286-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2008] [Accepted: 11/17/2008] [Indexed: 10/21/2022]
Abstract
Plant virus-based vectors provide attractive and valuable tools for conventional transgenic technology and gene function studies in plants. In the present study, we established the infectivity of intact plasmid DNA of Soybean mosaic virus (SMV) cDNA upon simple rub-inoculation of soybean leaves by utilizing viral transcription and processing signals to produce infectious in vivo transcripts. Furthermore, we engineered this SMV cDNA clone as a gene delivery vector for systemic expression of foreign proteins in soybean. Using this SMV-based vector, several genes with different biological activities were successfully expressed and stably maintained following serial plant passage in soybean. Thus, DNA-mediated gene delivery using this SMV-based vector provides a rapid and cost-effective approach for the overproduction of valuable proteins and for the evaluation of new traits in soybean after simple rub-inoculation onto leaves.
Collapse
Affiliation(s)
- Jang-Kyun Seo
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | | | | |
Collapse
|
31
|
Kelloniemi J, Mäkinen K, Valkonen JPT. Three heterologous proteins simultaneously expressed from a chimeric potyvirus: infectivity, stability and the correlation of genome and virion lengths. Virus Res 2008; 135:282-91. [PMID: 18511144 DOI: 10.1016/j.virusres.2008.04.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2007] [Revised: 03/25/2008] [Accepted: 04/07/2008] [Indexed: 01/24/2023]
Abstract
Three heterologous proteins were simultaneously expressed from a chimeric potyvirus Potato virus A (PVA) in Nicotiana benthamiana. The genes for green fluorescent protein of Aequoria victoriae ("G"; 714 nucleotides, nt), luciferase of Renilla reniformis ("L", 933 nt) and beta-glucuronidase of Escherichia coli ("U", 1806 nt) were inserted into the engineered cloning sites at the N-terminus of the P1 domain, the junction of P1 and helper component protein (HC-Pro), and the junction of the viral replicase (NIb) and coat protein (CP), respectively, in an infectious PVA cDNA. The proteins were expressed as part of the viral polyprotein and subsequently released by cleavage at the flanking proteolytic cleavage sites by P1 (one site) or the NIa-Pro proteinase (other sites). The engineered viral genome (pGLU, 13311 nt) was 39.2% larger than wild-type PVA (9565 nt) and infected plants of N. benthamiana systemically. pGLU was stable and expressed all three heterologous proteins, also following the second infection cycle initiated by sap-inoculation of new plants with the progeny viruses. The gene for GUS showed some inherent instabilities, as also reported in other studies. Accumulation of pGLU in infected leaves was lower by a magnitude as compared to the vector viruses pG0U and p0LU used to express two heterologous proteins. Hence, pGLU may have reached the maximum genome size that can still function and complete the PVA infection cycle. Examination of virions by electron microscopy indicated that the virion lengths of PVA chimera with various numbers of inserts were directly proportional to their genome lengths.
Collapse
Affiliation(s)
- Jani Kelloniemi
- Department of Applied Biology, P.O. Box 27, FIN-00014 University of Helsinki, Finland
| | | | | |
Collapse
|
32
|
Song L, Zhao DG, Wu YJ, Li Y. Transient expression of chicken alpha interferon gene in lettuce. J Zhejiang Univ Sci B 2008; 9:351-5. [PMID: 18500773 PMCID: PMC2367372 DOI: 10.1631/jzus.b0710596] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2007] [Accepted: 03/18/2008] [Indexed: 11/11/2022]
Abstract
We investigated the possibility of producing chicken alpha interferon (ChIFN-alpha) in transgenic plants. The cDNA encoding ChIFN-alpha was introduced into lettuce (Lactuca sativa L.) plants by using an agro-infiltration transient expression system. The ChIFN-alpha gene was correctly transcribed and translated in the lettuce plants according to RT-PCR and ELISA assays. Recombinant protein exhibited antiviral activity in vitro by inhibition of vesicular stomatitis virus (VSV) replication on chicken embryonic fibroblast (CEF). The results demonstrate that biologically active avian cytokine with potential pharmaceutical applications could be expressed in transgenic lettuce plants and that it is possible to generate interferon protein in forage plants for preventing infectious diseases of poultry.
