1
|
Zhou RQ, Yang PJ, Liu TT, Han DD, Liu XL, Liu LG, Si S, Yang SW, Xu SS, Guo YW, Tan HD. Liver transplantation for combined hepatocellular cholangiocarcinoma: Current evidence, selection criteria, and therapeutic controversies. World J Gastrointest Surg 2025; 17:105783. [DOI: 10.4240/wjgs.v17.i5.105783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/09/2025] [Accepted: 04/09/2025] [Indexed: 05/23/2025] Open
Abstract
Combined hepatocellular cholangiocarcinoma (cHCC-CCA) is a rare and aggressive primary liver malignancy characterized by features of both HCC and CCA. Preoperative diagnosis remains challenging because of overlapping imaging and histopathological features, which often lead to misclassification. Although liver resection is the primary curative therapy, the efficacy of liver transplantation (LT) remains controversial. Historically, LT has been considered contraindicated owing to the poor prognosis, high recurrence rate of cHCC-CCA, and the potential for organ wastage. Recent studies have suggested that LT may benefit carefully selected patients, particularly those with early-stage tumors or cirrhosis. However, there is no consensus on the criteria for LT in patients with cHCC-CCA. Lymphadenectomy and vascular resection strategies were discussed along with locoregional and systemic therapies. This review synthesized the current evidence on surgical strategies for cHCC-CCA, focusing on evolving LT criteria and outcomes.
Collapse
Affiliation(s)
- Rui-Quan Zhou
- Second Department of Hepatopancreatobiliary Surgery, China-Japan Friendship Hospital, Beijing 100029, China
| | - Pei-Jun Yang
- Second Department of Hepatopancreatobiliary Surgery, China-Japan Friendship Hospital, Beijing 100029, China
| | - Tian-Tong Liu
- Second Department of Hepatopancreatobiliary Surgery, China-Japan Friendship Hospital, Beijing 100029, China
| | - Dong-Dong Han
- Second Department of Hepatopancreatobiliary Surgery, China-Japan Friendship Hospital, Beijing 100029, China
| | - Xiao-Lei Liu
- Second Department of Hepatopancreatobiliary Surgery, China-Japan Friendship Hospital, Beijing 100029, China
| | - Li-Guo Liu
- Second Department of Hepatopancreatobiliary Surgery, China-Japan Friendship Hospital, Beijing 100029, China
| | - Shuang Si
- Second Department of Hepatopancreatobiliary Surgery, China-Japan Friendship Hospital, Beijing 100029, China
| | - Shi-Wei Yang
- Second Department of Hepatopancreatobiliary Surgery, China-Japan Friendship Hospital, Beijing 100029, China
| | - Shuai-Shuai Xu
- Second Department of Hepatopancreatobiliary Surgery, China-Japan Friendship Hospital, Beijing 100029, China
| | - Yi-Wen Guo
- Second Department of Hepatopancreatobiliary Surgery, China-Japan Friendship Hospital, Beijing 100029, China
| | - Hai-Dong Tan
- Second Department of Hepatopancreatobiliary Surgery, China-Japan Friendship Hospital, Beijing 100029, China
| |
Collapse
|
2
|
Kotulkar M, Paine-Cabrera D, Apte U. Role of Hepatocyte Nuclear Factor 4 Alpha in Liver Cancer. Semin Liver Dis 2024; 44:383-393. [PMID: 38901435 DOI: 10.1055/a-2349-7236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Liver cancer is the sixth most common cancer and the fourth leading cause of cancer-related deaths worldwide. Hepatocellular carcinoma (HCC) is the most prevalent primary liver cancer and the incidence of HCC is on the rise. Liver cancers in general and HCC in particular do not respond to chemotherapy. Radiological ablation, surgical resection, and liver transplantation are the only medical therapies currently available. Hepatocyte nuclear factor 4 α (HNF4α) is an orphan nuclear receptor expressed only in hepatocytes in the liver. HNF4α is considered the master regulator of hepatic differentiation because it regulates a significant number of genes involved in various liver-specific functions. In addition to maintaining hepatic differentiation, HNF4α also acts as a tumor suppressor by inhibiting hepatocyte proliferation by suppressing the expression of promitogenic genes and inhibiting epithelial to mesenchymal transition in hepatocytes. Loss of HNF4α expression and function is associated with rapid progression of chronic liver diseases that ultimately lead to liver cirrhosis and HCC, including metabolism-associated steatohepatitis, alcohol-associated liver disease, and hepatitis virus infection. This review summarizes the role of HNF4α in liver cancer pathogenesis and highlights its potential as a potential therapeutic target for HCC.
Collapse
Affiliation(s)
- Manasi Kotulkar
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| | - Diego Paine-Cabrera
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| | - Udayan Apte
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| |
Collapse
|
3
|
Gribben C, Galanakis V, Calderwood A, Williams EC, Chazarra-Gil R, Larraz M, Frau C, Puengel T, Guillot A, Rouhani FJ, Mahbubani K, Godfrey E, Davies SE, Athanasiadis E, Saeb-Parsy K, Tacke F, Allison M, Mohorianu I, Vallier L. Acquisition of epithelial plasticity in human chronic liver disease. Nature 2024; 630:166-173. [PMID: 38778114 PMCID: PMC11153150 DOI: 10.1038/s41586-024-07465-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 04/25/2024] [Indexed: 05/25/2024]
Abstract
For many adult human organs, tissue regeneration during chronic disease remains a controversial subject. Regenerative processes are easily observed in animal models, and their underlying mechanisms are becoming well characterized1-4, but technical challenges and ethical aspects are limiting the validation of these results in humans. We decided to address this difficulty with respect to the liver. This organ displays the remarkable ability to regenerate after acute injury, although liver regeneration in the context of recurring injury remains to be fully demonstrated. Here we performed single-nucleus RNA sequencing (snRNA-seq) on 47 liver biopsies from patients with different stages of metabolic dysfunction-associated steatotic liver disease to establish a cellular map of the liver during disease progression. We then combined these single-cell-level data with advanced 3D imaging to reveal profound changes in the liver architecture. Hepatocytes lose their zonation and considerable reorganization of the biliary tree takes place. More importantly, our study uncovers transdifferentiation events that occur between hepatocytes and cholangiocytes without the presence of adult stem cells or developmental progenitor activation. Detailed analyses and functional validations using cholangiocyte organoids confirm the importance of the PI3K-AKT-mTOR pathway in this process, thereby connecting this acquisition of plasticity to insulin signalling. Together, our data indicate that chronic injury creates an environment that induces cellular plasticity in human organs, and understanding the underlying mechanisms of this process could open new therapeutic avenues in the management of chronic diseases.
Collapse
Affiliation(s)
- Christopher Gribben
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Open Targets, Wellcome Genome Campus, Hinxton, UK
| | - Vasileios Galanakis
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Open Targets, Wellcome Genome Campus, Hinxton, UK
- Liver Unit, Department of Medicine, Cambridge NIHR Biomedical Research Centre, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Alexander Calderwood
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Eleanor C Williams
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Ruben Chazarra-Gil
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Miguel Larraz
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Carla Frau
- Berlin Institute of Health Centre for Regenerative Therapies, Berlin, Germany
| | - Tobias Puengel
- Department of Hepatology and Gastroenterology, Charité Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
| | - Adrien Guillot
- Department of Hepatology and Gastroenterology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | | | | | - Edmund Godfrey
- Department of Radiology, Addenbrooke's Hospital, Cambridge, UK
| | - Susan E Davies
- Department of Histopathology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Emmanouil Athanasiadis
- Greek Genome Centre, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
- Medical Image and Signal Processing Laboratory, Department of Biomedical Engineering, University of West Attica, Athens, Greece
| | | | - Frank Tacke
- Department of Hepatology and Gastroenterology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Michael Allison
- Open Targets, Wellcome Genome Campus, Hinxton, UK.
- Liver Unit, Department of Medicine, Cambridge NIHR Biomedical Research Centre, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK.
| | - Irina Mohorianu
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK.
| | - Ludovic Vallier
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK.
- Open Targets, Wellcome Genome Campus, Hinxton, UK.
- Berlin Institute of Health Centre for Regenerative Therapies, Berlin, Germany.
- Max Planck Institute for Molecular Genetics, Berlin, Germany.
| |
Collapse
|
4
|
Yoshizawa T, Lee JW, Hong SM, Jung D, Noë M, Zbijewski W, Kiemen A, Wu PH, Wirtz D, Hruban RH, Wood LD, Oshima K. Three-dimensional analysis of ductular reactions and their correlation with liver regeneration and fibrosis. Virchows Arch 2024; 484:753-763. [PMID: 37704824 DOI: 10.1007/s00428-023-03641-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/24/2023] [Accepted: 08/30/2023] [Indexed: 09/15/2023]
Abstract
The liver has multiple regeneration modes, including hepatocellular hypertrophy and self-renewal of hepatocytes. When hepatocyte proliferation is impaired, hepatic progenitor cells may proliferate through ductular reaction (DR), differentiate into hepatocytes, and contribute to fibrosis. However, the three-dimensional spatial relationship between DR and regenerating hepatocytes and dynamic changes in DR associated with fibrosis remain poorly understood. Here, we performed three-dimensional (3D) imaging of cleared 42 liver explants with chronic and acute liver diseases and 4 normal livers to visualize DR. In chronic hepatic liver diseases, such as viral hepatitis, steatohepatitis, autoimmune hepatitis, and cryptogenic cirrhosis, the total length and number of branches of DR showed a significant positive correlation. We studied the spatial relationship between DR and GS-expressing cells using glutamine synthetase (GS) and cytokeratin 19 (CK19) as markers of liver regeneration and DR, respectively. The percentage of CK19-positive cells that co-expressed GS was less than 10% in chronic liver diseases. In contrast, nearly one-third of CK19-positive cells co-expressed GS in acute liver diseases, and chronic cholestatic liver diseases, including primary biliary cholangitis and primary sclerosing cholangitis, showed no co-expression. We also found that DR was longer and had more branching in livers with progressive fibrosis compared to those with regressive fibrosis. Our results suggest that DR displays varying degrees of spatial complexity and contribution to liver regeneration. DR may serve as hepatobiliary junctions that maintain continuity between hepatocytes and bile ducts rather than hepatocyte regeneration in chronic liver diseases.
Collapse
Affiliation(s)
- Tadashi Yoshizawa
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pathology and Bioscience, Hirosaki University Graduate School of Medicine, Hirosaki Aomori, Japan
| | - Jae W Lee
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Seung-Mo Hong
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - DongJun Jung
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Medicine, Graduate School, University of Ulsan, Seoul, Republic of Korea
| | - Michaël Noë
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Wojciech Zbijewski
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Ashley Kiemen
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Pei-Hsun Wu
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Denis Wirtz
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Ralph H Hruban
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Laura D Wood
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kiyoko Oshima
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
5
|
Rizvi F, Lee YR, Diaz-Aragon R, Bawa PS, So J, Florentino RM, Wu S, Sarjoo A, Truong E, Smith AR, Wang F, Everton E, Ostrowska A, Jung K, Tam Y, Muramatsu H, Pardi N, Weissman D, Soto-Gutierrez A, Shin D, Gouon-Evans V. VEGFA mRNA-LNP promotes biliary epithelial cell-to-hepatocyte conversion in acute and chronic liver diseases and reverses steatosis and fibrosis. Cell Stem Cell 2023; 30:1640-1657.e8. [PMID: 38029740 PMCID: PMC10843608 DOI: 10.1016/j.stem.2023.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/07/2023] [Accepted: 10/31/2023] [Indexed: 12/01/2023]
Abstract
The liver is known for its remarkable regenerative ability through proliferation of hepatocytes. Yet, during chronic injury or severe hepatocyte death, proliferation of hepatocytes is exhausted. To overcome this hurdle, we propose vascular-endothelial-growth-factor A (VEGFA) as a therapeutic means to accelerate biliary epithelial-cell (BEC)-to-hepatocyte conversion. Investigation in zebrafish establishes that blocking VEGF receptors abrogates BEC-driven liver repair, while VEGFA overexpression promotes it. Delivery of VEGFA via nonintegrative and safe nucleoside-modified mRNA encapsulated into lipid nanoparticles (mRNA-LNPs) in acutely or chronically injured mouse livers induces robust BEC-to-hepatocyte conversion and elimination of steatosis and fibrosis. In human and murine diseased livers, we further identified VEGFA-receptor KDR-expressing BECs associated with KDR-expressing cell-derived hepatocytes. This work defines KDR-expressing cells, most likely being BECs, as facultative progenitors. This study reveals unexpected therapeutic benefits of VEGFA delivered via nucleoside-modified mRNA-LNP, whose safety is widely validated with COVID-19 vaccines, for harnessing BEC-driven repair to potentially treat liver diseases.
