1
|
Takeno S, Hirata Y, Kitamura K, Ohtake T, Aoki K, Murata N, Hayashi M, Ikeda M. Metabolic engineering to produce palmitic acid or palmitoleic acid in an oleic acid-producing Corynebacterium glutamicum strain. Metab Eng 2023; 78:148-158. [PMID: 37286071 DOI: 10.1016/j.ymben.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/14/2023] [Accepted: 06/04/2023] [Indexed: 06/09/2023]
Abstract
Focusing on the differences in the catalytic properties of two type I fatty acid synthases FasA and FasB, the fasA gene was disrupted in an oleic acid-producing Corynebacterium glutamicum strain. The resulting oleic acid-requiring strain whose fatty acid synthesis depends only on FasB exhibited almost exclusive production (217 mg/L) of palmitic acid (C16:0) from 1% glucose under the conditions supplemented with the minimum concentration of sodium oleate for growth. Plasmid-mediated amplification of fasB led to a 1.47-fold increase in palmitic acid production (320 mg/L), while fasB disruption resulted in no fatty acid production, with excretion of malonic acid (30 mg/L). Next, aiming at conversion of the palmitic acid producer to a producer of palmitoleic acid (POA, C16:1Δ9), we introduced the Pseudomonas nitroreducens Δ9-desaturase genes desBC into the palmitic acid producer. Although this resulted in failure, we noticed the emergence of suppressor mutants that exhibited the oleic acid-non-requiring phenotype. Production experiments revealed that one such mutant M-1 undoubtedly produced POA (17 mg/L) together with palmitic acid (173 mg/L). Whole genomic analysis and subsequent genetic analysis identified the suppressor mutation of strain M-1 as a loss-of-function mutation for the DtxR protein, a global regulator of iron metabolism. Considering that DesBC are both iron-containing enzymes, we investigated the conditions for increased iron availability to improve the DesBC-dependent conversion ratio of palmitic acid to POA. Eventually, supplementation of both hemin and the iron chelator protocatechuic acid in the engineered strain dramatically enhanced POA production to 161 mg/L with a conversion ratio of 80.1%. Cellular fatty acid analysis revealed that the POA-producing cells were really equipped with unnatural membrane lipids comprised predominantly of palmitic acid (85.1% of total cellular fatty acids), followed by non-native POA (12.4%).
Collapse
Affiliation(s)
- Seiki Takeno
- Department of Agricultural and Life Sciences, Faculty of Agriculture, Shinshu University, Nagano, Japan
| | - Yosuke Hirata
- Department of Agricultural and Life Sciences, Faculty of Agriculture, Shinshu University, Nagano, Japan
| | - Kako Kitamura
- Department of Agricultural and Life Sciences, Faculty of Agriculture, Shinshu University, Nagano, Japan
| | - Tatsunori Ohtake
- Department of Agricultural and Life Sciences, Faculty of Agriculture, Shinshu University, Nagano, Japan
| | - Kuniyoshi Aoki
- Department of Agricultural and Life Sciences, Faculty of Agriculture, Shinshu University, Nagano, Japan
| | - Noriko Murata
- Department of Agricultural and Life Sciences, Faculty of Agriculture, Shinshu University, Nagano, Japan
| | - Mikiro Hayashi
- Bioprocess Development Center, Kyowa Hakko Bio Co., Ltd., Tsukuba, Ibaraki, Japan
| | - Masato Ikeda
- Department of Agricultural and Life Sciences, Faculty of Agriculture, Shinshu University, Nagano, Japan.
| |
Collapse
|
2
|
Kim GY, Kim J, Park G, Kim HJ, Yang J, Seo SW. Synthetic biology tools for engineering Corynebacterium glutamicum. Comput Struct Biotechnol J 2023; 21:1955-1965. [PMID: 36942105 PMCID: PMC10024154 DOI: 10.1016/j.csbj.2023.03.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 03/03/2023] [Accepted: 03/04/2023] [Indexed: 03/08/2023] Open
Abstract
Corynebacterium glutamicum is a promising organism for the industrial production of amino acids, fuels, and various value-added chemicals. From the whole genome sequence release, C. glutamicum has been valuable in the field of industrial microbiology and biotechnology. Continuous discovery of genetic manipulations and regulation mechanisms has developed C. glutamicum as a synthetic biology platform chassis. This review summarized diverse genomic manipulation technologies and gene expression tools for static, dynamic, and multiplex control at transcription and translation levels. Moreover, we discussed the current challenges and applicable tools to C. glutamicum for future advancements.
Collapse
Affiliation(s)
- Gi Yeon Kim
- Interdisciplinary Program in Bioengineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| | - Jinyoung Kim
- School of Chemical and Biological Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| | - Geunyung Park
- Interdisciplinary Program in Bioengineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| | - Hyeon Jin Kim
- Interdisciplinary Program in Bioengineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| | - Jina Yang
- Department of Chemical Engineering, Jeju National University, 102, Jejudaehak-ro, Jeju-si, Jeju-do 63243, South Korea
- Corresponding author.
| | - Sang Woo Seo
- Interdisciplinary Program in Bioengineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
- School of Chemical and Biological Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
- Institute of Chemical Processes, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
- Bio-MAX Institute, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
- Institute of Engineering Research Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
- Corresponding author at: School of Chemical and Biological Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea.
| |
Collapse
|
3
|
A Futile Metabolic Cycle of Fatty Acyl-CoA Hydrolysis and Resynthesis in Corynebacterium glutamicum and Its Disruption Leading to Fatty Acid Production. Appl Environ Microbiol 2021; 87:AEM.02469-20. [PMID: 33310719 PMCID: PMC7851686 DOI: 10.1128/aem.02469-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Fatty acyl-CoA thioesterase (Tes) and acyl-CoA synthetase (FadD) catalyze opposing reactions between acyl-CoAs and free fatty acids. Within the genome of Corynebacterium glutamicum, several candidate genes for each enzyme are present, although their functions remain unknown. Modified expressions of the candidate genes in the fatty acid producer WTΔfasR led to identification of one tes gene (tesA) and two fadD genes (fadD5 and fadD15), which functioned positively and negatively in fatty acid production, respectively. Genetic analysis showed that fadD5 and fadD15 are responsible for utilization of exogenous fatty acids and that tesA plays a role in supplying fatty acids for synthesis of the outer layer components mycolic acids. Enzyme assays and expression analysis revealed that tesA, fadD5, and fadD15 were co-expressed to create a cyclic route between acyl-CoAs and fatty acids. When fadD5 or fadD15 was disrupted in wild-type C. glutamicum, both disruptants excreted fatty acids during growth. Double disruptions of them resulted in a synergistic increase in production. Additional disruption of tesA revealed a canceling effect on production. These results indicate that the FadDs normally shunt the surplus of TesA-generated fatty acids back to acyl-CoAs for lipid biosynthesis and that interception of this shunt provokes cells to overproduce fatty acids. When this strategy was applied to a fatty acid high-producer, the resulting fadDs-disrupted and tesA-amplified strain exhibited a 72% yield increase relative to its parent and produced fatty acids, which consisted mainly of oleic acid, palmitic acid, and stearic acid, on the gram scale per liter from 1% glucose.IMPORTANCE The industrial amino acid producer Corynebacterium glutamicum has currently evolved into a potential workhorse for fatty acid production. In this organism, we obtained evidence showing the presence of a unique mechanism of lipid homeostasis, namely, a formation of a futile cycle of acyl-CoA hydrolysis and resynthesis mediated by acyl-CoA thioesterase (Tes) and acyl-CoA synthetase (FadD), respectively. The biological role of the coupling of Tes and FadD would be to supply free fatty acids for synthesis of the outer layer components mycolic acids and to recycle their surplusage to acyl-CoAs for membrane lipid synthesis. We further demonstrated that engineering of the cycle in a fatty acid high-producer led to dramatically improved production, which provides a useful engineering strategy for fatty acid production in this industrially important microorganism.
Collapse
|
4
|
Duan Y, Zhai W, Liu W, Zhang X, Shi JS, Zhang X, Xu Z. Fine-Tuning Multi-Gene Clusters via Well-Characterized Gene Expression Regulatory Elements: Case Study of the Arginine Synthesis Pathway in C. glutamicum. ACS Synth Biol 2021; 10:38-48. [PMID: 33382575 DOI: 10.1021/acssynbio.0c00405] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Promoters and ribosome binding sites (RBSs) are routinely applied in gene expression regulation, but their orthogonality and combinatorial effects have not yet been systematically studied in Corynebacterium glutamicum. Here, 17 core promoters and 29 RBSs in C. glutamicum were characterized, which exhibited 470-fold and 430-fold in transcriptional and translational activity, respectively. By comparing the expression of two reporter genes regulated by multiple RBSs, the RBS efficacy showed significant dependence on the gene context, besides the RBSs' strength, reflecting the poor orthogonality of RBSs. Bicistron-modified RBS (referred as bc-RBS) was adapted to C. glutamicum, which improved RBS reliability. By coupling a series of promoters with RBSs/bc-RBSs, a much broader regulation range that spanned 4 orders of magnitude was observed compared with that of a sole element, and the contribution to gene expression of RBS was more than that of promoter. Finally, promoters and RBSs were applied as built-in elements to fine-tune the gene cluster in the arginine synthesis pathway in C. glutamicum. Compared with the original strain, more arginine (1.61-fold) or citrulline (2.35-fold) was accumulated in a 7 L bioreactor by strains with the gene expression regulation system rationally engineered. We demonstrated that, via combination of well-characterized gene elements, and overall consideration for both transcription and translation, the biosynthesis pathway can be effectively balanced, and the yield of a target metabolite can be further improved.
