1
|
Quintana-Escobar AO, Bojórquez-Velázquez E, Ruiz-May E, Loyola-Vargas VM. Proteomic Approach during the Induction of Somatic Embryogenesis in Coffea canephora. PLANTS (BASEL, SWITZERLAND) 2023; 12:4095. [PMID: 38140424 PMCID: PMC10748034 DOI: 10.3390/plants12244095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/21/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023]
Abstract
Plant growth regulators (PGR) are essential for somatic embryogenesis (SE) in different species, and Coffea canephora is no exception. In our study model, previously, we have been able to elucidate the participation of various genes involved in SE by using different strategies; however, until now, we have not used a proteomic approach. This research seeks to contribute to understanding the primary cellular pathways involved in developing SE in C. canephora. The process of our model consists of two stages: (1) preconditioning in MS medium with auxin (NAA) and cytokinin (KIN), and (2) induction in Yasuda liquid medium added with cytokinin (BA). Therefore, in this study, we analyzed different days of the SE induction process using shotgun label-free proteomics. An amount of 1630 proteins was found among different sampling days of the process, of which the majority were accumulated during the induction stage. We found that some of the most enriched pathways during this process were the biosynthesis of amino acids and secondary metabolites. Eighteen proteins were found related to auxin homeostasis and two to cytokinin metabolism, such as ABC, BIG, ILR, LOG, and ARR. Ten proteins and transcription factors related to SE were also identified, like SERK1, SKP1, nuclear transcription factor Y, MADS-box, and calreticulin, and 19 related to other processes of plant development, among which the 14-3-3 and PP2A proteins stand out. This is the first report on the proteomic approach to elucidate the mechanisms that operate during the induction of SE in C. canephora. So, our findings provide the groundwork for future, more in-depth research. Data are available via ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PXD047172.
Collapse
Affiliation(s)
- Ana Odetth Quintana-Escobar
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Calle 43, No. 130 x 32 y 34, Mérida CP 97205, Yucatán, Mexico;
| | - Esaú Bojórquez-Velázquez
- Red de Estudios Moleculares Avanzados, Clúster Científico y Tecnológico BioMimic®, Instituto de Ecología A.C. (INECOL), Carretera Antigua a Coatepec No. 351, Congregación el Haya, Xalapa CP 91070, Veracruz, Mexico; (E.B.-V.); (E.R.-M.)
| | - Eliel Ruiz-May
- Red de Estudios Moleculares Avanzados, Clúster Científico y Tecnológico BioMimic®, Instituto de Ecología A.C. (INECOL), Carretera Antigua a Coatepec No. 351, Congregación el Haya, Xalapa CP 91070, Veracruz, Mexico; (E.B.-V.); (E.R.-M.)
| | - Víctor Manuel Loyola-Vargas
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Calle 43, No. 130 x 32 y 34, Mérida CP 97205, Yucatán, Mexico;
| |
Collapse
|
2
|
Olivares-García CA, Mata-Rosas M, Peña-Montes C, Quiroz-Figueroa F, Segura-Cabrera A, Shannon LM, Loyola-Vargas VM, Monribot-Villanueva JL, Elizalde-Contreras JM, Ibarra-Laclette E, Ramirez-Vázquez M, Guerrero-Analco JA, Ruiz-May E. Phenylpropanoids Are Connected to Cell Wall Fortification and Stress Tolerance in Avocado Somatic Embryogenesis. Int J Mol Sci 2020; 21:ijms21165679. [PMID: 32784357 PMCID: PMC7460882 DOI: 10.3390/ijms21165679] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 08/02/2020] [Accepted: 08/03/2020] [Indexed: 12/13/2022] Open
Abstract
Somatic embryogenesis (SE) is a valuable model for understanding the mechanism of plant embryogenesis and a tool for the mass production of plants. However, establishing SE in avocado has been complicated due to the very low efficiency of embryo induction and plant regeneration. To understand the molecular foundation of the SE induction and development in avocado, we compared embryogenic (EC) and non-embryogenic (NEC) cultures of two avocado varieties using proteomic and metabolomic approaches. Although Criollo and Hass EC exhibited similarities in the proteome and metabolome profile, in general, we observed a more active phenylpropanoid pathway in EC than NEC. This pathway is associated with the tolerance of stress responses, probably through the reinforcement of the cell wall and flavonoid production. We could corroborate that particular polyphenolics compounds, including p-coumaric acid and t-ferulic acid, stimulated the production of somatic embryos in avocado. Exogen phenolic compounds were associated with the modification of the content of endogenous polyphenolic and the induction of the production of the putative auxin-a, adenosine, cellulose and 1,26-hexacosanediol-diferulate. We suggest that in EC of avocado, there is an enhanced phenylpropanoid metabolism for the production of the building blocks of lignin and flavonoid compounds having a role in cell wall reinforcement for tolerating stress response. Data are available at ProteomeXchange with the identifier PXD019705.
Collapse
Affiliation(s)
- Carol A. Olivares-García
- Red de Manejo Biotecnológico de Recursos, Instituto de Ecología A. C., Cluster BioMimic, Carretera Antigua a Coatepec 351, Congregación el Haya, Xalapa, Veracruz CP 91073, Mexico; (C.A.O.-G.); (M.M.-R.)
- Tecnológico Nacional de México, Instituto Tecnológico de Veracruz, Unidad de Investigación y Desarrollo en Alimentos, Veracruz CP 91897, Mexico
| | - Martín Mata-Rosas
- Red de Manejo Biotecnológico de Recursos, Instituto de Ecología A. C., Cluster BioMimic, Carretera Antigua a Coatepec 351, Congregación el Haya, Xalapa, Veracruz CP 91073, Mexico; (C.A.O.-G.); (M.M.-R.)
| | - Carolina Peña-Montes
- Tecnológico Nacional de México, Instituto Tecnológico de Veracruz, Unidad de Investigación y Desarrollo en Alimentos, Veracruz CP 91897, Mexico
- Correspondence: (C.P.-M.); (E.R.-M.)
| | - Francisco Quiroz-Figueroa
- Instituto Politécnico Nacional, Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional-Unidad Sinaloa, Boulevard Juan de Dios Bátiz Paredes # 250, Col. San Joachin, Guasave, Sinaloa 81101, Mexico;
| | - Aldo Segura-Cabrera
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK;
| | - Laura M. Shannon
- Department of Horticultural Science, University of Minnesota, Saint Paul, MN 55108, USA;
| | - Victor M. Loyola-Vargas
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Mérida, Yucatán CP 97205, Mexico;
| | - Juan L. Monribot-Villanueva
- Red de Estudios Moleculares Avanzados, Instituto de Ecología A. C., Cluster BioMimic, Carretera Antigua a Coatepec 351, Congregación el Haya, Xalapa, Veracruz CP 91073, Mexico; (J.L.M.-V.); (J.M.E.-C.); (E.I.-L.); (M.R.-V.); (J.A.G.-A.)
| | - Jose M. Elizalde-Contreras
- Red de Estudios Moleculares Avanzados, Instituto de Ecología A. C., Cluster BioMimic, Carretera Antigua a Coatepec 351, Congregación el Haya, Xalapa, Veracruz CP 91073, Mexico; (J.L.M.-V.); (J.M.E.-C.); (E.I.-L.); (M.R.-V.); (J.A.G.-A.)