Collapse
Affiliation(s)
- Fatima Rizvi
- Center for Regenerative Medicine, Department of Medicine, Section of Gastroenterology, Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Yu-Ri Lee
- Department of Developmental Biology, Pittsburgh Liver Research Center, McGowan Institute for Regenerative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
| | - Ricardo Diaz-Aragon
- Department of Pathology, Center for Transcriptional Medicine, Pittsburgh Liver Research Center, McGowan Institute for Regenerative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Pushpinder S Bawa
- Center for Regenerative Medicine, Department of Medicine, Section of Gastroenterology, Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Juhoon So
- Department of Developmental Biology, Pittsburgh Liver Research Center, McGowan Institute for Regenerative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
| | - Rodrigo M Florentino
- Department of Pathology, Center for Transcriptional Medicine, Pittsburgh Liver Research Center, McGowan Institute for Regenerative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Susan Wu
- Center for Regenerative Medicine, Department of Medicine, Section of Gastroenterology, Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Arianna Sarjoo
- Center for Regenerative Medicine, Department of Medicine, Section of Gastroenterology, Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Emily Truong
- Center for Regenerative Medicine, Department of Medicine, Section of Gastroenterology, Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Anna R Smith
- Center for Regenerative Medicine, Department of Medicine, Section of Gastroenterology, Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Feiya Wang
- Center for Regenerative Medicine, Department of Medicine, Section of Gastroenterology, Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Elissa Everton
- Center for Regenerative Medicine, Department of Medicine, Section of Gastroenterology, Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Alina Ostrowska
- Department of Pathology, Center for Transcriptional Medicine, Pittsburgh Liver Research Center, McGowan Institute for Regenerative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Kyounghwa Jung
- Department of Developmental Biology, Pittsburgh Liver Research Center, McGowan Institute for Regenerative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
| | - Ying Tam
- Acuitas Therapeutics, Vancouver, BC V6T 1Z3, Canada
| | - Hiromi Muramatsu
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Norbert Pardi
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Drew Weissman
- Department of Medicine, Infectious Diseases Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 10104, USA
| | - Alejandro Soto-Gutierrez
- Department of Pathology, Center for Transcriptional Medicine, Pittsburgh Liver Research Center, McGowan Institute for Regenerative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Donghun Shin
- Department of Developmental Biology, Pittsburgh Liver Research Center, McGowan Institute for Regenerative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
| | - Valerie Gouon-Evans
- Center for Regenerative Medicine, Department of Medicine, Section of Gastroenterology, Boston University and Boston Medical Center, Boston, MA 02118, USA.
| |
Collapse
|
6
|
Barreira-Díaz A, Salcedo-Allende MT, Martínez-Valle F, Orozco-Gálvez O, Buti M, Riveiro-Barciela M. The significant IgG4 infiltrate in autoimmune hepatitis is associated with a greater ductular reaction and more advanced liver disease. Dig Liver Dis 2023; 55:1673-1678. [PMID: 37263810 DOI: 10.1016/j.dld.2023.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 04/11/2023] [Accepted: 05/04/2023] [Indexed: 06/03/2023]
Abstract
BACKGROUND Sclerosing cholangitis is the typical IgG4-related disease digestive involvement. However, the role of the IgG4 liver expression in autoimmune hepatitis remains unknown. AIMS to assess whether the expression of IgG4 plasma cells in patients with autoimmune hepatitis (AIH) was associated with different outcomes. METHODS Retrospective study including patients diagnosed with AIH by biopsy from January-2009 to June-2021. At least mild IgG4 expression (>10 IgG4+-plasma cells per field) was considered as significant. RESULTS 85 patients with AIH were included. Overall, 58.8% were women, mean age 54 years. Nine (10.6%) presented cirrhosis at diagnosis. Fifteen (17.6%) had significant IgG4 liver expression. Patients with IgG4 infiltrate were older (p = 0.021), presented liver cirrhosis more frequently (33.3% vs. 5.7%, p = 0.007), greater IgG plasma values (p = 0.008) and atypical ANCAs (p = 0.086); ductular reaction was also more common (p = 0.009). Complete remission rate was similar regardless of the IgG4 infiltrate. Time to corticosteroids discontinuation was longer in subjects with IgG4 infiltrate (p = 0.068), but second-line therapy tended to be less frequent (p = 0.187). CONCLUSION Significant IgG4 liver infiltrate in patients with autoimmune hepatitis is associated with more advanced liver disease. The greater ductular reaction mediated by the IgG4 infiltrate may be the cause for this finding, though this finding should be prospectively assessed.
Collapse
Affiliation(s)
- Ana Barreira-Díaz
- Liver Unit, Internal Medicine Department, Hospital Universitari Vall d'Hebron, Vall d'Hebron Barcelona Hospital Campus. Barcelona, Spain; Universitat Autònoma de Barcelona, Department of Medicine, Barcelona, Spain; CIBERehd, Instituto Carlos III, Barcelona, Spain
| | | | - Fernando Martínez-Valle
- Universitat Autònoma de Barcelona, Department of Medicine, Barcelona, Spain; Systemic Autoimmune Diseases Unit, Internal Medicine Department, Hospital UniversitariValld'Hebron, Barcelona, Spain
| | - Olimpia Orozco-Gálvez
- Universitat Autònoma de Barcelona, Department of Medicine, Barcelona, Spain; Systemic Autoimmune Diseases Unit, Internal Medicine Department, Hospital UniversitariValld'Hebron, Barcelona, Spain
| | - María Buti
- Liver Unit, Internal Medicine Department, Hospital Universitari Vall d'Hebron, Vall d'Hebron Barcelona Hospital Campus. Barcelona, Spain; Universitat Autònoma de Barcelona, Department of Medicine, Barcelona, Spain; CIBERehd, Instituto Carlos III, Barcelona, Spain
| | - Mar Riveiro-Barciela
- Liver Unit, Internal Medicine Department, Hospital Universitari Vall d'Hebron, Vall d'Hebron Barcelona Hospital Campus. Barcelona, Spain; Universitat Autònoma de Barcelona, Department of Medicine, Barcelona, Spain; CIBERehd, Instituto Carlos III, Barcelona, Spain.
| |
Collapse
|
7
|
Rizvi F, Lee YR, Diaz-Aragon R, So J, Florentino RM, Smith AR, Everton E, Ostrowska A, Jung K, Tam Y, Muramatsu H, Pardi N, Weissman D, Soto-Gutierrez A, Shin D, Gouon-Evans V. VEGFA mRNA-LNP promotes biliary epithelial cell-to-hepatocyte conversion in acute and chronic liver diseases and reverses steatosis and fibrosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.17.537186. [PMID: 37131823 PMCID: PMC10153196 DOI: 10.1101/2023.04.17.537186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The liver is known for its remarkable regenerative ability through proliferation of hepatocytes. Yet, during chronic injury or severe hepatocyte death, proliferation of hepatocytes is exhausted. To overcome this hurdle, we propose vascular-endothelial-growth-factor A (VEGFA) as a therapeutic means to accelerate biliary epithelial cell (BEC)-to-hepatocyte conversion. Investigation in zebrafish establishes that blocking VEGF receptors abrogates BEC-driven liver repair, while VEGFA overexpression promotes it. Delivery of VEGFA via non-integrative and safe nucleoside-modified mRNA encapsulated into lipid-nanoparticles (mRNA-LNP) in acutely or chronically injured mouse livers induces robust BEC-to-hepatocyte conversion and reversion of steatosis and fibrosis. In human and murine diseased livers, we further identified VEGFA-receptor KDR-expressing BECs associated with KDR-expressing cell-derived hepatocytes. This defines KDR-expressing cells, most likely being BECs, as facultative progenitors. This study reveals novel therapeutic benefits of VEGFA delivered via nucleoside-modified mRNA-LNP, whose safety is widely validated with COVID-19 vaccines, for harnessing BEC-driven repair to potentially treat liver diseases. Highlights Complementary mouse and zebrafish models of liver injury demonstrate the therapeutic impact of VEGFA-KDR axis activation to harness BEC-driven liver regeneration.VEGFA mRNA LNPs restore two key features of the chronic liver disease in humans such as steatosis and fibrosis.Identification in human cirrhotic ESLD livers of KDR-expressing BECs adjacent to clusters of KDR+ hepatocytes suggesting their BEC origin.KDR-expressing BECs may represent facultative adult progenitor cells, a unique BEC population that has yet been uncovered.
Collapse
|
8
|
Pu W, Zhu H, Zhang M, Pikiolek M, Ercan C, Li J, Huang X, Han X, Zhang Z, Lv Z, Li Y, Liu K, He L, Liu X, Heim MH, Terracciano LM, Tchorz JS, Zhou B. Bipotent transitional liver progenitor cells contribute to liver regeneration. Nat Genet 2023; 55:651-664. [PMID: 36914834 PMCID: PMC10101857 DOI: 10.1038/s41588-023-01335-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 02/07/2023] [Indexed: 03/16/2023]
Abstract
Following severe liver injury, when hepatocyte-mediated regeneration is impaired, biliary epithelial cells (BECs) can transdifferentiate into functional hepatocytes. However, the subset of BECs with such facultative tissue stem cell potential, as well as the mechanisms enabling transdifferentiation, remains elusive. Here we identify a transitional liver progenitor cell (TLPC), which originates from BECs and differentiates into hepatocytes during regeneration from severe liver injury. By applying a dual genetic lineage tracing approach, we specifically labeled TLPCs and found that they are bipotent, as they either differentiate into hepatocytes or re-adopt BEC fate. Mechanistically, Notch and Wnt/β-catenin signaling orchestrate BEC-to-TLPC and TLPC-to-hepatocyte conversions, respectively. Together, our study provides functional and mechanistic insights into transdifferentiation-assisted liver regeneration.
Collapse
Affiliation(s)
- Wenjuan Pu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Huan Zhu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Mingjun Zhang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Monika Pikiolek
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Caner Ercan
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - Jie Li
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Xiuzhen Huang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Ximeng Han
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Zhenqian Zhang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Zan Lv
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yan Li
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Kuo Liu
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Lingjuan He
- School of Life Sciences, Westlake University, Hangzhou, China
| | - Xiuxiu Liu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Markus H Heim
- Department of Biomedicine, University Hospital and University of Basel, Basel, Switzerland.,Clarunis University Center for Gastrointestinal and Liver Diseases, Basel, Switzerland
| | - Luigi M Terracciano
- Department of Biomedical Sciences, Humanitas University, Milan, Italy.,IRCCS Humanitas Research Hospital, Milan, Italy
| | - Jan S Tchorz
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland.
| | - Bin Zhou
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China. .,Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China. .,School of Life Science and Technology, ShanghaiTech University, Shanghai, China. .,New Cornerstone Science Laboratory, Shenzhen, China.
| |
Collapse
|
9
|
Kim M, Rizvi F, Shin D, Gouon-Evans V. Update on Hepatobiliary Plasticity. Semin Liver Dis 2023; 43:13-23. [PMID: 36764306 PMCID: PMC10005859 DOI: 10.1055/s-0042-1760306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
The liver field has been debating for decades the contribution of the plasticity of the two epithelial compartments in the liver, hepatocytes and biliary epithelial cells (BECs), to derive each other as a repair mechanism. The hepatobiliary plasticity has been first observed in diseased human livers by the presence of biphenotypic cells expressing hepatocyte and BEC markers within bile ducts and regenerative nodules or budding from strings of proliferative BECs in septa. These observations are not surprising as hepatocytes and BECs derive from a common fetal progenitor, the hepatoblast, and, as such, they are expected to compensate for each other's loss in adults. To investigate the cell origin of regenerated cell compartments and associated molecular mechanisms, numerous murine and zebrafish models with ability to trace cell fates have been extensively developed. This short review summarizes the clinical and preclinical studies illustrating the hepatobiliary plasticity and its potential therapeutic application.
Collapse
Affiliation(s)
- Minwook Kim
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Fatima Rizvi
- Department of Medicine, Gastroenterology Section, Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, Massachusetts
| | - Donghun Shin
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Valerie Gouon-Evans
- Department of Medicine, Gastroenterology Section, Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, Massachusetts
| |
Collapse
|
10
|
Pathology of Combined Hepatocellular Carcinoma-Cholangiocarcinoma: An Update. Cancers (Basel) 2023; 15:cancers15020494. [PMID: 36672443 PMCID: PMC9856551 DOI: 10.3390/cancers15020494] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/08/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023] Open
Abstract
Combined hepatocellular carcinoma-cholangiocarcinoma (cHCC-CCA) is a rare primary liver cancer that is composed of both hepatocellular and cholangiocellular differentiated cells. It is slightly more common in men and among Asian and Pacific islanders. Overall, risk factors are similar to classic risk factors of hepatocellular carcinoma (HCC). The classification has significantly evolved over time. The last WHO classification (2019) mainly emphasized diagnosis on morphological basis with routine stainings, discarded previously recognized classifications with carcinomas with stem cell features, introduced intermediate cell carcinoma as a specific subtype and considered cholangiolocarcinoma as a subtype of cholangiocellular carcinoma. Immunohistochemical markers may be applied for further specification but have limited value for diagnosis. Recent discoveries in molecular pathway regulation may pioneer new therapeutic approaches for this poor prognostic and challenging diagnosis.
Collapse
|
11
|
Elrazik NAA, El-Mesery M, El-Shishtawy MM. Sesamol protects against liver fibrosis induced in rats by modulating lysophosphatidic acid receptor expression and TGF-β/Smad3 signaling pathway. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2022; 395:1003-1016. [PMID: 35648193 PMCID: PMC9276582 DOI: 10.1007/s00210-022-02259-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 05/20/2022] [Indexed: 11/18/2022]
Abstract
The present study aimed to investigate the hepatoprotective effect of sesamol (SML), a nutritional phenolic compound obtained from sesame seeds, in liver fibrosis induced by thioacetamide (TAA) in rats and to explore the underlying mechanisms. Thirty-two male Sprague-Dawley rats were equally divided into four groups: control, TAA, TAA + SML 50 mg/kg, and TAA + SML 100 mg/kg groups. Liver functions and hepatic contents of glutathione (GSH) and malondialdehyde (MDA) were measured colorimetrically. Gene expressions of lysophosphatidic acid receptor (LPAR)-1 and -3, connective tissue growth factor (CTGF), transforming growth factor (TGF)-β1, small mothers against decapentaplegic (Smad)-3 and -7, α-smooth muscle actin (α-SMA), and cytokeratin 19 (CK19) were analyzed by qRT-PCR. Moreover, phosphorylated Smad3 (pSmad3) was quantified by ELISA. Additionally, TGF-β1, α-SMA, CK19, and vascular endothelial growth factor (VEGF) protein concentrations were semi-quantitatively analyzed by immunostaining of liver sections. SML treatment markedly improved liver index and liver functions. Moreover, SML protected against liver fibrosis in a dose-dependent manner as indicated by down-regulation of LPAR1, LPAR3, CTGF, TGF-β1/Smad3, and α-SMA expressions and a decrease in pSmad3 level, as well as an up-regulation of Smad7 expression. In addition, SML suppressed ductular reaction hinted by the decrease in CK19 expression. These results reveal the anti-fibrotic effect of SML against liver fibrosis that might be attributed to down-regulation of LPAR1/3 expressions, inhibition of TGF-β1/Smad3 pathway, and ductular reaction.
Collapse
Affiliation(s)
- Nesma A Abd Elrazik
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, P.O. Box, Mansoura, 35516, Egypt
| | - Mohamed El-Mesery
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, P.O. Box, Mansoura, 35516, Egypt
| | - Mamdouh M El-Shishtawy
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, P.O. Box, Mansoura, 35516, Egypt.
| |
Collapse
|
12
|
Gill RM, Theise ND. Rappaport, Glisson, Hering, and Mall-Champions of Liver Microanatomy: Microscopic and Ultramicroscopic Anatomy of the Liver Into the Modern Age. Clin Liver Dis (Hoboken) 2021; 18:76-92. [PMID: 34745585 PMCID: PMC8555463 DOI: 10.1002/cld.1145] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 05/27/2021] [Indexed: 02/04/2023] Open
Abstract
Content available: Author Interview and Audio Recording.