Collapse
Affiliation(s)
- Yanting Duan
- National Engineering Laboratory for Cereal Fermentation Technology, Key Laboratory of Industrial Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
- Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Weiji Zhai
- National Engineering Laboratory for Cereal Fermentation Technology, Key Laboratory of Industrial Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
- Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Weijia Liu
- Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Xiaomei Zhang
- School of Pharmaceutical Science, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
- Jiangsu Engineering Research Center for Bioactive Products Processing Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Jin-Song Shi
- School of Pharmaceutical Science, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
- Jiangsu Engineering Research Center for Bioactive Products Processing Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Xiaojuan Zhang
- National Engineering Laboratory for Cereal Fermentation Technology, Key Laboratory of Industrial Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
- Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Zhenghong Xu
- National Engineering Laboratory for Cereal Fermentation Technology, Key Laboratory of Industrial Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
- Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| |
Collapse
|
5
|
Liu X, Zhao Z, Dong G, Li Y, Peng F, Liu C, Zhang F, Linhardt RJ, Yang Y, Bai Z. Identification, repair and characterization of a benzyl alcohol-inducible promoter for recombinant proteins overexpression in Corynebacterium glutamicum. Enzyme Microb Technol 2020; 141:109651. [PMID: 33051010 DOI: 10.1016/j.enzmictec.2020.109651] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/10/2020] [Accepted: 08/17/2020] [Indexed: 10/23/2022]
Abstract
Corynebacterium glutamicum is an important industrial organism for the production of a variety of biological commodities. We discovered a promoter encoded by the gene NCgl2319 in C. glutamicum, which could be induced by benzyl alcohol, could be used as an efficient tunable expression system. In initial attempts, this promoter failed to function in a recombinant expression system. This was remedied by extending the original genetic context of the promoter, generating a new version Pcat-B. The Pcat-B transcription initiation site, its critical active regions, and its effect of inducers were fully characterized resulting in tunable expression. This approach proved to be very efficient in producing a pharmaceutical protein, N-terminal pro-brain natriuretic peptide (NT-proBNP). Production of approximately 440.43 mg/L NT-proBNP was achieved with the Pcat-B expression system demonstrating its application for controllable pharmaceutical protein production in C. glutamicum.
Collapse
Affiliation(s)
- Xiuxia Liu
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China
| | - Zihao Zhao
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China
| | - Guibin Dong
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China
| | - Ye Li
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China
| | - Feng Peng
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China
| | - Chunli Liu
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China
| | - Fuming Zhang
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, USA
| | - Robert J Linhardt
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, USA
| | - Yankun Yang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China.
| | - Zhonghu Bai
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
6
|
Mariutti RB, Hernández-González JE, Nascimento AFZ, de Morais MAB, Murakami MT, Carareto CMA, Arni RK. A single P115Q mutation modulates specificity in the Corynebacterium pseudotuberculosis arginine repressor. Biochim Biophys Acta Gen Subj 2020; 1864:129597. [PMID: 32156582 DOI: 10.1016/j.bbagen.2020.129597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 03/02/2020] [Accepted: 03/03/2020] [Indexed: 11/28/2022]
Abstract
The arginine repressor (ArgR) regulates the expression of genes involved in arginine biosynthesis. Upon attaining a threshold concentration of arginine in the cytoplasm, the trimeric C-terminal domain of ArgR binds three arginines in a shallow surface cleft and subsequently hexamerizes forming a dimer of trimers containing six Arg co-repressor molecules which are buried at the subunit interfaces. The N-terminal domains of this complex bind to the DNA promoter thereby interrupting the transcription of the genes related to Arg biosynthesis. The crystal structures of the wild type and mutant Pro115Gln ArgR from Corynebacterium pseudotuberculosis determined at 1.7 Å demonstrate that a single amino acid substitution switches co-repressor specificity from Tyr to Arg. Molecular dynamics simulations indicate that the first step, i.e., the binding of the co-repressor, occurs in the trimeric state and that Pro115Gln ArgR preferentially binds Arg. It was also shown that, in Pro115 ArgR hexamers, the concomitant binding of sodium ions shifts selectivity to Tyr. Structural data combined with phylogenetic analyses of ArgR from C. pseudotuberculosis suggest that substitutions in the binding pocket at position 115 may alter its specificity for amino acids and that the length of the protein interdomain linker can provide further functional flexibility. These results support the existence of alternative ArgR regulatory mechanisms in this pathogenic bacterium.
Collapse
Affiliation(s)
- Ricardo B Mariutti
- Multiuser Center for Biomolecular Innovation, IBILCE/UNESP, São José do Rio Preto, SP, Brazil.
| | | | - Andrey F Z Nascimento
- Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP, Brazil
| | - Mariana A B de Morais
- Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP, Brazil
| | - Mario T Murakami
- Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP, Brazil
| | - Claudia M A Carareto
- Laboratory of Molecular Evolution IBILCE/UNESP, São José do Rio Preto, SP, Brazil
| | - Raghuvir K Arni
- Multiuser Center for Biomolecular Innovation, IBILCE/UNESP, São José do Rio Preto, SP, Brazil; Department of Physics, IBILCE/UNESP, São José do Rio Preto, SP, Brazil
| |
Collapse
|
7
|
Lange J, Münch E, Müller J, Busche T, Kalinowski J, Takors R, Blombach B. Deciphering the Adaptation of Corynebacterium glutamicum in Transition from Aerobiosis via Microaerobiosis to Anaerobiosis. Genes (Basel) 2018; 9:E297. [PMID: 29899275 PMCID: PMC6027265 DOI: 10.3390/genes9060297] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 05/31/2018] [Accepted: 06/07/2018] [Indexed: 01/02/2023] Open
Abstract
Zero-growth processes are a promising strategy for the production of reduced molecules and depict a steady transition from aerobic to anaerobic conditions. To investigate the adaptation of Corynebacterium glutamicum to altering oxygen availabilities, we conceived a triple-phase fermentation process that describes a gradual reduction of dissolved oxygen with a shift from aerobiosis via microaerobiosis to anaerobiosis. The distinct process phases were clearly bordered by the bacteria’s physiologic response such as reduced growth rate, biomass substrate yield and altered yield of fermentation products. During the process, sequential samples were drawn at six points and analyzed via RNA-sequencing, for metabolite concentrations and for enzyme activities. We found transcriptional alterations of almost 50% (1421 genes) of the entire protein coding genes and observed an upregulation of fermentative pathways, a rearrangement of respiration, and mitigation of the basic cellular mechanisms such as transcription, translation and replication as a transient response related to the installed oxygen dependent process phases. To investigate the regulatory regime, 18 transcriptionally altered (putative) transcriptional regulators were deleted, but none of the deletion strains showed noticeable growth kinetics under an oxygen restricted environment. However, the described transcriptional adaptation of C. glutamicum resolved to varying oxygen availabilities provides a useful basis for future process and strain engineering.
Collapse
Affiliation(s)
- Julian Lange
- Institute of Biochemical Engineering, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany.
| | - Eugenia Münch
- Institute of Biochemical Engineering, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany.
| | - Jan Müller
- Institute of Biochemical Engineering, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany.
| | - Tobias Busche
- Center for Biotechnology, Bielefeld University, Universitätsstraße 27, 33615 Bielefeld, Germany.
- Institute for Biology-Microbiology, Freie Universität Berlin, Königin-Luise-Str. 12-16, 14195 Berlin, Germany.
| | - Jörn Kalinowski
- Center for Biotechnology, Bielefeld University, Universitätsstraße 27, 33615 Bielefeld, Germany.
| | - Ralf Takors
- Institute of Biochemical Engineering, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany.
| | - Bastian Blombach
- Institute of Biochemical Engineering, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany.
| |
Collapse
|
8
|
Wang Z, Li T, Ni H, Wang G, Liu X, Cao Y, Li W, Meng F. Transgenic soybean plants expressing Spb18S dsRNA exhibit enhanced resistance to the soybean pod borer Leguminivora glycinivorella (Lepidoptera: Olethreutidae). ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2018; 98:e21461. [PMID: 29600519 DOI: 10.1002/arch.21461] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The soybean pod borer [SPB; Leguminivora glycinivorella (Mats.) Obraztsov] is a major soybean pest in northeastern Asia. A useful method for addressing this problem is the generation of transgenic plants producing double-stranded RNA (dsRNA) that target essential insect genes. In this study, we confirmed that 18S ribosomal RNA is critical for SPB development. Downregulated Spb18S expression induced by dsRNA injection increased larval mortality rates and resulted in early pupation. We also assessed whether Spb18S is silenced in SPB larvae fed on transgenic soybean expressing Spb18S dsRNA. Transgenic plants downregulated Spb18S expression levels and second-instar larval survival rates. Moreover, such plants were less damaged by SPB larvae than control plants under field conditions.
