1
|
Anatomy of a twin DNA replication factory. Biochem Soc Trans 2020; 48:2769-2778. [PMID: 33300972 PMCID: PMC7752080 DOI: 10.1042/bst20200640] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/13/2020] [Accepted: 11/17/2020] [Indexed: 11/30/2022]
Abstract
The replication of DNA in chromosomes is initiated at sequences called origins at which two replisome machines are assembled at replication forks that move in opposite directions. Interestingly, in vivo studies observe that the two replication forks remain fastened together, often referred to as a replication factory. Replication factories containing two replisomes are well documented in cellular studies of bacteria (Escherichia coli and Bacillus subtilis) and the eukaryote, Saccharomyces cerevisiae. This basic twin replisome factory architecture may also be preserved in higher eukaryotes. Despite many years of documenting the existence of replication factories, the molecular details of how the two replisome machines are tethered together has been completely unknown in any organism. Recent structural studies shed new light on the architecture of a eukaryote replisome factory, which brings with it a new twist on how a replication factory may function.
Collapse
|
2
|
Yuan Z, Georgescu R, Santos RDLA, Zhang D, Bai L, Yao NY, Zhao G, O'Donnell ME, Li H. Ctf4 organizes sister replisomes and Pol α into a replication factory. eLife 2019; 8:47405. [PMID: 31589141 PMCID: PMC6800005 DOI: 10.7554/elife.47405] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 10/04/2019] [Indexed: 12/14/2022] Open
Abstract
The current view is that eukaryotic replisomes are independent. Here we show that Ctf4 tightly dimerizes CMG helicase, with an extensive interface involving Psf2, Cdc45, and Sld5. Interestingly, Ctf4 binds only one Pol α-primase. Thus, Ctf4 may have evolved as a trimer to organize two helicases and one Pol α-primase into a replication factory. In the 2CMG–Ctf43–1Pol α-primase factory model, the two CMGs nearly face each other, placing the two lagging strands toward the center and two leading strands out the sides. The single Pol α-primase is centrally located and may prime both sister replisomes. The Ctf4-coupled-sister replisome model is consistent with cellular microscopy studies revealing two sister forks of an origin remain attached and are pushed forward from a protein platform. The replication factory model may facilitate parental nucleosome transfer during replication.
Collapse
Affiliation(s)
- Zuanning Yuan
- Structural Biology Program, Van Andel Institute, Grand Rapids, United States
| | - Roxana Georgescu
- Howard Hughes Medical Institute, Chevy Chase, United States.,DNA Replication Laboratory, The Rockefeller University, New York, United States
| | | | - Daniel Zhang
- DNA Replication Laboratory, The Rockefeller University, New York, United States
| | - Lin Bai
- Structural Biology Program, Van Andel Institute, Grand Rapids, United States
| | - Nina Y Yao
- DNA Replication Laboratory, The Rockefeller University, New York, United States
| | - Gongpu Zhao
- David Van Andel Advanced Cryo-EM Suite, Van Andel Institute, Grand Rapids, United States
| | - Michael E O'Donnell
- Howard Hughes Medical Institute, Chevy Chase, United States.,DNA Replication Laboratory, The Rockefeller University, New York, United States
| | - Huilin Li
- Structural Biology Program, Van Andel Institute, Grand Rapids, United States
| |
Collapse
|
3
|
Brambati A, Zardoni L, Achar YJ, Piccini D, Galanti L, Colosio A, Foiani M, Liberi G. Dormant origins and fork protection mechanisms rescue sister forks arrested by transcription. Nucleic Acids Res 2019; 46:1227-1239. [PMID: 29059325 PMCID: PMC5815123 DOI: 10.1093/nar/gkx945] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 10/03/2017] [Indexed: 12/18/2022] Open
Abstract
The yeast RNA/DNA helicase Sen1, Senataxin in human, preserves the integrity of replication forks encountering transcription by removing RNA-DNA hybrids. Here we show that, in sen1 mutants, when a replication fork clashes head-on with transcription is arrested and, as a consequence, the progression of the sister fork moving in the opposite direction within the same replicon is also impaired. Therefore, sister forks remain coupled when one of the two forks is arrested by transcription, a fate different from that experienced by forks encountering Double Strand Breaks. We also show that dormant origins of replication are activated to ensure DNA synthesis in the proximity to the forks arrested by transcription. Dormant origin firing is not inhibited by the replication checkpoint, rather dormant origins are fired if they cannot be timely inactivated by passive replication. In sen1 mutants, the Mre11 and Mrc1–Ctf4 complexes protect the forks arrested by transcription from processing mediated by the Exo1 nuclease. Thus, a harmless head-on replication-transcription clash resolution requires the fine-tuning of origin firing and coordination among Sen1, Exo1, Mre11 and Mrc1–Ctf4 complexes.