Collapse
Affiliation(s)
- Ryan M. Gill
- Department of PathologyUniversity of California, San FranciscoSan FranciscoCA
| | - Neil D. Theise
- Department of PathologyNew York University School of MedicineNew YorkNY
| |
Collapse
|
13
|
Pasqua M, Di Gesù R, Chinnici CM, Conaldi PG, Francipane MG. Generation of Hepatobiliary Cell Lineages from Human Induced Pluripotent Stem Cells: Applications in Disease Modeling and Drug Screening. Int J Mol Sci 2021; 22:8227. [PMID: 34360991 PMCID: PMC8348238 DOI: 10.3390/ijms22158227] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/28/2021] [Accepted: 07/28/2021] [Indexed: 12/13/2022] Open
Abstract
The possibility to reproduce key tissue functions in vitro from induced pluripotent stem cells (iPSCs) is offering an incredible opportunity to gain better insight into biological mechanisms underlying development and disease, and a tool for the rapid screening of drug candidates. This review attempts to summarize recent strategies for specification of iPSCs towards hepatobiliary lineages -hepatocytes and cholangiocytes-and their use as platforms for disease modeling and drug testing. The application of different tissue-engineering methods to promote accurate and reliable readouts is discussed. Space is given to open questions, including to what extent these novel systems can be informative. Potential pathways for improvement are finally suggested.
Collapse
Affiliation(s)
- Mattia Pasqua
- Fondazione Ri.MED, 90133 Palermo, Italy; (M.P.); (R.D.G.); (C.M.C.)
| | - Roberto Di Gesù
- Fondazione Ri.MED, 90133 Palermo, Italy; (M.P.); (R.D.G.); (C.M.C.)
| | - Cinzia Maria Chinnici
- Fondazione Ri.MED, 90133 Palermo, Italy; (M.P.); (R.D.G.); (C.M.C.)
- Dipartimento della Ricerca, IRCCS ISMETT, 90127 Palermo, Italy;
| | | | - Maria Giovanna Francipane
- Fondazione Ri.MED, 90133 Palermo, Italy; (M.P.); (R.D.G.); (C.M.C.)
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| |
Collapse
|
14
|
Beaufrère A, Calderaro J, Paradis V. Combined hepatocellular-cholangiocarcinoma: An update. J Hepatol 2021; 74:1212-1224. [PMID: 33545267 DOI: 10.1016/j.jhep.2021.01.035] [Citation(s) in RCA: 124] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 01/08/2021] [Accepted: 01/18/2021] [Indexed: 12/13/2022]
Abstract
Combined hepatocellular-cholangiocarcinoma (cHCC-CCA) is a tumour that exhibits both hepatocytic and biliary differentiation. Classical risk factors for hepatocellular carcinoma (HCC) seem to also predispose patients to the development of cHCC-CCA. The pathological definition of cHCC-CCA has significantly evolved over time. The last 2019 WHO classification highlighted that the diagnosis of cHCC-CCA should be primarily based on morphology using routine stainings, with additional immunostaining used to refine the identification of subtypes. Among them, "intermediate cell carcinoma" is recognised as a specific subtype, while "cholangiolocellular carcinoma" is now considered a subtype of iCCA. Increasing molecular evidence supports the clonal nature of cHCC-CCA and parallels its biphenotypic histological appearance, with genetic alterations that are classically observed in HCC and/or iCCA. That said, the morphological diagnosis of cHCC-CCA is still challenging for radiologists and pathologists, especially on biopsy specimens. Identification of cHCC-CCA's cell of origin remains an area of active research. Its prognosis is generally worse than that of HCC, and similar to that of iCCA. Resection with lymph node dissection is unfortunately the only curative option for patients with cHCC-CCA. Thus, there remains an urgent need to develop specific therapeutic strategies for this unique clinical entity.
Collapse
Affiliation(s)
- Aurélie Beaufrère
- Université de Paris, INSERM U1149, Hôpital Beaujon, Clichy, France; Pathology Department, Hôpital Beaujon, AP-HP, Clichy, France
| | | | - Valérie Paradis
- Université de Paris, INSERM U1149, Hôpital Beaujon, Clichy, France; Pathology Department, Hôpital Beaujon, AP-HP, Clichy, France.
| |
Collapse
|
15
|
Wu B, Yeh MM. Pathology of Hepatitis B Virus (HBV) Infection and HBV-Related Hepatocellular Carcinoma. HEPATITIS B VIRUS AND LIVER DISEASE 2021:99-122. [DOI: 10.1007/978-981-16-3615-8_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
16
|
Javitt NB. Hepatic bile formation: bile acid transport and water flow into the canalicular conduit. Am J Physiol Gastrointest Liver Physiol 2020; 319:G609-G618. [PMID: 32935994 DOI: 10.1152/ajpgi.00078.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Advances in molecular biology identifying the many carrier-mediated organic anion transporters and advances in microscopy that have provided a more detailed anatomy of the canalicular conduit make updating the concept of osmotically determined canalicular flow possible. For the most part water flow is not transmembrane but via specific pore proteins in both the hepatocyte and the tight junction. These pores independently regulate the rate at which water flows in response to an osmotic gradient and therefore are determinants of canalicular bile acid concentration. Review of the literature indicates that the initial effect on hepatic bile flow of cholestatic agents such as Thorazine and estradiol 17β-glucuronide are on water flow and not bile salt export pump-mediated bile acid transport and thus provides new approaches to the pathogenesis of drug-induced liver injury. Attaining a micellar concentration of bile acids in the canaliculus is essential to the formation of cholesterol-lecithin vesicles, which mostly occur in the periportal region of the canalicular conduit. The other regions, midcentral and pericentral, may transport lesser amounts of bile acid but augment water flow. Broadening the concept of how hepatic bile flow is initiated, provides new insights into the pathogenesis of canalicular cholestasis.
Collapse
Affiliation(s)
- Norman B Javitt
- Division of Gastroenterology and Hepatology, New York University Grossman School of Medicine, New York, New York
| |
Collapse
|
17
|
Dash S, Aydin Y, Widmer KE, Nayak L. Hepatocellular Carcinoma Mechanisms Associated with Chronic HCV Infection and the Impact of Direct-Acting Antiviral Treatment. J Hepatocell Carcinoma 2020; 7:45-76. [PMID: 32346535 PMCID: PMC7167284 DOI: 10.2147/jhc.s221187] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 03/06/2020] [Indexed: 12/12/2022] Open
Abstract
Hepatitis C virus (HCV) infection is the major risk factor for liver cirrhosis and hepatocellular carcinoma (HCC). The mechanisms of HCC initiation, growth, and metastasis appear to be highly complex due to the decade-long interactions between the virus, immune system, and overlapping bystander effects of host metabolic liver disease. The lack of a readily accessible animal model system for HCV is a significant obstacle to understand the mechanisms of viral carcinogenesis. Traditionally, the primary prevention strategy of HCC has been to eliminate infection by antiviral therapy. The success of virus elimination by antiviral treatment is determined by the SVR when the HCV is no longer detectable in serum. Interferon-alpha (IFN-α) and its analogs, pegylated IFN-α (PEG-IFN-α) alone with ribavirin (RBV), have been the primary antiviral treatment of HCV for many years with a low cure rate. The cloning and sequencing of HCV have allowed the development of cell culture models, which accelerated antiviral drug discovery. It resulted in the selection of highly effective direct-acting antiviral (DAA)-based combination therapy that now offers incredible success in curing HCV infection in more than 95% of all patients, including those with cirrhosis. However, several emerging recent publications claim that patients who have liver cirrhosis at the time of DAAs treatment face the risk of HCC occurrence and recurrence after viral cure. This remains a substantial challenge while addressing the long-term benefit of antiviral medicine. The host-related mechanisms that drive the risk of HCC in the absence of the virus are unknown. This review describes the multifaceted mechanisms that create a tumorigenic environment during chronic HCV infection. In addition to the potential oncogenic programming that drives HCC after viral clearance by DAAs, the current status of a biomarker development for early prediction of cirrhosis regression and HCC detection post viral treatment is discussed. Since DAAs treatment does not provide full protection against reinfection or viral transmission to other individuals, the recent studies for a vaccine development are also reviewed.
Collapse
Affiliation(s)
- Srikanta Dash
- Department of Pathology and Laboratory Medicine, Tulane University Health Sciences Center, New Orleans, LA70112, USA
- Southeast Louisiana Veterans Health Care System, New Orleans, LA70119, USA
- Department of Medicine, Division of Gastroenterology, Tulane University Health Sciences Center, New Orleans, LA70112, USA
| | - Yucel Aydin
- Department of Pathology and Laboratory Medicine, Tulane University Health Sciences Center, New Orleans, LA70112, USA
| | - Kyle E Widmer
- Southeast Louisiana Veterans Health Care System, New Orleans, LA70119, USA
| | - Leela Nayak
- Southeast Louisiana Veterans Health Care System, New Orleans, LA70119, USA
| |
Collapse
|
18
|
Konishi T, Schuster RM, Goetzman HS, Caldwell CC, Lentsch AB. Fibrotic liver has prompt recovery after ischemia-reperfusion injury. Am J Physiol Gastrointest Liver Physiol 2020; 318:G390-G400. [PMID: 31961717 PMCID: PMC7099490 DOI: 10.1152/ajpgi.00137.2019] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 12/19/2019] [Accepted: 01/09/2020] [Indexed: 01/31/2023]
Abstract
Hepatic ischemia-reperfusion (I/R) is a major complication of liver resection, trauma, and liver transplantation; however, liver repair after I/R in diseased liver has not been studied. The present study sought to determine the manner in which the fibrotic liver repairs itself after I/R. Liver fibrosis was established in mice by CCl4 administration for 6 wk, and then liver I/R was performed to investigate liver injury and subsequent liver repair in fibrotic and control livers. After I/R, fibrotic liver had more injury compared with nonfibrotic, control liver; however, fibrotic liver showed rapid resolution of liver necrosis and reconstruction of liver parenchyma. Marked accumulation of hepatic stellate cells and macrophages were observed specifically in the fibrotic septa in early reparative phase. Fibrotic liver had higher numbers of hepatic stellate cells, macrophages, and hepatic progenitor cells during liver recovery after I/R than did control liver, but hepatocyte proliferation was unchanged. Fibrotic liver also had significantly greater number of phagocytic macrophages than control liver. Clodronate liposome injection into fibrotic mice after I/R caused decreased macrophage accumulation and delay of liver recovery. Conversely, CSF1-Fc injection into normal mice after I/R resulted in increased macrophage accumulation and concomitant decrease in necrotic tissue during liver recovery. In conclusion, fibrotic liver clears necrotic areas and restores normal parenchyma faster than normal liver after I/R. This beneficial response appears to be directly related to the increased numbers of nonparenchymal cells, particularly phagocytic macrophages, in the fibrotic liver.NEW & NOTEWORTHY This study is the first to reveal how diseased liver recovers after ischemia-reperfusion (I/R) injury. Although it was not completely unexpected that fibrotic liver had increased hepatic injury after I/R, a novel finding was that fibrotic liver had accelerated recovery and repair compared with normal liver. Enhanced repair after I/R in fibrotic liver was associated with increased expansion of phagocytic macrophages, hepatic stellate cells, and progenitor cells.
Collapse
Affiliation(s)
- Takanori Konishi
- Department of Surgery, University of Cincinnati, College of Medicine, Cincinnati, Ohio
| | - Rebecca M Schuster
- Department of Surgery, University of Cincinnati, College of Medicine, Cincinnati, Ohio
| | - Holly S Goetzman
- Department of Surgery, University of Cincinnati, College of Medicine, Cincinnati, Ohio
| | - Charles C Caldwell
- Department of Surgery, University of Cincinnati, College of Medicine, Cincinnati, Ohio
| | - Alex B Lentsch
- Department of Surgery, University of Cincinnati, College of Medicine, Cincinnati, Ohio
| |
Collapse
|
19
|
Ibrahim DM, Shaaban ESE, Fouad TA. Circulating Resistin Is Associated with Plasma Glucagon-Like Peptide-1 in Cirrhotic Patients with Hepatitis C Virus Genotype-4 Infection. Endocr Res 2020; 45:17-23. [PMID: 31177870 DOI: 10.1080/07435800.2019.1627551] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Purpose: Limited and contradictory data on the circulating levels of glucagon-like peptide (GLP-1) and resistin in hepatitis C virus genotype-4 (HCV-4) cirrhotic patients are present. Thus, this study aimed to evaluate their concentrations and to investigate the association between total GLP-1, resistin, and insulin resistance in those patients.Materials and Methods: Non-diabetic HCV-4 cirrhotic patients (n = 80; 40 with Child-Pugh A, 20 with Child-Pugh B, and 20 with Child-Pugh C), and 25 healthy subjects were enrolled in this study. The basal circulating levels of total GLP-1 and resistin along with serum insulin, glucose, total cholesterol, and triglycerides were measured.Results: Plasma GLP-1 and serum resistin levels were significantly higher in cirrhotic patients than controls (P < . 001). Moreover, circulating GLP-1 and resistin levels increased in a stepwise fashion in line with increasing grade of liver damage. According to Spearman's rank correlation, both GLP-1 and resisitin correlated positively with each other, insulin, homeostatic model assessment of insulin resistance, alanine aminotransferase (ALT), total bilirubin, and international normalized ratio while they correlated negatively with albumin (P < .001). Multiple stepwise regression analysis showed that ALT, serum resistin and Child-Pugh score independently influenced the GLP-1 levels in cirrhotic patients.Conclusions: Circulating levels of GLP-1 and resistin were elevated in cirrhotic patients with HCV-4. Further, the severity of liver cirrhosis and serum resistin were the determinant factors explaining the variability of GLP-1 levels by about 84%. In addition, a positive relation was found between insulin resistance and both GLP-1 and resistin levels.