Collapse
Affiliation(s)
- Zhanchun Wang
- Key Laboratory of Soybean Biology in Chinese Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Tianyu Li
- Division of Soybean Breeding and Seed, Soybean Research & Development Center, CARS (Key Laboratory of Biology and Genetics & Breeding for Soybean in Northeast China, Ministry of Agriculture), Northeast Agricultural University, Harbin, China
| | - Hejia Ni
- College of Life Science, Northeast Agricultural University, Harbin, China
| | - Guoyue Wang
- Key Laboratory of Soybean Biology in Chinese Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Xinxin Liu
- Key Laboratory of Soybean Biology in Chinese Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Yingxue Cao
- Key Laboratory of Soybean Biology in Chinese Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Wenbin Li
- Key Laboratory of Soybean Biology in Chinese Ministry of Education, Northeast Agricultural University, Harbin, China
- Division of Soybean Breeding and Seed, Soybean Research & Development Center, CARS (Key Laboratory of Biology and Genetics & Breeding for Soybean in Northeast China, Ministry of Agriculture), Northeast Agricultural University, Harbin, China
| | - Fanli Meng
- Key Laboratory of Soybean Biology in Chinese Ministry of Education, Northeast Agricultural University, Harbin, China
- Division of Soybean Breeding and Seed, Soybean Research & Development Center, CARS (Key Laboratory of Biology and Genetics & Breeding for Soybean in Northeast China, Ministry of Agriculture), Northeast Agricultural University, Harbin, China
| |
Collapse
|
9
|
Shi F, Luan M, Li Y. Ribosomal binding site sequences and promoters for expressing glutamate decarboxylase and producing γ-aminobutyrate in Corynebacterium glutamicum. AMB Express 2018; 8:61. [PMID: 29671147 PMCID: PMC5906420 DOI: 10.1186/s13568-018-0595-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Accepted: 04/13/2018] [Indexed: 12/14/2022] Open
Abstract
Glutamate decarboxylase (GAD) converts l-glutamate (Glu) into γ-aminobutyric acid (GABA). Corynebacterium glutamicum that expresses exogenous GAD gene, gadB2 or gadB1, can synthesize GABA from its own produced Glu. To enhance GABA production in C. glutamicum, ribosomal binding site (RBS) sequence and promoter were searched and optimized for increasing the expression efficiency of gadB2. R4 exhibited the highest strength among RBS sequences tested, with 6 nt the optimal aligned spacing (AS) between RBS and start codon. This combination of RBS sequence and AS contributed to gadB2 expression, increased GAD activity by 156% and GABA production by 82% compared to normal strong RBS and AS combination. Then, a series of native promoters were selected for transcribing gadB2 under optimal RBS and AS combination. PdnaK, PdtsR, PodhI and PclgR expressed gadB2 and produced GABA as effectively as widely applied Ptuf and PcspB promoters and more effectively than Psod promoter. However, each native promoter did not work as well as the synthetic strong promoter PtacM, which produced 20.2 ± 0.3 g/L GABA. Even with prolonged length and bicistronic architecture, the strength of PdnaK did not enhance. Finally, gadB2 and mutant gadB1 were co-expressed under the optimal promoter and RBS combination, thus converted Glu into GABA completely and improved GABA production to more than 25 g/L. This study provides useful promoters and RBS sequences for gene expression in C. glutamicum.
Collapse
|
10
|
Zhang W, Zhao Z, Yang Y, Liu X, Bai Z. Construction of an expression vector that uses the aph promoter for protein expression in Corynebacterium glutamicum. Plasmid 2017; 94:1-6. [PMID: 28986243 DOI: 10.1016/j.plasmid.2017.09.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Revised: 09/10/2017] [Accepted: 09/30/2017] [Indexed: 01/21/2023]
Abstract
Corynebacterium glutamicum is an attractive host for the production of heterologous proteins despite its traditional use in fermentative production of amino acids. To enhance the expression levels of target genes, the development of useful promoters is required in the construction of expression systems. Here, we developed a new promoter, the aph promoter from aminoglycoside-3'-phosphotransferase gene, and used it to construct monocistronic and bicistronic expression systems that host different ribosome binding site (RBS) sequences. First, the expression level of the reporter protein, enhanced green fluorescent protein (EGFP), varied with changes in the RBS sequences in the constructed vectors. The results showed that the fluorescence intensities of the bicistronic group were higher than those of the monocistronic group and that RM3E showed the highest fluorescence intensity, which was 42-fold higher than the lowest (RA2E') among these groups. Next, taking advantage of the optimized aph promoter, we successfully employed this aph promoter for α-amylase and VHH (camelid antibody fragment) expression. The secretion of α-amylase improved 1.5-fold after promoter mutation. This promoter will be useful for heterologous protein production in C. glutamicum cells.
Collapse
Affiliation(s)
- Wei Zhang
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China; The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Zihao Zhao
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China; The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Yankun Yang
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China; The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xiuxia Liu
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China; The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| | - Zhonghu Bai
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China; The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
11
|
High Prevalence of Diverse Insertion Sequences within the rRNA Operons of Mycoplasma bovis. Appl Environ Microbiol 2016; 82:6386-6394. [PMID: 27542937 DOI: 10.1128/aem.01628-16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 08/15/2016] [Indexed: 11/20/2022] Open
Abstract
Insertion sequences (ISs) are widespread in the genome of Mycoplasma bovis strain PG45, but no ISs were identified within its two tandemly positioned rRNA operons (rrn1 and rrn2). However, characterization of the rrn locus in 70 M. bovis isolates revealed the presence of ISs related to the ISMbov1 (IS30 family) and ISMbov4 (IS4 family) isomers in 35 isolates. ISs were inserted into intergenic region 1 (IGR-1) or IGR-3, which are the putative promoter regions of rrn1 and rrn2, respectively, and into IGR-5, located downstream of the rrl2 gene. Seven different configurations (A to G) of the rrn locus with respect to ISs were identified, including those in five annotated genomes. The transcriptional start site for the single rrn operon in M. bovis strain 88127 was mapped within IGR-1, 60 bp upstream of the rrs gene. Notably, only 1 nucleotide separated the direct repeat (DR) for ISMbov1 and the promoter -35 element in configuration D, while in configuration F, the -35 motif was a part of the ISMbov1 DR. Relative quantitative real-time (qRT) PCR analysis and growth rate comparisons detected a significant increase (P < 0.05) in the expression of the rrs genes and in the number of viable cells during log phase growth (8, 12, and 16 h) in the strains with configuration F in comparison to strains with one or two rrn operons that did not have ISs. A high prevalence of IS elements within or close to the M. bovis rrn operon-promoter region may reflect their important role in regulation of both ribosome synthesis and function. IMPORTANCE Data presented in this study show a high prevalence of diverse ISs within the M. bovis rrn locus resulting in intraspecies variability and diversity. Such abundance of IS elements near or within the rrn locus may offer a selective advantage to M. bovis Moreover, the fact that expression of the rrs genes as well as the number of viable cells increased in the group of strains with IS element insertion within a putative promoter -35 sequence (configuration F) in comparison to that in strains with one or two rrn operons that do not have ISs may serve as a basis for understanding the possible role of M. bovis IS elements in fundamental biological processes such as regulation of ribosome synthesis and function.
Collapse
|
12
|
Construction of genetic parts from the Corynebacterium glutamicum genome with high expression activities. Biotechnol Lett 2016; 38:2119-2126. [DOI: 10.1007/s10529-016-2196-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Accepted: 08/18/2016] [Indexed: 12/11/2022]
|
13
|
Pérez-García F, Vasco-Cárdenas MF, Barreiro C. Biotypes analysis of Corynebacterium glutamicum growing in dicarboxylic acids demonstrates the existence of industrially-relevant intra-species variations. J Proteomics 2016; 146:172-83. [PMID: 27371347 DOI: 10.1016/j.jprot.2016.06.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 06/06/2016] [Accepted: 06/27/2016] [Indexed: 10/21/2022]
Abstract
Production enhancement of industrial microbial products or strains has been traditionally tackled by mutagenesis with chemical methods, irradiation or genetic manipulation. However, the final yield increase must go hand in hand with the resistance increasing against the usual inherent toxicity of the final products. Few studies have been carried out on resistance improvement and even fewer on the initial selection of naturally-generated biotypes, which could decrease the artificial mutagenesis. This fact is vital in the case of GRAS microorganisms as Corynebacterium glutamicum involved in food, feed and cosmetics production.
The characteristic wide diversity and plasticity in terms of their genetic material of Actinobacteria eases the biotypes generation. Thus, differences in morphology, glutamate and lysine production and growth in media supplemented with dicarboxylic acids were analysed in four biotypes of C. glutamicum ATCC 13032. A 2D-DIGE analysis of these biotypes growing with itaconic acid allowed us to define their differences. Thus, an optimized central metabolism and better protection against the generated stress conditions present the CgL biotype as a suitable platform for production of itaconic acid, which is used as a building block (e.g.: acrylic plastic). This analysis highlights the preliminary biotypes screening as a way to reach optimal industrial productions.