| | - Enrique Ibarra-Laclette
- Red de Estudios Moleculares Avanzados, Instituto de Ecología A. C., Cluster BioMimic, Carretera Antigua a Coatepec 351, Congregación el Haya, Xalapa, Veracruz CP 91073, Mexico; (J.L.M.-V.); (J.M.E.-C.); (E.I.-L.); (M.R.-V.); (J.A.G.-A.)
| | - Mónica Ramirez-Vázquez
- Red de Estudios Moleculares Avanzados, Instituto de Ecología A. C., Cluster BioMimic, Carretera Antigua a Coatepec 351, Congregación el Haya, Xalapa, Veracruz CP 91073, Mexico; (J.L.M.-V.); (J.M.E.-C.); (E.I.-L.); (M.R.-V.); (J.A.G.-A.)
| | - José A. Guerrero-Analco
- Red de Estudios Moleculares Avanzados, Instituto de Ecología A. C., Cluster BioMimic, Carretera Antigua a Coatepec 351, Congregación el Haya, Xalapa, Veracruz CP 91073, Mexico; (J.L.M.-V.); (J.M.E.-C.); (E.I.-L.); (M.R.-V.); (J.A.G.-A.)
| | - Eliel Ruiz-May
- Red de Estudios Moleculares Avanzados, Instituto de Ecología A. C., Cluster BioMimic, Carretera Antigua a Coatepec 351, Congregación el Haya, Xalapa, Veracruz CP 91073, Mexico; (J.L.M.-V.); (J.M.E.-C.); (E.I.-L.); (M.R.-V.); (J.A.G.-A.)
- Correspondence: (C.P.-M.); (E.R.-M.)
| |
Collapse
|
3
|
Wang Z, Gao S, Xie J, Li R. Identification of multiple dysregulated metabolic pathways by GC-MS-based profiling of lung tissue in mice with PM 2.5-induced asthma. CHEMOSPHERE 2019; 220:1-10. [PMID: 30572224 DOI: 10.1016/j.chemosphere.2018.12.092] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 11/05/2018] [Accepted: 12/11/2018] [Indexed: 06/09/2023]
Abstract
The risk of development of asthma, a multi-faceted chronic disease, increases as a result of exposure to PM2.5. However, the mechanism underlying asthma-related metabolic changes caused by PM2.5 exposure is unclear. Here, we investigated the major metabolic changes, metabolic pathways involved, and underlying molecular mechanisms in mice with PM2.5 exposure-induced asthma. Forty-eight adult female mice were randomly assigned to control (C), low concentration-PM2.5 exposure: 0.50 mg kg-1 (L), medium concentration-PM2.5 exposure: 1.58 mg kg-1 (M), and high concentration-PM2.5 exposure: 4.98 mg kg-1 (H) groups. M and H groups presented significantly higher IL-4, IL-8, IL-1β, IL-5, IL-13, and OVA-specific IgE levels, and significantly lower IFN-γ levels, than the C group, as well as significantly increased eosinophil count and MUC5AC expression in the lung tissue. These findings indicate that exposure to medium and high concentrations of PM2.5 induced asthma in mice. Statistical analyses identified 13 asthma-related major metabolites, which were analyzed by gas chromatography-mass spectrometry (GC-MS). Meta Mapp Software revealed 4 major metabolic pathways. PM2.5-induced ATP requirement and oxidative stress may perturb metabolic processes in asthma. The present findings increase our understanding of the toxic effect of PM2.5 in the development of asthma and identify potentially useful biomarkers.
Collapse
Affiliation(s)
- Zhentao Wang
- College of Environment and Resource, Shanxi University, Taiyuan, 030006, PR China
| | - Shaolong Gao
- State Environmental Protection Key Laboratory on Efficient Resource-utilization Techniques of Coal Waste, Institute of Resources and Environment Engineering, Shanxi University, Taiyuan, 030006, PR China
| | - Jingfang Xie
- College of Environment and Resource, Shanxi University, Taiyuan, 030006, PR China.
| | - Ruijin Li
- Institute of Environmental Science, Shanxi University, Taiyuan, 030006, PR China
| |
Collapse
|
4
|
Nandhakumar N, Kumar K, Sudhakar D, Soorianathasundaram K. Plant regeneration, developmental pattern and genetic fidelity of somatic embryogenesis derived Musa spp. J Genet Eng Biotechnol 2018; 16:587-598. [PMID: 30733777 PMCID: PMC6353768 DOI: 10.1016/j.jgeb.2018.10.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 08/29/2018] [Accepted: 10/01/2018] [Indexed: 11/24/2022]
Abstract
Multiplication of banana cvs. Grand Naine (Musa AAA, Cavendish-sub group) and Rasthali (Musa AAB, Silk-sub group) were attempted through somatic embryogenesis. The influence of position of male flower buds, amino acid supplements in the induction of somatic embryogenesis and field performance of embryogenic cell suspension (ECS) derived banana plants were studied. Differentiated immature male flower buds positioned at 6-8 th bract whorl as explants showed better callus induction and somatic embryogenesis. Supplementation with glutamine at 400 mg L-1 along with 20:20 g L-1sucrose: maltose in maturation media induced a 10-fold increase in somatic embryo formation compared to control. Cotyledonary stage somatic embryos desiccated for 2 h showed higher germination compared to non-desiccated embryos. The plantlets generated were hardened, and the genetic fidelity of the plantlets was confirmed using ISSR marker. To check the field performance of ECS derived plants, plantlets were hardened and planted in the field along with meristem and sucker. During the field growth, these ECS derived plants were morphologically similar to those of control plants. In this experiment, it was observed that ECS derived banana plants displayed normal phenotype as that of plants grown from meristem and sucker. The protocol developed could be useful highly for large-scale micropropagation or genetic manipulation studies in these commercially important banana cultivars.
Collapse
Affiliation(s)
- Natarajan Nandhakumar
- Department of Fruit Crops, Faculty of Horticulture, Tamil Nadu Agricultural University, Coimbatore, India
| | - Krish Kumar
- Department of Plant Biotechnology, Centre for Plant Biotechnology and Molecular Biology, Tamil Nadu Agricultural University, Coimbatore, India
| | - Duraialagaraja Sudhakar
- Department of Plant Biotechnology, Centre for Plant Biotechnology and Molecular Biology, Tamil Nadu Agricultural University, Coimbatore, India
| | - K. Soorianathasundaram
- Department of Fruit Crops, Faculty of Horticulture, Tamil Nadu Agricultural University, Coimbatore, India
| |
Collapse
|
5
|
Ashihara H, Stasolla C, Fujimura T, Crozier A. Purine salvage in plants. PHYTOCHEMISTRY 2018; 147:89-124. [PMID: 29306799 DOI: 10.1016/j.phytochem.2017.12.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 12/10/2017] [Accepted: 12/14/2017] [Indexed: 05/04/2023]
Abstract
Purine bases and nucleosides are produced by turnover of nucleotides and nucleic acids as well as from some cellular metabolic pathways. Adenosine released from the S-adenosyl-L-methionine cycle is linked to many methyltransferase reactions, such as the biosynthesis of caffeine and glycine betaine. Adenine is produced by the methionine cycles, which is related to other biosynthesis pathways, such those for the production of ethylene, nicotianamine and polyamines. These purine compounds are recycled for nucleotide biosynthesis by so-called "salvage pathways". However, the salvage pathways are not merely supplementary routes for nucleotide biosynthesis, but have essential functions in many plant processes. In plants, the major salvage enzymes are adenine phosphoribosyltransferase (EC 2.4.2.7) and adenosine kinase (EC 2.7.1.20). AMP produced by these enzymes is converted to ATP and utilised as an energy source as well as for nucleic acid synthesis. Hypoxanthine, guanine, inosine and guanosine are salvaged to IMP and GMP by hypoxanthine/guanine phosphoribosyltransferase (EC 2.4.2.8) and inosine/guanosine kinase (EC 2.7.1.73). In contrast to de novo purine nucleotide biosynthesis, synthesis by the salvage pathways is extremely favourable, energetically, for cells. In addition, operation of the salvage pathway reduces the intracellular levels of purine bases and nucleosides which inhibit other metabolic reactions. The purine salvage enzymes also catalyse the respective formation of cytokinin ribotides, from cytokinin bases, and cytokinin ribosides. Since cytokinin bases are the active form of cytokinin hormones, these enzymes act to maintain homeostasis of cellular cytokinin bioactivity. This article summarises current knowledge of purine salvage pathways and their possible function in plants and purine salvage activities associated with various physiological phenomena are reviewed.