Collapse
Affiliation(s)
- Doaa M Ibrahim
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - El Saeid E Shaaban
- Internal Medicine Department, El-Mataria Teaching Hospital, The General Organization for Teaching Hospitals and Institutes, Cairo, Egypt
| | - Tarek A Fouad
- Internal Medicine Department, El-Mataria Teaching Hospital, The General Organization for Teaching Hospitals and Institutes, Cairo, Egypt
| |
Collapse
|
20
|
Sciarra A, Park YN, Sempoux C. Updates in the diagnosis of combined hepatocellular-cholangiocarcinoma. Hum Pathol 2020; 96:48-55. [DOI: 10.1016/j.humpath.2019.11.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 11/04/2019] [Indexed: 12/13/2022]
|
21
|
Nevi L, Costantini D, Safarikia S, Di Matteo S, Melandro F, Berloco PB, Cardinale V. Cholest-4,6-Dien-3-One Promote Epithelial-To-Mesenchymal Transition (EMT) in Biliary Tree Stem/Progenitor Cell Cultures In Vitro. Cells 2019; 8:cells8111443. [PMID: 31731674 PMCID: PMC6912632 DOI: 10.3390/cells8111443] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/31/2019] [Accepted: 11/11/2019] [Indexed: 12/12/2022] Open
Abstract
Human biliary tree stem/progenitor cells (hBTSCs), reside in peribiliary glands, are mainly stimulated by primary sclerosing cholangitis (PSC) and cholangiocarcinoma. In these pathologies, hBTSCs displayed epithelial-to-mesenchymal transition (EMT), senescence characteristics, and impaired differentiation. Here, we investigated the effects of cholest-4,6-dien-3-one, an oxysterol involved in cholangiopathies, on hBTSCs biology. hBTSCs were isolated from donor organs, cultured in self-renewal control conditions, differentiated in mature cholangiocytes by specifically tailored medium, or exposed for 10 days to concentration of cholest-4,6-dien-3-one (0.14 mM). Viability, proliferation, senescence, EMT genes expression, telomerase activity, interleukin 6 (IL6) secretion, differentiation capacity, and HDAC6 gene expression were analyzed. Although the effect of cholest-4,6-dien-3-one was not detected on hBTSCs viability, we found a significant increase in cell proliferation, senescence, and IL6 secretion. Interestingly, cholest-4.6-dien-3-one impaired differentiation in mature cholangiocytes and, simultaneously, induced the EMT markers, significantly reduced the telomerase activity, and induced HDAC6 gene expression. Moreover, cholest-4,6-dien-3-one enhanced bone morphogenic protein 4 (Bmp-4) and sonic hedgehog (Shh) pathways in hBTSCs. The same pathways activated by human recombinant proteins induced the expression of EMT markers in hBTSCs. In conclusion, we demonstrated that chronic exposition of cholest-4,6-dien-3-one induced cell proliferation, EMT markers, and senescence in hBTSC, and also impaired the differentiation in mature cholangiocytes.
Collapse
Affiliation(s)
- Lorenzo Nevi
- Department of Translation and Precision Medicine, “Sapienza” University of Rome, 00185 Rome, Italy; (D.C.); (S.S.); (S.D.M.)
- Correspondence: (L.N.); (V.C.); Tel.: +39-3392335294 (L.N.); +39-3495601492 (V.C.)
| | - Daniele Costantini
- Department of Translation and Precision Medicine, “Sapienza” University of Rome, 00185 Rome, Italy; (D.C.); (S.S.); (S.D.M.)
| | - Samira Safarikia
- Department of Translation and Precision Medicine, “Sapienza” University of Rome, 00185 Rome, Italy; (D.C.); (S.S.); (S.D.M.)
| | - Sabina Di Matteo
- Department of Translation and Precision Medicine, “Sapienza” University of Rome, 00185 Rome, Italy; (D.C.); (S.S.); (S.D.M.)
| | - Fabio Melandro
- Department of General Surgery and Organ Transplantation, Sapienza University of Rome, 0016 Rome, Italy; (F.M.); (P.B.B.)
| | - Pasquale Bartolomeo Berloco
- Department of General Surgery and Organ Transplantation, Sapienza University of Rome, 0016 Rome, Italy; (F.M.); (P.B.B.)
| | - Vincenzo Cardinale
- Department of Medico-Surgical Sciences and Biotechnologies, Polo Pontino, “Sapienza” University of Rome, 04100 Latina, Italy
- Correspondence: (L.N.); (V.C.); Tel.: +39-3392335294 (L.N.); +39-3495601492 (V.C.)
| |
Collapse
|
22
|
Manco R, Clerbaux LA, Verhulst S, Bou Nader M, Sempoux C, Ambroise J, Bearzatto B, Gala JL, Horsmans Y, van Grunsven L, Desdouets C, Leclercq I. Reactive cholangiocytes differentiate into proliferative hepatocytes with efficient DNA repair in mice with chronic liver injury. J Hepatol 2019; 70:1180-1191. [PMID: 30794890 DOI: 10.1016/j.jhep.2019.02.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 02/01/2019] [Accepted: 02/04/2019] [Indexed: 12/19/2022]
Abstract
BACKGROUND & AIM Chronic liver diseases are characterized by expansion of the small immature cholangiocytes - a mechanism named ductular reaction (DR) - which have the capacity to differentiate into hepatocytes. We investigated the kinetics of this differentiation, as well as analyzing several important features of the newly formed hepatocytes, such as functional maturity, clonal expansion and resistance to stress in mice with long-term liver damage. METHODS We tracked cholangiocytes using osteopontin-iCreERT2 and hepatocytes with AAV8-TBG-Cre. Mice received carbon tetrachloride (CCl4) for >24 weeks to induce chronic liver injury. Livers were collected for the analysis of reporter proteins, cell proliferation and death, DNA damage, and nuclear ploidy; hepatocytes were also isolated for RNA sequencing. RESULTS During liver injury we observed a transient DR and the differentiation of DR cells into hepatocytes as clones that expanded to occupy 12% of the liver parenchyma by week 8. By lineage tracing, we confirmed that these new hepatocytes derived from cholangiocytes but not from native hepatocytes. They had all the features of mature functional hepatocytes. In contrast to the exhausted native hepatocytes, these newly formed hepatocytes had higher proliferative capability, less apoptosis, a lower proportion of highly polyploid nuclei and were better at eliminating DNA damage. CONCLUSIONS In chronic liver injury, DR cells differentiate into stress-resistant hepatocytes that repopulate the liver. The process might account for the observed parenchymal reconstitution in livers of patients with advanced-stage hepatitis and could be a target for regenerative purposes. LAY SUMMARY During chronic liver disease, while native hepatocytes are exhausted and genetically unstable, a subset of cholangiocytes clonally expand to differentiate into young, functional and robust hepatocytes. This cholangiocyte cell population is a promising target for regenerative therapies in patients with chronic liver insufficiency.
Collapse
Affiliation(s)
- Rita Manco
- Laboratory of Hepato-gastroenterology, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium
| | - Laure-Alix Clerbaux
- Laboratory of Hepato-gastroenterology, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium
| | - Stefaan Verhulst
- Liver Cell Biology Laboratory, Vrije Universiteit Brussels (VUB), Brussels, Belgium
| | - Myriam Bou Nader
- Inserm, U1016, Institut Cochin, Paris, France; CNRS, UMR 8104, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Christine Sempoux
- Institute of Pathology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Jerome Ambroise
- Centre de Technologies Moléculaires Appliquées, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium
| | - Bertrand Bearzatto
- Centre de Technologies Moléculaires Appliquées, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium
| | - Jean Luc Gala
- Centre de Technologies Moléculaires Appliquées, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium
| | - Yves Horsmans
- Laboratory of Hepato-gastroenterology, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium; Hepato-gastroenterology Unit, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Leo van Grunsven
- Liver Cell Biology Laboratory, Vrije Universiteit Brussels (VUB), Brussels, Belgium
| | - Chantal Desdouets
- Inserm, U1016, Institut Cochin, Paris, France; CNRS, UMR 8104, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Isabelle Leclercq
- Laboratory of Hepato-gastroenterology, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium.
| |
Collapse
|
23
|
McDaniel K, Wu N, Zhou T, Huang L, Sato K, Venter J, Ceci L, Chen D, Ramos-Lorenzo S, Invernizzi P, Bernuzzi F, Wu C, Francis H, Glaser S, Alpini G, Meng F. Amelioration of Ductular Reaction by Stem Cell Derived Extracellular Vesicles in MDR2 Knockout Mice via Lethal-7 microRNA. Hepatology 2019; 69:2562-2578. [PMID: 30723922 PMCID: PMC7015419 DOI: 10.1002/hep.30542] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 01/15/2019] [Indexed: 12/11/2022]
Abstract
Cholangiopathies are diseases that affect cholangiocytes, the cells lining the biliary tract. Liver stem cells (LSCs) are able to differentiate into all cells of the liver and possibly influence the surrounding liver tissue by secretion of signaling molecules. One way in which cells can interact is through secretion of extracellular vesicles (EVs), which are small membrane-bound vesicles that contain proteins, microRNAs (miRNAs), and cytokines. We evaluated the contents of liver stem cell-derived EVs (LSCEVs), compared their miRNA contents to those of EVs isolated from hepatocytes, and evaluated the downstream targets of these miRNAs. We finally evaluated the crosstalk among LSCs, cholangiocytes, and human hepatic stellate cells (HSCs). We showed that LSCEVs were able to reduce ductular reaction and biliary fibrosis in multidrug resistance protein 2 (MDR2)-/- mice. Additionally, we showed that cholangiocyte growth was reduced and HSCs were deactivated in LSCEV-treated mice. Evaluation of LSCEV contents compared with EVs derived from hepatocytes showed a large increase in the miRNA, lethal-7 (let-7). Further evaluation of let-7 in MDR2-/- mice and human primary sclerosing cholangitis samples showed reduced levels of let-7 compared with controls. In liver tissues and isolated cholangiocytes, downstream targets of let-7 (identified by ingenuity pathway analysis), Lin28a (Lin28 homolog A), Lin28b (Lin28 homolog B), IL-13 (interleukin 13), NR1H4 (nuclear receptor subfamily 1 group H member 4) and NF-κB (nuclear factor kappa B), are elevated in MDR2-/- mice, but treatment with LSCEVs reduced levels of these mediators of ductular reaction and biliary fibrosis through the inhibition of NF-κB and IL-13 signaling pathways. Evaluation of crosstalk using cholangiocyte supernatants from LSCEV-treated cells on cultured HSCs showed that HSCs had reduced levels of fibrosis and increased senescence. Conclusion: Our studies indicate that LSCEVs could be a possible treatment for cholangiopathies or could be used for target validation for future therapies.
Collapse
Affiliation(s)
- Kelly McDaniel
- Research Department, Central Texas Veterans Health Care System, Temple, TX
- Baylor Scott & White Digestive Disease Research Center, Baylor Scott & White Health, Temple, TX
| | - Nan Wu
- Department of Medical Physiology, Texas A&M University Health Science Center College of Medicine, Temple, TX
| | - Tianhao Zhou
- Research Department, Central Texas Veterans Health Care System, Temple, TX
- Department of Medical Physiology, Texas A&M University Health Science Center College of Medicine, Temple, TX
| | - Li Huang
- Department of Pancreatobiliary Surgery and Center for Translational Medicine, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Keisaku Sato
- Department of Medical Physiology, Texas A&M University Health Science Center College of Medicine, Temple, TX
| | - Julie Venter
- Department of Medical Physiology, Texas A&M University Health Science Center College of Medicine, Temple, TX
| | - Ludovica Ceci
- Department of Medical Physiology, Texas A&M University Health Science Center College of Medicine, Temple, TX
| | - Demeng Chen
- Department of Pancreatobiliary Surgery and Center for Translational Medicine, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Sugeily Ramos-Lorenzo
- Research Department, Central Texas Veterans Health Care System, Temple, TX
- Baylor Scott & White Digestive Disease Research Center, Baylor Scott & White Health, Temple, TX
| | - Pietro Invernizzi
- Center for Autoimmune Liver Diseases, Humanitas Clinical and Research Center, Rozzano, Italy
| | - Francesca Bernuzzi
- Center for Autoimmune Liver Diseases, Humanitas Clinical and Research Center, Rozzano, Italy
| | - Chaodong Wu
- Department of Nutrition and Food Science, Texas A&M University, College Station, TX
| | - Heather Francis
- Research Department, Central Texas Veterans Health Care System, Temple, TX
- Baylor Scott & White Digestive Disease Research Center, Baylor Scott & White Health, Temple, TX
- Department of Medical Physiology, Texas A&M University Health Science Center College of Medicine, Temple, TX
| | - Shannon Glaser
- Baylor Scott & White Digestive Disease Research Center, Baylor Scott & White Health, Temple, TX
- Department of Medical Physiology, Texas A&M University Health Science Center College of Medicine, Temple, TX
| | - Gianfranco Alpini
- Research Department, Central Texas Veterans Health Care System, Temple, TX
- Baylor Scott & White Digestive Disease Research Center, Baylor Scott & White Health, Temple, TX
- Department of Medical Physiology, Texas A&M University Health Science Center College of Medicine, Temple, TX
| | - Fanyin Meng
- Research Department, Central Texas Veterans Health Care System, Temple, TX
- Baylor Scott & White Digestive Disease Research Center, Baylor Scott & White Health, Temple, TX
| |
Collapse
|
24
|
Liu WT, Jing YY, Gao L, Li R, Yang X, Pan XR, Yang Y, Meng Y, Hou XJ, Zhao QD, Han ZP, Wei LX. Lipopolysaccharide induces the differentiation of hepatic progenitor cells into myofibroblasts constitutes the hepatocarcinogenesis-associated microenvironment. Cell Death Differ 2019; 27:85-101. [PMID: 31065105 DOI: 10.1038/s41418-019-0340-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 04/05/2019] [Accepted: 04/16/2019] [Indexed: 12/23/2022] Open
Abstract
Hepatocellular carcinoma (HCC) generally occurs in the presence of chronic liver injury, often as a sequela of liver fibrosis. Hepatic progenitor cells (HPCs) are known to be capable of forming both hepatocytes and cholangiocytes in chronic liver injury, which are also considered a source of myofibroblasts and tumor-initiating cells, under carcinogenic circumstances. However, the underlying mechanisms that activate HPCs to give rise to HCC are still unclear. In current study, the correlation between HPCs activation and liver fibrosis and carcinogenesis was investigated in rats and human specimens. We analyzed the role of HPCs in tumorigenesis, by transplanting exogenous HPCs in a diethylnitrosamine-induced rat HCC model. Our data indicated that HPC activation correlated with hepatic fibrosis and hepatocarcinogenesis. We further found that exogenous HPC infusion promoted liver fibrosis and hepatocarcinogenesis, while lipopolysaccharides (LPS) played an important role in this process. However, results of our study indicated that LPS did not induce HPCs to form tumor in nude mice directly. Rather, LPS induced myofibroblast-like morphology in HPCs, which enhanced the tumorigenic potential of HPCs. Further experiments showed that LPS/Toll-like receptor 4 (TLR4) signaling mediated the differentiation of HPCs into myofibroblasts and enhanced the production of interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α), which led to the aberrant expression of Ras and p53 signaling pathways in HPCs, and finally, promoted the proliferation and malignant transformation of HPCs, by long non-coding RNA regulation. Besides, examination of HCC clinical samples demonstrated that IL-6 and TNF-α production correlated with HPC activation, hepatic fibrosis, and HCC recurrence. Our study indicates that both myofibroblasts and tumor cells are derived from HPCs. HPC-derived myofibroblasts create tumor microenvironment and contribute to the proliferation and malignant transformation of HPCs. Furthermore, LPS present in the chronic liver inflammation microenvironment might play an important role in hepatocarcinogenesis, by regulating the plastic potential of HPCs.