Collapse
Affiliation(s)
- Fernando Pérez-García
- INBIOTEC (Instituto de Biotecnología de León), Parque Científico de León, Avda. Real 1, 24006 León, Spain
| | - María F Vasco-Cárdenas
- INBIOTEC (Instituto de Biotecnología de León), Parque Científico de León, Avda. Real 1, 24006 León, Spain; Área de Microbiología, Departamento de Biología Molecular, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | - Carlos Barreiro
- INBIOTEC (Instituto de Biotecnología de León), Parque Científico de León, Avda. Real 1, 24006 León, Spain.
| |
Collapse
|
14
|
Kulis-Horn RK, Persicke M, Kalinowski J. Corynebacterium glutamicum ATP-phosphoribosyl transferases suitable for l-histidine production – Strategies for the elimination of feedback inhibition. J Biotechnol 2015; 206:26-37. [DOI: 10.1016/j.jbiotec.2015.04.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 04/01/2015] [Accepted: 04/05/2015] [Indexed: 02/08/2023]
|
15
|
Ribosome binding site libraries and pathway modules for shikimic acid synthesis with Corynebacterium glutamicum. Microb Cell Fact 2015; 14:71. [PMID: 25981633 PMCID: PMC4453273 DOI: 10.1186/s12934-015-0254-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 05/06/2015] [Indexed: 11/15/2022] Open
Abstract
Background The shikimic acid (SA) pathway is a fundamental route to synthesize aromatic building blocks for cell growth and metabolic processes, as well as for fermentative production of various aromatic compounds. Genes encoding enzymes of SA pathway are not continuous on genome and they are differently regulated. Results In this study, efforts were made to construct continuous genetic modules of SA pathway that are regulated by a same Ptac promoter. Firstly, aro genes [aroG (NCgl2098), aroB (NCgl1559), aroD (NCgl0408) and aroE (NCgl1567)] from Corynebacterium glutamicum and ribosome binding site (RBS) libraries that were tailored for the above genes were obtained, and the strength of each RBS in the 4 libraries was quantified. Secondly, 9 genetic modules were built up from the RBS libraries, a previously characterized ribozyme insulator (RiboJ) and transcriptional promoter (Ptac) and terminator, and aroG, aroB, aroD and aroE. The functionality and efficiency of the constructed genetic modules were evaluated in C. glutamicum by determination of SA synthesis. Results showed that C. glutamicum RES167ΔaroK carrying a genetic module produced 4.3 g/L of SA, which was 54 folds higher compared to that of strain RES167ΔaroK (80 mg/L, without the genetic module) during fermentation in 250-mL flasks. The same strain produced 7.4, and 11.3 g/L of SA during 5-L batch and fed-batch fermentations, respectively, which corresponding to SA molar yields of 0.39 and 0.24 per mole sucrose consumption. Conclusion These results demonstrated that the constructed SA pathway modules are effective in increasing SA synthesis in C. glutamicum, and they might be useful for fermentative production of aromatic compounds derived from SA pathway.
Collapse
|
16
|
Matano C, Uhde A, Youn JW, Maeda T, Clermont L, Marin K, Krämer R, Wendisch VF, Seibold GM. Engineering of Corynebacterium glutamicum for growth and L-lysine and lycopene production from N-acetyl-glucosamine. Appl Microbiol Biotechnol 2014; 98:5633-43. [PMID: 24668244 DOI: 10.1007/s00253-014-5676-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 03/05/2014] [Accepted: 03/06/2014] [Indexed: 11/27/2022]
Abstract
Sustainable supply of feedstock has become a key issue in process development in microbial biotechnology. The workhorse of industrial amino acid production Corynebacterium glutamicum has been engineered towards utilization of alternative carbon sources. Utilization of the chitin-derived aminosugar N-acetyl-glucosamine (GlcNAc) for both cultivation and production with C. glutamicum has hitherto not been investigated. Albeit this organism harbors the enzymes N-acetylglucosamine-6-phosphatedeacetylase and glucosamine-6P deaminase of GlcNAc metabolism (encoded by nagA and nagB, respectively) growth of C. glutamicum with GlcNAc as substrate was not observed. This was attributed to the lack of a functional system for GlcNAc uptake. Of the 17 type strains of the genus Corynebacterium tested here for their ability to grow with GlcNAc, only Corynebacterium glycinophilum DSM45794 was able to utilize this substrate. Complementation studies with a GlcNAc-uptake deficient Escherichia coli strain revealed that C. glycinophilum possesses a nagE-encoded EII permease for GlcNAc uptake. Heterologous expression of the C. glycinophilum nagE in C. glutamicum indeed enabled uptake of GlcNAc. For efficient GlcNac utilization in C. glutamicum, improved expression of nagE with concurrent overexpression of the endogenous nagA and nagB genes was found to be necessary. Based on this strategy, C. glutamicum strains for the efficient production of the amino acid L-lysine as well as the carotenoid lycopene from GlcNAc as sole substrate were constructed.
Collapse
Affiliation(s)
- Christian Matano
- Faculty of Biology and CeBiTec, Bielefeld University, 33501, Bielefeld, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Kang MS, Han SS, Kim MY, Kim BY, Huh JP, Kim HS, Lee JH. High-level expression in Corynebacterium glutamicum of nitrile hydratase from Rhodococcus rhodochrous for acrylamide production. Appl Microbiol Biotechnol 2014; 98:4379-87. [PMID: 24493572 DOI: 10.1007/s00253-014-5544-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 01/12/2014] [Accepted: 01/13/2014] [Indexed: 10/25/2022]
Abstract
The nhhBAG gene of Rhodococcus rhodochrous M33 that encodes nitrile hydratase (NHase), converting acrylonitrile into acrylamide, was cloned and expressed in Corynebacterium glutamicum under the control of an ilvC promoter. The specific enzyme activity in recombinant C. glutamicum cells was about 13.6 μmol/min/mg dry cell weight (DCW). To overexpress the NHase, five types of plasmid variants were constructed by introducing mutations into 80 nucleotides near the translational initiation region (TIR) of nhhB. Of them, pNBM4 with seven mutations showed the highest NHase activity, exhibiting higher expression levels of NhhB and NhhA than wild-type pNBW33, mainly owing to decreased secondary-structure stability and an introduction of a conserved Shine-Dalgarno sequence in the translational initiation region. In a fed-batch culture of recombinant Corynebacterium cells harboring pNBM4, the cell density reached 53.4 g DCW/L within 18 h, and the specific and total enzyme activities were estimated to be 37.3 μmol/min/mg DCW and 1,992 μmol/min/mL, respectively. The use of recombinant Corynebacterium cells for the production of acrylamide from acrylonitrile resulted in a conversion yield of 93 % and a final acrylamide concentration of 42.5 % within 6 h when the total amount of fed acrylonitrile was 456 g.
Collapse
Affiliation(s)
- Mi-Suk Kang
- Department of Food Science & Biotechnology, Kyungsung University, 309, Suyeong-ro, Nam-gu, Busan, 608-736, South Korea
| | | | | | | | | | | | | |
Collapse
|
18
|
Gürtler V, Subrahmanyam G, Shekar M, Maiti B, Karunasagar I. Bacterial Typing and Identification By Genomic Analysis of 16S–23S rRNA Intergenic Transcribed Spacer (ITS) Sequences. METHODS IN MICROBIOLOGY 2014. [DOI: 10.1016/bs.mim.2014.07.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
19
|
Dorella FA, Gala-Garcia A, Pinto AC, Sarrouh B, Antunes CA, Ribeiro D, Aburjaile FF, Fiaux KK, Guimarães LC, Seyffert N, El-Aouar RA, Silva R, Hassan SS, Castro TLP, Marques WS, Ramos R, Carneiro A, de Sá P, Miyoshi A, Azevedo V, Silva A. Progression of 'OMICS' methodologies for understanding the pathogenicity of Corynebacterium pseudotuberculosis: the Brazilian experience. Comput Struct Biotechnol J 2013; 6:e201303013. [PMID: 24688721 PMCID: PMC3962224 DOI: 10.5936/csbj.201303013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 09/06/2013] [Accepted: 09/08/2013] [Indexed: 11/22/2022] Open
Abstract
Since the first successful attempt at sequencing the Corynebacterium pseudotuberculosis genome, large amounts of genomic, transcriptomic and proteomic data have been generated. C. pseudotuberculosis is an interesting bacterium due to its great zoonotic potential and because it causes considerable economic losses worldwide. Furthermore, different strains of C. pseudotuberculosis are capable of causing various diseases in different hosts. Currently, we seek information about the phylogenetic relationships between different strains of C. pseudotuberculosis isolates from different hosts across the world and to employ these data to develop tools to diagnose and eradicate the diseases these strains cause. In this review, we present the latest findings on C. pseudotuberculosis that have been obtained with the most advanced techniques for sequencing and genomic organization. We also discuss the development of in silico tools for processing these data to prompt a better understanding of this pathogen.
