1
|
Zheng K, Hao F, Medrano-Garcia S, Chen C, Guo F, Morán-Blanco L, Rodríguez-Perales S, Torres-Ruiz R, Peligros MI, Vaquero J, Bañares R, Gómez Del Moral M, Regueiro JR, Martínez-Naves E, Mohamed MR, Gallego-Durán R, Maya D, Ampuero J, Romero-Gómez M, Gilbert-Ramos A, Guixé-Muntet S, Fernández-Iglesias A, Gracia-Sancho J, Coll M, Graupera I, Ginès P, Ciudin A, Rivera-Esteban J, Pericàs JM, Frutos MD, Ramos Molina B, Herranz JM, Ávila MA, Nevzorova YA, Fernández-Malavé E, Cubero FJ. Neuroblastoma RAS viral oncogene homolog (N-RAS) deficiency aggravates liver injury and fibrosis. Cell Death Dis 2023; 14:514. [PMID: 37563155 PMCID: PMC10415403 DOI: 10.1038/s41419-023-06029-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/18/2023] [Accepted: 07/31/2023] [Indexed: 08/12/2023]
Abstract
Progressive hepatic damage and fibrosis are major features of chronic liver diseases of different etiology, yet the underlying molecular mechanisms remain to be fully defined. N-RAS, a member of the RAS family of small guanine nucleotide-binding proteins also encompassing the highly homologous H-RAS and K-RAS isoforms, was previously reported to modulate cell death and renal fibrosis; however, its role in liver damage and fibrogenesis remains unknown. Here, we approached this question by using N-RAS deficient (N-RAS-/-) mice and two experimental models of liver injury and fibrosis, namely carbon tetrachloride (CCl4) intoxication and bile duct ligation (BDL). In wild-type (N-RAS+/+) mice both hepatotoxic procedures augmented N-RAS expression in the liver. Compared to N-RAS+/+ counterparts, N-RAS-/- mice subjected to either CCl4 or BDL showed exacerbated liver injury and fibrosis, which was associated with enhanced hepatic stellate cell (HSC) activation and leukocyte infiltration in the damaged liver. At the molecular level, after CCl4 or BDL, N-RAS-/- livers exhibited augmented expression of necroptotic death markers along with JNK1/2 hyperactivation. In line with this, N-RAS ablation in a human hepatocytic cell line resulted in enhanced activation of JNK and necroptosis mediators in response to cell death stimuli. Of note, loss of hepatic N-RAS expression was characteristic of chronic liver disease patients with fibrosis. Collectively, our study unveils a novel role for N-RAS as a negative controller of the progression of liver injury and fibrogenesis, by critically downregulating signaling pathways leading to hepatocyte necroptosis. Furthermore, it suggests that N-RAS may be of potential clinical value as prognostic biomarker of progressive fibrotic liver damage, or as a novel therapeutic target for the treatment of chronic liver disease.
Collapse
Affiliation(s)
- Kang Zheng
- Department of Immunology, Ophthalmology & ENT, Complutense University School of Medicine, Madrid, Spain
- 12 de Octubre Health Research Institute (imas12), Madrid, Spain
- Department of Anesthesiology, Nanjing Pukou District Hospital of Chinese Medicine Central Laboratory affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Fengjie Hao
- Department of Immunology, Ophthalmology & ENT, Complutense University School of Medicine, Madrid, Spain
- 12 de Octubre Health Research Institute (imas12), Madrid, Spain
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Sandra Medrano-Garcia
- Department of Immunology, Ophthalmology & ENT, Complutense University School of Medicine, Madrid, Spain
- 12 de Octubre Health Research Institute (imas12), Madrid, Spain
| | - Chaobo Chen
- Department of Immunology, Ophthalmology & ENT, Complutense University School of Medicine, Madrid, Spain
- Department of General Surgery, Wuxi Xishan People's Hospital, Wuxi, China
- Department of General Surgery, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Feifei Guo
- Department of Obstetrics and Gynaecology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Laura Morán-Blanco
- Department of Immunology, Ophthalmology & ENT, Complutense University School of Medicine, Madrid, Spain
| | - Sandra Rodríguez-Perales
- Molecular Cytogenetics and Genome Editing Unit, Human Cancer Genetics Program, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
| | - Raúl Torres-Ruiz
- Molecular Cytogenetics and Genome Editing Unit, Human Cancer Genetics Program, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
| | - María Isabel Peligros
- Servicio de Anatomía Patológica Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Javier Vaquero
- Servicio de Aparato Digestivo, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
| | - Rafael Bañares
- Servicio de Aparato Digestivo, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
| | - Manuel Gómez Del Moral
- 12 de Octubre Health Research Institute (imas12), Madrid, Spain
- Department of Cell Biology, Complutense University School of Medicine, Madrid, Spain
| | - José R Regueiro
- Department of Immunology, Ophthalmology & ENT, Complutense University School of Medicine, Madrid, Spain
- 12 de Octubre Health Research Institute (imas12), Madrid, Spain
| | - Eduardo Martínez-Naves
- Department of Immunology, Ophthalmology & ENT, Complutense University School of Medicine, Madrid, Spain
- 12 de Octubre Health Research Institute (imas12), Madrid, Spain
| | | | - Rocío Gallego-Durán
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
- Instituto de Biomedicina de Sevilla/Hospital Universitario Virgen del Rocío/Universidad de Sevilla, Sevilla, Spain
| | - Douglas Maya
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
- Instituto de Biomedicina de Sevilla/Hospital Universitario Virgen del Rocío/Universidad de Sevilla, Sevilla, Spain
| | - Javier Ampuero
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
- Instituto de Biomedicina de Sevilla/Hospital Universitario Virgen del Rocío/Universidad de Sevilla, Sevilla, Spain
| | - Manuel Romero-Gómez
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
- Instituto de Biomedicina de Sevilla/Hospital Universitario Virgen del Rocío/Universidad de Sevilla, Sevilla, Spain
| | - Albert Gilbert-Ramos
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
- Liver Vascular Biology, IDIBAPS Biomedical Research Institute, Barcelona, Spain
| | - Sergi Guixé-Muntet
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
- Liver Vascular Biology, IDIBAPS Biomedical Research Institute, Barcelona, Spain
| | - Anabel Fernández-Iglesias
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
- Liver Vascular Biology, IDIBAPS Biomedical Research Institute, Barcelona, Spain
| | - Jordi Gracia-Sancho
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
- Liver Vascular Biology, IDIBAPS Biomedical Research Institute, Barcelona, Spain
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Mar Coll
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
- Laboratorio de Plasticidad de Células Hepáticas y Reparación de Tejidos, Institut d´Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Isabel Graupera
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
- Laboratorio de Plasticidad de Células Hepáticas y Reparación de Tejidos, Institut d´Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Liver Unit, Hospital Clinic, Barcelona, Spain
| | - Pere Ginès
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Liver Unit, Hospital Clinic, Barcelona, Spain
| | - Andreea Ciudin
- Endocrinology Department, Vall d'Hebron University Hospital, Vall d'Hebron Institute for Research (VHIR), Barcelona, Spain
| | - Jesús Rivera-Esteban
- Liver Unit, Internal Medicine Department, Vall d'Hebron University Hospital, Vall d'Hebron Institute for Research (VHIR), Barcelona, Spain
| | - Juan M Pericàs
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
- Liver Unit, Internal Medicine Department, Vall d'Hebron University Hospital, Vall d'Hebron Institute for Research (VHIR), Barcelona, Spain
| | - María Dolores Frutos
- Department of General and Digestive System Surgery, Virgen de la Arrixaca University Hospital, Murcia, Spain
| | - Bruno Ramos Molina
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
- Laboratorio de Obesidad y Metabolismo, Instituto de Investigación Biomédica de Murcia (IMIB-Arrixaca), Murcia, Spain
| | - José María Herranz
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
- Hepatology Programme, Centre for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - Matías A Ávila
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
- Hepatology Programme, Centre for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - Yulia A Nevzorova
- Department of Immunology, Ophthalmology & ENT, Complutense University School of Medicine, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
| | - Edgar Fernández-Malavé
- Department of Immunology, Ophthalmology & ENT, Complutense University School of Medicine, Madrid, Spain
- 12 de Octubre Health Research Institute (imas12), Madrid, Spain
| | - Francisco Javier Cubero
- Department of Immunology, Ophthalmology & ENT, Complutense University School of Medicine, Madrid, Spain.
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain.
| |
Collapse
|
2
|
Tian Y, Tsujisaka Y, Li VY, Tani K, Lucena-Cacace A, Yoshida Y. Immunosuppressants Tacrolimus and Sirolimus revert the cardiac antifibrotic properties of p38-MAPK inhibition in 3D-multicellular human iPSC-heart organoids. Front Cell Dev Biol 2022; 10:1001453. [PMID: 36438566 PMCID: PMC9692097 DOI: 10.3389/fcell.2022.1001453] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 10/27/2022] [Indexed: 11/15/2023] Open
Abstract
Cardiac reactive fibrosis is a fibroblast-derived maladaptive process to tissue injury that exacerbates an uncontrolled deposition of large amounts of extracellular matrix (ECM) around cardiomyocytes and vascular cells, being recognized as a pathological entity of morbidity and mortality. Cardiac fibrosis is partially controlled through the sustained activation of TGF-β1 through IL-11 in fibroblasts. Yet, preclinical studies on fibrosis treatment require human physiological approaches due to the multicellular crosstalk between cells and tissues in the heart. Here, we leveraged an iPSC-derived multi-lineage human heart organoid (hHO) platform composed of different cardiac cell types to set the basis of a preclinical model for evaluating drug cardiotoxicity and assessing cardiac fibrosis phenotypes. We found that the inhibition of the p38-MAPK pathway significantly reduces COL1A1 depositions. Yet, concomitant treatment with organ-rejection immunosuppressant drugs Tacrolimus or Sirolimus reverts this effect, opening new questions on the clinical considerations of combined therapies in reducing fibrosis after organ transplantation.