Collapse
Affiliation(s)
- Wen-Ting Liu
- Tumor Immunology and Gene Therapy Center, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Ying-Ying Jing
- Tumor Immunology and Gene Therapy Center, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Lu Gao
- Tumor Immunology and Gene Therapy Center, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Rong Li
- Tumor Immunology and Gene Therapy Center, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Xue Yang
- Tumor Immunology and Gene Therapy Center, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Xiao-Rong Pan
- Tumor Immunology and Gene Therapy Center, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Yang Yang
- Tumor Immunology and Gene Therapy Center, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Yan Meng
- Tumor Immunology and Gene Therapy Center, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Xiao-Juan Hou
- Tumor Immunology and Gene Therapy Center, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Qiu-Dong Zhao
- Tumor Immunology and Gene Therapy Center, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Zhi-Peng Han
- Tumor Immunology and Gene Therapy Center, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, China.
| | - Li-Xin Wei
- Tumor Immunology and Gene Therapy Center, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, China.
| |
Collapse
|
25
|
Manco R, Leclercq IA, Clerbaux LA. Liver Regeneration: Different Sub-Populations of Parenchymal Cells at Play Choreographed by an Injury-Specific Microenvironment. Int J Mol Sci 2018; 19:E4115. [PMID: 30567401 PMCID: PMC6321497 DOI: 10.3390/ijms19124115] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 12/05/2018] [Accepted: 12/13/2018] [Indexed: 02/06/2023] Open
Abstract
Liver regeneration is crucial for the maintenance of liver functional mass during homeostasis and diseases. In a disease context-dependent manner, liver regeneration is contributed to by hepatocytes or progenitor cells. As long as they are replicatively competent, hepatocytes are the main cell type responsible for supporting liver size homeostasisand regeneration. The concept that all hepatocytes within the lobule have the same proliferative capacity but are differentially recruited according to the localization of the wound, or whether a yet to be defined sub-population of hepatocytes supports regeneration is still debated. In a chronically or severely injured liver, hepatocytes may enter a state of replicative senescence. In such conditions, small biliary cells activate and expand, a process called ductular reaction (DR). Work in the last few decades has demonstrated that DR cells can differentiate into hepatocytes and thereby contribute to parenchymal reconstitution. In this study we will review the molecular mechanisms supporting these two processes to determine potential targets that would be amenable for therapeutic manipulation to enhance liver regeneration.
Collapse
Affiliation(s)
- Rita Manco
- Laboratory of Hepato-Gastroenterology, Institut de Recherche Expérimentale et Clinique, UCLouvain, Brussels, Belgium.
| | - Isabelle A Leclercq
- Laboratory of Hepato-Gastroenterology, Institut de Recherche Expérimentale et Clinique, UCLouvain, Brussels, Belgium.
| | - Laure-Alix Clerbaux
- Laboratory of Hepato-Gastroenterology, Institut de Recherche Expérimentale et Clinique, UCLouvain, Brussels, Belgium.
| |
Collapse
|
26
|
Finkelmeier F, Canli Ö, Peiffer KH, Walter D, Tal A, Koch C, Pession U, Vermehren J, Trojan J, Zeuzem S, Piiper A, Greten FR, Grammatikos G, Waidmann O. Circulating hypoxia marker carbonic anhydrase IX (CA9) in patients with hepatocellular carcinoma and patients with cirrhosis. PLoS One 2018; 13:e0200855. [PMID: 30011326 PMCID: PMC6047828 DOI: 10.1371/journal.pone.0200855] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 07/03/2018] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND AND AIMS Expression of carbonic anhydrase IX (CA9), an enzyme expressed in response to hypoxia, acidosis and oncogenic alterations, is reported to be a prognostic factor in HCC patients. Here we evaluated serum CA9 levels in HCC and cirrhosis patients. METHODS HCC and cirrhosis patients were prospectively recruited and CA9 levels were determined. CA9 levels were compared to stages of cirrhosis and HCC stages. The association of the CA9 levels and overall survival (OS) was assessed. Furthermore, immunohistochemical CA9 expression in HCC and cirrhosis was evaluated. RESULTS 215 patients with HCC were included. The median serum CA9 concentration in patients with HCC was 370 pg/ml and significantly higher than in a healthy cohort. Patients with advanced cancer stages (BCLC and ALBI score) had hid significant higher levels of CA9 in the serum. HCC patients with high serum CA9 concentrations (>400 pg/ml) had an increased mortality risk (hazard ratio (HR) 1.690, 95% confidence interval (CI) 1.017-2.809, P = 0.043). Serum CA9 concentration in cirrhotic patients did not differ significantly from HCC patients. Higher CA9 levels in cirrhotic patients correlated with portal hypertension and esophageal varices. Patients with ethanol induced cirrhosis had the highest CA9 levels in both cohorts. Levels of CA9 did not correlate with immunohistochemical expression. CONCLUSIONS We conclude that a high CA9 level is a possible prognostic indicator for a poor outcome in HCC patients. The high CA9 levels are probably mainly associated with portal hypertension. Ductular reactions might be a possible source of serum CA9.
Collapse
Affiliation(s)
- Fabian Finkelmeier
- Department of Gastroenterology, Hepatology and Endocrinology, University Hospital Frankfurt, Frankfurt/Main, Germany
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt, Germany
| | - Özge Canli
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt, Germany
| | - Kai-Henrik Peiffer
- Department of Gastroenterology, Hepatology and Endocrinology, University Hospital Frankfurt, Frankfurt/Main, Germany
| | - Dirk Walter
- Department of Gastroenterology, Hepatology and Endocrinology, University Hospital Frankfurt, Frankfurt/Main, Germany
| | - Andrea Tal
- Department of Gastroenterology, Hepatology and Endocrinology, University Hospital Frankfurt, Frankfurt/Main, Germany
| | - Christine Koch
- Department of Gastroenterology, Hepatology and Endocrinology, University Hospital Frankfurt, Frankfurt/Main, Germany
| | - Ursula Pession
- Department of General and Visceral Surgery, University Hospital Frankfurt, Frankfurt, Germany
| | - Johannes Vermehren
- Department of Gastroenterology, Hepatology and Endocrinology, University Hospital Frankfurt, Frankfurt/Main, Germany
| | - Jörg Trojan
- Department of Gastroenterology, Hepatology and Endocrinology, University Hospital Frankfurt, Frankfurt/Main, Germany
| | - Stefan Zeuzem
- Department of Gastroenterology, Hepatology and Endocrinology, University Hospital Frankfurt, Frankfurt/Main, Germany
| | - Albrecht Piiper
- Department of Gastroenterology, Hepatology and Endocrinology, University Hospital Frankfurt, Frankfurt/Main, Germany
| | - Florian R. Greten
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt, Germany
| | - Georgios Grammatikos
- Department of Gastroenterology, Hepatology and Endocrinology, University Hospital Frankfurt, Frankfurt/Main, Germany
| | - Oliver Waidmann
- Department of Gastroenterology, Hepatology and Endocrinology, University Hospital Frankfurt, Frankfurt/Main, Germany
| |
Collapse
|
27
|
Chronic Liver Injury Induces Conversion of Biliary Epithelial Cells into Hepatocytes. Cell Stem Cell 2018; 23:114-122.e3. [PMID: 29937200 DOI: 10.1016/j.stem.2018.05.022] [Citation(s) in RCA: 214] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 02/23/2018] [Accepted: 05/21/2018] [Indexed: 12/23/2022]
Abstract
Chronic liver injury can cause cirrhosis and impaired liver regeneration, impairing organ function. Adult livers can regenerate in response to parenchymal insults, and multiple cellular sources have been reported to contribute to this response. In this study, we modeled human chronic liver injuries, in which such responses are blunted, without genetic manipulations, and assessed potential contributions of non-parenchymal cells (NPCs) to hepatocyte regeneration. We show that NPC-derived hepatocytes replenish a large fraction of the liver parenchyma following severe injuries induced by long-term thioacetamide (TAA) or 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) treatment. Through lineage tracing of biliary epithelial cells (BECs), we show that BECs are a source of new hepatocytes and gain an Hnf4α+CK19+ bi-phenotypic state in periportal regions and fibrotic septa. Bi-phenotypic cells were also detected in cirrhotic human livers. Together, these data provide further support for hepatocyte regeneration from BECs without genetic interventions and show their cellular plasticity during severe liver injury.
Collapse
|
28
|
Hytiroglou P, Theise ND. Regression of human cirrhosis: an update, 18 years after the pioneering article by Wanless et al. Virchows Arch 2018; 473:15-22. [PMID: 29589101 DOI: 10.1007/s00428-018-2340-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 03/09/2018] [Accepted: 03/15/2018] [Indexed: 12/14/2022]
Abstract
Cirrhosis has been traditionally viewed as an irreversible, end-stage condition. Eighteen years ago, Wanless, Nakashima, and Sherman published a study that was based on the concept that hepatic architecture is under constant remodeling in the course of chronic liver diseases, even during their most advanced stages; depending on the balance between injury and repair, the histologic changes might be progressing or regressing. These authors described in detail the morphologic features of regressing cirrhosis, identified a set of histologic features of regression that they called the "hepatic repair complex," and provided convincing morphologic evidence that incomplete septal cirrhosis represents regressed cirrhosis. In the years that followed publication of this pioneering article, a number of clinical studies with performance of pre- and post-treatment liver biopsies provided abundant evidence that cirrhosis can regress after successful therapy of chronic hepatitis B, chronic hepatitis C, autoimmune hepatitis, and genetic hemochromatosis. Evidence for other chronic liver diseases may also be provided in the future, pending ongoing studies. Successful therapy allows resorption of fibrous septa, which can be followed by loss of nodularity and architectural improvement; however, many vascular lesions of cirrhotic livers are not thought to regress. Cases of cirrhosis that are considered more likely to improve than others include those of recent onset, with relatively thin fibrous septa and mild vascular changes. Histologic examination of liver biopsy specimens from patients with chronic liver diseases provides the opportunity to appreciate the features of the hepatic repair complex on a routine diagnostic basis; however, interpretation is often difficult, and can be aided by immunohistochemical stains. Clinicopathologic correlation is essential for a meaningful assessment of such cases. For many patients, cirrhosis is not an end-stage condition anymore; therefore, use of the term "cirrhosis" has been challenged, almost 200 years after its invention. However, regression of cirrhosis does not imply regression of molecular changes involved in hepatocarcinogenesis; therefore, surveillance for hepatocellular carcinoma should be continued in these patients.
Collapse
Affiliation(s)
- Prodromos Hytiroglou
- Department of Pathology, Aristotle University Medical School, 54006, Thessaloniki, Greece.
| | - Neil D Theise
- Department of Pathology, New York University School of Medicine, 550 First Avenue, TH415, New York, NY, 10016, USA
| |
Collapse
|
29
|
Sasaki M, Kuo FY, Huang CC, Swanson PE, Chen CL, Chuang JH, Yeh MM. Increased expression of senescence-associated cell cycle regulators in the progression of biliary atresia: an immunohistochemical study. Histopathology 2018; 72:1164-1171. [PMID: 29392752 DOI: 10.1111/his.13476] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 12/21/2017] [Accepted: 01/24/2018] [Indexed: 01/10/2023]
Abstract
AIMS Cellular senescence plays a role in tumour suppression and in the pathogenesis of various non-neoplastic diseases, including primary biliary cholangitis and other adult cholangiopathies. Less is known about the role of cellular senescence in cholangiopathies in children. With that in mind, we examined the expression of senescence-associated cell cycle regulators in biliary atresia, the most common form of paediatric obliterative cholangiopathy. METHODS AND RESULTS The expression of senescence-associated cell cycle regulators (p16Ink4a and p21WAF1/Cip1 ) and a ductular reaction related marker (neural cell adhesion molecule: NCAM) was examined in bile ducts and bile ductules in liver samples taken from the patients with biliary atresia [n = 80; including 23 samples at the time of the Kasai procedure (KP) and 63 obtained from the explanted liver (LT) (six cases with samples at both surgical stages of disease)] and from appropriate controls (n = 17). The degree of ductular reaction and cholestasis was significantly more extensive in LT than KP (P < 0.01). The expression of p16INK4a and NCAM was significantly more extensive in bile ducts and bile ductules in ductular reaction in both KP and LT compared to controls and in LT compared to KP (P < 0.05). The expression of p21WAF1/Cip1 was significantly more extensive in bile ducts and bile ductules in KP compared to both LT and controls (P < 0.01). CONCLUSIONS Cellular senescence may play a role in the progression of bile duct loss in biliary atresia in a manner similar to that of adult cholangiopathies.