Collapse
Affiliation(s)
- Li Song
- Guizhou Key Laboratory of Ago-Bioengineering, Guizhou University, Guiyang 550025, China
- Ministry of Education Key Laboratory of Green Pesticide and Ago-Bioengineering, Guizhou University, Guiyang 550025, China
| | - De-gang Zhao
- Guizhou Key Laboratory of Ago-Bioengineering, Guizhou University, Guiyang 550025, China
- College of Life Sciences, Guizhou University, Guiyang 550025, China
| | - Yong-jun Wu
- College of Life Sciences, Guizhou University, Guiyang 550025, China
| | - Yi Li
- Department of Plant Science, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
33
|
Chen CC, Chen TC, Raja JAJ, Chang CA, Chen LW, Lin SS, Yeh SD. Effectiveness and stability of heterologous proteins expressed in plants by Turnip mosaic virus vector at five different insertion sites. Virus Res 2007; 130:210-27. [PMID: 17689817 DOI: 10.1016/j.virusres.2007.06.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2006] [Revised: 03/09/2007] [Accepted: 06/19/2007] [Indexed: 11/29/2022]
Abstract
The N-terminal (NT) regions of particular protein-coding sequences are generally used for in-frame insertion of heterologous open reading frames (ORFs) in potyviral vectors for protein expression in plants. An infectious cDNA clone of Turnip mosaic virus (TuMV) isolate YC5 was engineered at the generally used NT regions of HC-Pro and CP, and other possibly permissive sites to investigate their effectiveness to express the GFP (jellyfish green fluorescent protein) and Der p 5 (allergen from the dust mite, Dermatophagoides pteronyssinus) ORFs. The results demonstrated the permissiveness of the NT regions of P3, CIP and NIb to carry the ORFs and express the translates as part of the viral polyprotein, the processing of which released free-form proteins in the host cell milieu. However, these sites varied in their permissiveness to retain the ORFs intact and hence affect the heterologous protein expression. Moreover, strong influence of the inserted ORF and host plants in determining the permissiveness of a viral genomic context to stably carry the alien ORFs and hence to support their prolonged expression was also noticed. In general, the engineered sites were relatively more permissive to the GFP ORF than to the Der p 5 ORF. Among the hosts, the local lesion host, Chenopodium quinoa Willd. showed the highest extent of support to TuMV to stably carry the heterologous ORFs at the engineered sites and the protein expression therefrom. Among the systemic hosts, Nicotiana benthamiana Domin proved more supportive to TuMV to carry and express the heterologous ORFs than the Brassica hosts, whereas the protein expression levels were significantly higher and more stable in the plants of Brassica campestris L. var. chinensis and B. campestris L. var. ching-geeng than those in the plants of B. juncea L. and B. campestris L. var. pekinensis.
Collapse
Affiliation(s)
- Chin-Chih Chen
- Department of Plant Pathology, National Chung-Hsing University, Taichung 40227, Taiwan, ROC
| | | | | | | | | | | | | |
Collapse
|
34
|
Shiboleth YM, Haronsky E, Leibman D, Arazi T, Wassenegger M, Whitham SA, Gaba V, Gal-On A. The conserved FRNK box in HC-Pro, a plant viral suppressor of gene silencing, is required for small RNA binding and mediates symptom development. J Virol 2007; 81:13135-48. [PMID: 17898058 PMCID: PMC2169133 DOI: 10.1128/jvi.01031-07] [Citation(s) in RCA: 145] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The helper component-proteinase (HC-Pro) protein of potyviruses is a suppressor of gene silencing and has been shown to elicit plant developmental-defect-like symptoms. In Zucchini yellow mosaic virus (ZYMV), a mutation in the highly conserved FR180NK box of HC-Pro to FI180NK causes attenuation of these symptoms. At 5 days postinoculation and before symptoms appear, virus accumulation, HC-Pro protein levels, and viral short interfering RNA (siRNA) levels are similar for the severe (FRNK) and attenuated (FINK) strains. At this stage, ZYMV(FRNK) caused greater accumulation of most microRNAs (miRNAs), and especially of their complementary miRNA "passenger" strands (miRNA*s), in systemically infected leaves than the attenuated ZYMV(FINK) did. HC-Pro(FRNK) specifically bound artificial siRNA and miRNA/miRNA* duplexes with a much higher affinity than the mutated HC-Pro(FINK). Further analysis of the mutant and wild-type HC-Pro proteins revealed that suppressor activity of the ZYMV HC(FINK) mutant was not diminished. However, the FINK mutation caused a loss of HC-Pro suppressor function in other potyviruses. Replacement of the second positively charged amino acid in the ZYMV FRNK box to result in FRNA also caused symptom attenuation and reduced small RNA duplex-binding affinity without loss of suppressor activity. Our data suggest that the highly conserved FRNK box in the HC-Pro of potyviruses is a probable point of contact with siRNA and miRNA duplexes. The interaction of the FRNK box with populations of miRNAs directly influences their accumulation levels and regulatory functions, resulting in symptom development.