Collapse
Affiliation(s)
- Hiroshi Ashihara
- Department of Biology, Ochanomizu University, Bunkyo-ku, Tokyo, 112-8610, Japan.
| | - Claudio Stasolla
- Department of Plant Science, University of Manitoba, Winnipeg, R3T 2N2, Canada
| | - Tatsuhito Fujimura
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, 305-8572, Japan
| | - Alan Crozier
- Department of Nutrition, University of California, Davis, CA, 95616-5270, USA
| |
Collapse
|
6
|
Cabrera-Ponce JL, González-Gómez IA, León-Ramírez CG, Sánchez-Arreguín JA, Jofre Y Garfias AE. Somatic Embryogenesis in Common BeanPhaseolus vulgaris L. Methods Mol Biol 2018; 1815:189-206. [PMID: 29981122 DOI: 10.1007/978-1-4939-8594-4_12] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Common bean Phaseolus vulgaris L. has been shown to be a recalcitrant plant to induce somatic embryogenesis (SE) under in vitro conditions. An alternative strategy to yield SE is based upon the use of a cytokinin (benzyladenine) coupled with osmotic stress adaptation instead of the auxin-inducing SE in common bean. Here we described the induction of proembryogenic masses (PEM) derived from the apical meristem and cotyledonary zone of zygotic embryos, from which secondary SE indirect embryogenesis emerged. Maturation of SE was achieved by using osmotic stress medium and converted to plants. Long-term recurrent SE was demonstrated by propagation of PEM at early stages of SE. This protocol is currently being applied for stable genetic transformation by means of Agrobacterium tumefaciens and biobalistics as well as basic biochemical and molecular biology research.
Collapse
Affiliation(s)
- José Luis Cabrera-Ponce
- Departamento de Ingeniería Genética, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del IPN, CP, Guanajuato, Mexico.
| | - Itzel Anayetzi González-Gómez
- Departamento de Ingeniería Genética, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del IPN, CP, Guanajuato, Mexico
| | - Claudia G León-Ramírez
- Departamento de Ingeniería Genética, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del IPN, CP, Guanajuato, Mexico
| | - José A Sánchez-Arreguín
- Departamento de Ingeniería Genética, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del IPN, CP, Guanajuato, Mexico
| | - Alba E Jofre Y Garfias
- Departamento de Ingeniería Genética, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del IPN, CP, Guanajuato, Mexico
| |
Collapse
|
7
|
Identification and Characterization of a Plastidic Adenine Nucleotide Uniporter (OsBT1-3) Required for Chloroplast Development in the Early Leaf Stage of Rice. Sci Rep 2017; 7:41355. [PMID: 28134341 PMCID: PMC5278347 DOI: 10.1038/srep41355] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 12/19/2016] [Indexed: 11/17/2022] Open
Abstract
Chloroplast development is an important subject in botany. In this study, a rice (Oryza sativa) mutant exhibiting impairment in early chloroplast development (seedling leaf albino (sla)) was isolated from a filial generation via hybridization breeding. The sla mutant seedlings have an aberrant form of chloroplasts, which resulted in albinism at the first and second leaves; however, the leaf sheath was green. The mutant gradually turned green after the two-leaf stage, and the third leaf was a normal shade of green. Map-based cloning indicated that the gene OsBT1-3, which belongs to the mitochondrial carrier family (MCF), is responsible for the sla mutant phenotype. OsBT1-3 expression was high in the young leaves, decreased after the two-leaf stage, and was low in the sheath, and these findings are consistent with the recovery of a number of chloroplasts in the third leaf of sla mutant seedlings. The results also showed that OsBT1-3-yellow fluorescent protein (YFP) was targeted to the chloroplast, and a Western blot assay using a peptide-specific antibody indicated that OsBT1-3 localizes to the chloroplast envelope. We also demonstrated that OsBT1-3 functions as a unidirectional transporter of adenine nucleotides. Based on these findings, OsBT1-3 likely acts as a plastid nucleotide uniporter and is essential for chloroplast development in rice leaves at the young seedling stage.
Collapse
|
8
|
Cabrera-Ponce JL, López L, León-Ramírez CG, Jofre-Garfias AE, Verver-y-Vargas A. Stress induced acquisition of somatic embryogenesis in common bean Phaseolus vulgaris L. PROTOPLASMA 2015; 252:559-570. [PMID: 25252886 DOI: 10.1007/s00709-014-0702-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 09/12/2014] [Indexed: 06/03/2023]
Abstract
Common bean Phaseolus vulgaris L. has been shown to be a recalcitrant plant to induce somatic embryogenesis (SE) under in vitro conditions. We used an alternative strategy to induce SE in common bean based upon the use of a cytokinin (BAP) coupled with osmotic stress adaptation instead of SE response that is induced by auxins. Explants derived from zygotic embryos of common bean were subjected to osmotic stress (sucrose 12 % w/v, 0.5 M) in the presence of BAP 10 mg/L and adenine free base 40 mg/L to induce somatic embryos from specific competent cells of the apical meristem and cotyledonary node. Somatic embryos were obtained from the competent cells in a direct response (direct SE). In a secondary response (secondary SE), those somatic embryos formed proembryogenic masses (PEM) that originated/developed into secondary somatic embryos and showed the SE ontogeny. Maturation of somatic embryos was achieved by using different osmolality media and converted to plants. Full-visible light spectrum was necessary to achieve efficient plant regeneration. Long-term recurrent SE was demonstrated by propagation of PEM at early stages of SE. This protocol is currently being applied for stable genetic transformation by means of Agrobacterium tumefaciens and bioballistics as well as for basic biochemical and molecular biology experiments.