Collapse
Affiliation(s)
- Motoko Sasaki
- Department of Human Pathology, Kanazawa University Graduate School of Medicine, Kanazawa, Japan
| | - Fang-Ying Kuo
- Department of Pathology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chao-Cheng Huang
- Department of Pathology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Paul E Swanson
- Department of Pathology, University of Washington School of Medicine, Seattle, WA, USA
| | - Chao-Long Chen
- Department of Surgery, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Jiin-Haur Chuang
- Department of Pediatric Surgery, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Matthew M Yeh
- Department of Pathology, University of Washington School of Medicine, Seattle, WA, USA.,Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| |
Collapse
|
30
|
|
31
|
Hytiroglou P. Hepatitis B. PRACTICAL HEPATIC PATHOLOGY: A DIAGNOSTIC APPROACH 2018:211-221. [DOI: 10.1016/b978-0-323-42873-6.00014-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
32
|
Roderfeld M. Matrix metalloproteinase functions in hepatic injury and fibrosis. Matrix Biol 2017; 68-69:452-462. [PMID: 29221811 DOI: 10.1016/j.matbio.2017.11.011] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 11/29/2017] [Accepted: 11/29/2017] [Indexed: 01/18/2023]
Abstract
Liver fibrosis is the most common final outcome for chronic liver diseases. The complex pathogenesis includes hepatic parenchymal damage as a result of a persistent noxe, activation and recruitment of immune cells, activation of hepatic stellate cells, and the synthesis of fibrotic extracellular matrix (ECM) components leading to scar formation. Clinical studies and animal models demonstrated that fibrosis can be reversible. In this regard matrix metalloproteinases (MMPs) have been focused as therapeutic targets due to their ability to modulate tissue turnover during fibrogenesis as well as regeneration and, of special interest, due to their influence on cellular behavior like proliferation, gene expression, and apoptosis that, in turn, impact fibrosis and regeneration. The current review aims to summarize and update the knowledge about expression pattern and the central roles of MMPs in hepatic fibrosis.
Collapse
Affiliation(s)
- Martin Roderfeld
- Department of Gastroenterology, Justus-Liebig-University Giessen, Gaffkystr. 11c, D-35392 Giessen, Germany.
| |
Collapse
|
33
|
Modulation of HIF-1α and STAT3 signaling contributes to anti-angiogenic effect of YC-1 in mice with liver fibrosis. Oncotarget 2017; 8:86206-86216. [PMID: 29156788 PMCID: PMC5689678 DOI: 10.18632/oncotarget.21039] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 08/16/2017] [Indexed: 12/25/2022] Open
Abstract
Hypoxia has been shown to have a role in the pathogenesis of several forms of liver disease. The aim of the study was to evaluate the mechanisms of HIF-1α inhibitor, YC-1, during bile duct ligation (BDL)-induced liver fibrosis in mice. Liver fibrosis was induced in mice, and YC-1 was then given intraperitoneally (50 mg/kg) once daily following 5 days. Liver injuries mice that were treated with YC-1 showed improved inflammatory response and diminished angiogenesis and hepatic fibrosis. YC-1 treatment inhibited liver neutrophil infiltration, while a decreased in TNF-α signaling as well as macrophage aggregation. In addition, YC-1 downregulates iNOS and COX-2 levels by inhibiting the activation of NF-κB and STAT3 phosphorylation by negative regulation the expression of SOCS1 and SOCS3 signaling. On the other hand, YC-1 decreased angiogenesis, as shown by the downregulation of hypoxia-inducible cascade genes, i.e. VEGF. YC-1 treatment resulted in a significant decrease in hepatic fibrogenesis, α-SMA abundance, and TGF-βR1 expression as well as hypoxia were assessed using VEGFR1, vWF and HIF-1α immunostaining. These results suggest that multi-targeted therapies directed against angiogenesis, hypoxia, and fibrosis. Therefore, it may be suggested that YC-1 treatment may be a novel therapeutic agent for the treatment of liver disease.
Collapse
|
34
|
Bria A, Marda J, Zhou J, Sun X, Cao Q, Petersen BE, Pi L. Hepatic progenitor cell activation in liver repair. LIVER RESEARCH (BEIJING, CHINA) 2017; 1:81-87. [PMID: 29276644 PMCID: PMC5739327 DOI: 10.1016/j.livres.2017.08.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The liver possesses an extraordinary ability to regenerate after injury. Hepatocyte-driven liver regeneration is the default pathway in response to mild-to-moderate acute liver damage. When replication of mature hepatocytes is blocked, facultative hepatic progenitor cells (HPCs), also referred to as oval cells (OCs) in rodents, are activated. HPC/OCs have the ability to proliferate clonogenically and differentiate into several lineages including hepatocytes and bile ductal epithelia. This is a conserved liver injury response that has been studied in many species ranging from mammals (rat, mouse, and human) to fish. In addition, improper HPC/OC activation is closely associated with fibrotic responses, characterized by myofibroblast activation and extracellular matrix production, in many chronic liver diseases. Matrix remodeling and metalloprotease activities play an important role in the regulation of HPC/OC proliferation and fibrosis progression. Thus, understanding molecular mechanisms underlying HPC/OC activation has therapeutic implications for rational design of anti-fibrotic therapies.
Collapse
Affiliation(s)
- Adam Bria
- Pediatric Stem Cell Research and Hepatic Disorders, Child Health Research Institute, Department of Pediatrics, University of Florida, Gainesville, FL, USA
| | - Jorgessen Marda
- Pediatric Stem Cell Research and Hepatic Disorders, Child Health Research Institute, Department of Pediatrics, University of Florida, Gainesville, FL, USA
| | - Junmei Zhou
- Pediatric Stem Cell Research and Hepatic Disorders, Child Health Research Institute, Department of Pediatrics, University of Florida, Gainesville, FL, USA
| | - Xiaowei Sun
- Pediatric Stem Cell Research and Hepatic Disorders, Child Health Research Institute, Department of Pediatrics, University of Florida, Gainesville, FL, USA
| | - Qi Cao
- Pediatric Stem Cell Research and Hepatic Disorders, Child Health Research Institute, Department of Pediatrics, University of Florida, Gainesville, FL, USA
| | - Bryon E. Petersen
- Pediatric Stem Cell Research and Hepatic Disorders, Child Health Research Institute, Department of Pediatrics, University of Florida, Gainesville, FL, USA
| | - Liya Pi
- Pediatric Stem Cell Research and Hepatic Disorders, Child Health Research Institute, Department of Pediatrics, University of Florida, Gainesville, FL, USA
| |
Collapse
|
35
|
Chen J, Chen L, Zern MA, Theise ND, Diehl AM, Liu P, Duan Y. The diversity and plasticity of adult hepatic progenitor cells and their niche. Liver Int 2017; 37:1260-1271. [PMID: 28135758 PMCID: PMC5534384 DOI: 10.1111/liv.13377] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Accepted: 01/23/2017] [Indexed: 12/12/2022]
Abstract
The liver is a unique organ for homoeostasis with regenerative capacities. Hepatocytes possess a remarkable capacity to proliferate upon injury; however, in more severe scenarios liver regeneration is believed to arise from at least one, if not several facultative hepatic progenitor cell compartments. Newly identified pericentral stem/progenitor cells residing around the central vein is responsible for maintaining hepatocyte homoeostasis in the uninjured liver. In addition, hepatic progenitor cells have been reported to contribute to liver fibrosis and cancers. What drives liver homoeostasis, regeneration and diseases is determined by the physiological and pathological conditions, and especially the hepatic progenitor cell niches which influence the fate of hepatic progenitor cells. The hepatic progenitor cell niches are special microenvironments consisting of different cell types, releasing growth factors and cytokines and receiving signals, as well as the extracellular matrix (ECM) scaffold. The hepatic progenitor cell niches maintain and regulate stem cells to ensure organ homoeostasis and regeneration. In recent studies, more evidence has been shown that hepatic cells such as hepatocytes, cholangiocytes or myofibroblasts can be induced to be oval cell-like state through transitions under some circumstance, those transitional cell types as potential liver-resident progenitor cells play important roles in liver pathophysiology. In this review, we describe and update recent advances in the diversity and plasticity of hepatic progenitor cell and their niches and discuss evidence supporting their roles in liver homoeostasis, regeneration, fibrosis and cancers.
Collapse
Affiliation(s)
- Jiamei Chen
- Shuguang Hospital of Shanghai University of Traditional Chinese Medicine, Key Laboratory of Liver and Kidney Diseases of Ministry of Education of China, Institute of Liver Diseases, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai key laboratory of Traditional Chinese Medicine, Shanghai 201203, China
- E-institutes of Shanghai Municipal Education Commission, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Internal Medicine, University of California Davis Medical Center, Sacramento, California, USA
- Institute for Regenerative Cures, University of California Davis Medical Center, Sacramento, California, USA
| | - Long Chen
- Shuguang Hospital of Shanghai University of Traditional Chinese Medicine, Key Laboratory of Liver and Kidney Diseases of Ministry of Education of China, Institute of Liver Diseases, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai key laboratory of Traditional Chinese Medicine, Shanghai 201203, China
| | - Mark A Zern
- Department of Internal Medicine, University of California Davis Medical Center, Sacramento, California, USA
- Institute for Regenerative Cures, University of California Davis Medical Center, Sacramento, California, USA
| | - Neil D. Theise
- Departments of Pathology and Medicine, Beth Israel Medical Center of Albert Einstein College of Medicine, New York, New York, USA
| | - Ann Mae Diehl
- Division of Gastroenterology, Duke University Medical Center, Durham, North Carolina, USA
| | - Ping Liu
- Shuguang Hospital of Shanghai University of Traditional Chinese Medicine, Key Laboratory of Liver and Kidney Diseases of Ministry of Education of China, Institute of Liver Diseases, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai key laboratory of Traditional Chinese Medicine, Shanghai 201203, China
- E-institutes of Shanghai Municipal Education Commission, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuyou Duan
- Department of Internal Medicine, University of California Davis Medical Center, Sacramento, California, USA
- Institute for Regenerative Cures, University of California Davis Medical Center, Sacramento, California, USA
- Department of Dermatology, University of California Davis Medical Center, Sacramento, California, USA
| |
Collapse
|
36
|
Chen J, Li X, Hu Y, Liu W, Zhou Q, Zhang H, Mu Y, Liu P. Gypenosides Ameliorate Carbon Tetrachloride-Induced Liver Fibrosis by Inhibiting the Differentiation of Hepatic Progenitor Cells into Myofibroblasts. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2017; 45:1061-1074. [PMID: 28659031 DOI: 10.1142/s0192415x17500574] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Gypenosides (GPs), the predominant components of Gynostemma pentaphyllum, exert antifibrotic effects; however, the mechanisms underlying their ability to ameliorate liver fibrosis are unclear. Liver fibrosis was induced in C57BL/6 mice via subcutaneous injection of 10% carbon tetrachloride (CCl[Formula: see text] three times a week for two weeks. Then, CCl4 was administered in conjunction with intragastric GPs for another three weeks. For in vitro analyses, WB-F344, hepatatic progenitor cells (HPCs) were treated with transforming growth factor beta 1 (TGF-[Formula: see text]1) with or without GPs for 48[Formula: see text]h. The results showed that alanine aminotransferase (ALT) and aspartate transaminase (AST) activity, deposition of collagen, hydroxyproline content, and expression of alpha-smooth muscle actin ([Formula: see text]-SMA) and collagen type I (Col I) were significantly decreased after treatment with GPs ([Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text]). In the 5M CCl4 group, the expression of HPC markers, Sox9 and cytokeratin 19 (CK19), was significantly increased compared with the normal or GPs-treated group ([Formula: see text], [Formula: see text]). Immunostaining showed that the number of Sox9 and [Formula: see text]-SMA double-positive cells was higher in the 5M CCl4 group than in the normal group, but the addition of GPs caused this cell number to decrease. In WB-F344 cells, the expression of [Formula: see text]-SMA and Col I was significantly increased after treatment with TGF-[Formula: see text], whereas in the GPs treatment group, expression was markedly decreased ([Formula: see text]). The levels of TGF-[Formula: see text] and TGF-[Formula: see text]R1 were markedly reduced after GPs treatment both in vivo and in vitro. In conclusion, GPs ameliorated CCl4-induced liver fibrosis via the inhibition of TGF-[Formula: see text] signaling, consequently inhibiting the differentiation of HPCs into myofibroblasts.
Collapse
Affiliation(s)
- Jiamei Chen
- * Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- † Shanghai Key Laboratory of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xuewei Li
- * Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- † Shanghai Key Laboratory of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yonghong Hu
- * Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- † Shanghai Key Laboratory of Traditional Chinese Medicine, Shanghai 201203, China
| | - Wei Liu
- * Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- † Shanghai Key Laboratory of Traditional Chinese Medicine, Shanghai 201203, China
| | - Qun Zhou
- * Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- † Shanghai Key Laboratory of Traditional Chinese Medicine, Shanghai 201203, China
| | - Hua Zhang
- * Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- † Shanghai Key Laboratory of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yongping Mu
- * Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- † Shanghai Key Laboratory of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ping Liu
- * Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- † Shanghai Key Laboratory of Traditional Chinese Medicine, Shanghai 201203, China
- ‡ E-Institute of Shanghai Municipal Education Commission, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
37
|
Abstract
Liver regeneration is a fascinating and complex process with many medical implications. An important component of this regenerative process is the hepatic progenitor cell (HPC). These appealing cells are able to participate in the renewal of hepatocytes and cholangiocytes when the normal homeostatic regeneration is exhausted. Moreover, the HPC niche is of vital importance toward the activation, differentiation, and proliferation of the HPC. This niche provides a rich microenvironment for the regulation of the HPC, thanks to the intercellular secretion of molecules. New findings indicate that the regenerative possibilities in the liver could provide a diverse basis for therapeutic targets.