Collapse
Affiliation(s)
- Yoel Moshe Shiboleth
- Department of Plant Pathology, Agricultural Research Organization, the Volcani Center, P.O. Box 6, Bet Dagan 50250, Israel
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Gal-On A. Zucchini yellow mosaic virus: insect transmission and pathogenicity -the tails of two proteins. MOLECULAR PLANT PATHOLOGY 2007; 8:139-50. [PMID: 20507486 DOI: 10.1111/j.1364-3703.2007.00381.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
UNLABELLED SUMMARY Taxonomy: Zucchini yellow mosaic virus (ZYMV) is a member of genus Potyvirus, family Potyviridae. ZYMV is a positive-strand RNA virus. Physical properties: Virions are flexuous filaments of 680-730 nm in length and 11-13 nm in diameter, composed of about 2000 subunits of a single 31-kDa protein (calculated). The genome RNA size is 9.6 kb covalently linked to a viral-encoded protein (the VPg) at the 5' end, and with a 3' poly A tail. The 5' end of the sequence is AU-rich (69%). Viral proteins: The genome is expressed as a polyprotein cleaved by three viral proteases and processed into ten putative mature proteins. The structural coat protein is processed from the carboxyl terminus of the polyprotein and is highly immunogenic. Host and symptoms: Natural and experimental infection has been reported mainly in the Cucurbitaceae. Experimental local lesion hosts include Chenopodium amaranticolour, C. quinoa and Gomphrena globosa. Some ZYMV strains cause symptomless infection as in Ranunculus sardous, Nicotiana benthamiana and Sesamum indicum. ZYMV causes stunting and major foliar deformation with dark green blisters and mosaics in cucurbit hosts, eventually developing a filamentous leaf phenotype. In general, symptoms are severe on cucurbit hosts and cause dramatic reductions in yields due to severe fruit deformation. The virus is present in all the plant tissues at relatively high concentrations (c. 0.1 mg/mL of purified virus per 1 g fresh leaf tissue). The most suitable species for maintenance and purification is Cucurbita pepo. TRANSMISSION ZYMV is efficiently transmitted by aphids in a non-persistent manner. The coat protein (CP) and the helper component-protease (HC-Pro) are required for aphid transmission, through the CP DAG motif and the HC-Pro KLSC and PTK motifs. Mechanical transmission is efficient both in the laboratory and naturally. Economic importance: ZYMV disease is a major constraint in the production of cucurbits world-wide. The virus can cause massive damage (to total loss) to cucurbit crops, and prevents the growth of some cucurbit crops in certain areas. Control of ZYMV requires the integration of conventional resistance and transgenic breeding along with cross-protection technologies.
Collapse
Affiliation(s)
- Amit Gal-On
- Department of Plant Pathology, Volcani Center-ARO, Bet-Dagan, 50250, Israel
| |
Collapse
|
36
|
Matsuo K, Hong JS, Tabayashi N, Ito A, Masuta C, Matsumura T. Development of Cucumber mosaic virus as a vector modifiable for different host species to produce therapeutic proteins. PLANTA 2007; 225:277-86. [PMID: 16821041 DOI: 10.1007/s00425-006-0346-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2006] [Accepted: 06/09/2006] [Indexed: 05/10/2023]
Abstract
We have developed Cucumber mosaic virus (CMV) as a plant virus vector especially for production of pharmaceutical proteins. The CMV vector is a vector modifiable for different host plants and does not require further engineering steps. CMV contains three genomic RNA molecules (RNAs 1-3) necessary for infectivity. With this system, instead of creating different vector constructs for each plant we use, we take advantage of the formation of pseudrecombinants between two CMV isolates by simply reassembling a vector construct (RNA 2 base) and an RNA molecule containing the host determinant (mostly RNA 3). In this study, the gene for acidic fibroblast growth factor (aFGF), one of the human cytokines, was cloned under the control of the subgenomic promoter for RNA 4A of the CMV-based vector, C2-H1. Infected Nicotiana benthamiana plants produced aFGF at levels up to 5-8% of the total soluble protein. The tobacco-produced aFGF was purified, and its biological activity was confirmed. Using this system, which provides a versatile and viable strategy for the production of therapeutic proteins in plants, we also demonstrated a high level of aFGF in Glycine max (soybean) and Arabidopsis thaliana.