Collapse
Affiliation(s)
- Yu Tian
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
- Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yuta Tsujisaka
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Vanessa Y. Li
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
- Wellesley College, Wellesley, MA, United States
| | - Kanae Tani
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
- Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | - Yoshinori Yoshida
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| |
Collapse
|
3
|
Huang H, Liu Q, Zhang T, Zhang J, Zhou J, Jing X, Tang Q, Huang C, Zhang Z, Zhao Y, Zhang G, Yan J, Xia Y, Xu Y, Li J, Li Y, He J. Farnesylthiosalicylic Acid-Loaded Albumin Nanoparticle Alleviates Renal Fibrosis by Inhibiting Ras/Raf1/p38 Signaling Pathway. Int J Nanomedicine 2021; 16:6441-6453. [PMID: 34584410 PMCID: PMC8464329 DOI: 10.2147/ijn.s318124] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 08/30/2021] [Indexed: 02/05/2023] Open
Abstract
Background Renal fibrosis is the common pathway in chronic kidney diseases progression to end-stage renal disease, but to date, no clinical drug for its treatment is approved. It has been demonstrated that the inhibitor of proto-oncogene Ras, farnesylthiosalicylic acid (FTS), shows therapeutic potential for renal fibrosis, but its application was hindered by the water-insolubility and low bioavailability. Hence, in this study, we improved these properties of FTS by encapsulating it into bovine serum albumin nanoparticles (AN-FTS) and tested its therapeutic effect in renal fibrosis. Methods AN-FTS was developed using a classic emulsification-solvent ultrasonication. The pharmacokinetics of DiD-loaded albumin nanoparticle were investigated in SD rats. The biodistribution and therapeutic efficacy of AN-FTS was assessed in a mouse model of renal fibrosis induced by unilateral ureteral obstruction (UUO). Results AN-FTS showed a uniform spherical shape with the size of 100.6 ± 1.12 nm and PDI < 0.25. In vitro, AN-FTS displayed stronger inhibitory effects on the activation of renal fibroblasts cells NRK-49F than free FTS. In vivo, AN-FTS showed significantly higher peak concentration and area under the concentration-time curve. After intravenous administration to UUO-induced renal fibrosis mice, AN-FTS accumulated preferentially in the fibrotic kidney, and alleviated renal fibrosis and inflammation significantly more than the free drug. Mechanistically, the improved anti-fibrosis effect of AN-FTS was associated with greater inhibition in renal epithelial-to-mesenchymal transformation process via Ras/Raf1/p38 signaling pathway. Conclusion The study reveals that AN-FTS is capable of delivering FTS to fibrotic kidney and showed superior therapeutic efficacy for renal fibrosis.
Collapse
Affiliation(s)
- Hui Huang
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, People's Republic of China.,Department of Pharmacy, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, People's Republic of China
| | - Qinhui Liu
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Ting Zhang
- Department of Pharmacy, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, People's Republic of China
| | - Jinhang Zhang
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, People's Republic of China.,Department of Pharmacy, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, People's Republic of China
| | - Jian Zhou
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, People's Republic of China.,Department of Pharmacy, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, People's Republic of China
| | - Xiandan Jing
- Department of Pharmacy, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, People's Republic of China
| | - Qin Tang
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Cuiyuan Huang
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, People's Republic of China.,Department of Pharmacy, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, People's Republic of China
| | - Zijing Zhang
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Yingnan Zhao
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, People's Republic of China.,Department of Pharmacy, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, People's Republic of China
| | - Guorong Zhang
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, People's Republic of China.,Department of Pharmacy, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, People's Republic of China
| | - Jiamin Yan
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, People's Republic of China.,Department of Pharmacy, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, People's Republic of China
| | - Yan Xia
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, People's Republic of China.,Department of Pharmacy, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, People's Republic of China
| | - Ying Xu
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, People's Republic of China.,Department of Pharmacy, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, People's Republic of China
| | - Jiahui Li
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, People's Republic of China.,Department of Pharmacy, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, People's Republic of China
| | - Yanping Li
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Jinhan He
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, People's Republic of China.,Department of Pharmacy, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, People's Republic of China
| |
Collapse
|
4
|
ERK Pathway in Activated, Myofibroblast-Like, Hepatic Stellate Cells: A Critical Signaling Crossroad Sustaining Liver Fibrosis. Int J Mol Sci 2019; 20:ijms20112700. [PMID: 31159366 PMCID: PMC6600376 DOI: 10.3390/ijms20112700] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 05/21/2019] [Accepted: 05/30/2019] [Indexed: 12/12/2022] Open
Abstract
Fibrogenic progression of chronic liver disease, whatever the etiology, is characterized by persistent chronic parenchymal injury, chronic activation of inflammatory response, and sustained activation of liver fibrogenesis, and of pathological wound healing response. A critical role in liver fibrogenesis is played by hepatic myofibroblasts (MFs), a heterogeneous population of α smooth-muscle actin—positive cells that originate from various precursor cells through a process of activation and transdifferentiation. In this review, we focus the attention on the role of extracellular signal-regulated kinase (ERK) signaling pathway as a critical one in modulating selected profibrogenic phenotypic responses operated by liver MFs. We will also analyze major therapeutic antifibrotic strategies developed in the last two decades in preclinical studies, some translated to clinical conditions, designed to interfere directly or indirectly with the Ras/Raf/MEK/ERK signaling pathway in activated hepatic MFs, but that also significantly increased our knowledge on the biology and pathobiology of these fascinating profibrogenic cells.
Collapse
|
5
|
Tomović DL, Bukonjić AM, Jevtić VV, Ratković ZR, Bogojeski JV, Đeković A, Radojević ID, Čomić LR, Novaković SB, Bogdanović GA, Trifunović SR, Radić GP, Cupara S. DNA binding, antibacterial and antifungal activities of copper(II) complexes with some S-alkenyl derivatives of thiosalicylic acid. TRANSIT METAL CHEM 2018. [DOI: 10.1007/s11243-018-0201-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
6
|
Li J, Ghazwani M, Liu K, Huang Y, Chang N, Fan J, He F, Li L, Bu S, Xie W, Ma X, Li S. Regulation of hepatic stellate cell proliferation and activation by glutamine metabolism. PLoS One 2017; 12:e0182679. [PMID: 28797105 PMCID: PMC5552314 DOI: 10.1371/journal.pone.0182679] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 07/21/2017] [Indexed: 12/20/2022] Open
Abstract
Liver fibrosis is the excessive accumulation of extracellular matrix proteins, which is mainly caused by accumulation of activated hepatic stellate cells (HSCs). The mechanisms of activation and proliferation of HSCs, two key events after liver damage, have been studied for many years. Here we report a novel pathway to control HSCs by regulating glutamine metabolism. We demonstrated that the proliferation of HSCs is critically dependent on glutamine that is used to generate α-ketoglutarate (α-KG) and non-essential amino acid (NEAA). In addition, both culture- and in vivo-activated HSCs have increased glutamine utilization and increased expression of genes related to glutamine metabolism, including GLS (glutaminase), aspartate transaminase (GOT1) and glutamate dehydrogenase (GLUD1). Inhibition of these enzymes, as well as glutamine depletion, had a significant inhibitory effect on HSCs activation. In addition to providing energy expenditure, conversion of glutamine to proline is enhanced. The pool of free proline may also be increased via downregulation of POX expression. Hedgehog signaling plays an important role in the regulation of glutamine metabolism, as well as TGF-β1, c-Myc, and Ras signalings, via transcriptional upregulation and repression of key metabolic enzymes in this pathway. Finally, changes in glutamine metabolism were also found in mouse liver tissue following CCl4-induced acute injury. CONCLUSION Glutamine metabolism plays an important role in regulating the proliferation and activation of HSCs. Strategies that are targeted at glutamine metabolism may represent a novel therapeutic approach to the treatment of liver fibrosis.
Collapse
Affiliation(s)
- Jiang Li
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, United States of America
- * E-mail: (JL); (SL)
| | - Mohammed Ghazwani
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Ke Liu
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Yixian Huang
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Na Chang
- Department of Cell Biology,Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, Beijing, China
| | - Jie Fan
- Department of Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Fengtian He
- Department of Biochemistry and Molecular Biology (F.H.), College of Basic Medical Sciences, Third Military Medical University, Chongqing, China
| | - Liying Li
- Department of Cell Biology,Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, Beijing, China
| | - Shizhong Bu
- Diabetes Research Center, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Wen Xie
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Xiaochao Ma
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Song Li
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, United States of America
- * E-mail: (JL); (SL)
| |
Collapse
|
7
|
Borkham-Kamphorst E, Weiskirchen R. The PDGF system and its antagonists in liver fibrosis. Cytokine Growth Factor Rev 2015; 28:53-61. [PMID: 26547628 DOI: 10.1016/j.cytogfr.2015.10.002] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 10/19/2015] [Indexed: 01/18/2023]
Abstract
Platelet derived growth factor (PDGF) signaling plays an important role in activated hepatic stellate cells and portal fibroblast proliferation, chemotaxis, migration and cell survival. PDGF receptors and ligands are upregulated in experimental liver fibrotic models as well as in human liver fibrotic diseases. Blocking of PDGF signaling ameliorates experimental liver fibrogenesis. The plurality of molecular and cellular activities of PDGF and its involvement in initiation, progression and resolution of hepatic fibrogenesis offers an infinite number of therapeutic possibilities. These include the application of therapeutic antibodies (e.g. AbyD3263, MOR8457) which specifically sequester individual PDGF isoforms or the inhibition of PDGF isoforms by synthetic aptamers. In particular, the isolation of innovative slow off-rate modified aptamers (e.g., SOMAmer SL1 and SL5) that carry functional groups absent in natural nucleic acids by the Systematic Evolution of Ligands by EXponential (SELEX) enrichment technique offers the possibility to design high affinity aptamers that target PDGF isoforms for clinical purposes. Dominant-negative soluble PDGF receptors are also effective in attenuation of hepatic stellate cell proliferation and hepatic fibrogenesis. Moreover, some multikinase inhibitors targeting PDGF signaling have been intensively tested during the last decade and are on the way into advanced preclinical studies and clinical trials. This narrative review aims to gauge the recent progression of research into PDGF systems and liver fibrosis.
Collapse
Affiliation(s)
- Erawan Borkham-Kamphorst
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, RWTH University Hospital Aachen, Aachen, Germany.