Collapse
Affiliation(s)
- José Luis Cabrera-Ponce
- Departamento de Ingeniería Genética, Unidad Irapuato. Centro de Investigación y de Estudios Avanzados del IPN, CP. 36821, Irapuato, Guanajuato, Mexico,
| | | | | | | | | |
Collapse
|
9
|
Daumann M, Fischer M, Niopek-Witz S, Girke C, Möhlmann T. Apoplastic Nucleoside Accumulation in Arabidopsis Leads to Reduced Photosynthetic Performance and Increased Susceptibility Against Botrytis cinerea. FRONTIERS IN PLANT SCIENCE 2015; 6:1158. [PMID: 26779190 PMCID: PMC4688390 DOI: 10.3389/fpls.2015.01158] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 12/07/2015] [Indexed: 05/15/2023]
Abstract
Interactions between plant and pathogen often occur in the extracellular space and especially nucleotides like ATP and NAD have been identified as key players in this scenario. Arabidopsis mutants accumulating nucleosides in the extracellular space were generated and studied with respect to susceptibility against Botrytis cinerea infection and general plant fitness determined as photosynthetic performance. The mutants used are deficient in the main nucleoside uptake system ENT3 and the extracellular nucleoside hydrolase NSH3. When grown on soil but not in hydroponic culture, these plants markedly accumulate adenosine and uridine in leaves. This nucleoside accumulation was accompanied by reduced photosystem II efficiency and altered expression of photosynthesis related genes. Moreover, a higher susceptibility toward Botrytis cinerea infection and a reduced induction of pathogen related genes PR1 and WRKY33 was observed. All these effects did not occur in hydroponically grown plants substantiating a contribution of extracellular nucleosides to these effects. Whether reduced general plant fitness, altered pathogen response capability or more direct interactions with the pathogen are responsible for these observations is discussed.
Collapse
|
10
|
Krajnáková J, Bertolini A, Zoratti L, Gömöry D, Häggman H, Vianello A. Changes in ATP, glucose-6-phosphate and NAD(P)H cellular levels during the proliferation and maturation phases of Abies alba Mill. embryogenic cultures. TREE PHYSIOLOGY 2013; 33:1099-110. [PMID: 24200583 DOI: 10.1093/treephys/tpt082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The aim of the present study was to evaluate the adenosine triphospate (ATP), glucose-6-phosphate (glu-6P) and reduced form of nicotinamide adenine dinucleotide phosphate (NAD(P)H) cellular levels during the proliferation and maturation phases of Abies alba Mill. somatic embryos. For a better understanding of the dynamics of these parameters during the proliferation cycle, four embryonic cell lines were tested. During the maturation period, three independent experiments were conducted, focused on the effects of PEG-4000 (5 or 10% (w/v)) and abscisic acid (16, 32 or 64 μM) applied together (Experiments A and B) or with addition of gibberellic acid (Experiment C) on the dynamics of bio-energetic molecules and on the mean number of cotyledonary somatic embryos. Our results demonstrated that the cellular levels of bio-energetic molecules strongly depended on the composition of maturation media. Generally, the higher the number of cotyledonary embryos produced, the higher the level of ATP observed after a 2-week maturation period. The cellular level of ATP, glu-6P and NAD(P)H increased, particularly after the transition from the proliferation to the maturation phase when the differentiation and growth of somatic embryos occurred.
Collapse
Affiliation(s)
- Jana Krajnáková
- Faculty of Forestry and Wood Technology, Mendel University, Zemědělská 3, 613 00 Czech Republic
| | | | | | | | | | | |
Collapse
|
11
|
Zhang Y, Zhang S, Han S, Li X, Qi L. Transcriptome profiling and in silico analysis of somatic embryos in Japanese larch (Larix leptolepis). PLANT CELL REPORTS 2012; 31:1637-57. [PMID: 22622308 DOI: 10.1007/s00299-012-1277-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Revised: 04/19/2012] [Accepted: 04/20/2012] [Indexed: 05/13/2023]
Abstract
UNLABELLED Japanese larch (Larix leptolepis) is an ecologically and economically important species mainly grown in northeastern China, Japan and Europe. However, erratic flowering and poor germplasm resources caused by high embryo abortion rates have hampered breeding of Larix species. Somatic embryogenesis (SE) is an effective tool for the production of L. leptolepis with desirable characteristics, such as expression of totipotency, preparation of synthetic seeds, and genetic transformation. However, public genomic resources for this species are limited. We sequenced 591,759 raw expressed sequence tags (ESTs) from a 454 sequencing cDNA library of L. leptolepis somatic embryos, resulting in 572,403 high-quality reads. These reads were assembled into 70,927 unique sequences (UniGenes), including 32,321 contigs and 38,606 singletons. After removal of low-quality sequences, 65,115 UniGenes were annotated using the UniProtKB program. Based on their sequence similarity with known proteins, the matched 30,372 sequences from 664 species were estimated to represent approximately 19,000 unique genes. Gene ontology analysis revealed 21,324 UniGenes assigned to 51 categories. By Kyoto Encyclopedia of Genes and Genomes mapping, 25,773 transcripts were associated with 160 biochemical pathways. Further analysis screened four signal transduction pathways represented by 337 enzymes and 17 secondary metabolites. In silico analysis reveals that 207 UniESTs in Larix are homologous to MAPKs genes identified from other model plants, which may be involved in regulating SE development. This study provides an initial insight into the Larix transcriptomes of the pro-embryogenic mass and is a sound basis for future studies. KEY MESSAGE We constructed a large, full-length 454 sequencing cDNA library of Larix leptolepis during somatic embryogenesis. More than 590,000 sequences were obtained and a deep-coverage EST database was constructed.
Collapse
Affiliation(s)
- Yuan Zhang
- Laboratory of Cell Biology, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | | | | | | | | |
Collapse
|
12
|
Elhiti M, Ashihara H, Stasolla C. Distinct fluctuations in nucleotide metabolism accompany the enhanced in vitro embryogenic capacity of Brassica cells over-expressing SHOOTMERISTEMLESS. PLANTA 2011; 234:1251-1265. [PMID: 21773791 DOI: 10.1007/s00425-011-1482-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Accepted: 07/07/2011] [Indexed: 05/31/2023]
Abstract
Besides regulating meristem formation and maintenance in vivo, SHOOTMERISTEMLESS (STM) has been shown to affect embryogenesis. While the over-expression of Brassica napus (Bn)STM enhances the number of microspore-derived embryos produced in culture and their ability to regenerate viable plants, a down-regulation of this gene represses the embryogenic process (Elhiti et al., J Exp Bot, 61:4069-4085, 2010). Synthesis and degradation of pyrimidine and purine nucleotides were measured in developing microspore-derived embryos (MDEs) generated from B. napus lines ectopically expressing or down-regulating BnSTM. Pyrimidine metabolism was investigated by following the metabolic fate of exogenously supplied (14)C-uridine, uracil and orotic acid, whereas purine metabolism was estimated by using (14)C-adenine, adenosine and inosine. The improvement in embryo number and quality affected by the ectopic expression of BnSTM was linked to the increased pyrimidine and purine salvage activity during the early phases of embryogenesis and the enlargement of the adenylate pool (ATP + ADP) required for the active growth of the embryos. This was due to an increase in transcriptional and enzymatic activity of several salvage enzymes, including adenine phosphoribosyltransferase (APRT) and adenosine kinase (ADK). The highly operative salvage pathway induced by the ectopic expression of BnSTM was associated with a slow catabolism of nucleotides, suggesting the presence of an antagonist mechanism controlling the rate of salvage and degradation pathways. During the second half of embryogenesis utilization of uridine for UTP + UDPglucose (UDPG) synthesis increased in the embryos over-expressing BnSTM, and this coincided with a better post-germination performance. All these events were precluded by the down-regulation of BnSTM which repressed the formation of the embryos and their post-embryonic performance. Overall, this work provides evidence that precise metabolic changes are associated with proper embryo development in culture.