Collapse
Affiliation(s)
- Kouki Matsuo
- National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1 Tsukisamu-Higashi, Sapporo, Japan
| | | | | | | | | | | |
Collapse
|
37
|
Chen TC, Huang CW, Kuo YW, Liu FL, Yuan CHH, Hsu HT, Yeh SD. Identification of Common Epitopes on a Conserved Region of NSs Proteins Among Tospoviruses of Watermelon silver mottle virus Serogroup. PHYTOPATHOLOGY 2006; 96:1296-1304. [PMID: 18943661 DOI: 10.1094/phyto-96-1296] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
ABSTRACT The NSs protein of Watermelon silver mottle virus (WSMoV) was expressed by a Zucchini yellow mosaic virus (ZYMV) vector in squash. The expressed NSs protein with a histidine tag and an additional NIa protease cleavage sequence was isolated by Ni(2+)-NTA resins as a free-form protein and further eluted after sodium dodecyl sulfate-polyacrylamide gel electrophoresis for production of rabbit antiserum and mouse monoclonal antibodies (MAbs). The rabbit antiserum strongly reacted with the NSs crude antigen of WSMoV and weakly reacted with that of a high-temperature-recovered gloxinia isolate (HT-1) of Capsicum chlorosis virus (CaCV), but not with that of Calla lily chlorotic spot virus (CCSV). In contrast, the MAbs reacted strongly with all crude NSs antigens of WSMoV, CaCV, and CCSV. Various deletions of the NSs open reading frame were constructed and expressed by ZYMV vector. Results indicate that all three MAbs target the 89- to 125-amino-acid (aa) region of WSMoV NSs protein. Two indispensable residues of cysteine and lysine were essential for MAbs recognition. Sequence comparison of the deduced MAbs-recognized region with the reported tospoviral NSs proteins revealed the presence of a consensus sequence VRKPGVKNTGCKFTMHNQIFNPN (denoted WNSscon), at the 98- to 120-aa position of NSs proteins, sharing 86 to 100% identities among those of WSMoV, CaCV, CCSV, and Peanut bud necrosis virus. A synthetic WNSscon peptide reacted with the MAbs and verified that the epitopes are present in the 98- to 120-aa region of WSMoV NSs protein. The WSMoV sero-group-specific NSs MAbs provide a means for reliable identification of tospoviruses in this large serogroup.
Collapse
|
38
|
Kelloniemi J, Mäkinen K, Valkonen JPT. A potyvirus-based gene vector allows producing active human S-COMT and animal GFP, but not human sorcin, in vector-infected plants. Biochimie 2006; 88:505-13. [PMID: 16431010 DOI: 10.1016/j.biochi.2005.10.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2005] [Accepted: 10/28/2005] [Indexed: 11/26/2022]
Abstract
Potato virus A (PVA), a potyvirus with a (+)ssRNA genome translated to a large polyprotein, was engineered and used as a gene vector for expression of heterologous proteins in plants. Foreign genes including jellyfish GFP (Aequorea victoria) encoding the green fluorescent protein (GFP, 27 kDa) and the genes of human origin (Homo sapiens) encoding a soluble resistance-related calcium-binding protein (sorcin, 22 kDa) and the catechol-O-methyltransferase (S-COMT; 25 kDa) were cloned between the cistrons for the viral replicase and coat protein (CP). The inserts caused no adverse effects on viral infectivity and virulence, and the inserted sequences remained intact in progeny viruses in the systemically infected leaves. The heterologous proteins were released from the viral polyprotein following cleavage by the main viral proteinase, NIa, at engineered proteolytic processing sites flanking the insert. Active GFP, as indicated by green fluorescence, and S-COMT with high levels of enzymatic activity were produced. In contrast, no sorcin was detected despite the expected equimolar amounts of the foreign and viral proteins being expressed as a polyprotein. These data reveal inherent differences between heterologous proteins in their suitability for production in plants.