Collapse
Affiliation(s)
- Fernanda A Dorella
- Laboratório de Genética Celular e Molecular, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Brazil
| | - Alfonso Gala-Garcia
- Laboratório de Genética Celular e Molecular, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Brazil
| | - Anne C Pinto
- Laboratório de Genética Celular e Molecular, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Brazil
| | - Boutros Sarrouh
- Laboratório de Genética Celular e Molecular, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Brazil
| | - Camila A Antunes
- Laboratório de Genética Celular e Molecular, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Brazil
| | - Dayana Ribeiro
- Laboratório de Genética Celular e Molecular, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Brazil
| | - Flavia F Aburjaile
- Laboratório de Genética Celular e Molecular, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Brazil
| | - Karina K Fiaux
- Laboratório de Genética Celular e Molecular, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Brazil
| | - Luis C Guimarães
- Laboratório de Genética Celular e Molecular, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Brazil
| | - Núbia Seyffert
- Laboratório de Genética Celular e Molecular, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Brazil
| | - Rachid A El-Aouar
- Laboratório de Genética Celular e Molecular, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Brazil
| | - Renata Silva
- Laboratório de Genética Celular e Molecular, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Brazil
| | - Syed S Hassan
- Laboratório de Genética Celular e Molecular, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Brazil
| | - Thiago L P Castro
- Laboratório de Genética Celular e Molecular, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Brazil
| | - Wanderson S Marques
- Laboratório de Genética Celular e Molecular, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Brazil
| | - Rommel Ramos
- Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém-PA, Brazil
| | - Adriana Carneiro
- Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém-PA, Brazil
| | - Pablo de Sá
- Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém-PA, Brazil
| | - Anderson Miyoshi
- Laboratório de Genética Celular e Molecular, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Brazil
| | - Vasco Azevedo
- Laboratório de Genética Celular e Molecular, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Brazil
| | - Artur Silva
- Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém-PA, Brazil
| |
Collapse
|
20
|
Maeda T, Wachi M. Corynebacterium glutamicum RNase E/G-type endoribonuclease encoded by NCgl2281 is involved in the 5′ maturation of 5S rRNA. Arch Microbiol 2011; 194:65-73. [DOI: 10.1007/s00203-011-0728-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Revised: 06/06/2011] [Accepted: 06/14/2011] [Indexed: 11/25/2022]
|
21
|
Forquin MP, Hébert A, Roux A, Aubert J, Proux C, Heilier JF, Landaud S, Junot C, Bonnarme P, Martin-Verstraete I. Global regulation of the response to sulfur availability in the cheese-related bacterium Brevibacterium aurantiacum. Appl Environ Microbiol 2011; 77:1449-59. [PMID: 21169450 PMCID: PMC3067248 DOI: 10.1128/aem.01708-10] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Accepted: 12/05/2010] [Indexed: 11/20/2022] Open
Abstract
In this study, we combined metabolic reconstruction, growth assays, and metabolome and transcriptome analyses to obtain a global view of the sulfur metabolic network and of the response to sulfur availability in Brevibacterium aurantiacum. In agreement with the growth of B. aurantiacum in the presence of sulfate and cystine, the metabolic reconstruction showed the presence of a sulfate assimilation pathway, thiolation pathways that produce cysteine (cysE and cysK) or homocysteine (metX and metY) from sulfide, at least one gene of the transsulfuration pathway (aecD), and genes encoding three MetE-type methionine synthases. We also compared the expression profiles of B. aurantiacum ATCC 9175 during sulfur starvation or in the presence of sulfate. Under sulfur starvation, 690 genes, including 21 genes involved in sulfur metabolism and 29 genes encoding amino acids and peptide transporters, were differentially expressed. We also investigated changes in pools of sulfur-containing metabolites and in expression profiles after growth in the presence of sulfate, cystine, or methionine plus cystine. The expression of genes involved in sulfate assimilation and cysteine synthesis was repressed in the presence of cystine, whereas the expression of metX, metY, metE1, metE2, and BL613, encoding a probable cystathionine-γ-synthase, decreased in the presence of methionine. We identified three ABC transporters: two operons encoding transporters were transcribed more strongly during cysteine limitation, and one was transcribed more strongly during methionine depletion. Finally, the expression of genes encoding a methionine γ-lyase (BL929) and a methionine transporter (metPS) was induced in the presence of methionine in conjunction with a significant increase in volatile sulfur compound production.
Collapse
Affiliation(s)
- Marie-Pierre Forquin
- INRA-AgroParisTech, UMR 782 Génie et Microbiologie des Procédés Alimentaires, Centre de Biotechnologies Agro-Industrielles, 78850 Thiverval-Grignon, France, Institut Pasteur, Laboratoire Pathogenèse des Bactéries Anaérobies, 25-28 Rue du Docteur Roux, 75724 Paris Cedex 15, France, INRA-AgroParisTech, UMR 1319 Micalis, Centre de Biotechnologies Agro-Industrielles, 78850 Thiverval-Grignon, France, CEA, Service de Pharmacologie et d'Immunoanalyse, DSV/iBiTec-S, CEA/Saclay, 91191 Gif-sur-Yvette Cedex, France, INRA-AgroParisTech, UMR 518 Mathématiques et Informatiques Appliquées, Paris, France, Institut Pasteur, Plate-forme Puces à ADN, 28 Rue du Docteur Roux, 75724 Paris Cedex 15, France, Université Catholique de Louvain, Louvain Centre for Toxicology and Applied Pharmacology, Brussels, Belgium, Université Paris 7-Denis Diderot, 75205 Paris, France
| | - Agnès Hébert
- INRA-AgroParisTech, UMR 782 Génie et Microbiologie des Procédés Alimentaires, Centre de Biotechnologies Agro-Industrielles, 78850 Thiverval-Grignon, France, Institut Pasteur, Laboratoire Pathogenèse des Bactéries Anaérobies, 25-28 Rue du Docteur Roux, 75724 Paris Cedex 15, France, INRA-AgroParisTech, UMR 1319 Micalis, Centre de Biotechnologies Agro-Industrielles, 78850 Thiverval-Grignon, France, CEA, Service de Pharmacologie et d'Immunoanalyse, DSV/iBiTec-S, CEA/Saclay, 91191 Gif-sur-Yvette Cedex, France, INRA-AgroParisTech, UMR 518 Mathématiques et Informatiques Appliquées, Paris, France, Institut Pasteur, Plate-forme Puces à ADN, 28 Rue du Docteur Roux, 75724 Paris Cedex 15, France, Université Catholique de Louvain, Louvain Centre for Toxicology and Applied Pharmacology, Brussels, Belgium, Université Paris 7-Denis Diderot, 75205 Paris, France
| | - Aurélie Roux
- INRA-AgroParisTech, UMR 782 Génie et Microbiologie des Procédés Alimentaires, Centre de Biotechnologies Agro-Industrielles, 78850 Thiverval-Grignon, France, Institut Pasteur, Laboratoire Pathogenèse des Bactéries Anaérobies, 25-28 Rue du Docteur Roux, 75724 Paris Cedex 15, France, INRA-AgroParisTech, UMR 1319 Micalis, Centre de Biotechnologies Agro-Industrielles, 78850 Thiverval-Grignon, France, CEA, Service de Pharmacologie et d'Immunoanalyse, DSV/iBiTec-S, CEA/Saclay, 91191 Gif-sur-Yvette Cedex, France, INRA-AgroParisTech, UMR 518 Mathématiques et Informatiques Appliquées, Paris, France, Institut Pasteur, Plate-forme Puces à ADN, 28 Rue du Docteur Roux, 75724 Paris Cedex 15, France, Université Catholique de Louvain, Louvain Centre for Toxicology and Applied Pharmacology, Brussels, Belgium, Université Paris 7-Denis Diderot, 75205 Paris, France
| | - Julie Aubert
- INRA-AgroParisTech, UMR 782 Génie et Microbiologie des Procédés Alimentaires, Centre de Biotechnologies Agro-Industrielles, 78850 Thiverval-Grignon, France, Institut Pasteur, Laboratoire Pathogenèse des Bactéries Anaérobies, 25-28 Rue du Docteur Roux, 75724 Paris Cedex 15, France, INRA-AgroParisTech, UMR 1319 Micalis, Centre de Biotechnologies Agro-Industrielles, 78850 Thiverval-Grignon, France, CEA, Service de Pharmacologie et d'Immunoanalyse, DSV/iBiTec-S, CEA/Saclay, 91191 Gif-sur-Yvette Cedex, France, INRA-AgroParisTech, UMR 518 Mathématiques et Informatiques Appliquées, Paris, France, Institut Pasteur, Plate-forme Puces à ADN, 28 Rue du Docteur Roux, 75724 Paris Cedex 15, France, Université Catholique de Louvain, Louvain Centre for Toxicology and Applied Pharmacology, Brussels, Belgium, Université Paris 7-Denis Diderot, 75205 Paris, France
| | - Caroline Proux
- INRA-AgroParisTech, UMR 782 Génie et Microbiologie des Procédés Alimentaires, Centre de Biotechnologies Agro-Industrielles, 78850 Thiverval-Grignon, France, Institut Pasteur, Laboratoire Pathogenèse des Bactéries Anaérobies, 25-28 Rue du Docteur Roux, 75724 Paris Cedex 15, France, INRA-AgroParisTech, UMR 1319 Micalis, Centre de Biotechnologies Agro-Industrielles, 78850 Thiverval-Grignon, France, CEA, Service de Pharmacologie et d'Immunoanalyse, DSV/iBiTec-S, CEA/Saclay, 91191 Gif-sur-Yvette Cedex, France, INRA-AgroParisTech, UMR 518 Mathématiques et Informatiques Appliquées, Paris, France, Institut Pasteur, Plate-forme Puces à ADN, 28 Rue du Docteur Roux, 75724 Paris Cedex 15, France, Université Catholique de Louvain, Louvain Centre for Toxicology and Applied Pharmacology, Brussels, Belgium, Université Paris 7-Denis Diderot, 75205 Paris, France