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, RWTH University Hospital Aachen, Aachen, Germany.
| |
Collapse
|
8
|
Neeman R, Abramovitch S, Sharvit E, Elad-Sfadia G, Haklai R, Kloog Y, Reif S. Vitamin D and S-farnesylthiosalicylic acid have a synergistic effect on hepatic stellate cells proliferation. Dig Dis Sci 2014; 59:2462-9. [PMID: 24942325 DOI: 10.1007/s10620-014-3207-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 05/05/2014] [Indexed: 01/07/2023]
Abstract
BACKGROUND Hepatic stellate cells (HSCs) have a key role in the formation of hepatic fibrosis. The active form of vitamin D, 1,25(OH)2D3, has been found to have antiproliferative and antifibrotic effects in various tissues including liver. Farnesylthiosalicylic acid (FTS), a novel Ras antagonist, was also found to inhibit hepatic fibrosis. AIMS The purpose of this study was to examine the antiproliferative and antifibrotic effects of the combined treatment of 1,25(OH)2D3 and FTS on primary cultured HSCs. METHODS Primary HSCs, isolated from rat's livers, were treated with 1,25(OH)2D3, FTS or a combination of both. Proliferation was assessed by bromodeoxyuridine. Expression of p-ERK, ERK, Ras-GTP, total-Ras, CyclinD1 and fibrotic markers was measured by western blotting analysis and real-time PCR. Cytotoxicity was assessed by lactate dehydrogenase method. RESULTS The combined treatment inhibited HSCs proliferation by threefold. The effect was synergistic and non-cytotoxic. In concordance, the combined treatment suppressed CyclinD1 expression by ~2-fold, whereas 1,25(OH)2D3 or FTS alone showed a significantly lower inhibitory effect. The effect of the combined treatment on CyclinD1 expression was mediated via Ras-GTP and p-ERK signal transduction pathway. The effect on fibrotic markers showed that 1,25(OH)2D3 decreased collagen Iα1 expression by ~40%, FTS by ~50% and the combined treatment by ~60%. 1,25(OH)2D3 inhibited tissue inhibitor of metalloproteinases-1 (TIMP-1) expression by 20%. FTS alone or 1,25(OH)2D3 + FTS inhibited TIMP-1 expression by 60%. FTS inhibited transforming growth factor-β (TGF-β) expression by 25%, while 1,25(OH)2D3 had no effect. CONCLUSION Although the combination of 1,25(OH)2D3 and FTS did not demonstrate an additive antifibrotic effect, it showed a synergistic antiproliferative effect on primary HSCs. Therefore, the combined treatment may have a potential therapeutic value in the initiation of fibrotic process.
Collapse
Affiliation(s)
- Rina Neeman
- Sackler Faculty of Medicine, Tel Aviv University, Tel-Aviv, Israel,
| | | | | | | | | | | | | |
Collapse
|
9
|
Kumar V, Mahato RI. Delivery and targeting of miRNAs for treating liver fibrosis. Pharm Res 2014; 32:341-61. [PMID: 25186440 DOI: 10.1007/s11095-014-1497-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Accepted: 08/15/2014] [Indexed: 02/07/2023]
Abstract
Liver fibrosis is a pathological condition originating from liver damage that leads to excess accumulation of extracellular matrix (ECM) proteins in the liver. Viral infection, chronic injury, local inflammatory responses and oxidative stress are the major factors contributing to the onset and progression of liver fibrosis. Multiple cell types and various growth factors and inflammatory cytokines are involved in the induction and progression of this disease. Various strategies currently being tried to attenuate liver fibrosis include the inhibition of HSC activation or induction of their apoptosis, reduction of collagen production and deposition, decrease in inflammation, and liver transplantation. Liver fibrosis treatment approaches are mainly based on small drug molecules, antibodies, oligonucleotides (ODNs), siRNA and miRNAs. MicroRNAs (miRNA or miR) are endogenous noncoding RNA of ~22 nucleotides that regulate gene expression at post transcription level. There are several miRNAs having aberrant expressions and play a key role in the pathogenesis of liver fibrosis. Single miRNA can target multiple mRNAs, and we can predict its targets based on seed region pairing, thermodynamic stability of pairing and species conservation. For in vivo delivery, we need some additional chemical modification in their structure, and suitable delivery systems like micelles, liposomes and conjugation with targeting or stabilizing the moiety. Here, we discuss the role of miRNAs in fibrogenesis and current approaches of utilizing these miRNAs for treating liver fibrosis.
Collapse
Affiliation(s)
- Virender Kumar
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center (UNMC), 986025 Nebraska Medical Center, Omaha, Nebraska, 68198-6025, USA
| | | |
Collapse
|
10
|
Abstract
The Ras inhibitor S-trans,trans-farnesylthiosalicylic acid (FTS, Salirasib®) interferes with Ras membrane interactions that are crucial for Ras-dependent signaling and cellular transformation. FTS had been successfully evaluated in clinical trials of cancer patients. Interestingly, its effect is mediated by targeting Ras chaperones that serve as key coordinators for Ras proper folding and delivery, thus offering a novel target for cancer therapy. The development of new FTS analogs has revealed that the specific modifications to the FTS carboxyl group by esterification and amidation yielded compounds with improved growth inhibitory activity. When FTS was combined with additional therapeutic agents its activity toward Ras was significantly augmented. FTS should be tested not only in cancer but also for genetic diseases associated with abnormal Ras signaling, as well as for various inflammatory and autoimmune disturbances, where Ras plays a major role. We conclude that FTS has a great potential both as a safe anticancer drug and as a promising immune modulator agent.
Collapse
Affiliation(s)
- Yoel Kloog
- Department of Neurobiology, Faculty of Life Sciences, Tel-Aviv University, Ramat-Aviv, Israel.
| | - Galit Elad-Sfadia
- Department of Neurobiology, Faculty of Life Sciences, Tel-Aviv University, Ramat-Aviv, Israel
| | - Roni Haklai
- Department of Neurobiology, Faculty of Life Sciences, Tel-Aviv University, Ramat-Aviv, Israel
| | - Adam Mor
- Department of Medicine, New York University School of Medicine, New York, New York, USA; Department of Pathology, New York University School of Medicine, New York, New York, USA
| |
Collapse
|
11
|
Fujii Y, Segawa R, Kimura M, Wang L, Ishii Y, Yamamoto R, Morita R, Mitsumori K, Shibutani M. Inhibitory effect of α-lipoic acid on thioacetamide-induced tumor promotion through suppression of inflammatory cell responses in a two-stage hepatocarcinogenesis model in rats. Chem Biol Interact 2013; 205:108-18. [PMID: 23830814 DOI: 10.1016/j.cbi.2013.06.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 03/31/2013] [Accepted: 06/17/2013] [Indexed: 11/25/2022]
Abstract
To investigate the protective effect of α-lipoic acid (a-LA) on the hepatocarcinogenic process promoted by thioacetamide (TAA), we used a two-stage liver carcinogenesis model in N-diethylnitrosamine (DEN)-initiated and TAA-promoted rats. We examined the modifying effect of co-administered a-LA on the liver tissue environment surrounding preneoplastic hepatocellular lesions, with particular focus on hepatic macrophages and the mechanism behind the decrease in apoptosis of cells surrounding preneoplastic hepatocellular lesions during the early stages of hepatocellular tumor promotion. TAA increased the number and area of glutathione S-transferase placental form (GST-P)(+) liver cell foci and the numbers of proliferating and apoptotic cells in the liver. Co-administration with a-LA suppressed these effects. TAA also increased the numbers of ED2(+), cyclooxygenase-2(+), and heme oxygenase-1(+) hepatic macrophages as well as the number of CD3(+) lymphocytes. These effects were also suppressed by a-LA. Transcript levels of some inflammation-related genes were upregulated by TAA and downregulated by a-LA in real-time RT-PCR analysis. Outside the GST-P(+) foci, a-LA reduced the numbers of apoptotic cells, active caspase-8(+) cells and death receptor (DR)-5(+) cells. These results suggest that hepatic macrophages producing proinflammatory factors may be activated in TAA-induced tumor promotion. a-LA may suppress tumor-promoting activity by suppressing the activation of these macrophages and the subsequent inflammatory responses. Furthermore, a-LA may suppress tumor-promoting activity by suppressing the DR5-mediated extrinsic pathway of apoptosis and the subsequent regeneration of liver cells outside GST-P(+) foci.
Collapse
Key Words
- 8-OHdG
- 8-hydroxydeoxyguanosine
- Aldh1a1
- Apoptosis
- B-cell CLL/lymphoma 2
- BNF
- Bax
- Bcl2
- Bcl2-associated X protein
- Bcl2-like 1
- Bcl2l1
- CMD
- Casp
- Cd4
- Cd4 molecule
- Cd8a
- Cd8a molecule
- Col1a1
- Cox-2
- Cu
- Cx3cl1
- Cxcl10
- DAB
- DEN
- DR5
- Death receptor 5 (DR5)
- EMIQ
- Fadd
- Fas (TNFRSF6)-associated via death domain
- Fe
- GST-P
- Gpx2
- Gstm1
- HO-1
- Hprt
- Il1b
- Il4
- Inflammation
- Liver tumor promotion
- Mapk
- Mmp
- N-diethylnitrosamine
- NAD(P)H dehydrogenase, quinone 1
- Nfe2l2
- Nqo1
- PBS
- PCNA
- Ptgs2
- ROS
- Serpine1
- TAA
- TBARS
- TRAIL
- TUNEL
- Tgfb2
- Thioacetamide (TAA)
- Tnf
- Tnfrsf10b
- Tnfsf10
- Txn1
- a-LA
- aldehyde dehydrogenase family 1 member A1
- caspase
- chemokine (C-X-C motif) ligand 10
- chemokine (C-X3-C motif) ligand 1
- choline-methionine-deficient diet
- collagen, type I, alpha 1
- copper
- cyclooxygenase 2
- death receptor 5
- diaminobenzidine
- enzymatically modified isoquercitrin
- glutathione S-transferase mu 1
- glutathione S-transferase placental form
- glutathione peroxidase 2
- heme oxygenase-1
- hypoxanthine guanine phosphoribosyl transferase
- interleukin 1 beta
- interleukin 4
- iron
- matrix metalloproteinase
- mitogen activated protein kinase
- nuclear factor, erythroid derived 2, like 2
- phosphate buffered solution
- proliferating cell nuclear antigen
- prostaglandin-endoperoxide synthase 2
- reactive oxygen species
- serine (or cysteine) peptidase inhibitor, clade E, member 1
- terminal deoxynucleotidyl transferase-mediated nick end labeling
- thioacetamide
- thiobarbituric acid-reactive substances
- thioredoxin 1
- transforming growth factor, beta 2
- tumor necrosis factor
- tumor necrosis factor (ligand) superfamily, member 10
- tumor necrosis factor receptor superfamily, member 10b
- tumor necrosis factor-related apoptosis-inducing ligand
- α-Lipoic acid (a-LA)
- α-lipoic acid
- β-naphthoflavone
Collapse
Affiliation(s)
- Yuta Fujii
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Hsu DZ, Chu PY, Li YH, Chandrasekaran VRM, Liu MY. Role of flavin-containing-monooxygenase-dependent neutrophil activation in thioacetamide-induced hepatic inflammation in rats. Toxicology 2012; 298:52-8. [DOI: 10.1016/j.tox.2012.05.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 04/26/2012] [Accepted: 04/28/2012] [Indexed: 01/02/2023]
|
13
|
Prevention of induced colitis in mice by the ras antagonist farnesylthiosalicylic acid. Dig Dis Sci 2012; 57:320-6. [PMID: 21901261 DOI: 10.1007/s10620-011-1880-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Accepted: 08/16/2011] [Indexed: 02/06/2023]
Abstract
BACKGROUND Ras proteins are crucial for cell differentiation and proliferation. Targeting Ras with farnesylthiosalicylic acid (FTS), a Ras antagonist, has been suggested as a therapeutic strategy in proliferative and inflammatory diseases. AIMS To examine the role of Ras and the therapeutic potential of FTS in experimental colitis. METHODS Colitis was induced in 26 mice by adding 2.5% dextran sodium sulfate to their drinking water for 7 days during which 12 study mice were treated with FTS and 14 control mice were given normal saline. Two additional controls included 10 naïve mice treated with FTS and 7 naïve non-treated mice. The animals were followed clinically and sacrificed after 7 days. Their colons were isolated for histological assessment and for measurement of myeloperoxidase activity (MPO), tumor necrosis factor-α(TNF-α), and interleukin-1β(Il-1β) levels. Ras and activated Ras expression was determined by immunoblotting assays. T cell populations in the colon and spleen were analyzed by flow-cytometry. RESULTS FTS induced a 2.1-fold reduction in activated Ras levels (P < 0.004). FTS-treated mice had lower disease activity scores (3.9 ± 1.7 vs. 7.5 ± 2.3, P < 0.001), and lower levels of MPO activity (1.65 ± 0.6 vs. 2.6 ± 0.8 units/g, P < 0.007), Il-1β (2.4 ± 3.6 vs. 24.3 ± 17.5 pg/mg, P < 0.01) and TNF-α (0.63 ± 0.5 vs. 1.9 ± 1 pg/mg, P < 0.04). FTS increased regulatory T cell population in the spleen (1.9 ± 0.4-fold, P < 0.04), and decreased effector T cell populations in the colon and spleen by 24 ± 3% (P < 0.03) and 27 ± 1% (P < 0.02), respectively. FTS had no remarkable side effects. CONCLUSIONS Ras is involved in the inflammatory processes of induced colitis in mice and its inhibition by FTS ameliorates the severity of the inflammation.