Collapse
Affiliation(s)
- Jani Kelloniemi
- Department of Applied Biology, PO Box 27, FIN-00014 University of Helsinki, Finland
| | | | | |
Collapse
|
39
|
Rajamäki ML, Kelloniemi J, Alminaite A, Kekarainen T, Rabenstein F, Valkonen JPT. A novel insertion site inside the potyvirus P1 cistron allows expression of heterologous proteins and suggests some P1 functions. Virology 2005; 342:88-101. [PMID: 16112702 DOI: 10.1016/j.virol.2005.07.019] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2005] [Revised: 06/20/2005] [Accepted: 07/13/2005] [Indexed: 10/25/2022]
Abstract
The P1 cistron encodes the first and most variable part of the polyprotein of potyviruses. A site tolerant to a pentapeptide insertion at the N-terminus of Potato virus A P1 (Genome Res. 12, 584-594) was used to express heterologous proteins (insertions up to 783 nucleotides) with or without flanking new proteolytic sites. Aequorea victoria green fluorescent protein (GFP) accumulated to high levels when proteolytically released from P1 and showed strong fluorescence in leaves systemically infected with vector virus. Deletions in GFP and adjacent viral sequences emerged 2-4 weeks after infection, revealing putative recombination hot spots. The inserts in P1 diminished infectivity host-specifically, reduced virus accumulation in protoplasts and systemically infected leaves, alleviated symptoms and reduced accumulation of mRNA and HCpro in cis in a virus-free system. This heterologous protein expression site is the first within a protein-encoding cistron and the third in the genome of potyviruses.
Collapse
Affiliation(s)
- Minna-Liisa Rajamäki
- Department of Applied Biology, PO Box 27, FIN-00014 University of Helsinki, Finland
| | | | | | | | | | | |
Collapse
|
40
|
Chen TC, Hsu HT, Jain RK, Huang CW, Lin CH, Liu FL, Yeh SD. Purification and serological analyses of tospoviral nucleocapsid proteins expressed by Zucchini yellow mosaic virus vector in squash. J Virol Methods 2005; 129:113-24. [PMID: 15992936 DOI: 10.1016/j.jviromet.2005.05.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2005] [Revised: 05/10/2005] [Accepted: 05/16/2005] [Indexed: 10/25/2022]
Abstract
A plant viral vector engineered from an in vivo infectious clone of Zucchini yellow mosaic virus (ZYMV) was used to express the nucleocapsid proteins (NPs) of tospoviruses in planta. The open reading frames (ORFs) of NPs of different serogroups of tospoviruses, including Tomato spotted wilt virus, Impatiens necrotic spot virus, Watermelon silver mottle virus, Peanut bud necrosis virus, and Watermelon bud necrosis virus (WBNV), were in frame inserted in between the P1 and HC-Pro genes of the ZYMV vector. Six histidine residues and an NIa protease cleavage site were added at the C-terminal region of the inserts to facilitate purification and process of free form of the expressed NPs, respectively. Approximately 1.2-2.5 mg/NPs 100 g tissues were purified from leaf extracts of zucchini squash. The expressed WBNV NP was used as an immunogen for the production of highly specific polyclonal antisera and monoclonal antibodies. The procedure provides a convenient and fast way for production of large quantities of pure NPs of tospoviruses in planta. The system also has a potential for production of any proteins of interest in cucurbits.
Collapse
Affiliation(s)
- Tsung-Chi Chen
- Department of Plant Pathology, National Chung Hsing University, Taichung, Taiwan
| | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
The small size of plant viral genomes, the ease with which they can be manipulated, and the simplicity of the infection process is making the viral vectors an attractive alternative to the transgenic systems for the expression of foreign proteins in plants. One use of these virus expression systems is for vaccine production. There are two basic types of viral system that have been developed for the production of immunogenic peptides and proteins in plants: epitope presentation and polypeptide expression systems. In this review, we discuss advances made in this field.
Collapse
|
42
|
Gal-On A, Wolf D, Antignus Y, Patlis L, Ryu KH, Min BE, Pearlsman M, Lachman O, Gaba V, Wang Y, Shiboleth YM, Yang J, Zelcer A. Transgenic cucumbers harboring the 54-kDa putative gene of Cucumber fruit mottle mosaic tobamovirus are highly resistant to viral infection and protect non-transgenic scions from soil infection. Transgenic Res 2005; 14:81-93. [PMID: 15865051 DOI: 10.1007/s11248-004-3802-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Cucumber fruit mottle mosaic tobamovirus (CFMMV) causes severe mosaic symptoms and yellow mottling on leaves and fruits and, occasionally, severe wilting of cucumber (Cucumis sativus L.) plants. No genetic source of resistance against this virus has been identified in cucumber. The gene coding for the putative 54-kDa replicase gene of CFMMV was cloned into an Agrobacterium tumefaciens binary vector, and transformation was performed on cotyledon explants of a parthenocarpic cucumber cultivar. R1 seedlings were screened for resistance to CFMMV by symptom expression, back inoculation on an alternative host and ELISA. From a total of 14 replicase-containing R1 lines, eight resistant lines were identified. Line 144--homozygous for the putative 54-kDa replicase gene--was immune to CFMMV infection by mechanical and graft inoculation, and to root infection following planting in CFMMV-infested soil. A substantial delay of symptom appearance was observed following infection by three additional cucurbit-infecting tobamoviruses. When used as a rootstock, line I44 protected susceptible cucumber scions from soil infection by CFMMV. This paper is the first report on protection of a susceptible cultivar against a soil-borne viral pathogen, by grafting onto a transgenic rootstock.