| | - Jean-François Heilier
- INRA-AgroParisTech, UMR 782 Génie et Microbiologie des Procédés Alimentaires, Centre de Biotechnologies Agro-Industrielles, 78850 Thiverval-Grignon, France, Institut Pasteur, Laboratoire Pathogenèse des Bactéries Anaérobies, 25-28 Rue du Docteur Roux, 75724 Paris Cedex 15, France, INRA-AgroParisTech, UMR 1319 Micalis, Centre de Biotechnologies Agro-Industrielles, 78850 Thiverval-Grignon, France, CEA, Service de Pharmacologie et d'Immunoanalyse, DSV/iBiTec-S, CEA/Saclay, 91191 Gif-sur-Yvette Cedex, France, INRA-AgroParisTech, UMR 518 Mathématiques et Informatiques Appliquées, Paris, France, Institut Pasteur, Plate-forme Puces à ADN, 28 Rue du Docteur Roux, 75724 Paris Cedex 15, France, Université Catholique de Louvain, Louvain Centre for Toxicology and Applied Pharmacology, Brussels, Belgium, Université Paris 7-Denis Diderot, 75205 Paris, France
| | - Sophie Landaud
- INRA-AgroParisTech, UMR 782 Génie et Microbiologie des Procédés Alimentaires, Centre de Biotechnologies Agro-Industrielles, 78850 Thiverval-Grignon, France, Institut Pasteur, Laboratoire Pathogenèse des Bactéries Anaérobies, 25-28 Rue du Docteur Roux, 75724 Paris Cedex 15, France, INRA-AgroParisTech, UMR 1319 Micalis, Centre de Biotechnologies Agro-Industrielles, 78850 Thiverval-Grignon, France, CEA, Service de Pharmacologie et d'Immunoanalyse, DSV/iBiTec-S, CEA/Saclay, 91191 Gif-sur-Yvette Cedex, France, INRA-AgroParisTech, UMR 518 Mathématiques et Informatiques Appliquées, Paris, France, Institut Pasteur, Plate-forme Puces à ADN, 28 Rue du Docteur Roux, 75724 Paris Cedex 15, France, Université Catholique de Louvain, Louvain Centre for Toxicology and Applied Pharmacology, Brussels, Belgium, Université Paris 7-Denis Diderot, 75205 Paris, France
| | - Christophe Junot
- INRA-AgroParisTech, UMR 782 Génie et Microbiologie des Procédés Alimentaires, Centre de Biotechnologies Agro-Industrielles, 78850 Thiverval-Grignon, France, Institut Pasteur, Laboratoire Pathogenèse des Bactéries Anaérobies, 25-28 Rue du Docteur Roux, 75724 Paris Cedex 15, France, INRA-AgroParisTech, UMR 1319 Micalis, Centre de Biotechnologies Agro-Industrielles, 78850 Thiverval-Grignon, France, CEA, Service de Pharmacologie et d'Immunoanalyse, DSV/iBiTec-S, CEA/Saclay, 91191 Gif-sur-Yvette Cedex, France, INRA-AgroParisTech, UMR 518 Mathématiques et Informatiques Appliquées, Paris, France, Institut Pasteur, Plate-forme Puces à ADN, 28 Rue du Docteur Roux, 75724 Paris Cedex 15, France, Université Catholique de Louvain, Louvain Centre for Toxicology and Applied Pharmacology, Brussels, Belgium, Université Paris 7-Denis Diderot, 75205 Paris, France
| | - Pascal Bonnarme
- INRA-AgroParisTech, UMR 782 Génie et Microbiologie des Procédés Alimentaires, Centre de Biotechnologies Agro-Industrielles, 78850 Thiverval-Grignon, France, Institut Pasteur, Laboratoire Pathogenèse des Bactéries Anaérobies, 25-28 Rue du Docteur Roux, 75724 Paris Cedex 15, France, INRA-AgroParisTech, UMR 1319 Micalis, Centre de Biotechnologies Agro-Industrielles, 78850 Thiverval-Grignon, France, CEA, Service de Pharmacologie et d'Immunoanalyse, DSV/iBiTec-S, CEA/Saclay, 91191 Gif-sur-Yvette Cedex, France, INRA-AgroParisTech, UMR 518 Mathématiques et Informatiques Appliquées, Paris, France, Institut Pasteur, Plate-forme Puces à ADN, 28 Rue du Docteur Roux, 75724 Paris Cedex 15, France, Université Catholique de Louvain, Louvain Centre for Toxicology and Applied Pharmacology, Brussels, Belgium, Université Paris 7-Denis Diderot, 75205 Paris, France
| | - Isabelle Martin-Verstraete
- INRA-AgroParisTech, UMR 782 Génie et Microbiologie des Procédés Alimentaires, Centre de Biotechnologies Agro-Industrielles, 78850 Thiverval-Grignon, France, Institut Pasteur, Laboratoire Pathogenèse des Bactéries Anaérobies, 25-28 Rue du Docteur Roux, 75724 Paris Cedex 15, France, INRA-AgroParisTech, UMR 1319 Micalis, Centre de Biotechnologies Agro-Industrielles, 78850 Thiverval-Grignon, France, CEA, Service de Pharmacologie et d'Immunoanalyse, DSV/iBiTec-S, CEA/Saclay, 91191 Gif-sur-Yvette Cedex, France, INRA-AgroParisTech, UMR 518 Mathématiques et Informatiques Appliquées, Paris, France, Institut Pasteur, Plate-forme Puces à ADN, 28 Rue du Docteur Roux, 75724 Paris Cedex 15, France, Université Catholique de Louvain, Louvain Centre for Toxicology and Applied Pharmacology, Brussels, Belgium, Université Paris 7-Denis Diderot, 75205 Paris, France
| |
Collapse
|
22
|
Barreiro C, Nakunst D, Hüser AT, de Paz HD, Kalinowski J, Martín JF. Microarray studies reveal a ‘differential response’ to moderate or severe heat shock of the HrcA- and HspR-dependent systems in Corynebacterium glutamicum. Microbiology (Reading) 2009; 155:359-372. [DOI: 10.1099/mic.0.019299-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Genome-wide transcription profile analysis of the heat-shocked wild-type strain under moderate (40 °C) and severe heat stress (50 °C) revealed that a large number of genes are differentially expressed after heat shock. Of these, 358 genes were upregulated and 420 were downregulated in response to moderate heat shock (40 °C) inCorynebacterium glutamicum. Our results confirmed the HrcA/controlling inverted repeat of chaperone expression (CIRCE)-dependent and HspR/HspR-associated inverted repeat (HAIR)-dependent upregulation of chaperones following heat shock. Other genes, including clusters of orthologous groups (COG) related to macromolecule biosynthesis and several transcriptional regulators (COG class K), were upregulated, explaining the large number of genes affected by heat shock. Mutants having deletions in thehrcAorhspRregulators were constructed, which allowed the complete identification of the genes controlled by those systems. The up- or downregulation of several genes observed in the microarray experiments was validated by Northern blot analyses and quantitative (real-time) reverse-transcription PCR. These analyses showed a heat-shock intensity-dependent response (‘differential response’) in the HspR/HAIR system, in contrast to the non-differential response shown by the HrcA/CIRCE-regulated genes.
Collapse
Affiliation(s)
- Carlos Barreiro
- INBIOTEC (Instituto de Biotecnología de León), Parque Científico de León, Avda. Real, 1, 24006 León, Spain
| | - Diana Nakunst
- Institut für Genomforschung und Systembiologie, Centrum für Biotechnologie, Universität Bielefeld, Universitätsstrasse 25, 33615 Bielefeld, Germany
| | - Andrea T. Hüser
- Institut für Genomforschung und Systembiologie, Centrum für Biotechnologie, Universität Bielefeld, Universitätsstrasse 25, 33615 Bielefeld, Germany
| | - Héctor D. de Paz
- INBIOTEC (Instituto de Biotecnología de León), Parque Científico de León, Avda. Real, 1, 24006 León, Spain
| | - Jörn Kalinowski
- Institut für Genomforschung und Systembiologie, Centrum für Biotechnologie, Universität Bielefeld, Universitätsstrasse 25, 33615 Bielefeld, Germany
| | - Juan F. Martín
- Área de Microbiología, Departamento de Biología Molecular, Universidad de León, Campus de Vegazana, s/n. 24071 León, Spain
- INBIOTEC (Instituto de Biotecnología de León), Parque Científico de León, Avda. Real, 1, 24006 León, Spain
| |
Collapse
|
23
|
Chen CL, Pan TY, Kan SC, Kuan YC, Hong LY, Chiu KR, Sheu CS, Yang JS, Hsu WH, Hu HY. Genome sequence of the lytic bacteriophage P1201 from Corynebacterium glutamicum NCHU 87078: evolutionary relationships to phages from Corynebacterineae. Virology 2008; 378:226-32. [PMID: 18599103 DOI: 10.1016/j.virol.2008.05.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2007] [Revised: 04/09/2008] [Accepted: 05/21/2008] [Indexed: 11/29/2022]
Abstract
P1201 is a lytic corynephage of Corynebacterium glutamicum NCHU 87078. Its genome consists of a linear double-stranded DNA molecule of 70,579 base pairs, with 3'-protruding cohesive ends of ten nucleotides. We have identified 69 putative open reading frames, including three apparent genes (thymidylate synthase, terminase, and RNR alpha subunit genes) that are interrupted by an intein. Protein-splicing activities of these inteins were demonstrated in Escherichia coli. Three structural proteins including major capsid and major tail proteins were separated by SDS-PAGE and identified by both LC-MS-MS and N-terminal sequence analyses. Bioinformatics analysis indicated that only about 8.7% of its putative gene products shared substantial protein sequence similarity with the lytic corynephage BFK20 from Brevibacterium flavum, the only corynephage whose genome had been sequenced to date, revealing that the P1201 genome is distinct from BFK20. The mosaic-like genome of P1201 indicates extensive horizontal gene transfer among P1201, Gordonia terrae phage GTE5, mycobacteriophages, and several regions of Corynebacterium spp. genomes.