Collapse
|
14
|
Abstract
The RAS oncogenes (HRAS, NRAS and KRAS) comprise the most frequently mutated class of oncogenes in human cancers (33%), thus stimulating intensive effort in developing anti-Ras inhibitors for cancer treatment. Despite intensive effort, to date, no effective anti-Ras strategies have successfully made it to the clinic. We present an overview of past and ongoing strategies to inhibit oncogenic Ras in cancer. Since approaches to directly target mutant Ras have not been successful, most efforts have focused on indirect approaches to block Ras membrane association or downstream effector signaling. While inhibitors of effector signaling are currently under clinical evaluation, genome-wide unbiased genetic screens have identified novel directions for future anti-Ras drug discovery.
Collapse
|
15
|
Fowell AJ, Collins JE, Duncombe DR, Pickering JA, Rosenberg WMC, Benyon RC. Silencing tissue inhibitors of metalloproteinases (TIMPs) with short interfering RNA reveals a role for TIMP-1 in hepatic stellate cell proliferation. Biochem Biophys Res Commun 2011; 407:277-82. [PMID: 21300026 DOI: 10.1016/j.bbrc.2011.02.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Accepted: 02/02/2011] [Indexed: 12/13/2022]
Abstract
Myofibroblastic, activated hepatic stellate cells (HSC) play a pivotal role in the development of liver fibrosis through the secretion of fibrillar collagens and the tissue inhibitors of metalloproteinase (TIMP)-1 and -2. TIMPs are believed to promote hepatic fibrosis by inhibiting both matrix degradation and apoptosis of HSC. In other cell types, there is evidence that TIMP-1 has effects on proliferation, however the role of TIMPs in the regulation of HSC proliferation remains unexplored. Therefore, we have used short interfering RNA (siRNA) to investigate the effects of autocrine TIMP-1 and -2 on HSC proliferation. TIMP-1 and -2 siRNA were highly effective, producing peak target protein knockdown compared to negative control siRNA of 92% and 63%, respectively. Specific silencing of TIMP-1, using siRNA, significantly reduced HSC proliferation. TIMP-1 was localised in part to the HSC nucleus and TIMP-1 siRNA resulted in loss of both cytoplasmic and nuclear TIMP-1. Attenuated proliferation was associated with reduced Akt phosphorylation and was partially rescued by addition of recombinant TIMP-1. We have revealed a novel autocrine mitogenic effect of TIMP-1 on HSC, which may involve Akt-dependent and specific nuclear mechanisms of action. We suggest that TIMP-1 might promote liver fibrosis by means other than its previously described anti-apoptotic effect on HSC. Moreover, these findings, together with our previous reports and the emerging data from in vivo studies of TIMP inhibition, provide strong evidence that TIMP-1 is mechanistically central to liver fibrosis and an important potential therapeutic target.
Collapse
Affiliation(s)
- Andrew J Fowell
- Liver and Pancreas Group, University of Southampton, Division of Infection, Inflammation and Immunity, Southampton General Hospital, Southampton, UK.
| | | | | | | | | | | |
Collapse
|
16
|
Nevo Y, Aga-Mizrachi S, Elmakayes E, Yanay N, Ettinger K, Elbaz M, Brunschwig Z, Dadush O, Elad-Sfadia G, Haklai R, Kloog Y, Chapman J, Reif S. The Ras antagonist, farnesylthiosalicylic acid (FTS), decreases fibrosis and improves muscle strength in dy/dy mouse model of muscular dystrophy. PLoS One 2011; 6:e18049. [PMID: 21445359 PMCID: PMC3062565 DOI: 10.1371/journal.pone.0018049] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Accepted: 02/23/2011] [Indexed: 12/01/2022] Open
Abstract
The Ras superfamily of guanosine-triphosphate (GTP)-binding proteins regulates a diverse spectrum of intracellular processes involved in inflammation and fibrosis. Farnesythiosalicylic acid (FTS) is a unique and potent Ras inhibitor which decreased inflammation and fibrosis in experimentally induced liver cirrhosis and ameliorated inflammatory processes in systemic lupus erythematosus, neuritis and nephritis animal models. FTS effect on Ras expression and activity, muscle strength and fibrosis was evaluated in the dy2J/dy2J mouse model of merosin deficient congenital muscular dystrophy. The dy2J/dy2J mice had significantly increased RAS expression and activity compared with the wild type mice. FTS treatment significantly decreased RAS expression and activity. In addition, phosphorylation of ERK, a Ras downstream protein, was significantly decreased following FTS treatment in the dy2J/dy2J mice. Clinically, FTS treated mice showed significant improvement in hind limb muscle strength measured by electronic grip strength meter. Significant reduction of fibrosis was demonstrated in the treated group by quantitative Sirius Red staining and lower muscle collagen content. FTS effect was associated with significantly inhibition of both MMP-2 and MMP-9 activities. We conclude that active RAS inhibition by FTS was associated with attenuated fibrosis and improved muscle strength in the dy2J/dy2J mouse model of congenital muscular dystrophy.
Collapse
Affiliation(s)
- Yoram Nevo
- Pediatric Neuromuscular Laboratory and the Neuropediatric Unit, Hadassah Hebrew University Hospital, Jerusalem, Israel.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Charette N, De Saeger C, Lannoy V, Horsmans Y, Leclercq I, Stärkel P. Salirasib inhibits the growth of hepatocarcinoma cell lines in vitro and tumor growth in vivo through ras and mTOR inhibition. Mol Cancer 2010; 9:256. [PMID: 20860815 PMCID: PMC2955616 DOI: 10.1186/1476-4598-9-256] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Accepted: 09/22/2010] [Indexed: 03/01/2023] Open
Abstract
Background Dysregulation of epidermal growth factor and insulin-like growth factor signaling play important roles in human hepatocellular carcinoma (HCC), leading to frequent activation of their downstream targets, the ras/raf/extracellular signal-regulated kinase (ERK) and the phosphoinositide 3-kinase (PI3K)/Akt/mammalian Target of Rapamycin (mTOR) pathways. Salirasib is an S-prenyl-cysteine analog that has been shown to block ras and/or mTOR activation in several non hepatic tumor cell lines. We investigated in vitro the effect of salirasib on cell growth as well as its mechanism of action in human hepatoma cell lines (HepG2, Huh7, and Hep3B) and its in vivo effect in a subcutaneous xenograft model with HepG2 cells. Results Salirasib induced a time and dose dependent growth inhibition in hepatocarcinoma cells through inhibition of proliferation and partially through induction of apoptosis. A 50 percent reduction in cell growth was obtained in all three cell lines at a dose of 150 μM when they were cultured with serum. By contrast, salirasib was more potent at reducing cell growth after stimulation with EGF or IGF2 under serum-free conditions, with an IC50 ranging from 60 μM to 85 μM. The drug-induced anti-proliferative effect was associated with downregulation of cyclin A and to a lesser extent of cyclin D1, and upregulation of p21 and p27. Apoptosis induction was related to a global pro-apoptotic balance with caspase 3 activation, cytochrome c release, death receptor upregulation, and a reduced mRNA expression of the apoptosis inhibitors cFLIP and survivin. These effects were associated with ras downregulation and mTOR inhibition, without reduction of ERK and Akt activation. In vivo, salirasib reduced tumour growth from day 5 onwards. After 12 days of treatment, mean tumor weight was diminished by 56 percent in the treated animals. Conclusions Our results show for the first time that salirasib inhibits the growth of human hepatoma cell lines through inhibition of proliferation and induction of apoptosis, which is associated with ras and mTOR inhibition. The therapeutic potential of salirasib in human HCC was further confirmed in a subcutaneous xenograft model.