Collapse
Affiliation(s)
- Amit Gal-On
- Department of Virology, Agricultural Research Organization, The Volcani Center, POB 6, Bet Dagan 50250, Israel.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Beauchemin C, Bougie V, Laliberté JF. Simultaneous production of two foreign proteins from a polyvirus-based vector. Virus Res 2005; 112:1-8. [PMID: 16022896 DOI: 10.1016/j.virusres.2005.03.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2004] [Revised: 02/28/2005] [Accepted: 03/07/2005] [Indexed: 01/18/2023]
Abstract
With the aim of developing a biotechnological tool for the production of foreign proteins in plants, we first engineered an infectious turnip mosaic virus (TuMV) cDNA that contained the jellyfish green fluorescent protein (GFP) gene or the bacterial beta-glucuronidase (GUS) gene (uidA). Two insertion sites were assessed, either between P1 and HCPro cistrons or Pol and CP cistrons. In each construct, the junctions flanking the inserted gene coded for P1 and/or VPg-Pro cleavage recognition site sequences, to produce free GUS or GFP. After transfection by particle bombardment on Brassica perviridis, characteristic symptoms for TuMV infection appeared and Western blot analyses showed that GFP and GUS had been excised from the viral polyprotein. No significant differences in expression level were noticed between the two insertion sites. By RT-PCR, gfp was found to be stable over 30 days post-transfection (dpt) while uidA was gradually lost at 15 dpt. We also created two constructs containing either gene at each insertion sites on the same molecule. Attenuated systemic symptoms were observed after particle bombardment on B. perviridis and Western blot analyses showed that both foreign proteins were produced. Also, the same stability/instability as for the single-gene constructs were observed. These results indicate that it is possible to produce at least two foreign proteins simultaneously in a TuMV-based vector.
Collapse
Affiliation(s)
- Chantal Beauchemin
- Institut National de la Recherche Scientifique, INRS-Institut Armand-Frappier, 531 Boulevard des Prairies Laval, Qué., Canada H7V 1B7
| | | | | |
Collapse
|
44
|
Antigen Delivery Systems III: Use of Recombinant Plant Viruses. Mucosal Immunol 2005. [PMCID: PMC7149764 DOI: 10.1016/b978-012491543-5/50063-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
|
45
|
Kimalov B, Gal-On A, Stav R, Belausov E, Arazi T. Maintenance of coat protein N-terminal net charge and not primary sequence is essential for zucchini yellow mosaic virus systemic infectivity. J Gen Virol 2004; 85:3421-3430. [PMID: 15483260 DOI: 10.1099/vir.0.80417-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Zucchini yellow mosaic virus (ZYMV) surface exposed coat protein (CP) N-terminal domain (Nt) is 43 aa long and contains an equal number of positively and negatively charged amino acid residues (CP-Nt net charge = 0). A ZYMV-AGII truncation mutant lacking the first 20 aa of its CP-Nt (AGII-CP Delta 20; CP-Nt net charge = +2) was found to be systemically non-infectious even though AGII mutants harbouring larger CP-Nt deletions were previously demonstrated to be fully infectious. Nevertheless, AGII-CP Delta 20 infectivity was restored by fusion to its CP-Nt two Asp residues or a negatively charged Myc peptide, both predicted to neutralize CP-Nt net positive charge. To evaluate further the significance of CP-Nt net charge for AGII infectivity, a series of CP-Nt net charge mutants was generated and analysed for systemic infectivity of squash plants. AGII-CP(KKK) harbouring a CP-Nt amino fusion of three Lys residues (CP-Nt net charge = +3) was not systemically infectious. Addition of up to four Asp residues to CP-Nt did not abolish virus infectivity, although certain mutants were genetically unstable and had delayed infectivity. Addition of five negatively charged residues abolished infectivity (AGII-CP(DDDDD); CP-Nt net charge = -5) even though a recombinant CP(DDDDD) could assemble into potyviral-like particle in bacteria. Neutralization of CP-Nt net charge by fusing Asp or Lys residues recovered infectivity of AGII-CP(KKK) and AGII-CP(DDDDD). GFP-tagging of these mutants has demonstrated that both viruses have defective cell-to-cell movement. Together, these findings suggest that maintenance of CP-Nt net charge and not primary sequence is essential for ZYMV infectivity.