Collapse
Affiliation(s)
- Chang-Lin Chen
- Institute of Molecular Biology, National Chung Hsing University, Taichung 402, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Santos MDO, Castro NDS, Pereira M, Soares CMDA. Genes involved in translation of Mycoplasma hyopneumoniae and Mycoplasma synoviae. Genet Mol Biol 2007. [DOI: 10.1590/s1415-47572007000200010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
25
|
Karpinets TV, Greenwood DJ, Sams CE, Ammons JT. RNA:protein ratio of the unicellular organism as a characteristic of phosphorous and nitrogen stoichiometry and of the cellular requirement of ribosomes for protein synthesis. BMC Biol 2006; 4:30. [PMID: 16953894 PMCID: PMC1574349 DOI: 10.1186/1741-7007-4-30] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2006] [Accepted: 09/05/2006] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Mean phosphorous:nitrogen (P:N) ratios and relationships of P:N ratios with the growth rate of organisms indicate a surprising similarity among and within microbial species, plants, and insect herbivores. To reveal the cellular mechanisms underling this similarity, the macromolecular composition of seven microorganisms and the effect of specific growth rate (SGR) on RNA:protein ratio, the number of ribosomes, and peptide elongation rate (PER) were analyzed under different conditions of exponential growth. RESULTS It was found that P:N ratios calculated from RNA and protein contents in these particular organisms were in the same range as the mean ratios reported for diverse organisms and had similar positive relationships with growth rate, consistent with the growth-rate hypothesis. The efficiency of protein synthesis in microorganisms is estimated as the number of active ribosomes required for the incorporation of one amino acid into the synthesized protein. This parameter is calculated as the SGR:PER ratio. Experimental and theoretical evidence indicated that the requirement of ribosomes for protein synthesis is proportional to the RNA:protein ratio. The constant of proportionality had the same values for all organisms, and was derived mechanistically from the characteristics of the protein-synthesis machinery of the cell (the number of nucleotides per ribosome, the average masses of nucleotides and amino acids, the fraction of ribosomal RNA in the total RNA, and the fraction of active ribosomes). Impairment of the growth conditions decreased the RNA:protein ratio and increased the overall efficiency of protein synthesis in the microorganisms. CONCLUSION Our results suggest that the decrease in RNA:protein and estimated P:N ratios with decrease in the growth rate of the microorganism is a consequence of an increased overall efficiency of protein synthesis in the cell resulting from activation of the general stress response and increased transcription of cellular maintenance genes at the expense of growth related genes. The strong link between P:N stoichiometry, RNA:protein ratio, ribosomal requirement for protein synthesis, and growth rate of microorganisms indicated by the study could be used to characterize the N and P economy of complex ecosystems such as soils and the oceans.
Collapse
Affiliation(s)
- Tatiana V Karpinets
- Department of Plant Sciences, University of Tennessee, 2431 Joe Johnson Drive. Knoxville, TN 37996-4561, USA
- Computer Science and Mathematics Division, Oak Ridge National Laboratory, P.O. Box 2008, MS6164, Oak Ridge, TN 37831, USA
| | | | - Carl E Sams
- Department of Plant Sciences, University of Tennessee, 2431 Joe Johnson Drive. Knoxville, TN 37996-4561, USA
| | - John T Ammons
- Biosystems Engineering & Environmental Science Department, University of Tennessee, 2506 E. J. Chapman Drive, Knoxville, TN 37996-4531, USA
| |
Collapse
|
26
|
Zhang W, Gritsenko MA, Moore RJ, Culley DE, Nie L, Petritis K, Strittmatter EF, Camp DG, Smith RD, Brockman FJ. A proteomic view ofDesulfovibrio vulgaris metabolism as determined by liquid chromatography coupled with tandem mass spectrometry. Proteomics 2006; 6:4286-99. [PMID: 16819729 DOI: 10.1002/pmic.200500930] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Direct LC-MS/MS was used to examine the proteins extracted from exponential or stationary phase Desulfovibrio vulgaris cells that had been grown on a minimal medium containing either lactate or formate as the primary carbon source. Across all four growth conditions, 976 gene products were identified with high confidence, which is equal to approximately 28% of all predicted proteins in the D. vulgaris genome. Bioinformatic analysis showed that the proteins identified were distributed among almost all functional classes, with the energy metabolism category containing the greatest number of identified proteins. At least 154 ORFs originally annotated as hypothetical proteins were found to encode the expressed proteins, which provided verification for the authenticity of these hypothetical proteins. Proteomic analysis showed that proteins potentially involved in ATP biosynthesis using the proton gradient across membrane, such as ATPase, alcohol dehydrogenases, heterodisulfide reductases, and [NiFe] hydrogenase (HynAB-1) of the hydrogen cycling were highly expressed in all four growth conditions, suggesting they may be the primary pathways for ATP synthesis in D. vulgaris. Most of the enzymes involved in substrate-level phosphorylation were also detected in all tested conditions. However, no enzyme involved in CO cycling or formate cycling was detected, suggesting that they are not the primary ATP-biosynthesis pathways under the tested conditions. This study provides the first proteomic overview of the cellular metabolism of D. vulgaris. The complete list of proteins identified in this study and their abundances (peptide hits) is provided in Supplementary Table 1.
Collapse
Affiliation(s)
- Weiwen Zhang
- Microbiology Group, Pacific Northwest National Laboratory, Richland, WA, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Gomez-Escribano JP, Liras P, Pisabarro A, Martín JF. An rplKDelta29-PALG-32 mutation leads to reduced expression of the regulatory genes ccaR and claR and very low transcription of the ceaS2 gene for clavulanic acid biosynthesis in Streptomyces clavuligerus. Mol Microbiol 2006; 61:758-70. [PMID: 16803595 DOI: 10.1111/j.1365-2958.2006.05266.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The transcriptional and translational control of the biosynthesis of the beta-lactamase inhibitor clavulanic acid is a subject of great scientific and industrial interest. To study the role of the ribosomal protein L11 on control of clavulanic acid gene transcription, the DNA region aspC-tRNA(trp)-secE-rplK-rplA-rplJ-rplL of Streptomyces clavuligerus was cloned and characterized. An S. clavuligerus rplK(DeltaPALG) mutant, with an internal 12 nucleotides in-frame deletion in the rplK gene, encoding the L11 (RplK) ribosomal protein lacking amino acids (29)PALG(32), was constructed by gene replacement. This deletion alters the L11 N-terminal domain that interacts with the RelA and class I releasing factors-mediated translational termination. The mutant grew well, showed threefold higher resistance to thiostrepton, did not form spores and lacked diffusible brown pigments, as compared with the wild-type strain. The wild-type phenotype was recovered by complementation with the native rplK gene. S. clavuligerus rplK(DeltaPALG) produced reduced levels of clavulanic acid (15-26% as compared with the wild type) and cephamycin C (40-50%) in cultures grown in defined SA and complex TSB media. The decreased yields resulted from an impaired transcription of the regulatory genes ccaR and claR and the cefD and ceaS2 genes for cephamycin and clavulanic acid biosynthesis respectively. Expression of ceaS2 encoding carboxyethylarginine synthase (CEAS), the precursor-committing enzyme for clavulanic acid biosynthesis, was particularly affected in this mutant. In the wild-type strain polyphosphorylated nucleotides peaked at 36-48 h of growth in SA cultures whereas expression of the cephamycin and clavulanic acid genes occurred 12-24 h earlier than the increase in ppGpp indicating that there is no strict correlation between the peak of ppGpp and the onset of transcription of the clavulanic acid and cephamycin C biosynthesis. The drastic effect of the rplK(DeltaPALG) mutation on the onset of expression of the ceaS2 and the regulatory ccaR and claR genes and the lack of correlation with ppGpp levels suggest that the onset of transcription of these genes is modulated by the conformational alteration of the N-terminal region of L11 probably by interaction with the nascent peptide releasing factors and with RelA.
Collapse
Affiliation(s)
- Juan Pablo Gomez-Escribano
- Area de Microbiología, Facultad de Ciencias Biológicas y Ambientales, Universidad de León, Campus de Vegazana, s/n, 24071 León, Spain
| | | | | | | |
Collapse
|
28
|
Zhang W, Culley DE, Scholten JCM, Hogan M, Vitiritti L, Brockman FJ. Global transcriptomic analysis of Desulfovibrio vulgaris on different electron donors. Antonie van Leeuwenhoek 2006; 89:221-37. [PMID: 16710634 DOI: 10.1007/s10482-005-9024-z] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2005] [Accepted: 11/03/2005] [Indexed: 10/24/2022]
Abstract
Whole-genome microarrays of Desulfovibrio vulgaris were used to determine relative transcript levels in cells grown to exponential or stationary phase on a medium containing either lactate or formate as electron donor. The results showed that 158 and 477 genes were differentially expressed when comparing exponential to stationary phase in lactate- or formate-based media, respectively; and 505 and 355 genes were responsive to the electron donor used at exponential or stationary phase, respectively. Functional analyses suggested that the differentially regulated genes were involved in almost every aspect of cellular metabolism, with genes involved in protein synthesis, carbon, and energy metabolism being the most regulated. The results suggested that HynBA-1 might function as a primary periplasmic hydrogenase responsible for oxidation of H2 linked to the proton gradient in lactate-based medium, while several periplasmic hydrogenases including HynBA-1 and Hyd might carry out this role in formate-based medium. The results also indicated that the alcohol dehydrogenase and heterodisulfide reductase catalyzed pathway for proton gradient formation might be actively functioning for ATP synthesis in D. vulgaris. In addition, hierarchical clustering analysis using expression data across different electron donors and growth phases allowed the identification of the common electron donor independent changes in gene expression specifically associated with the exponential to stationary phase transition, and those specifically associated with the different electron donors independent of growth phase. The study provides the first global description and functional interpretation of transcriptomic response to growth phase and electron donor in D. vulgaris.