Collapse
Affiliation(s)
- Nicolas Charette
- Laboratory of Gastroenterology, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, 1200 Brussels, Belgium
| | | | | | | | | | | |
Collapse
|
18
|
Schneider-Merck T, Borbath I, Charette N, De Saeger C, Abarca J, Leclercq I, Horsmans Y, Stärkel P. The Ras inhibitor farnesylthiosalicyclic acid (FTS) prevents nodule formation and development of preneoplastic foci of altered hepatocytes in rats. Eur J Cancer 2009; 45:2050-60. [DOI: 10.1016/j.ejca.2009.04.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2008] [Accepted: 04/06/2009] [Indexed: 10/20/2022]
|
19
|
Yea S, Narla G, Zhao X, Garg R, Tal-Kremer S, Hod E, Villanueva A, Loke J, Tarocchi M, Akita K, Shirasawa S, Sasazuki T, Martignetti JA, Llovet JM, Friedman SL. Ras promotes growth by alternative splicing-mediated inactivation of the KLF6 tumor suppressor in hepatocellular carcinoma. Gastroenterology 2008; 134:1521-31. [PMID: 18471523 PMCID: PMC2600656 DOI: 10.1053/j.gastro.2008.02.015] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2007] [Revised: 02/02/2008] [Accepted: 02/07/2008] [Indexed: 01/12/2023]
Abstract
BACKGROUND & AIMS Hepatocellular carcinoma (HCC) is the fifth most prevalent cancer worldwide and the third most lethal. Dysregulation of alternative splicing underlies a number of human diseases, yet its contribution to liver cancer has not been explored fully. The Krüppel-like factor 6 (KLF6) gene is a zinc finger transcription factor that inhibits cellular growth in part by transcriptional activation of p21. KLF6 function is abrogated in human cancers owing to increased alternative splicing that yields a dominant-negative isoform, KLF6 splice variant 1 (SV1), which antagonizes full-length KLF6-mediated growth suppression. The molecular basis for stimulation of KLF6 splicing is unknown. METHODS In human HCC samples and cell lines, we functionally link oncogenic Ras signaling to increased alternative splicing of KLF6 through signaling by phosphatidylinositol-3 kinase and Akt, mediated by the splice regulatory protein ASF/SF2. RESULTS In 67 human HCCs, there is a significant correlation between activated Ras signaling and increased KLF6 alternative splicing. In cultured cells, Ras signaling increases the expression of KLF6 SV1, relative to full-length KLF6, thereby enhancing proliferation. Abrogation of oncogenic Ras signaling by small interfering RNA (siRNA) or a farnesyl-transferase inhibitor decreases KLF6 SV1 and suppresses growth. Growth inhibition by farnesyl-transferase inhibitor in transformed cell lines is overcome by ectopic expression of KLF6 SV1. Down-regulation of the splice factor ASF/SF2 by siRNA increases KLF6 SV1 messenger RNA levels. KLF6 alternative splicing is not coupled to its transcriptional regulation. CONCLUSIONS Our findings expand the role of Ras in human HCC by identifying a novel mechanism of tumor-suppressor inactivation through increased alternative splicing mediated by an oncogenic signaling cascade.
Collapse
Affiliation(s)
- Steven Yea
- Division of Liver Diseases and Department of Medicine, New York, NY, 10029
| | - Goutham Narla
- Division of Liver Diseases and Department of Medicine, New York, NY, 10029
- Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, New York, NY, 10029
| | - Xiao Zhao
- Division of Liver Diseases and Department of Medicine, New York, NY, 10029
| | - Rakhi Garg
- Division of Liver Diseases and Department of Medicine, New York, NY, 10029
| | - Sigal Tal-Kremer
- Division of Liver Diseases and Department of Medicine, New York, NY, 10029
- Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, New York, NY, 10029
| | - Eldad Hod
- Division of Liver Diseases and Department of Medicine, New York, NY, 10029
| | - Augusto Villanueva
- Division of Liver Diseases and Department of Medicine, New York, NY, 10029
| | - Johnny Loke
- Division of Liver Diseases and Department of Medicine, New York, NY, 10029
| | - Mirko Tarocchi
- Division of Liver Diseases and Department of Medicine, New York, NY, 10029
| | - Kunihara Akita
- Division of Liver Diseases and Department of Medicine, New York, NY, 10029
| | - Senji Shirasawa
- Research Institute, International Medical Center of Japan, Tokyo, Japan
| | - Takehiko Sasazuki
- Research Institute, International Medical Center of Japan, Tokyo, Japan
| | - John A Martignetti
- Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, New York, NY, 10029
| | - Josep M Llovet
- Division of Liver Diseases and Department of Medicine, New York, NY, 10029
- BCLC Group, Liver Unit, Hospital Clinic, Barcelona
| | - Scott L Friedman
- Division of Liver Diseases and Department of Medicine, New York, NY, 10029
| |
Collapse
|
20
|
Zvibel I, Bar-Zohar D, Kloog Y, Oren R, Reif S. The effect of Ras inhibition on the proliferation, apoptosis and matrix metalloproteases activity in rat hepatic stellate cells. Dig Dis Sci 2008; 53:1048-53. [PMID: 17934818 DOI: 10.1007/s10620-007-9984-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2007] [Accepted: 08/15/2007] [Indexed: 12/13/2022]
Abstract
In vivo inhibition of Ras by its antagonist farnesylthiosalicylic acid (FTS) prevents and reverses liver fibrosis in a rat model. In this study we showed the in vitro effects of Ras inhibition in a rat hepatic stellate cell line, HSC-T6. The IC(50) of FTS that inhibited PDGF-induced proliferation was 15 microM. FTS, by itself or in combination with PDGF, induced a three- to fivefold increase in the number of apoptotic stellate cells but did not induce apoptosis in cells cultured with TGFbeta1. We observed increased activity of MMP-9 and MMP-2 induced by FTS in combination with PDGF or TGFbeta. FTS, alone or in the presence of PDGF and TGFbeta, reduced collagen I mRNA expression. In conclusion, the in vivo amelioration of liver fibrosis by FTS may be explained by its ability to inhibit hepatic stellate cell proliferation, induce apoptosis and MMP-2 and MMP-9 activity, and decrease collagen I expression.
Collapse
Affiliation(s)
- Isabel Zvibel
- Gastroenterology Institute, Tel Aviv Sourasky Medical Center, Weizmann 6, Tel Aviv, Israel.
| | | | | | | | | |
Collapse
|
21
|
Rotblat B, Ehrlich M, Haklai R, Kloog Y. The Ras inhibitor farnesylthiosalicylic acid (Salirasib) disrupts the spatiotemporal localization of active Ras: a potential treatment for cancer. Methods Enzymol 2008; 439:467-89. [PMID: 18374183 DOI: 10.1016/s0076-6879(07)00432-6] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Chronic activation of Ras proteins by mutational activation or by growth factor stimulation is a common occurrence in many human cancers and was shown to induce and be required for tumor growth. Even if additional genetic defects are present, "correction" of the Ras defect has been shown to reverse Ras-dependent tumorigenesis. One way to block Ras protein activity is by interfering with their spatiotemporal localization in cellular membranes or in membrane microdomains, a prerequisite for Ras signaling and biological activity. Detailed reports describe the use of this method in studies employing farnesylthiosalicylic acid (FTS, Salirasib), a Ras farnesylcysteine mimetic, which selectively disrupts the association of chronically active Ras proteins with the plasma membrane. FTS competes with Ras for binding to Ras-escort proteins, which possess putative farnesyl-binding domains and interact only with the activated form of Ras proteins, thereby promoting Ras nanoclusterization in the plasma membrane and robust signals. This chapter presents three-dimensional time-lapse images that track the FTS-induced inhibition of membrane-activated Ras in live cells on a real-time scale. It also describes a mechanistic model that explains FTS selectivity toward activated Ras. Selective blocking of activated Ras proteins results in the inhibition of Ras transformation in vitro and in animal models, with no accompanying toxicity. Phase I clinical trials have demonstrated a safe profile for oral FTS, with minimal side effects and promising activity in hematological malignancies. Salirasib is currently undergoing trials in patients with pancreatic cancer and with nonsmall cell lung cancer, with or without identified K-Ras mutations. The findings might indicate whether with the disruption of the spatiotemporal localization of oncogenic Ras proteins and the targeting of prenyl-binding domains by anticancer drugs is worth developing as a means of cancer treatment.
Collapse
Affiliation(s)
- Barak Rotblat
- Department of Neurobiochemistry, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | | | | | | |
Collapse
|
22
|
da Silva Morais A, Saliez A, Leclercq I, Horsmans Y, Stärkel P. Inhibition of the Ras oncoprotein reduces proliferation of hepatocytes in vitro and in vivo in rats. Clin Sci (Lond) 2007; 114:73-83. [PMID: 17678500 DOI: 10.1042/cs20070152] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Ras oncoproteins are probably implicated in normal and malignant cell growth in various organs. Inhibition of Ras interferes with cell proliferation of non-hepatic cells in vitro and in vivo. A potential role for Ras in normal and malignant hepatocyte proliferation prompted us to evaluate the impact of Ras inhibition by FTS (S-farnesylthiosalicylic acid) on hepatocyte proliferation in vitro in the human hepatic tumour cell line HepG2 and in vivo after PH (partial hepatectomy) in rats. Rats were administered with FTS intraperitoneally (1, 8 and 16 h after PH) and killed 12, 24 and 48 h after PH. Cell proliferation, phosphorlyation of members of the MAPK (mitogen-activated protein kinase) pathway and levels and activity of cell cycle effectors (cyclin D, cyclin E, Cdk2 and Cdk4) were assessed in FTS-treated rats compared with controls. FTS significantly decreased overall cell count, PCNA (proliferating-cell nuclear antigen) expression and BrdU (bromodeoxyuridine) incorporation into HepG2 cells after 7 days of culture. FTS treatment significantly reduced BrdU incorporation and PCNA expression in hepatocytes after PH. Unlike control rats, cell-membrane expression of Ras was decreased in FTS-treated animals after PH, resulting in decreased Raf membrane recruitment and phosphorylation and in reduced phosphorylation of ERK1/2 (extracellular-signal-regulated kinase 1/2). The antiproliferative effect of FTS was linked to a decrease in expression and activity of the cyclin E/Cdk2 complex, without affecting cyclin D and Cdk4. Ras inhibition by FTS significantly decreased proliferation of HepG2 cells and normal hepatocytes after a strong and highly synchronized proliferation stimulus elicited by PH. The inhibitory effect was at least partially mediated by inhibition of Ras/Raf/MAPK signalling. It appears worthwhile to evaluate the impact of Ras inhibition on the development of hepatocarcinomas in vivo in adequate animal models.
Collapse
Affiliation(s)
- Alain da Silva Morais
- Department of Gastroenterology, Catholic University of Louvain, St Luc University Hospital, 1200 Brussels, Belgium
| | | | | | | | | |
Collapse
|
23
|
Iimuro Y, Brenner DA. Matrix metalloproteinase gene delivery for liver fibrosis. Pharm Res 2007; 25:249-58. [PMID: 17577645 PMCID: PMC2245995 DOI: 10.1007/s11095-007-9311-7] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2007] [Accepted: 04/09/2007] [Indexed: 01/18/2023]
Abstract
The resolution of advanced liver fibrosis has been recently recognized to be possible, if the causative stimuli are successfully removed. However, whether complete resolution from cirrhosis, the end stage of liver fibrosis, can be achieved is still questionable. Delivery of interstitial collagenases, such as matrix metalloproteinase (MMP)-1, in the liver could be an attractive strategy to treat advanced hepatic fibrosis from the view point that the imbalance between too few interstitial collagenases and too many of their inhibitors is the main obstacle to the resolution from fibrosis. Remodeling of hepatic extracellular matrix by delivered interstitial collagenases also facilitates the disappearance of activated hepatic stellate cells, the main matrix-producing cells in the liver, and promotes the proliferation of hepatocytes. This review will focus on the impact of the gene delivery of MMPs for the treatment of advanced liver fibrosis while discussing other current therapeutic strategies for liver fibrosis, and on the need for the development of a safe and effective delivery system of MMPs.