Collapse
Affiliation(s)
- Matthias Van Haele
- Liver Research Unit, Department of Imaging and Pathology, KU Leuven and University Hospitals Leuven, Minderbroederstraat 12, 3000 Leuven, Belgium
| | - Tania Roskams
- Liver Research Unit, Department of Imaging and Pathology, KU Leuven and University Hospitals Leuven, Minderbroederstraat 12, 3000 Leuven, Belgium.
| |
Collapse
|
38
|
Sun Y, Zhou J, Wang L, Wu X, Chen Y, Piao H, Lu L, Jiang W, Xu Y, Feng B, Nan Y, Xie W, Chen G, Zheng H, Li H, Ding H, Liu H, Lv F, Shao C, Wang T, Ou X, Wang B, Chen S, Wee A, Theise ND, You H, Jia J. New classification of liver biopsy assessment for fibrosis in chronic hepatitis B patients before and after treatment. Hepatology 2017; 65:1438-1450. [PMID: 28027574 DOI: 10.1002/hep.29009] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 12/15/2016] [Accepted: 12/20/2016] [Indexed: 12/11/2022]
Abstract
UNLABELLED Liver fibrosis is the net result of dynamic changes between fibrogenesis and fibrolysis. Evidence has shown that antiviral therapy can reverse liver fibrosis or even early cirrhosis caused by hepatitis B virus. However, current evaluation systems mainly focus on the severity of, but not the dynamic changes in, fibrosis. Here, we propose a new classification to evaluate the dynamic changes in the quality of fibrosis, namely: predominantly progressive (thick/broad/loose/pale septa with inflammation); predominately regressive (delicate/thin/dense/splitting septa); and indeterminate, which displayed an overall balance between progressive and regressive scarring. Then, we used this classification to evaluate 71 paired liver biopsies of chronic hepatitis B patients before and after entecavir-based therapy for 78 weeks. Progressive, indeterminate, and regressive were observed in 58%, 29%, and 13% of patients before treatment versus in 11%, 11%, and 78% after treatment. Of the 55 patients who showed predominantly regressive changes on posttreatment liver biopsy, 29 cases (53%) had fibrosis improvement of at least one Ishak stage, and, more interestingly, 25 cases (45%) had significant improvement in terms of Laennec substage, collagen percentage area, and liver stiffness despite remaining in the same Ishak stage. CONCLUSION This new classification highlights the importance of assessing and identifying the dynamic changes in the quality of fibrosis, especially relevant in the era of antiviral therapy.(Hepatology 2017;65:1438-1450).
Collapse
Affiliation(s)
- Yameng Sun
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis, National Clinical Research Center of Digestive Diseases, Beijing, China
| | - Jialing Zhou
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis, National Clinical Research Center of Digestive Diseases, Beijing, China
| | - Lin Wang
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis, National Clinical Research Center of Digestive Diseases, Beijing, China
| | - Xiaoning Wu
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis, National Clinical Research Center of Digestive Diseases, Beijing, China
| | - Yongpeng Chen
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Hongxin Piao
- Infectious Department, Affiliated Hospital of Yanbian University, Yanji, China
| | - Lungen Lu
- Department of Gastroenterology and Hepatology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Jiang
- Department of Gastroenterology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Youqing Xu
- Department of Digestive System, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Bo Feng
- Hepatology Institute, Peking University People's Hospital, Beijing, China
| | - Yuemin Nan
- Department of Traditional and Western Medical Hepatology, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Wen Xie
- Center of Liver Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Guofeng Chen
- Second Liver Cirrhosis Diagnosis and Treatment Center, 302 Military Hospital of China, Beijing, China
| | - Huanwei Zheng
- Department of Infectious Disease, the Fifth Hospital of Shijiazhuang City, Shijiazhuang, China
| | - Hai Li
- Department of Hepatopancreatobiliary and Splenic Medicine, Affiliated Hospital, Logistics University of People's Armed Police Force, Tianjin, China
| | - Huiguo Ding
- Department of Gastroenterology and Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Hui Liu
- Department of Pathology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Fudong Lv
- Department of Pathology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Chen Shao
- Department of Pathology, China-Japan Friendship Hospital, Beijing, China
| | - Tailing Wang
- Department of Pathology, China-Japan Friendship Hospital, Beijing, China
| | - Xiaojuan Ou
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis, National Clinical Research Center of Digestive Diseases, Beijing, China
| | - Bingqiong Wang
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis, National Clinical Research Center of Digestive Diseases, Beijing, China
| | - Shuyan Chen
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis, National Clinical Research Center of Digestive Diseases, Beijing, China
| | - Aileen Wee
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, National University Hospital, Singapore, Singapore
| | - Neil D Theise
- Departments of Pathology and Medicine (Division of Digestive Diseases), Mount Sinai Beth Israel Medical Center, New York, NY
| | - Hong You
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis, National Clinical Research Center of Digestive Diseases, Beijing, China
| | - Jidong Jia
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis, National Clinical Research Center of Digestive Diseases, Beijing, China
| |
Collapse
|
39
|
Rókusz A, Veres D, Szücs A, Bugyik E, Mózes M, Paku S, Nagy P, Dezső K. Ductular reaction correlates with fibrogenesis but does not contribute to liver regeneration in experimental fibrosis models. PLoS One 2017; 12:e0176518. [PMID: 28445529 PMCID: PMC5405957 DOI: 10.1371/journal.pone.0176518] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 04/12/2017] [Indexed: 12/13/2022] Open
Abstract
Background and aims Ductular reaction is a standard component of fibrotic liver tissue but its function is largely unknown. It is supposed to interact with the matrix producing myofibroblasts and compensate the declining regenerative capacity of hepatocytes. The relationship between the extent of fibrosis—ductular reaction, proliferative activity of hepatocytes and ductular reaction were studied sequentially in experimental hepatic fibrosis models. Methods Liver fibrosis/cirrhosis was induced in wild type and TGFβ overproducing transgenic mice by carbon tetrachloride and thioacetamide administration. The effect of thioacetamide was modulated by treatment with imatinib and erlotinib. The extent of ductular reaction and fibrosis was measured by morphometry following cytokeratin 19 immunofluorescent labeling and Picro Sirius staining respectively. The proliferative activity of hepatocytes and ductular reaction was evaluated by BrdU incorporation. The temporal distribution of the parameters was followed and compared within and between different experimental groups. Results There was a strong significant correlation between the extent of fibrosis and ductular reaction in each experimental group. Although imatinib and erlotinib temporarily decreased fibrosis this effect later disappeared. We could not observe negative correlation between the proliferation of hepatocytes and ductular reaction in any of the investigated models. Conclusions The stringent connection between ductular reaction and fibrosis, which cannot be influenced by any of our treatment regimens, suggests that there is a close mutual interaction between them instead of a unidirectional causal relationship. Our results confirm a close connection between DR and fibrogenesis. However, since the two parameters changed together we could not establish a causal relationship and were unable to reveal which was the primary event. The lack of inverse correlation between the proliferation of hepatocytes and ductular reaction questions that ductular reaction can compensate for the failing regenerative activity of hepatocytes. No evidences support the persistent antifibrotic property of imatinib or erlotinib.
Collapse
Affiliation(s)
- András Rókusz
- First Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Dániel Veres
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | - Armanda Szücs
- First Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Edina Bugyik
- First Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Miklós Mózes
- Institute of Pathophysiology, Semmelweis University, Budapest, Hungary
| | - Sándor Paku
- First Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary.,Tumor Progression Research Group, Joint Research Organization of the Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - Péter Nagy
- First Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Katalin Dezső
- First Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| |
Collapse
|
40
|
Human liver regeneration in advanced cirrhosis is organized by the portal tree. J Hepatol 2017; 66:778-786. [PMID: 27913222 DOI: 10.1016/j.jhep.2016.11.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 11/08/2016] [Accepted: 11/13/2016] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS In advanced cirrhosis new hepatocytic nodules are generated by budding of ductules in areas of parenchymal extinction. However, the vascular alterations in the areas of parenchymal extinction, the blood supply and the structure of the new hepatocytic nodules have not been analyzed in detail. METHODS Explanted human cirrhotic livers of three different etiologies and two experimental rat models of cirrhosis were thoroughly examined. 3D reconstruction of the immunohistochemically stained serial sections and casting of human and experimental cirrhotic livers have been used to reveal the structural organization of the regenerative buds. RESULTS In areas of parenchymal extinction the skeleton of the liver, the portal tree is preserved. The developing regenerative nodules are positioned along the portal tree and are directly supplied by terminal portal venules. The expanding nodules grow along the trunks of the portal vein. Casting of human and experimental cirrhotic livers by colored resin confirms that nodules are supplied by portal blood. The two other members of the portal triads become separated from the portal veins. CONCLUSIONS As the structure of the hepatocyte nodules (centrally located portal vein branches, bile ducts at the periphery, hepatic veins and arteries in the connective tissue) impedes the restoration of normal liver structure, the basic architecture of hepatic tissue suffers permanent damage. We suggest that "budding" may initiate the second, irreversible stage of cirrhosis. LAY SUMMARY Cirrhosis is the final common outcome of long lasting hepatic injury defined as the destruction of the normal liver architecture by scar tissue. In the late phase of cirrhosis stem cells-derived hepatocyte nodules appear along the branches of the portal vein suggesting an important role of this specially composed blood vessels (containing digestive end-products from the stomach and intestines) in liver regeneration. Our results contribute to a better understanding of this serious liver disease.
Collapse
|
41
|
Cellular Mechanisms of Liver Regeneration and Cell-Based Therapies of Liver Diseases. BIOMED RESEARCH INTERNATIONAL 2017; 2017:8910821. [PMID: 28210629 PMCID: PMC5292184 DOI: 10.1155/2017/8910821] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 11/29/2016] [Accepted: 12/27/2016] [Indexed: 12/14/2022]
Abstract
The emerging field of regenerative medicine offers innovative methods of cell therapy and tissue/organ engineering as a novel approach to liver disease treatment. The ultimate scientific foundation of both cell therapy of liver diseases and liver tissue and organ engineering is delivered by the in-depth studies of the cellular and molecular mechanisms of liver regeneration. The cellular mechanisms of the homeostatic and injury-induced liver regeneration are unique. Restoration of the mass of liver parenchyma is achieved by compensatory hypertrophy and hyperplasia of the differentiated parenchymal cells, hepatocytes, while expansion and differentiation of the resident stem/progenitor cells play a minor or negligible role. Participation of blood-borne cells of the bone marrow origin in liver parenchyma regeneration has been proven but does not exceed 1-2% of newly formed hepatocytes. Liver regeneration is activated spontaneously after injury and can be further stimulated by cell therapy with hepatocytes, hematopoietic stem cells, or mesenchymal stem cells. Further studies aimed at improving the outcomes of cell therapy of liver diseases are underway. In case of liver failure, transplantation of engineered liver can become the best option in the foreseeable future. Engineering of a transplantable liver or its major part is an enormous challenge, but rapid progress in induced pluripotency, tissue engineering, and bioprinting research shows that it may be doable.
Collapse
|
42
|
Khosla R, Rastogi A, Ramakrishna G, Pamecha V, Mukhopadhyay A, Vasudevan M, Sarin SK, Trehanpati N. EpCAM+ Liver Cancer Stem-Like Cells Exhibiting Autocrine Wnt Signaling Potentially Originate in Cirrhotic Patients. Stem Cells Transl Med 2017; 6:807-818. [PMID: 28176469 PMCID: PMC5442787 DOI: 10.1002/sctm.16-0248] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 08/18/2016] [Accepted: 09/30/2016] [Indexed: 12/13/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is believed to originate from cancer stem cells (CSCs). While epithelial cell adhesion molecule (EpCAM) is a marker of normal hepatic stem cells (HSCs), EpCAM+ cells from HCC behave like CSCs. Since HCC mostly develops on a cirrhotic background, we sought to determine whether CSC‐like EpCAM+ cells exist in patients with advanced cirrhosis. Both flow cytometry and immunohistochemistry showed that frequency of EpCAM+ cells in advanced cirrhosis was increased as compared to control. To determine whether increased EpCAM population in advanced cirrhosis harbors any CSC‐like cells, we compared molecular and functional features of EpCAM+ cells from advanced cirrhosis (Ep+CIR; n = 20) with EpCAM+ cells from both HCC (Ep+HCC; n = 20) and noncancerous/noncirrhotic (control) (Ep+NSC; n = 7) liver tissues. Ep+CIRs displayed similarity with Ep+HCC cells including upregulated expression of stemness and Notch pathway genes, enhanced self‐renewal in serial spheroid assay and generation of subcutaneous tumors in nonobese diabetic/severe combined immunodeficiency mice. Moreover, transcriptome and miRNome of Ep+CIRs appeared closer to that of Ep+HCC cells than Ep+NSCs. Interestingly, more than 50% micro RNAs (miRNAs) and transcripts specifically expressed in Ep+HCCs were also expressed in Ep+CIRs. However, none of Ep+NSC specific miRNAs and only 7% Ep+NSC specific transcripts were expressed in Ep+CIRs. Further, according to gene expression and in vitro Wnt inhibition analysis, autocrine Wnt signaling appeared to be a distinct feature of Ep+CIR and Ep+HCC cells, which was absent from Ep+NSCs. EpCAM+ cells in advanced cirrhosis possibly include a population of CSC‐like cells which can be explored for early diagnosis of HCC development. Stem Cells Translational Medicine2017;6:807–818
Collapse
Affiliation(s)
- Ritu Khosla
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Archana Rastogi
- Department of Pathology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Gayatri Ramakrishna
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Viniyendra Pamecha
- Department of Liver Transplant and Hepato Pancreato Biliary Surgery, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Ashok Mukhopadhyay
- Stem Cell Biology Laboratory, National Institute of Immunology, New Delhi, India
| | | | - Shiv Kumar Sarin
- Department of Hepatology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Nirupma Trehanpati
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| |
Collapse
|
43
|
Verdonk RC, Lozano MF, van den Berg AP, Gouw ASH. Bile ductal injury and ductular reaction are frequent phenomena with different significance in autoimmune hepatitis. Liver Int 2016; 36:1362-9. [PMID: 26849025 DOI: 10.1111/liv.13083] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 02/01/2016] [Indexed: 02/13/2023]
Abstract
BACKGROUND & AIMS The significance of bile duct injury and ductular reaction in biopsies from autoimmune hepatitis patients is not clear. We aim to establish the prevalence and clinical relevance of both phenomena in autoimmune hepatitis. METHODS Cases of newly diagnosed, untreated autoimmune hepatitis without overlap syndrome were selected. Pretreatment and follow up biopsies were scored for inflammation, fibrosis, bile ductal injury and ductular reaction. RESULTS Thirty-five cases were studied of whom 14 cases had follow up biopsies. Bile duct injury was present in 29 cases (83%), mostly in a PBC-like pattern and was not correlated with demographical or laboratory findings. Ductular reaction, observed in 25 of 35 cases (71%) using conventional histology and in 30 of 32 cases (94%) using immunohistochemistry, was correlated with portal and lobular inflammation, interface hepatitis and centrilobular necrosis as well as bile duct injury and fibrosis. In 11 of 14 cases (79%) ductular reaction remained present on post-treatment biopsy whereas bile duct injury persisted in six of 14 (43%) of cases. CONCLUSIONS Bile duct injury and ductular reaction are very common in newly diagnosed autoimmune hepatitis and cannot be predicted biochemically. Bile duct injury may subside in the majority of treated AIH cases while DR tends to persist during follow up. These findings show that the two phenomena are part of the spectrum of AIH with dissimilar responses to treatment and do not necessarily point towards an overlap syndrome. Persistence of ductular reaction after treatment supports the notion that it represents a regenerative response.