Collapse
Affiliation(s)
- Weiwen Zhang
- Department of Microbiology, Pacific Northwest National Laboratory, 902 Battelle Boulevard, 999, Richland, WA 99352, USA.
| | | | | | | | | | | |
Collapse
|
29
|
Yu M, Tsang JSH. Use of ribosomal promoters from Burkholderia cenocepacia and Burkholderia cepacia for improved expression of transporter protein in Escherichia coli. Protein Expr Purif 2006; 49:219-27. [PMID: 16737826 DOI: 10.1016/j.pep.2006.04.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2006] [Revised: 04/08/2006] [Accepted: 04/12/2006] [Indexed: 10/24/2022]
Abstract
Expression of heterologous protein in Escherichia coli usually based on the IPTG-inducible expression systems. The use of these systems for membrane protein production, however, usually caused cytotoxic problem that affected the yield and functional characterization of the protein. Optimization of these systems for transporter protein production is time-consuming and is usually ineffective. Here, we described the use of the ribosomal promoters P(s12) from Burkholderia cenocepacia LMG16656 and from Burkholderia cepacia MBA4 for efficient expression of functional transporter protein in E. coli. These promoters were used to drive the expression of a transmembrane protein, Deh4p, which help transport monohaloacetates into B. cepacia MBA4 for metabolism. Production of Deh4p in E. coli using an IPTG-inducible promoter resulted in no expression in uninduced condition and cell lysis in the presence of IPTG. Moreover, it has been reported that IPTG increased the endogenous production of other permeases such as LacZ and MelB. Cells expressing Deh4p from a P(s12) promoter grew normally in rich medium and which did not increase the expression of other permease. Uptake of (14)C-monochloroacetic acid has confirmed the production of the transporter protein in these cells. The results showed that the constitutive ribosomal protein promoters from the Burkholderia sp. could be used for effective expression of transporter protein in E. coli without causing any detrimental and unnecessary effect.
Collapse
Affiliation(s)
- Manda Yu
- Molecular Microbiology Laboratory, Department of Botany, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | | |
Collapse
|
30
|
Bukovska G, Klucar L, Vlcek C, Adamovic J, Turna J, Timko J. Complete nucleotide sequence and genome analysis of bacteriophage BFK20 — A lytic phage of the industrial producer Brevibacterium flavum. Virology 2006; 348:57-71. [PMID: 16457869 DOI: 10.1016/j.virol.2005.12.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2005] [Revised: 11/14/2005] [Accepted: 12/11/2005] [Indexed: 10/25/2022]
Abstract
The entire double-stranded DNA genome of bacteriophage BFK20, a lytic phage of the Brevibacterium flavum CCM 251--industrial producer of L-lysine--was sequenced and analyzed. It consists of 42,968 base pairs with an overall molar G + C content of 56.2%. Fifty-five potential open reading frames were identified and annotated using various bioinformatics tools. Clusters of functionally related putative genes were defined (structural, lytic, replication and regulatory). To verify the annotation of structural proteins, they were resolved by 2D gel electrophoresis and were submitted to N-terminal amino acid sequencing. Structural proteins identified included the portal and major and minor tail proteins. Based on the overall genome sequence comparison, similarities with other known bacteriophage genomes include primarily bacteriophages from Mycobacterium spp. and some regions of Corynebacterium spp. genomes--possible prophages. Our results support the theory that phage genomes are mosaics with respect to each other.
Collapse
Affiliation(s)
- Gabriela Bukovska
- Institute of Molecular Biology, Centre of Excellence for Molecular Medicine, Slovak Academy of Sciences, Dubravska cesta 21, 845 51 Bratislava, Slovakia.
| | | | | | | | | | | |
Collapse
|
31
|
Brune I, Brinkrolf K, Kalinowski J, Pühler A, Tauch A. The individual and common repertoire of DNA-binding transcriptional regulators of Corynebacterium glutamicum, Corynebacterium efficiens, Corynebacterium diphtheriae and Corynebacterium jeikeium deduced from the complete genome sequences. BMC Genomics 2005; 6:86. [PMID: 15938759 PMCID: PMC1180825 DOI: 10.1186/1471-2164-6-86] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2005] [Accepted: 06/07/2005] [Indexed: 11/10/2022] Open
Abstract
Background The genus Corynebacterium includes Gram-positive microorganisms of great biotechnologically importance, such as Corynebacterium glutamicum and Corynebacterium efficiens, as well as serious human pathogens, such as Corynebacterium diphtheriae and Corynebacterium jeikeium. Although genome sequences of the respective species have been determined recently, the knowledge about the repertoire of transcriptional regulators and the architecture of global regulatory networks is scarce. Here, we apply a combination of bioinformatic tools and a comparative genomic approach to identify and characterize a set of conserved DNA-binding transcriptional regulators in the four corynebacterial genomes. Results A collection of 127 DNA-binding transcriptional regulators was identified in the C. glutamicum ATCC 13032 genome, whereas 103 regulators were detected in C. efficiens YS-314, 63 in C. diphtheriae NCTC 13129 and 55 in C. jeikeium K411. According to amino acid sequence similarities and protein structure predictions, the DNA-binding transcriptional regulators were grouped into 25 regulatory protein families. The common set of DNA-binding transcriptional regulators present in the four corynebacterial genomes consists of 28 proteins that are apparently involved in the regulation of cell division and septation, SOS and stress response, carbohydrate metabolism and macroelement and metal homeostasis. Conclusion This work describes characteristic features of a set of conserved DNA-binding transcriptional regulators present within the corynebacterial core genome. The knowledge on the physiological function of these proteins should not only contribute to our understanding of the regulation of gene expression but will also provide the basis for comprehensive modeling of transcriptional regulatory networks of these species.
Collapse
Affiliation(s)
- Iris Brune
- Institut für Genomforschung, Centrum für Biotechnologie, Universität Bielefeld, Universitätsstr. 25, D-33615 Bielefeld, Germany
| | - Karina Brinkrolf
- Institut für Genomforschung, Centrum für Biotechnologie, Universität Bielefeld, Universitätsstr. 25, D-33615 Bielefeld, Germany
- International NRW Graduate School in Bioinformatics and Genome Research, Centrum für Biotechnologie, Universität Bielefeld, Universitätsstr. 25, D-33615 Bielefeld, Germany
| | - Jörn Kalinowski
- Institut für Genomforschung, Centrum für Biotechnologie, Universität Bielefeld, Universitätsstr. 25, D-33615 Bielefeld, Germany
| | - Alfred Pühler
- Lehrstuhl für Genetik, Fakultät für Biologie, Universität Bielefeld, Universitätsstr. 25, D-33615 Bielefeld, Germany
| | - Andreas Tauch
- Institut für Genomforschung, Centrum für Biotechnologie, Universität Bielefeld, Universitätsstr. 25, D-33615 Bielefeld, Germany
| |
Collapse
|
32
|
Meyer IM, Miklós I. Co-transcriptional folding is encoded within RNA genes. BMC Mol Biol 2004; 5:10. [PMID: 15298702 PMCID: PMC514895 DOI: 10.1186/1471-2199-5-10] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2004] [Accepted: 08/06/2004] [Indexed: 11/10/2022] Open
Abstract
Background Most of the existing RNA structure prediction programs fold a completely synthesized RNA molecule. However, within the cell, RNA molecules emerge sequentially during the directed process of transcription. Dedicated experiments with individual RNA molecules have shown that RNA folds while it is being transcribed and that its correct folding can also depend on the proper speed of transcription. Methods The main aim of this work is to study if and how co-transcriptional folding is encoded within the primary and secondary structure of RNA genes. In order to achieve this, we study the known primary and secondary structures of a comprehensive data set of 361 RNA genes as well as a set of 48 RNA sequences that are known to differ from the originally transcribed sequence units. We detect co-transcriptional folding by defining two measures of directedness which quantify the extend of asymmetry between alternative helices that lie 5' and those that lie 3' of the known helices with which they compete. Results We show with statistical significance that co-transcriptional folding strongly influences RNA sequences in two ways: (1) alternative helices that would compete with the formation of the functional structure during co-transcriptional folding are suppressed and (2) the formation of transient structures which may serve as guidelines for the co-transcriptional folding pathway is encouraged. Conclusions These findings have a number of implications for RNA secondary structure prediction methods and the detection of RNA genes.
Collapse
MESH Headings
- Algorithms
- Base Pairing
- DNA, Bacterial/genetics
- DNA, Ribosomal/genetics
- Genes
- Hydrogen Bonding
- Introns/genetics
- Models, Genetic
- Nucleic Acid Conformation
- RNA/genetics
- RNA/ultrastructure
- RNA Processing, Post-Transcriptional
- RNA, Ribosomal, 16S/genetics
- RNA, Ribosomal, 16S/ultrastructure
- RNA, Ribosomal, 23S/genetics
- RNA, Ribosomal, 23S/ultrastructure
- Transcription, Genetic
Collapse
Affiliation(s)
- Irmtraud M Meyer
- Oxford Centre for Gene Function, University of Oxford, South Parks Road, Oxford OX1 3QB, UK
| | - István Miklós
- Eötvös University and Hungarian Academic of Science, Theoretical Biology and Ecology Group, Pázmány Péter sétány 1/c, 1117 Budapest, Hungary
| |
Collapse
|