Collapse
Affiliation(s)
- Yuji Iimuro
- First Department of Surgery, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501, Japan.
| | | |
Collapse
|
24
|
Abstract
Liver fibrosis results from chronic liver injury due to hepatitis B and C, excessive alcohol ingestion, and metal ion overload. Fibrosis culminates in cirrhosis and results in liver failure. Therefore, a potent antifibrotic therapy is urgently needed to reverse scarring and eliminate progression to cirrhosis. Although activated hepatic stellate cells (HSCs) remain the principle cell type responsible for liver fibrosis, perivascular fibroblasts of portal and central veins as well as periductular fibroblasts are other sources of fibrogenic cells. This review will critically discuss various treatment strategies for liver fibrosis, including prevention of liver injury, reduction of inflammation, inhibition of HSC activation, degradation of scar matrix, and inhibition of aberrant collagen synthesis. Oligonucleotides (ODNs) are short, single-stranded nucleic acids, which disrupt expression of target protein by binding to complementary mRNA or forming triplex with genomic DNA. Triplex forming oligonucleotides (TFOs) provide an attractive strategy for treating liver fibrosis. A series of TFOs have been developed for inhibiting the transcription of alpha1(I) collagen gene, which opens a new area for antifibrotic drugs. There will be in-depth discussion on the use of TFOs and how different bioconjugation strategies can be utilized for their site-specific delivery to HSCs or hepatocytes for enhanced antifibrotic activities. Various insights developed in individual strategy and the need for multipronged approaches will also be discussed.
Collapse
Affiliation(s)
- Zhaoyang Ye
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38163
| | - Houssam S. Hajj Houssein
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38163
| | - Ram I. Mahato
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38163
| |
Collapse
|
25
|
Abstract
The reversal of liver fibrosis is not a new phenomenon. Treatment of the primary disease remains the most effective strategy, but new approaches to promote resolution of fibrosis are being built on the foundations that were provided by research into the basic mechanisms of fibrogenesis. A return to normal hepatic architecture from advanced fibrosis is achievable in some cases, and cirrhosis itself may be partly remediable.
Collapse
Affiliation(s)
- Jonathan A Fallowfield
- Liver Research Group, Division of Infection, Inflammation and Repair, Mailpoint 811, D Level, South Block, Southampton General Hospital, Southampton, SO16 6YD, UK.
| | | | | |
Collapse
|
26
|
Abstract
Liver fibrosis occurs as a result of a wide range of injurious processes and in its end-stage results in cirrhosis. This gross disruption of liver architecture is associated with impaired hepatic function, portal hypertension and significant resultant morbidity and mortality. Indeed, liver fibrosis and cirrhosis represent a major worldwide healthcare burden. Recent progress in liver transplantation, the management of portal hypertension and the treatment of chronic viral hepatitis have had an important impact. However, these approaches are not without their limitations - in particular, issues regarding organ availability for transplantation - and serve to highlight the urgent requirement to influence pharmacologically the underlying fibrotic process in many patients. Liver fibrosis has been shown to be a bidirectional process and increasing data from laboratory and clinical studies reveal that even advanced fibrosis and cirrhosis are potentially reversible. Exploration of the molecular mechanisms underlying this bi-directionality will lead to char acterisation of the essential attributes of an antifibrotic therapy. In this review, these mechanisms are highlighted and the growing number of emerging antifibrotic agents discussed.
Collapse
Affiliation(s)
- Andrew J Fowell
- Liver Research Group, Division of Infection, Inflammation and Repair, University of Southampton, Southampton General Hospital, Southampton, UK.
| | | |
Collapse
|
27
|
Tsukada S, Parsons CJ, Rippe RA. Mechanisms of liver fibrosis. Clin Chim Acta 2005; 364:33-60. [PMID: 16139830 DOI: 10.1016/j.cca.2005.06.014] [Citation(s) in RCA: 286] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2005] [Revised: 06/07/2005] [Accepted: 06/08/2005] [Indexed: 01/18/2023]
Abstract
Liver fibrosis represents a significant health problem worldwide of which no acceptable therapy exists. The most characteristic feature of liver fibrosis is excess deposition of type I collagen. A great deal of research has been performed to understand the molecular mechanisms responsible for the development of liver fibrosis. The activated hepatic stellate cell (HSC) is the primary cell type responsible for the excess production of collagen. Following a fibrogenic stimulus, HSCs change from a quiescent to an activated, collagen-producing cell. Numerous changes in gene expression are associated with HSC activation including the induction of several intracellular signaling cascades, which help maintain the activated phenotype and control the fibrogenic and proliferative state of the cell. Detailed analyses in understanding the molecular basis of collagen gene regulation have revealed a complex process offering the opportunity for multiple potential therapeutic strategies. However, further research is still needed to gain a better understanding of HSC activation and how this cell maintains its fibrogenic nature. In this review we describe many of the molecular events that occur following HSC activation and collagen gene regulation that contribute to the fibrogenic nature of these cells and provide a review of therapeutic strategies to treat this disease.
Collapse
Affiliation(s)
- Shigeki Tsukada
- Division of Gastroenterology and Hepatology, Department of Medicine, University of North Carolina at Chapel Hill, NC 27599-7032, USA
| | | | | |
Collapse
|
28
|
Abstract
The causes of hepatic scarring (fibrosis) are protean but, unchecked, all result in a common fate--the development of cirrhosis--with gross disruption of the normal liver architecture. Subsequent liver cell dysfunction and portal hypertension give rise to major systemic complications and premature death. Cirrhosis and its sequelae represent a huge, and global, healthcare burden. The success of liver transplantation and the development of efficacious antiviral regimens for hepatitis B and C should not be underestimated, but they also serve to highlight our current inability to manipulate the underlying fibrotic process in many patients with liver disease. Moreover, transplantation as a treatment is limited by organ availability, among other factors. The development of antifibrotic therapies is urgently needed and for this we require a mechanistic and evidence-based approach. Accumulating data from clinical and laboratory studies demonstrate that even advanced fibrosis and cirrhosis are potentially reversible. The hepatic stellate cells have been identified as the pivotal effector cells orchestrating the fibrotic process and, furthermore, reversibility appears to hinge upon their elimination. This review draws on recent scientific advances, and highlights emerging therapeutic interventions in liver fibrosis.
Collapse
Affiliation(s)
- Jonathan A Fallowfield
- Liver Research Group, Division of Infection, Inflammation and Repair, Southampton General Hospital, Mailpoint 811, D Level, Southampton, SO16 6YD, UK.
| | | |
Collapse
|
29
|
Khwaja A, Sharpe CC, Noor M, Kloog Y, Hendry BM. The inhibition of human mesangial cell proliferation by S-trans, trans-farnesylthiosalicylic acid. Kidney Int 2005; 68:474-86. [PMID: 16014024 DOI: 10.1111/j.1523-1755.2005.00425.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Many of the proliferative cytokines implicated in human mesangial cell (HMC) proliferation signal through the superfamily of Ras GTPases. The Ras antagonist, S-trans, trans- farnesylthiosalicylic acid (FTS), was used to investigate the effects of the inhibition of Ras signaling on HMC proliferation. METHODS Ras expression and membrane localization, MAPK, and Akt activation were analyzed by Western blotting. Ras activation was determined with a pull-down assay using the Ras-binding domain of Raf. HMC growth curves were assessed using the MTS assay of viable cell number, while DNA synthesis was measured with BrdU incorporation. Hoechst 33342 staining was used to determine apoptosis. RESULTS FTS reduced the membrane localization of Ras in both serum and platelet-derived growth factor (PDGF). FTS (7.5-20 micromol/L) potently inhibited PDGF-induced HMC proliferation but had no effect on serum-induced proliferation. FTS (10-20 micromol/L) inhibited both Ras and phospho-MAPK activation by serum and PDGF. Furthermore, FTS (10-20 micromol/L) increased HMC apoptosis in the presence of PDGF but not in serum. Moreover, PDGF-stimulated activation of the survival protein Akt was inhibited by FTS. In contrast, serum-stimulated activation of Akt was unaffected by FTS. CONCLUSION FTS (5-20 micromol/L) inhibits PDGF-induced but not serum-induced HMC proliferation. FTS (10-20 micromol/L) also promotes HMC apoptosis in the presence of PDGF but not serum. These effects appear to be mediated by inhibitory effects on Ras-dependent signaling that occur as a result of the dislodgment of Ras from its membrane-anchorage sites by FTS. The selectivity of FTS toward PDGF-driven HMC proliferation suggests that FTS may be a valuable therapeutic in mesangioproliferative renal disease.
Collapse
Affiliation(s)
- Arif Khwaja
- Department of Renal Medicine, GKT School of Medicine, King's College London, London, United Kingdom
| | | | | | | | | |
Collapse
|
30
|
Phanish MK, Wahab NA, Hendry BM, Dockrell MEC. TGF-β1-Induced Connective Tissue Growth Factor (CCN2) Expression in Human Renal Proximal Tubule Epithelial Cells Requires Ras/MEK/ERK and Smad Signalling. ACTA ACUST UNITED AC 2005; 100:e156-65. [PMID: 15855807 DOI: 10.1159/000085445] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2004] [Accepted: 02/02/2005] [Indexed: 01/27/2023]
Abstract
BACKGROUND Connective tissue growth factor (CTGF, CCN2) plays a fundamental role in the development of tissue fibrosis by stimulating matrix deposition and mediating many of the pro-fibrotic effects of transforming growth factor (TGF)-beta. CCN2 induction by TGF-beta in renal proximal tubule epithelial cells (PTECs) is likely to play an important role in the development of tubulointerstitial fibrosis. In this study, we investigated the induction of CCN2 by TGF-beta1 and the possible mechanisms of this induction in human PTECs. METHODS Experiments were performed on primary and transformed (human kidney cell (HKC)-clone 8) human PTECs. Induction of CCN2 in response to TGF-beta1 was studied at the gene promoter level by reporter gene assay, mRNA by semi-quantitative RT-PCR and protein by immunoblotting. While chemical inhibitors were used to assess the role of Ras/MEK/ERK1,2 signalling, an HKC cell line over-expressing Smad7 was used to assess the role of Smad signalling in induction of CCN2 by TGF-beta1. RESULTS TGF-beta1 induced CCN2 promoter activity, mRNA and protein in human PTECs. TGF-beta1-dependent CCN2 promoter activity was reduced by inhibiting Ras and MEK activation. MEK inhibition also resulted in inhibition of the TGF-beta1-induced secreted CCN2 protein. There was no significant increase in CCN2 gene promoter activity or protein by TGF-beta1 in Smad7 over-expressing HKCs. CONCLUSIONS TGF-beta1 induces the expression of CCN2 in human PTECs. This induction is dependent on Ras/MEK/ERK and Smad signalling. Inhibiting TGF-beta induced CCN2 by targeting Smad and/or Ras/MEK/ERK1,2 signalling pathways could be of therapeutic value in renal fibrosis.