Collapse
Affiliation(s)
- Mohamed Elhiti
- Department of Botany, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | | | | |
Collapse
|
13
|
Belmonte M, Elhiti M, Ashihara H, Stasolla C. Brassinolide-improved development of Brassica napus microspore-derived embryos is associated with increased activities of purine and pyrimidine salvage pathways. PLANTA 2011; 233:95-107. [PMID: 20931222 DOI: 10.1007/s00425-010-1287-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Accepted: 09/21/2010] [Indexed: 05/13/2023]
Abstract
Cellular brassinolide (BL) levels regulate the development of Brassica napus microspore-derived embryos (MDEs). Synthesis and degradation of nucleotides were measured on developing MDEs treated with BL or brassinazole (BrZ), a biosynthetic inhibitor of BL. Purine metabolism was investigated by following the metabolic fate of (14)C-labelled adenine and adenosine, substrates of the salvage pathway, and inosine, an intermediate of both salvage and degradation pathways. For pyrimidine, orotic acid, uridine and uracil were employed as markers for the de novo (orotic acid), salvage (uridine and uracil), and degradation (uracil) pathways. Our results indicate that utilization of adenine, adenosine, and uridine for nucleotides and nucleic acids increased significantly in BL-treated embryos at day 15 and remained high throughout the culture period. These metabolic changes were ascribed to the activities of the respective salvage enzymes: adenine phosphoribosyltransferase (EC 2.4.2.7), adenosine kinase (EC 2.7.1.20), and uridine kinase (EC 2.7.1.48), which were induced by BL applications. The BL promotion of salvage synthesis was accompanied by a reduction in the activities of the degradation pathways, suggesting the presence of competitive anabolic and catabolic mechanisms utilizing the labelled precursors. In BrZ-treated embryos, with depleted BL levels, the salvage activity of both purine and pyrimidine nucleotides was reduced and this was associated to structural abnormalities and poor embryonic performance. In these embryos, the activities of major salvage enzymes were consistently lower to those measured in their control (untreated) counterparts.
Collapse
Affiliation(s)
- Mark Belmonte
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, Canada
| | | | | | | |
Collapse
|
14
|
Deng WW, Ashihara H. Profiles of purine metabolism in leaves and roots of Camellia sinensis seedlings. PLANT & CELL PHYSIOLOGY 2010; 51:2105-18. [PMID: 21071429 DOI: 10.1093/pcp/pcq175] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
To determine the metabolic profiles of purine nucleotides and related compounds in leaves and roots of tea (Camellia sinensis), we studied the in situ metabolic fate of 10 different (14)C-labeled precursors in segments from tea seedlings. The activities of key enzymes in tea leaf extracts were also investigated. The rates of uptake of purine precursors were greater in leaf segments than in root segments. Adenine and adenosine were taken up more rapidly than other purine bases and nucleosides. Xanthosine was slowest. Some adenosine, guanosine and inosine was converted to nucleotides by adenosine kinase and inosine/guanosine kinase, but these compounds were easily hydrolyzed, and adenine, guanine and hypoxanthine were generated. These purine bases were salvaged by adenine phosphoribosyltransferase and hypoxanthine/guanine phosphoribosyltransferase. Salvage activity of adenine and adenosine was high, and they were converted exclusively to nucleotides. Inosine and hypoxanthine were salvaged to a lesser extent. In situ (14)C-tracer experiments revealed that xanthosine and xanthine were not salvaged, although xanthine phosphoribosyltransferase activity was found in tea extracts. Only some deoxyadenosine and deoxyguanosine was salvaged and utilized for DNA synthesis. However, most of these deoxynucleosides were hydrolyzed to adenine and guanine and then utilized for RNA synthesis. Purine alkaloid biosynthesis in leaves is much greater than in roots. In situ experiments indicate that adenosine, adenine, guanosine, guanine and inosine are better precursors than xanthosine, which is a direct precursor of a major pathway of caffeine biosynthesis. Based on these results, possible routes of purine metabolism are discussed.
Collapse
Affiliation(s)
- Wei-Wei Deng
- Department of Biological Sciences, Graduate School of Humanities and Sciences, Ochanomizu University, 2-1-1, Otsuka, Bunkyo-ku, Tokyo, 11-8610 Japan
| | | |
Collapse
|
15
|
Kirchberger S, Tjaden J, Neuhaus HE. Characterization of the Arabidopsis Brittle1 transport protein and impact of reduced activity on plant metabolism. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 56:51-63. [PMID: 18564385 DOI: 10.1111/j.1365-313x.2008.03583.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The Arabidopsis genome contains a gene (Atbt1) encoding a highly hydrophobic membrane protein of the mitochondrial carrier family, with six predicted transmembrane domains, and showing substantial structural similarity to Brittle1 proteins from maize and potato. We demonstrate that AtBT1 transports AMP, ADP and ATP (but not ADP-glucose), shows a unidirectional mode of transport, and locates to the plastidial membrane and not to the ER as previously proposed. Analysis using an Atbt1 promoter-GUS construct revealed substantial gene expression in rapidly growing root tips and maturating or germinating pollen. Survival of homozygous Atbt1::T-DNA mutants is very limited, and those that do survive produce non-fertile seeds. These observations indicate that no other carrier protein or metabolic mechanism can compensate for the loss of this transporter. Atbt1 RNAi dosage mutants show substantially retarded growth, adenylate levels similar to those of wild-type plants, increased glutamine contents and unchanged starch levels. Interestingly, the growth retardation of Atbt1 RNAi mutant plants was circumvented by adenosine feeding, and was accompanied by increased adenylate levels. Further observations showed the presence of a functional nucleotide salvage pathway in Atbt1 RNAi mutants. In summary, our data indicate that AtBT1 is a plastidial nucleotide uniport carrier protein that is strictly required to export newly synthesized adenylates into the cytosol.