Collapse
Affiliation(s)
- Boaz Kimalov
- Department of Ornamental Horticulture, Agricultural Research Organization, The Volcani Center, PO Box 6, Bet Dagan 50250, Israel
| | - Amit Gal-On
- Department of Virology, Agricultural Research Organization, The Volcani Center, PO Box 6, Bet Dagan 50250, Israel
| | - Ran Stav
- Department of Ornamental Horticulture, Agricultural Research Organization, The Volcani Center, PO Box 6, Bet Dagan 50250, Israel
| | - Eduard Belausov
- Horticulture Institute, Agricultural Research Organization, The Volcani Center, PO Box 6, Bet Dagan 50250, Israel
| | - Tzahi Arazi
- Department of Ornamental Horticulture, Agricultural Research Organization, The Volcani Center, PO Box 6, Bet Dagan 50250, Israel
| |
Collapse
|
46
|
Wang Y, Tzfira T, Gaba V, Citovsky V, Palukaitis P, Gal-On A. Functional analysis of the Cucumber mosaic virus 2b protein: pathogenicity and nuclear localization. J Gen Virol 2004; 85:3135-3147. [PMID: 15448377 DOI: 10.1099/vir.0.80250-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The 2b protein encoded by Cucumber mosaic virus (CMV) has been shown to be a silencing suppressor and pathogenicity determinant in solanaceous hosts, but a movement determinant in cucumber. In addition, synergistic interactions between CMV and Zucchini yellow mosaic virus (ZYMV) have been described in several cucurbit species. Here, it was shown that deletion of the 2b gene from CMV prevented extensive systemic movement of the virus in zucchini squash, which could not be complemented by co-infection with ZYMV. Thus, ZYMV expressing a silencing suppressor with a different target could not complement the CMV 2b-specific movement function. Expression of the 2b protein from an attenuated ZYMV vector resulted in a synergistic response, largely restoring infection symptoms of wild-type ZYMV in several cucurbit species. Deletion or alteration of either of two nuclear localization signals (NLSs) did not affect nuclear localization in two assays, but did affect pathogenicity in several cucurbit species, whilst deletion of both NLSs led to loss of nuclear localization. The 2b protein interacted with an Arabidopsis thaliana karyopherin alpha protein (AtKAPalpha) in the yeast two-hybrid system, as did each of the two single NLS-deletion mutants. However, 2b protein containing a deletion of both NLSs was unable to interact with AtKAPalpha. These data suggest that the 2b protein localizes to the nucleus by using the karyopherin alpha-mediated system, but demonstrate that nuclear localization was insufficient for enhancement of the 2b-mediated pathogenic response in cucurbit hosts. Thus, the sequences corresponding to the two NLSs must have another role leading to pathogenicity enhancement.
Collapse
Affiliation(s)
- Yongzeng Wang
- Department of Virology, Agricultural Research Organization, The Volcani Center, Bet Dagan 50250, Israel
| | - Tzvi Tzfira
- Department of Biochemistry and Cell Biology, State University of New York at Stony Brook, Stony Brook, NY 11794-5215, USA
| | - Victor Gaba
- Department of Virology, Agricultural Research Organization, The Volcani Center, Bet Dagan 50250, Israel
| | - Vitaly Citovsky
- Department of Biochemistry and Cell Biology, State University of New York at Stony Brook, Stony Brook, NY 11794-5215, USA
| | - Peter Palukaitis
- Scottish Crop Research Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Amit Gal-On
- Department of Virology, Agricultural Research Organization, The Volcani Center, Bet Dagan 50250, Israel
| |
Collapse
|
47
|
Stacey G, Vodkin L, Parrott WA, Shoemaker RC. National Science Foundation-sponsored workshop report. Draft plan for soybean genomics. PLANT PHYSIOLOGY 2004; 135:59-70. [PMID: 15141067 PMCID: PMC429333 DOI: 10.1104/pp.103.037903] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2003] [Revised: 02/20/2004] [Accepted: 02/20/2004] [Indexed: 05/11/2023]
Abstract
Recent efforts to coordinate and define a research strategy for soybean (Glycine max) genomics began with the establishment of a Soybean Genetics Executive Committee, which will serve as a communication focal point between the soybean research community and granting agencies. Secondly, a workshop was held to define a strategy to incorporate existing tools into a framework for advancing soybean genomics research. This workshop identified and ranked research priorities essential to making more informed decisions as to how to proceed with large scale sequencing and other genomics efforts. Most critical among these was the need to finalize a physical map and to obtain a better understanding of genome microstructure. Addressing these research needs will require pilot work on new technologies to demonstrate an ability to discriminate between recently duplicated regions in the soybean genome and pilot projects to analyze an adequate amount of random genome sequence to identify and catalog common repeats. The development of additional markers, reverse genetics tools, and bioinformatics is also necessary. Successful implementation of these goals will require close coordination among various working groups.