Collapse
Affiliation(s)
- Mysore K Phanish
- South West Thames Institute for Renal Research, St. Helier Hospital, Carshalton, Surrey, UK.
| | | | | | | |
Collapse
|
31
|
Reif S, Aeed H, Shilo Y, Reich R, Kloog Y, Kweon YO, Bruck R. Treatment of thioacetamide-induced liver cirrhosis by the Ras antagonist, farnesylthiosalicylic acid. J Hepatol 2004; 41:235-41. [PMID: 15288472 DOI: 10.1016/j.jhep.2004.04.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2003] [Revised: 03/29/2004] [Accepted: 04/02/2004] [Indexed: 01/06/2023]
Abstract
BACKGROUND/AIMS Several studies have indicated increased expression of the Ras protooncogenes in liver cirrhosis. In a previous study in rats, we have shown that a synthetic Ras antagonist, S-farnesylthiosalicylic acid (FTS), could inhibit the development of liver cirrhosis. The aim of the current study was to examine whether FTS will accelerate the resolution of liver cirrhosis induced in rats by thioacetamide. METHODS Cirrhosis was induced in male Wistar rats by intraperitoneal (i.p.) administration of thioacetamide (200 mg/kg twice weekly for 12 weeks). In the treated group, the Ras antagonist FTS (5 mg/kg, i.p./3 times/week) was administered for 8 weeks after liver cirrhosis has already been established. Control cirrhotic rats received PBS injections for 8 weeks. RESULTS Rats treated with FTS for 8 weeks had lower histopathologic score of fibrosis (P = 0.01), lower hepatic hydroxyproline levels (P = 0.0002) and lower spleen weight (P = 0.02) than the cirrhotic rats treated with PBS. Following FTS treatment, the MMP-2 and MMP-9-induced collagenolytic activity and TIMP-2 expression, were increased in FTS-compared to PBS-treated rats. TUNEL assay of liver sections performed 8 weeks after thioacetamide withdrawal showed increased apoptotic figures in both groups (P = NS). CONCLUSIONS These results indicate that the Ras antagonist FTS accelerates the regression of experimentally-induced hepatic cirrhosis. The mechanism may involve increased collagenolytic activity.
Collapse
Affiliation(s)
- Shimon Reif
- Department of Pediatric Gastroenterology, Tel-Aviv, Souraski Medical Center, Tel-Aviv, Israel
| | | | | | | | | | | | | |
Collapse
|
32
|
George J, Sack J, Barshack I, Keren P, Goldberg I, Haklai R, Elad-Sfadia G, Kloog Y, Keren G. Inhibition of Intimal Thickening in the Rat Carotid Artery Injury Model by a Nontoxic Ras Inhibitor. Arterioscler Thromb Vasc Biol 2004; 24:363-8. [PMID: 14670932 DOI: 10.1161/01.atv.0000112021.98971.f0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Neointimal formation with and without previous vascular injury is common after balloon dilation and in transplant arteriosclerosis. It involves proliferation and migration of medial smooth muscle cells and inflammation, processes that are regulated by Ras proteins and their down-stream effectors. Farnesylthiosalicylate (FTS) is a Ras inhibitor that interferes with Ras membrane anchorage and affects Ras proteins in their active state. In the present study, we tested the hypothesis that systemic administration of FTS will suppress intimal thickening in the rat carotid injury model. METHODS AND RESULTS The effects of FTS on rat vascular smooth muscle cells (VSMC) and splenocytes proliferation were evaluated in vitro. The in vivo effects of FTS on the neointima of balloon-injured male Wistar rats, treated daily for 2 weeks with FTS (5 mg/kg weight, intraperitoneally) were evaluated by determination of Ras, Ras-GTP, and active ERK levels (3 days after injury), and by quantitative determination of the extent of intimal thickening and immunohistochemistry for Ras, iNOS, NFkB, and Ki-67 (2 weeks after injury). FTS inhibited VSMC and splenocyte proliferation as well as interferon-gamma secretion by splenocytes in a dose-dependent manner. Compared with controls, FTS treatment resulted in a strong decrease in Ras-GTP and active ERK, and it significantly reduced intimal thickening after the injury. Ras expression appeared predominantly at areas of neointima regardless of the treatment group. NFkB and iNOS-positive cell numbers were reduced in sections of FTS treated rats. CONCLUSIONS FTS appears to act as a potent inhibitor of intimal thickening in a model of experimental arterial injury.
Collapse
MESH Headings
- Animals
- Carotid Artery Injuries/metabolism
- Carotid Artery Injuries/pathology
- Carotid Artery, Common/drug effects
- Carotid Artery, Common/pathology
- Cell Division/drug effects
- Cell Division/physiology
- Cells, Cultured
- Disease Models, Animal
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/pathology
- Enzyme Activation/drug effects
- Farnesol/analogs & derivatives
- Farnesol/pharmacology
- GTP-Binding Proteins/metabolism
- Immunohistochemistry
- Interferon-gamma/metabolism
- Male
- Mitogen-Activated Protein Kinases/antagonists & inhibitors
- Mitogen-Activated Protein Kinases/metabolism
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Rats
- Rats, Wistar
- Salicylates/pharmacology
- Spleen/cytology
- Tunica Intima/drug effects
- Tunica Intima/growth & development
- Tunica Intima/pathology
- ras Proteins/antagonists & inhibitors
- ras Proteins/metabolism
Collapse
Affiliation(s)
- Jacob George
- Department of Cardiology and the Cardiovascular Research Laboratory,Tel Aviv Sourasky Medical Center, Tel Aviv University, Sackler School of Medicine, Israel.
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Mitsuhashi M, Morimura K, Wanibuchi H, Hayashi S, Kiyota A, Wada S, Nakatani T, Fukushima S. Di-n-butyl Phthalate is Toxic to the Male Reproductive System and Its Toxicity is Enhanced by Thioacetamide Induced Liver Injury. J Toxicol Pathol 2004. [DOI: 10.1293/tox.17.177] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Makoto Mitsuhashi
- Department of Pathology, Osaka City University Medical School
- Department of Urology, Osaka City University Medical School
| | | | | | - Shuji Hayashi
- Department of Pathology, Osaka City University Medical School
| | | | - Seiji Wada
- Department of Urology, Osaka City University Medical School
| | | | - Shoji Fukushima
- Department of Pathology, Osaka City University Medical School
| |
Collapse
|
34
|
Mitsuhashi M, Morimura K, Wanibuchi H, Kiyota A, Wada S, Nakatani T, Fukushima S. Examination of the Rat Model of Liver Injury via Thioacetamide (TAA) or Carbon Tetrachloride (CCl4). J Toxicol Pathol 2004. [DOI: 10.1293/tox.17.219] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Makoto Mitsuhashi
- Department of Pathology, Osaka City University Medical School, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585, Japan
| | - Keiichirou Morimura
- Department of Pathology, Osaka City University Medical School, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585, Japan
| | - Hideki Wanibuchi
- Department of Pathology, Osaka City University Medical School, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585, Japan
| | - Atsuhiko Kiyota
- Department of Urology, Osaka City University Medical School, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585, Japan
| | - Seiji Wada
- Department of Urology, Osaka City University Medical School, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585, Japan
| | - Tatsuya Nakatani
- Department of Urology, Osaka City University Medical School, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585, Japan
| | - Shoji Fukushima
- Department of Pathology, Osaka City University Medical School, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585, Japan
| |
Collapse
|
35
|
Clarke HC, Kocher HM, Khwaja A, Kloog Y, Cook HT, Hendry BM. Ras antagonist farnesylthiosalicylic acid (FTS) reduces glomerular cellular proliferation and macrophage number in rat thy-1 nephritis. J Am Soc Nephrol 2003; 14:848-54. [PMID: 12660318 DOI: 10.1097/01.asn.0000057543.55318.8b] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Targeting the Ras family of monomeric GTPases has been suggested as a therapeutic strategy in proliferative renal diseases. This article reports the effects of Ras antagonist farnesylthiosalicylic acid (FTS) in rat thy-1 nephritis, a model in which cytokine-driven glomerular cell proliferation and invasion is likely to involve Ras signaling pathways. FTS in vitro specifically inhibits the binding of Ras to discrete membrane sites, thereby downregulating several Ras-dependent signaling functions and accelerating Ras degradation. Forty-four Lewis rats were given nephritis by day zero injection of a monoclonal thy-1 antibody ER4 (2.5mg/kg body wt). Twenty-two rats were then treated with daily intraperitoneal injection of FTS (5 mg/kg body wt) until sacrifice, and the remaining control rats were given vehicle alone (C). Six rats from each group were sacrificed at day 1 to establish equal injury; other sacrifice points were day 7 and day 10. Bromo-deoxyuridine (BrdU) was injected 1 h before sacrifice, after which sections were used for immunohistochemistry, which included detection of Ras expression, BrdU+ cells and macrophages/monocytes (ED1+). Thy-1 nephritis was associated with an increase in glomerular expression of Ki-Ras and N-Ras isoforms, which was almost fully prevented by FTS. FTS treatment was associated with: (a) a 54% reduction in the mean number of BrdU+ cells per glomerulus (P < 0.01), (b) a 50% reduction in macrophages/monocytes (ED1+) per glomerulus (P < 0.01), and (c) a reduction in 24-h proteinuria at day 10 (P < 0.05). These results show that Ras inhibition can reduce both glomerular cell proliferation and glomerular macrophage cell number in the thy-1 model and justify further study of FTS as a potential therapeutic in proliferative nephritis.
Collapse
Affiliation(s)
- Helen C Clarke
- Renal Medicine, GKT School of Medicine, King's College, London, England
| | | | | | | | | | | |
Collapse
|
36
|
Abstract
Liver fibrosis represents a major worldwide healthcare burden. Current therapy is limited to removing the causal agent. This approach is successful in some diseases; particularly haemochromatosis and chronic viral hepatitis. However, for many patients treatment is not possible, while other patients present to medical attention at an advanced stage of fibrosis. There is therefore a great need for novel therapies for liver fibrosis. The hepatic stellate cell has been recognised to be responsible for most of the excess extracellular matrix observed in chronic liver fibrosis. The detailed understanding of hepatic stellate cell biology has allowed the rational design of novel antifibrotic therapies. This review describes for the general reader the novel emerging therapies for liver fibrosis.