Collapse
MESH Headings
- Adenosine/metabolism
- Adenosine Monophosphate/metabolism
- Arabidopsis/genetics
- Arabidopsis/metabolism
- Arabidopsis Proteins/genetics
- Arabidopsis Proteins/metabolism
- Biological Transport, Active
- DNA, Bacterial/genetics
- DNA, Complementary/genetics
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Gene Expression Profiling
- Gene Expression Regulation, Developmental
- Gene Expression Regulation, Plant
- Genes, Plant
- Genes, Reporter
- Mutagenesis, Insertional
- Nucleotide Transport Proteins/genetics
- Nucleotide Transport Proteins/metabolism
- Plants, Genetically Modified/genetics
- Plants, Genetically Modified/metabolism
- Plastids/genetics
- Plastids/metabolism
- Promoter Regions, Genetic
- RNA Interference
- RNA, Plant/genetics
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
Collapse
Affiliation(s)
- Simon Kirchberger
- Universität Kaiserslautern, Pflanzenphysiologie, Biologie, Erwin-Schrödinger-Strasse, D-67663 Kaiserslautern, Germany
| | | | | |
Collapse
|
16
|
Ashihara H, Luit B, Belmonte M, Stasolla C. Metabolism of nicotinamide, adenine and inosine in developing microspore-derived canola (Brassica napus) embryos. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2008; 46:752-759. [PMID: 18524610 DOI: 10.1016/j.plaphy.2008.04.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2007] [Indexed: 05/26/2023]
Abstract
The metabolic fate of [carbonyl-(14)C]nicotinamide, [8-(14)C]adenine and [8-(14)C]inosine was examined in microspore-derived canola (Brassica napus) embryos at different developmental stages: globular stage (day 10, stage 1), early cotyledonary stage (day 20, stage 2), late cotyledonary stage (day 25, stage 3), and fully developed stage (day 35, stage 4). Uptake of [8-(14)C]nicotinamide by the embryos was always rapid. A lower uptake rate was found for [8-(14)C]adenine and [8-(14)C]inosine, especially at stages 1 and 2. [Carbonyl-(14)C]nicotinamide was converted to nicotinic acid and further metabolized to pyridine nucleotides (NAD/NADP). Some radioactivity was also associated to nicotinic acid glucoside. [8-(14)C]adenine was efficiently utilized for the synthesis of adenine nucleotides and RNA. A small fraction of adenine was degraded to CO(2) via ureides. Up to 40% of [8-(14)C]inosine was salvaged to nucleotides and RNA, although degradation of [8-(14)C]inosine to CO(2) was pronounced. At stage 1, highest salvage activities of nicotinamide, adenine and inosine were observed. In contrast, the lowest purine salvage and highest purine catabolism were found in stage 3 embryos. These results suggest that both nicotinamide and purine salvage for NAD/NADP and purine nucleotides synthesis are extremely high in the globular stage (stage 1). These activities decrease gradually until the late cotyledonary stage (stage 3), before increasing again in the fully developed embryos (stage 4). Overall it appears that nicotinamide and purine salvage are required in support of active growth during the initial phases of embryogenesis and at the end of the maturation period, in preparation for post-embryonic growth.
Collapse
Affiliation(s)
- Hiroshi Ashihara
- Department of Biological Sciences, Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo, Japan
| | | | | | | |
Collapse
|
17
|
Walsh TA, Bauer T, Neal R, Merlo AO, Schmitzer PR, Hicks GR, Honma M, Matsumura W, Wolff K, Davies JP. Chemical genetic identification of glutamine phosphoribosylpyrophosphate amidotransferase as the target for a novel bleaching herbicide in Arabidopsis. PLANT PHYSIOLOGY 2007; 144:1292-304. [PMID: 17616508 PMCID: PMC1914136 DOI: 10.1104/pp.107.099705] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2007] [Accepted: 05/19/2007] [Indexed: 05/16/2023]
Abstract
A novel phenyltriazole acetic acid compound (DAS734) produced bleaching of new growth on a variety of dicotyledonous weeds and was a potent inhibitor of Arabidopsis (Arabidopsis thaliana) seedling growth. The phytotoxic effects of DAS734 on Arabidopsis were completely alleviated by addition of adenine to the growth media. A screen of ethylmethanesulfonate-mutagenized Arabidopsis seedlings recovered seven lines with resistance levels to DAS734 ranging from 5- to 125-fold. Genetic tests determined that all the resistance mutations were dominant and allelic. One mutation was mapped to an interval on chromosome 4 containing At4g34740, which encodes an isoform of glutamine phosphoribosylamidotransferase (AtGPRAT2), the first enzyme of the purine biosynthetic pathway. Sequencing of At4g34740 from the resistant lines showed that all seven contained mutations producing changes in the encoded polypeptide sequence. Two lines with the highest level of resistance (125-fold) contained the mutation R264K. The wild-type and mutant AtGPRAT2 enzymes were cloned and functionally overexpressed in Escherichia coli. Assays of the recombinant enzyme showed that DAS734 was a potent, slow-binding inhibitor of the wild-type enzyme (I(50) approximately 0.2 microm), whereas the mutant enzyme R264K was not significantly inhibited by 200 microm DAS734. Another GPRAT isoform in Arabidopsis, AtGPRAT3, was also inhibited by DAS734. This combination of chemical, genetic, and biochemical evidence indicates that the phytotoxicity of DAS734 arises from direct inhibition of GPRAT and establishes its utility as a new and specific chemical genetic probe of plant purine biosynthesis. The effects of this novel GPRAT inhibitor are compared to the phenotypes of known AtGPRAT genetic mutants.
Collapse
Affiliation(s)
- Terence A Walsh
- Dow AgroSciences, Discovery Research, Indianapolis, IN 46268, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Katahira R, Ashihara H. Profiles of purine biosynthesis, salvage and degradation in disks of potato (Solanum tuberosum L.) tubers. PLANTA 2006; 225:115-26. [PMID: 16845529 DOI: 10.1007/s00425-006-0334-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2006] [Accepted: 05/25/2006] [Indexed: 05/10/2023]
Abstract
To find general metabolic profiles of purine ribo- and deoxyribonucleotides in potato (Solanum tuberosum L.) plants, we looked at the in situ metabolic fate of various (14)C-labelled precursors in disks from growing potato tubers. The activities of key enzymes in potato tuber extracts were also studied. Of the precursors for the intermediates in de novo purine biosynthesis, [(14)C]formate, [2-(14)C]glycine and [2-(14)C]5-aminoimidazole-4-carboxyamide ribonucleoside were metabolised to purine nucleotides and were incorporated into nucleic acids. The rates of uptake of purine ribo- and deoxyribonucleosides by the disks were in the following order: deoxyadenosine > adenosine > adenine > guanine > guanosine > deoxyguanosine > inosine > hypoxanthine > xanthine > xanthosine. The purine ribonucleosides, adenosine and guanosine, were salvaged exclusively to nucleotides, by adenosine kinase (EC 2.7.1.20) and inosine/guanosine kinase (EC 2.7.1.73) and non-specific nucleoside phosphotransferase (EC 2.7.1.77). Inosine was also salvaged by inosine/guanosine kinase, but to a lesser extent. In contrast, no xanthosine was salvaged. Deoxyadenosine and deoxyguanosine, was efficiently salvaged by deoxyadenosine kinase (EC 2.7.1.76) and deoxyguanosine kinase (EC 2.7.1.113) and/or non-specific nucleoside phosphotransferase (EC 2.7.1.77). Of the purine bases, adenine, guanine and hypoxanthine but not xanthine were salvaged for nucleotide synthesis. Since purine nucleoside phosphorylase (EC 2.4.2.1) activity was not detected, adenine phosphoribosyltransferase (EC 2.4.2.7) and hypoxanthine/guanine phosphoribosyltransferase (EC 2.4.2.8) seem to play the major role in salvage of adenine, guanine and hypoxanthine. Xanthine was catabolised by the oxidative purine degradation pathway via allantoin. Activity of the purine-metabolising enzymes observed in other organisms, such as purine nucleoside phosphorylase (EC 2.4.2.1), xanthine phosphoribosyltransferase (EC 2.4.2.22), adenine deaminase (EC 3.5.4.2), adenosine deaminase (EC 3.5.4.4) and guanine deaminase (EC 3.5.4.3), were not detected in potato tuber extracts. These results suggest that the major catabolic pathways of adenine and guanine nucleotides are AMP --> IMP --> inosine --> hypoxanthine --> xanthine and GMP --> guanosine --> xanthosine --> xanthine pathways, respectively. Catabolites before xanthosine and xanthine can be utilised in salvage pathways for nucleotide biosynthesis.