Collapse
Affiliation(s)
- Gary Stacey
- National Center for Soybean Biotechnology, Department of Plant Microbiology and Pathology, University of Missouri, Columbia, Missouri 65203, USA.
| | | | | | | |
Collapse
|
48
|
German-Retana S, Redondo E, Tavert-Roudet G, Le Gall O, Candresse T. Introduction of a NIa proteinase cleavage site between the reporter gene and HC-Pro only partially restores the biological properties of GUS- or GFP-tagged LMV. Virus Res 2003; 98:151-62. [PMID: 14659562 DOI: 10.1016/j.virusres.2003.09.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Lettuce mosaic virus (LMV) isolates LMV-E and LMV-0 differ in their virulence on lettuce varieties carrying the mo1(2) resistance gene, which reduces viral accumulation and blocks the expression of symptoms after infection with avirulent isolates such as LMV-0. Previous work had indicated that reporter genes such as GUS or GFP affect the biological properties of recombinant LMV isolates in both susceptible and resistant lettuce varieties when fused to the N-terminus of the viral protein HC-Pro. The impact of the addition of a cleavage site for the NIa proteinase between the reporter gene and HC-Pro was evaluated, in an effort to recover the full spectrum of the biological properties of parental isolates. Symptoms, accumulation, cell-to-cell and long distance movement of the recombinant viruses containing the NIa cleavage site were studied in susceptible and mo1(2) lettuce varieties. Both LMV-0 and LMV-E recombinant viruses recovered the behaviour of their wild-type parent in susceptible plants upon addition of the NIa cleavage site. While the recombinant LMV-E modified in this way recovered the breaking properties of its wild-type counterpart in mo1(2) plants, similar modification of the LMV-0 derived recombinants failed to rescue a severe inhibition in systemic accumulation in mo1(2) plants, despite the fact that neither cell-to-cell movement nor phloem loading or unloading seemed to be severely affected.
Collapse
Affiliation(s)
- Sylvie German-Retana
- Plant-Virus Interactions, IBVM, INRA, BP 81, 33883 Villenave d'Ornon Cedex, France.
| | | | | | | | | |
Collapse
|
49
|
Scholthof KBG, Mirkov TE, Scholthof HB. Plant virus gene vectors: biotechnology applications in agriculture and medicine. GENETIC ENGINEERING 2003; 24:67-85. [PMID: 12416301 DOI: 10.1007/978-1-4615-0721-5_4] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
Affiliation(s)
- Karen-Beth G Scholthof
- Department of Plant Pathology and Microbiology, Texas A&M University, 2132 TAMU, College Station, TX 77843, USA
| | | | | |
Collapse
|
50
|
Arazi T, Lee Huang P, Huang PL, Zhang L, Moshe Shiboleth Y, Gal-On A, Lee-Huang S. Production of antiviral and antitumor proteins MAP30 and GAP31 in cucurbits using the plant virus vector ZYMV-AGII. Biochem Biophys Res Commun 2002; 292:441-8. [PMID: 11906182 DOI: 10.1006/bbrc.2002.6653] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
ZYMV-AGII (zucchini yellow mosaic virus-AGII) is a recombinant nonpathogenic potyvirus-based vector system for the expression of foreign genes in cucurbit plants and their edible fruits, including squash, cucumber, melon, watermelon, and pumpkin. MAP30 (Momordica anti-HIV protein, 30 kDa) and GAP31 (Gelonium anti-HIV protein 31 kDa) are multifunctional plant proteins with activity against HIV-1 virus. These proteins are also effective against other viruses, tumor cells, and microbes. We report here the production and characterization of biologically active MAP30 and GAP31 in squash plant by expression of their genes using the ZYMV-AGII vector. Recombinant expressed MAP30 and GAP31 exhibit comparable antiviral, antitumor, and antimicrobial activities as their counterparts from their original plant sources, with EC(50)s in the ranges of 0.2-0.3 nM for HIV-1. These results demonstrate for the first time the amplification and production of therapeutic proteins, MAP30 and GAP31, in common vegetables. This provides valuable alternative food sources of these antiviral, antitumor, and antimicrobial agents for therapeutic applications.
Collapse
|