Collapse
Affiliation(s)
- Frank Murphy
- Liver Research Group, Division of Infection, Inflammation & Repair, University of Southampton, Southampton General Hospital, Southampton, SO16 6YD, UK.
| | | | | |
Collapse
|
37
|
Nanni G, Majorani F, Bassi AM, Canepa C, Maloberti G, Casu A. Dolichol content in isolated sinusoidal liver cells after in vivo chronic treatment with thioacetamide. EXPERIMENTAL AND TOXICOLOGIC PATHOLOGY : OFFICIAL JOURNAL OF THE GESELLSCHAFT FUR TOXIKOLOGISCHE PATHOLOGIE 2002; 54:43-50. [PMID: 12180801 DOI: 10.1078/0940-2993-00237] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The content of dolichol, an isoprenoid present in all biological membranes, was determined in isolated sinusoidal liver cells after treatment of rats for 2 and 4 months with a low dosage of the hepatotoxin thioacetamide. The significant decrease in dolichol observed in hepatocytes after 2 months might be explained by peroxidation of the isoprenoid. At the same time point, retinol was retained, and decreased only after 4 months of treatment. After 4 months of treatment therefore both lipids decreased. In a subfraction of hepatic stellate cells, Ito-1 cells, the main storage site of vitamin A, dolichol decreased significantly only after 4 months. A remarkable difference from hepatocytes is that in Ito-1 cells retinol content significantly decreased after 2 months of treatment. In another subfraction, Ito-2 cells, the content of the two isoprenoids decreased in parallel. This heterogeneous subfraction might represent those transitional hepatic stellate cells that, while losing retinol, are in the process of differentiating into myofibroblasts secreting extracellular matrix components. In Kupffer cells and sinusoidal endothelial cells, impairment of dolichol might be observed later, only after 4 months of treatment, while retinol decreases uniformly over time. Starting after two months of treatment, the decrease of dolichol and the increase of retinol in hepatocytes, at the same time as retinol decreases in hepatic stellate cells, might be taken as an early index of incipient liver injury due to thioacetamide. This hypothesis is discussed with regard to a role of dolichol in the modulation of membrane fluidity for intracellular and intercellular retinol transport.
Collapse
Affiliation(s)
- Giorgio Nanni
- Department of Experimental Medicine, University of Genoa, Italy.
| | | | | | | | | | | |
Collapse
|
38
|
George J, Afek A, Keren P, Herz I, Goldberg I, Haklai R, Kloog Y, Keren G. Functional inhibition of Ras by S-trans,trans-farnesyl thiosalicylic acid attenuates atherosclerosis in apolipoprotein E knockout mice. Circulation 2002; 105:2416-22. [PMID: 12021230 DOI: 10.1161/01.cir.0000016065.90068.96] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Atherosclerosis is a multifactorial disorder involving inflammatory processes. These responses are associated with robust activation of signaling cascades by diverse cell surface receptors in a variety of cell types. The processes that are involved in atherosclerosis would likely require intact Ras pathways, which play a key role in the control of cell growth, differentiation, and apoptosis. METHODS AND RESULTS We examined whether the Ras inhibitor farnesyl thiosalicylic acid (FTS) can suppress atherogenesis in the apolipoprotein E-deficient mouse model. Mice were treated with FTS or a control regimen 3 times weekly for 6 weeks and fed a normal chow diet. Two additional groups included FTS-treated and control-treated mice that were fed a high-fat diet for 10 weeks. FTS reduced both fatty streaks and advanced lesions compared with the control treatment. Ras inhibition in vivo was evidenced by the reduced content of the active form of Ras (Ras-GTP) in aortas of FTS-treated mice. Splenocytes from the FTS-treated versus control mice exhibited reduced proliferation to oxidized LDL (OxLDL) but not to concanavalin A. IgG anti-OxLDL antibody levels were reduced in FTS-treated mice compared with controls. Whereas no effect of FTS was evident on plaque T lymphocyte and macrophage content, lesional vascular cell adhesion molecule-1 and nuclear factor-kappaB expression were considerably reduced compared with controls. CONCLUSIONS FTS suppressed atherosclerotic plaques in apolipoprotein E-deficient mice, providing a useful tool for research in atherosclerosis.
Collapse
Affiliation(s)
- Jacob George
- Department of Cardiology and the Cardiovascular Research Laboratory, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Katzav A, Kloog Y, Korczyn AD, Niv H, Karussis DM, Wang N, Rabinowitz R, Blank M, Shoenfeld Y, Chapman J. Treatment of MRL/lpr mice, a genetic autoimmune model, with the Ras inhibitor, farnesylthiosalicylate (FTS). Clin Exp Immunol 2001; 126:570-7. [PMID: 11737078 PMCID: PMC1906212 DOI: 10.1046/j.1365-2249.2001.01674.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Activation and proliferation of lymphocytes requires the active signal transducer Ras. Activation of lymphocytes, associated with autoimmunity, may therefore be modified by S-farnesylthiosalicylic acid (FTS), a synthetic substance that detaches Ras from the inner cell membrane and induces its rapid degradation. The MRL/lpr mouse is a genetic model of a generalized autoimmune disease sharing many features and organ pathology with systemic lupus erythematosus (SLE) and the primary antiphospholipid syndrome (APS). The objective of the present study was to examine the effect of FTS on laboratory and clinical pathology in the MRL/lpr mouse. Female MRL/lpr (n = 50) and MRL/++ control (n = 35) mice were treated intraperitoneally with either FTS (5 mg/kg/day) or saline between 6 and 18 weeks of age. The mice were weighed, tested for proteinuria and lymphadenopathy, lymphocyte proliferation, antibodies, grip strength and behaviour in an open field. FTS treatment resulted in a 50% decrease in splenocyte proliferation to ConA, LPS and a disease specific antigen, beta(2)-glycoprotein-I, and in a significant decrease in serum antibody levels against cardiolipin and dsDNA. Proteinuria and grip strength were normalized and lymphadenopathy and postmortem lymph node and spleen weights were significantly reduced in FTS treated MRL/lpr mice. These findings indicate that modulation of Ras activation has a significant impact on the MRL/lpr model and may represent a new therapeutic approach for the treatment of systemic autoimmune diseases such as SLE and APS.
Collapse
Affiliation(s)
- A Katzav
- Department of Physiology, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, Israel
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Karussis D, Abramsky O, Grigoriadis N, Chapman J, Mizrachi-Koll R, Niv H, Kloog Y. The Ras-pathway inhibitor, S-trans-trans-farnesylthiosalicylic acid, suppresses experimental allergic encephalomyelitis. J Neuroimmunol 2001; 120:1-9. [PMID: 11694313 DOI: 10.1016/s0165-5728(01)00385-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
AIM To evaluate the effects of the synthetic Ras-pathway inhibitor, S-trans-trans-farnesylthiosalicylic acid (FTS) on acute and chronic experimental autoimmune encephalomyelitis (EAE and CR-EAE). BACKGROUND Treatment of EAE and MS is based on immunosuppression aiming at downregulation of the proliferating myelin-reactive lymphocytes. One of the pathways of lymphocyte activation involves the GTP-binding protein Ras. FTS destabilizes the attachment of Ras to the cell membrane, resulting in an inhibition of the Ras-mediated signal transduction pathways. MATERIALS AND METHODS EAE was induced in SJL/J mice by immunization with spinal cord homogenate (MSCH) in adjuvant and two i.v. boosts of pertussis antigen and CR-EAE with passive transfer of proteolipid protein (PLP)-activated lymphocytes. Animals were treated daily starting either from the day of EAE-induction (or cell transfer) or at a later stage, with i.p. injections of FTS (5 mg/kg/day). The clinical severity of the disease was evaluated daily and scored using a 0-6 scale. RESULTS In six separate experiments, 27 of the 38 (71.7%) vehicle-treated animals developed clinical signs of EAE compared to 17/38 (44.7%) of the FTS-treated mice (p=0.02, t-test). The maximal average score in the control group was 2.94+/-2.2, whereas in the FTS group it was significantly lower (1.63+/-2.2, p=0.01). Mortality was 26.3% and 10.5% in the two groups, respectively (p=0.03). When treatment was initiated at a later stage, just before the onset of the clinical signs, the protective effect was even more pronounced. A significant suppression of clinical signs was also observed in the CR-EAE model (p=0.02). Lymphocyte proliferation assays demonstrated a more than twofold decrease in the reactivity to myelin antigens (MBP and PLP) and downregulation of the activated lymphocytes (expressing the CD62L, and IA-k-MHC Class I markers and the Vb17 T-cell receptor) in the FTS-treated group; in vitro FTS suppressed the Ras activity of lymphocytes and inhibited the proliferative ability of the lymphocytes in a dose-dependent manner. CONCLUSIONS FTS suppresses EAE by downregulation of myelin-reactive activated T-lymphocytes. Since FTS did not induce generalized immunosuppressive effects, it may offer significant advantages over the broad immunosuppressive modalities and may be a candidate treatment for autoimmune diseases, such as MS.
Collapse
MESH Headings
- Animals
- Antigens, Surface/drug effects
- Antigens, Surface/immunology
- Antigens, Surface/metabolism
- Cell Division/drug effects
- Cell Division/physiology
- Cells, Cultured/drug effects
- Cells, Cultured/immunology
- Cells, Cultured/metabolism
- Dose-Response Relationship, Drug
- Down-Regulation/drug effects
- Down-Regulation/physiology
- Drug Administration Schedule
- Encephalomyelitis, Autoimmune, Experimental/drug therapy
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/physiopathology
- Enzyme Inhibitors/pharmacology
- Farnesol/analogs & derivatives
- Farnesol/pharmacology
- Female
- Lymphocyte Activation/drug effects
- Lymphocyte Activation/physiology
- Lymphocytes/drug effects
- Lymphocytes/immunology
- Lymphocytes/metabolism
- Mice
- Myelin Proteins/immunology
- Myelin Proteins/metabolism
- Myelin Sheath/immunology
- Myelin Sheath/metabolism
- Myelin Sheath/pathology
- Paralysis/drug therapy
- Paralysis/etiology
- Paralysis/immunology
- Salicylates/pharmacology
- Survival Rate
- Treatment Outcome
- ras Proteins/drug effects
- ras Proteins/metabolism
Collapse
Affiliation(s)
- D Karussis
- Department of Neurology and Laboratory of Neuroimmunology, Agnes-Ginges Center for Human Neurogenetics, Hadassah Medical Center, Hebrew University, IL-91120, Jerusalem, Israel.
| | | | | | | | | | | | | |
Collapse
|