Collapse
Affiliation(s)
- Robert C Verdonk
- Department of Gastroenterology & Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Mallaki F Lozano
- Department of Pathology Medical Biology, Pathology Section, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Aad P van den Berg
- Department of Gastroenterology & Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Annette S H Gouw
- Department of Pathology Medical Biology, Pathology Section, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
44
|
Itoh T. Stem/progenitor cells in liver regeneration. Hepatology 2016; 64:663-8. [PMID: 27227904 DOI: 10.1002/hep.28661] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 04/22/2016] [Accepted: 05/11/2016] [Indexed: 12/22/2022]
Abstract
In severely or chronically injured livers where the proliferative capacity of hepatocytes is compromised, putative stem/progenitor cells are supposed to be activated. These cells are generally characterized as biliary epithelial cell marker-positive cells that emerge ectopically in the parenchymal region of the liver, as determined by histopathological examination of various liver diseases in humans and animal models. Whereas the biliary system indeed harbors cells with stem/progenitor activity that can be defined ex vivo, genetic lineage tracing studies in mice have casted doubt on their exact contribution as the genuine stem/progenitor cell population that differentiates in situ into hepatocytes. Here, I briefly review recent advances in the characterization and certification of the stem/progenitor cells in the adult liver and discuss the ongoing and future challenges to further our understanding of the cellular basis of liver regeneration. (Hepatology 2016;64:663-668).
Collapse
Affiliation(s)
- Tohru Itoh
- Laboratory of Cell Growth and Differentiation, Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
45
|
Shang H, Wang Z, Song Y. Liver progenitor cells-mediated liver regeneration in liver cirrhosis. Hepatol Int 2016; 10:440-447. [PMID: 26742763 DOI: 10.1007/s12072-015-9693-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 12/07/2015] [Indexed: 02/08/2023]
Abstract
Cirrhosis is defined as the histological development of regenerative nodules surrounded by fibrous bands in response to chronic liver injury. In cirrhotic liver where hepatocytes proliferation is compromised, liver progenitor cells (LPCs) are activated and then differentiated into hepatocytes and cholangiocytes, leading to the generation of regenerative nodules and functional restoration. Here, we summarize and discuss recent findings on the mechanisms underlying LPCs-mediated regeneration in liver cirrhosis. Firstly, we provide recent research on the mechanism underlying LPCs activation in severe or chronic liver injury. Secondly, we present new and exciting data on exploring the origin of LPCs, which reveal that the hepatocytes give rise to duct-like progenitors that then differentiate back into hepatocytes in chronic liver injury or liver cirrhosis. Finally, we highlight recent findings from the literature exploring the role of LPCs niche in directing the behavior and fate of LPCs. This remarkable insight into the cellular and molecular mechanisms of LPCs-mediated regeneration in liver cirrhosis will provide a basis for translating this knowledge into clinical application.
Collapse
Affiliation(s)
- Haitao Shang
- Department of Gastroenterology, Binzhou Medical University Hospital, Binzhou, 256603, People's Republic of China
| | - Zhijun Wang
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| | - Yuhu Song
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China.
| |
Collapse
|
46
|
Enhancement of hepatocyte differentiation from human embryonic stem cells by Chinese medicine Fuzhenghuayu. Sci Rep 2016; 6:18841. [PMID: 26733102 PMCID: PMC4702137 DOI: 10.1038/srep18841] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 11/27/2015] [Indexed: 01/10/2023] Open
Abstract
Chinese medicine, Fuzhenghuayu (FZHY), appears to prevent fibrosis progression and improve liver function in humans. Here we found that FZHY enhanced hepatocyte differentiation from human embryonic stem cells (hESC). After treatment with FZHY, albumin expression was consistently increased during differentiation and maturation process, and expression of metabolizing enzymes and transporter were also increased. Importantly, expression of mesenchymal cell and cholangiocyte marker was significantly reduced by treatment with FZHY, indicating that one possible mechanism of FZHY’s role is to inhibit the formation of mesenchymal cells and cholangiocytes. Edu-labelled flow cytometric analysis showed that the percentage of the Edu positive cells was increased in the treated cells. These results indicate that the enhanced proliferation involved hepatocytes rather than another cell type. Our investigations further revealed that these enhancements by FZHY are mediated through activation of canonical Wnt and ERK pathways and inhibition of Notch pathway. Thus, FZHY not only promoted hepatocyte differentiation and maturation, but also enhanced hepatocyte proliferation. These results demonstrate that FZHY appears to represent an excellent therapeutic agent for the treatment of liver fibrosis, and that FZHY treatment can enhance our efforts to generate mature hepatocytes with proliferative capacity for cell-based therapeutics and for pharmacological and toxicological studies.
Collapse
|
47
|
Rókusz A, Nagy E, Gerlei Z, Veres D, Dezső K, Paku S, Szücs A, Hajósi-Kalcakosz S, Pávai Z, Görög D, Kóbori L, Fehérvári I, Nemes B, Nagy P. Quantitative morphometric and immunohistochemical analysis and their correlates in cirrhosis--A study on explant livers. Scand J Gastroenterol 2016; 51:86-94. [PMID: 26166621 DOI: 10.3109/00365521.2015.1067902] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND Reproducible structural analysis was made on cirrhotic human liver samples in order to reveal potential connections between morphological and laboratory parameters. MATERIAL AND METHODS Large histological samples were taken from segment VII of 56 cirrhotic livers removed in connection with liver transplantation. Picro Sirius red and immunohistochemically (smooth muscle actin [SMA], cytokeratin 7 [CK7], Ki-67) stained sections were digitalized and morphometric evaluation was performed. RESULTS The Picro Sirius-stained fibrotic area correlated with the average thickness of the three broadest septa, extent of SMA positivity, alkaline phosphatase (ALP) values and it was lower in the viral hepatitis related cirrhoses than in samples with non-viral etiology. The extent of SMA staining increased with the CK7-positive ductular reaction. The proliferative activity of the hepatocytes correlated positively with the Ki-67 labeling of the ductular cells and inversely with the septum thickness. These data support the potential functional connection among different structural components, for example, myofibroblasts, ductular reaction and fibrogenesis but challenges the widely proposed role of ductular cells in regeneration. CONCLUSION Unbiased morphological characterization of cirrhotic livers can provide valuable, clinically relevant information. Similar evaluation of routine core biopsies may increase the significance of this 'Gold Standard' examination.
Collapse
Affiliation(s)
- András Rókusz
- a 1 First Department of Pathology and Experimental Cancer Research, Semmelweis University , 1085, Üllői út 26, Budapest, Hungary
| | - Eszter Nagy
- a 1 First Department of Pathology and Experimental Cancer Research, Semmelweis University , 1085, Üllői út 26, Budapest, Hungary
| | - Zsuzsanna Gerlei
- b 2 Department of Transplantation and Surgery, Semmelweis University , 1085, Baross utca 23, Budapest, Hungary
| | - Dániel Veres
- c 3 Department of Biophysics and Radiation Biology, Semmelweis University , 1094, Tűzoltó utca 37-47, Budapest, Hungary
| | - Katalin Dezső
- a 1 First Department of Pathology and Experimental Cancer Research, Semmelweis University , 1085, Üllői út 26, Budapest, Hungary
| | - Sándor Paku
- a 1 First Department of Pathology and Experimental Cancer Research, Semmelweis University , 1085, Üllői út 26, Budapest, Hungary.,d 4 Tumor Progression Research Group, Joint Research Organization of the Hungarian Academy of Sciences and Semmelweis University , 1051, Nádor utca 7, Budapest, Hungary
| | - Armanda Szücs
- a 1 First Department of Pathology and Experimental Cancer Research, Semmelweis University , 1085, Üllői út 26, Budapest, Hungary
| | - Szofia Hajósi-Kalcakosz
- a 1 First Department of Pathology and Experimental Cancer Research, Semmelweis University , 1085, Üllői út 26, Budapest, Hungary
| | - Zoltán Pávai
- e 5 Department of Anatomy and Embryology, University of Medicine and Pharmacy Targu Mures , 540139, Gh. Marinescu 38, Targu Mures, Romania
| | - Dénes Görög
- b 2 Department of Transplantation and Surgery, Semmelweis University , 1085, Baross utca 23, Budapest, Hungary
| | - László Kóbori
- b 2 Department of Transplantation and Surgery, Semmelweis University , 1085, Baross utca 23, Budapest, Hungary
| | - Imre Fehérvári
- b 2 Department of Transplantation and Surgery, Semmelweis University , 1085, Baross utca 23, Budapest, Hungary
| | - Balázs Nemes
- b 2 Department of Transplantation and Surgery, Semmelweis University , 1085, Baross utca 23, Budapest, Hungary
| | - Péter Nagy
- a 1 First Department of Pathology and Experimental Cancer Research, Semmelweis University , 1085, Üllői út 26, Budapest, Hungary
| |
Collapse
|
48
|
Tsolaki E, Yannaki E. Stem cell-based regenerative opportunities for the liver: State of the art and beyond. World J Gastroenterol 2015; 21:12334-12350. [PMID: 26604641 PMCID: PMC4649117 DOI: 10.3748/wjg.v21.i43.12334] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 09/16/2015] [Accepted: 10/20/2015] [Indexed: 02/06/2023] Open
Abstract
The existing mismatch between the great demand for liver transplants and the number of available donor organs highlights the urgent need for alternative therapeutic strategies in patients with acute or chronic liver failure. The rapidly growing knowledge on stem cell biology and the intrinsic repair processes of the liver has opened new avenues for using stem cells as a cell therapy platform in regenerative medicine for hepatic diseases. An impressive number of cell types have been investigated as sources of liver regeneration: adult and fetal liver hepatocytes, intrahepatic stem cell populations, annex stem cells, adult bone marrow-derived hematopoietic stem cells, endothelial progenitor cells, mesenchymal stromal cells, embryonic stem cells, and induced pluripotent stem cells. All these highly different cell types, used either as cell suspensions or, in combination with biomaterials as implantable liver tissue constructs, have generated great promise for liver regeneration. However, fundamental questions still need to be addressed and critical hurdles to be overcome before liver cell therapy emerges. In this review, we summarize the state-of-the-art in the field of stem cell-based therapies for the liver along with existing challenges and future perspectives towards a successful liver cell therapy that will ultimately deliver its demanding goals.
Collapse
|
49
|
Kaur S, Siddiqui H, Bhat MH. Hepatic Progenitor Cells in Action. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 185:2342-50. [DOI: 10.1016/j.ajpath.2015.06.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 05/25/2015] [Accepted: 06/29/2015] [Indexed: 12/20/2022]
|
50
|
Yu DD, Jing YY, Guo SW, Ye F, Lu W, Li Q, Dong YL, Gao L, Yang YT, Yang Y, Wu MC, Wei LX. Overexpression Of Hepatocyte Nuclear Factor-1beta Predicting Poor Prognosis Is Associated With Biliary Phenotype In Patients With Hepatocellular Carcinoma. Sci Rep 2015; 5:13319. [PMID: 26311117 PMCID: PMC4550878 DOI: 10.1038/srep13319] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 07/23/2015] [Indexed: 12/13/2022] Open
Abstract
Hepatocyte nuclear factor-1beta (HNF-1B) is involved in the hepatobiliary specification of hepatoblasts to cholangiocytes during liver development, and is strongly expressed throughout adult biliary epithelium. The aim of this study was to examine the expression of HNF-1B in different pathologic subtypes of primary liver cancer, including hepatocellular carcinoma (HCC) and cholangiocarcinoma (ICC), and the relationship between HNF-1B expression, clinicopathological features and prognosis. We retrospectively investigated 2 cohorts of patients, including 183 HCCs and 69 ICCs. The expression of HNF-1B was examined by immunohistochemistry. We found that HNF-1B expression was associated with pathological subtype of primary tumor, and HNF-1B expression in HCC tissue may be associated with the change of phenotype on recurrence. The HNF-1B expression was positively correlated with biliary/HPC (hepatic progenitor cell) markers expression. Further, multivariable analysis showed that HNF-1B expression was an independent prognostic factor for both overall survival and disease-free survival of HCC patients. However, no correlation between HNF-1B expression and survival was found in ICC patients. In summary, HCC with high HNF-1B expression displayed biliary phenotype and tended to show poorer prognosis. HNF-1B-positive malignant cells could be bipotential cells and give rise to both hepatocytic and cholangiocytic lineages during tumorigenesis.
Collapse
Affiliation(s)
- Dan-Dan Yu
- Tumor Immunology and Gene Therapy Center, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University, Shanghai, China
| | - Ying-Ying Jing
- Tumor Immunology and Gene Therapy Center, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University, Shanghai, China
| | - Shi-Wei Guo
- Tumor Immunology and Gene Therapy Center, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University, Shanghai, China
| | - Fei Ye
- Tumor Immunology and Gene Therapy Center, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University, Shanghai, China
| | - Wen Lu
- Tumor Immunology and Gene Therapy Center, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University, Shanghai, China
| | - Quan Li
- Tumor Immunology and Gene Therapy Center, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University, Shanghai, China
| | - Yu-Long Dong
- Tumor Immunology and Gene Therapy Center, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University, Shanghai, China
| | - Lu Gao
- Tumor Immunology and Gene Therapy Center, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University, Shanghai, China
| | - Yu-Ting Yang
- Tumor Immunology and Gene Therapy Center, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University, Shanghai, China
| | - Yang Yang
- Tumor Immunology and Gene Therapy Center, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University, Shanghai, China
| | - Meng-Chao Wu
- Department of Comprehensive Treatment, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University, Shanghai, China
| | - Li-Xin Wei
- Tumor Immunology and Gene Therapy Center, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University, Shanghai, China
| |
Collapse
|