Collapse
Affiliation(s)
- Riko Katahira
- Department of Advanced Bioscience, Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo, 112-8610, Japan
| | | |
Collapse
|
19
|
Stasolla C, Loukanina N, Ashihara H, Yeung EC, Thorpe TA. Changes of purine and pyrimidine nucleotide biosynthesis during shoot initiation from epicotyl explants of white spruce (Picea glauca). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2006; 171:345-354. [PMID: 22980203 DOI: 10.1016/j.plantsci.2006.04.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2005] [Revised: 04/05/2006] [Accepted: 04/10/2006] [Indexed: 06/01/2023]
Abstract
Nucleotide metabolism was investigated during white spruce organogenesis by following the metabolic fate of (14)C-labeled adenine, adenosine and inosine, as purine precursors, and orotic acid, uridine, and uracil, as pyrimidine intermediates. Key enzymes of purine and pyrimidine metabolism were also assayed during the organogenic process. White spruce epicotyl explants cultured on shoot-forming (SF) medium had a better ability to utilize adenine and adenosine for nucleotide and nucleic acid synthesis, compared to tissue cultured on non-shoot forming (NSF) medium. High levels of salvage products were observed in SF tissue after 10 days in culture, when shoot formation was initiated along the epicotyl axis of the explants. Such a differential utilization of purine precursors was mainly due to the higher specific activity of the two adenine and adenosine salvage enzymes, adenine phosphoribosyltransferase (APRT) and adenosine kinase (AK), measured in SF tissue. Similar catabolism of inosine was observed in both SF and NSF conditions during the 30 days of culture. For pyrimidines, the higher activities of the de novo, salvage, and degradation pathways observed in SF tissue, compared to NSF tissue throughout the course of the experiment, clearly denote a faster turnover of pyrimidine nucleotides in the former. Taken together, these results suggest that a better utilization of purine bases and nucleosides for nucleotide and nucleic acid synthesis, as well as a more rapid turnover of pyrimidine nucleotides, represent a physiological switch, which occurs during the initiation and continuation of the organogenic process in white spruce.
Collapse
Affiliation(s)
- Claudio Stasolla
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | | | | | | | | |
Collapse
|
20
|
Flörchinger M, Zimmermann M, Traub M, Neuhaus HE, Möhlmann T. Adenosine stimulates anabolic metabolism in developing castor bean (Ricinus communis L.) cotyledons. PLANTA 2006; 223:340-8. [PMID: 16133207 DOI: 10.1007/s00425-005-0091-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2005] [Accepted: 07/14/2005] [Indexed: 05/04/2023]
Abstract
In previous experiments it was shown that Castor-bean (Ricinus communis) endosperm releases carbohydrates, amino acids and nucleoside derivatives, which are subsequently imported into the developing cotyledons (Kombrink and Beevers in Plant Physiol 73:370-376, 1983). To investigate the importance of the most prominent nucleoside adenosine for the metabolism of growing Ricinus seedlings, we supplied adenosine to cotyledons of 5-days-old seedlings after removal of the endosperm. This treatment led to a 16% increase in freshweight of intact seedlings within 16 h, compared to controls. Using detached cotyledons, we followed uptake of radiolabelled adenosine and identified 40% of label in solubles (mostly ATP and ADP), 46% incorporation in RNA and 2.5% in DNA, indicating a highly active salvage pathway. About 7% of freshly imported adenosine entered the phloem, which indicates a major function of adenosine for cotyledon metabolism. Import and conversion of adenosine improved the energy content of cotyledons as revealed by a substantially increased ATP/ADP ratio. This effect was accompanied by slight increases in respiratory activity, decreased levels of hexose phosphates and increased levels of fructose-1,6-bisphosphate and triose phosphates. These alterations indicate a stimulation of glycolytic flux by activation of phosphofructokinase, and accordingly we determined a higher activity of this enzyme. Furthermore the rate of [(14)C]-sucrose driven starch biosynthesis in developing castor-bean is significantly increased by feeding of adenosine. In conclusion, our data indicate that adenosine imported from mobilizing endosperm into developing castor-bean cotyledons fulfils an important function as it promotes anabolic reactions in this rapidly developing tissue.
Collapse
Affiliation(s)
- Martin Flörchinger
- Pflanzenphysiologie, Universität Kaiserslautern, Postfach 3049, 67653 Kaiserslautern, Germany
| | | | | | | | | |
Collapse
|
21
|
Ramakrishnan K, Gnanam R, Sivakumar P, Manickam A. In vitro somatic embryogenesis from cell suspension cultures of cowpea [Vigna unguiculata (L.) Walp]. PLANT CELL REPORTS 2005; 24:449-61. [PMID: 15959731 DOI: 10.1007/s00299-005-0965-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2005] [Accepted: 03/12/2005] [Indexed: 05/03/2023]
Abstract
We report, an efficient protocol for plantlet regeneration from the cell suspension cultures of cowpea through somatic embryogenesis. Primary leaf-derived, embryogenic calli initiated in MMS [MS salts (Murashige and Skoog 1962) with B5 (Gamborg et al. 1968) vitamins] medium containing 2,4-Dichlorophenoxyacetic acid (2,4-D), casein hydrolysate (CH), and L: -Glutamic acid-5-amide (Gln). Fast-growing embryogenic cell suspensions were established in 0.5 mg l(-1) 2,4-D, which resulted in the highest recovery of early stages of somatic embryos in liquid MMS medium. Embryo development was asynchronous and strongly influenced by the 2,4-D concentration. Mature monocotyledonary-stage somatic embryos were induced in liquid B5 medium containing 0.1 mg l(-1) 2,4-D, 20 mg l(-1) L: -Proline (Pro), 5 muM Abscisic acid (ABA), and 2% mannitol. B5 medium was found superior for the maturation of somatic embryos compared to MS and MMS media. The importance of duration (5 d) for effective maturation of somatic embryos is demonstrated. A reduction in the 2,4-D level in suspensions increased the somatic embryo induction and maturation with decreased abnormalities. Sucrose was found to be the best carbon source for callus induction while mannitol for embryo maturation and maltose for embryo germination. Extension of hypocotyls and complete development of plantlet was achieved in half-strength B5 medium supplemented with 3% maltose, 2500 mg l(-1) potassium nitrate, and 0.05 mg l(-1) thidiazuron (TDZ) with 32% regeneration frequency. Field-established plants were morphologically normal and fertile. This regeneration protocol assures a high frequency of embryo induction, maturation, and plantlet conversion.
Collapse
Affiliation(s)
- K Ramakrishnan
- Center for Plant Molecular Biology, Tamil Nadu Agricultural University, Coimbatore 641003, India
| | | | | | | |
Collapse
|
22
|
Wormit A, Traub M, FLöRCHINGER M, Neuhaus H, MöHLMANN T. Characterization of three novel members of the Arabidopsis thaliana equilibrative nucleoside transporter (ENT) family. Biochem J 2004; 383:19-26. [PMID: 15228386 PMCID: PMC1134039 DOI: 10.1042/bj20040389] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2004] [Revised: 06/29/2004] [Accepted: 06/30/2004] [Indexed: 11/17/2022]
Abstract
Research on metabolism of nucleotides and their derivatives has gained increasing interest in the recent past. This includes de novo synthesis, analysis of salvage pathways, breakdown and transport of nucleotides, nucleosides and nucleobases. To perform a further step towards the analysis of nucleoside transport in Arabidopsis, we incubated leaf discs with various radioactively labelled nucleosides. Leaf cells imported labelled nucleosides and incorporated these compounds into RNA, but not into DNA. Furthermore, we report on the biochemical properties of three so far uncharacterized members of the Arabidopsis ENT (equilibrative nucleoside transporter) family (AtENT4, AtENT6 and AtENT7). After heterologous expression in yeast, all three proteins exhibited broad substrate specificity and transported the purine nucleosides adenosine and guanosine, as well as the pyrimidine nucleosides cytidine and uridine. The apparent K(m) values were in the range 3-94 microM, and transport was inhibited most strongly by deoxynucleosides, and to a smaller extent by nucleobases. Typical inhibitors of mammalian ENT proteins, such as dilazep and NBMPR (nitrobenzylmercaptopurine ribonucleoside, also known as nitrobenzylthioinosine) surprisingly exerted almost no effect on Arabidopsis ENT proteins. Transport mediated by the AtENT isoforms differed in pH-dependency, e.g. AtENT7 was not affected by changes in pH, AtENT3, 4 and 6 exhibited a less pronounced pH-dependency, and AtENT1 activity was clearly pH-dependent. Using a GFP (green fluorescent protein)-fusion protein transiently expressed in tobacco leaf protoplasts, a localization of AtENT6 in the plant plasma membrane has been revealed.
Collapse
Affiliation(s)
- Alexandra Wormit
- Universität Kaiserslautern, Pflanzenphysiologie, Postfach 3049, D-67653 Kaiserslautern, Germany
| | - Michaela Traub
- Universität Kaiserslautern, Pflanzenphysiologie, Postfach 3049, D-67653 Kaiserslautern, Germany
| | - Martin FLöRCHINGER
- Universität Kaiserslautern, Pflanzenphysiologie, Postfach 3049, D-67653 Kaiserslautern, Germany
| | - H. Ekkehard Neuhaus
- Universität Kaiserslautern, Pflanzenphysiologie, Postfach 3049, D-67653 Kaiserslautern, Germany
| | - Torsten MöHLMANN
- Universität Kaiserslautern, Pflanzenphysiologie, Postfach 3049, D-67653 Kaiserslautern, Germany
| |
Collapse
|
23
|
Keya CA, Crozier A, Ashihara H. Inhibition of caffeine biosynthesis in tea (Camellia sinensis) and coffee (Coffea arabica) plants by ribavirin. FEBS Lett 2003; 554:473-7. [PMID: 14623114 DOI: 10.1016/s0014-5793(03)01213-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The effects of ribavirin, an inhibitor of inosine-5'-monophosphate (IMP) dehydrogenase, on [8-(14)C]inosine metabolism in tea leaves, coffee leaves and coffee fruits were investigated. Incorporation of radioactivity from [8-(14)C]inosine into purine alkaloids, such as theobromine and caffeine, guanine residues of RNA, and CO(2) was reduced by ribavirin, while incorporation into nucleotides, including IMP and adenine residues of RNA, was increased. The results indicate that inhibition of IMP dehydrogenase by ribavirin inhibits both caffeine and guanine nucleotide biosynthesis in caffeine-forming plants. The use of IMP dehydrogenase-deficient plants as a potential source of good quality caffeine-deficient tea and coffee plants is discussed.
Collapse
Affiliation(s)
- Chaman Ara Keya
- Department of Advanced Bioscience, Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo 112-8610, Japan
| | | | | |
Collapse
|
24
|
Stasolla C, Katahira R, Thorpe TA, Ashihara H. Purine and pyrimidine nucleotide metabolism in higher plants. JOURNAL OF PLANT PHYSIOLOGY 2003; 160:1271-95. [PMID: 14658380 DOI: 10.1078/0176-1617-01169] [Citation(s) in RCA: 220] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Purine and pyrimidine nucleotides participate in many biochemical processes in plants. They are building blocks for nucleic acid synthesis, an energy source, precursors for the synthesis of primary products, such as sucrose, polysaccharides, phospholipids, as well as secondary products. Therefore, biosynthesis and metabolism of nucleotides are of fundamental importance in the growth and development of plants. Nucleotides are synthesized both from amino acids and other small molecules via de novo pathways, and from preformed nucleobases and nucleosides by salvage pathways. In this article the biosynthesis, interconversion and degradation of purine and pyrimidine nucleotides in higher plants are reviewed. This description is followed by an examination of physiological aspects of nucleotide metabolism in various areas of growth and organized development in plants, including embryo maturation and germination, in vitro organogenesis, storage organ development and sprouting, leaf senescence, and cultured plant cells. The effects of environmental factors on nucleotide metabolism are also described. This review ends with a brief discussion of molecular studies on nucleotide synthesis and metabolism.
Collapse
Affiliation(s)
- Claudio Stasolla
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| | | | | | | |
Collapse
|
25
|
Stasolla C, Loukanina N, Ashihara H, Yeung EC, Thorpe TA. Pyrimidine nucleotide and nucleic acid synthesis in embryos and megagametophytes of white spruce (Picea glauca) during germination. PHYSIOLOGIA PLANTARUM 2002; 115:155-165. [PMID: 12010479 DOI: 10.1034/j.1399-3054.2002.1150118.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Pyrimidine nucleotide synthesis was investigated in isolated germinating zygotic embryos and separated megagametophytes of white spruce by following the metabolic fate of 14C-labelled orotic acid, uridine, and uracil, as well as by measuring the activities of the major enzymes participating in nucleotide synthesis. The rate of nucleic acid synthesis in these tissues was also examined by tracer experiments and autoradiographic studies conducted with labelled thymidine, and by conventional light microscopy. From our results, it emerges that changes in the contribution of the de novo and salvage pathways of pyrimidines play an important role during the initial stages of zygotic embryo germination. Preferential utilization of uridine for nucleic acid synthesis, via the salvage pathway, was observed at the onset of germination, before the restoration of a fully functional de novo pathway. Similar metabolic changes, not observed in the gametophytic tissue, were also documented in somatic embryos previously. These alterations of the overall pyrimidine metabolism may represent a strategy for ensuring the germinating embryos with a large nucleotide pool. Utilization of 14C-thymidine for nucleic acid synthesis increased in both dissected embryos and megagametophytes during germination. Autoradiographic and light microscopic studies indicated that soon after imbibition, DNA synthesis was preferentially initiated along the embryonic axis, especially in the cortical cells. Apical meristem reactivation was a later event, and the root meristem became activated before the shoot meristem. Taken together, these results indicate that precise changes in nucleotide and nucleic acid metabolism occur during the early phases of embryo germination.
Collapse
Affiliation(s)
- Claudio Stasolla
- Plant Physiology Research Group, Department of Biological Sciences, University of, Calgary, Calgary, Alberta T2N 1N4, Canada Department of Biology, Faculty of Science, Ochanomizu University, Tokyo 112-8610, Japan Present address: NC State, Forest Biotechnology Group, 2500 Partners II Bldg., Raleigh, NC 27695, USA
| | | | | | | | | |
Collapse
|