Collapse
Affiliation(s)
- Alessandra Brambati
- Istituto di Genetica Molecolare, CNR, Via Abbiategrasso 207, 27100 Pavia, Italy
| | - Luca Zardoni
- Istituto di Genetica Molecolare, CNR, Via Abbiategrasso 207, 27100 Pavia, Italy.,Scuola Universitaria Superiore IUSS, 27100 Pavia, Italy
| | | | | | - Lorenzo Galanti
- Istituto di Genetica Molecolare, CNR, Via Abbiategrasso 207, 27100 Pavia, Italy
| | - Arianna Colosio
- Istituto di Genetica Molecolare, CNR, Via Abbiategrasso 207, 27100 Pavia, Italy
| | - Marco Foiani
- IFOM Foundation, Via Adamello 16, 20139 Milan, Italy.,Università degli Studi di Milano, 20133 Milan, Italy
| | - Giordano Liberi
- Istituto di Genetica Molecolare, CNR, Via Abbiategrasso 207, 27100 Pavia, Italy.,IFOM Foundation, Via Adamello 16, 20139 Milan, Italy
| |
Collapse
|
4
|
Saner N, Karschau J, Natsume T, Gierliński M, Retkute R, Hawkins M, Nieduszynski CA, Blow JJ, de Moura AP, Tanaka TU. Stochastic association of neighboring replicons creates replication factories in budding yeast. J Cell Biol 2013; 202:1001-12. [PMID: 24062338 PMCID: PMC3787376 DOI: 10.1083/jcb.201306143] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 08/26/2013] [Indexed: 01/03/2023] Open
Abstract
Inside the nucleus, DNA replication is organized at discrete sites called replication factories, consisting of DNA polymerases and other replication proteins. Replication factories play important roles in coordinating replication and in responding to replication stress. However, it remains unknown how replicons are organized for processing at each replication factory. Here we address this question using budding yeast. We analyze how individual replicons dynamically organized a replication factory using live-cell imaging and investigate how replication factories were structured using super-resolution microscopy. Surprisingly, we show that the grouping of replicons within factories is highly variable from cell to cell. Once associated, however, replicons stay together relatively stably to maintain replication factories. We derive a coherent genome-wide mathematical model showing how neighboring replicons became associated stochastically to form replication factories, which was validated by independent microscopy-based analyses. This study not only reveals the fundamental principles promoting replication factory organization in budding yeast, but also provides insight into general mechanisms by which chromosomes organize sub-nuclear structures.
Collapse
Affiliation(s)
- Nazan Saner
- Centre for Gene Regulation and Expression, and Data Analysis Group, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | - Jens Karschau
- Institute for Complex Systems and Mathematical Biology, SUPA, School of Natural and Computing Sciences, University of Aberdeen, Aberdeen AB24 3UE, Scotland, UK
| | - Toyoaki Natsume
- Centre for Gene Regulation and Expression, and Data Analysis Group, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | - Marek Gierliński
- Centre for Gene Regulation and Expression, and Data Analysis Group, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | - Renata Retkute
- Centre for Genetics and Genomics, School of Biology, University of Nottingham, Nottingham NG7 2UH, England, UK
| | - Michelle Hawkins
- Centre for Genetics and Genomics, School of Biology, University of Nottingham, Nottingham NG7 2UH, England, UK
| | - Conrad A. Nieduszynski
- Centre for Genetics and Genomics, School of Biology, University of Nottingham, Nottingham NG7 2UH, England, UK
| | - J. Julian Blow
- Centre for Gene Regulation and Expression, and Data Analysis Group, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | - Alessandro P.S. de Moura
- Institute for Complex Systems and Mathematical Biology, SUPA, School of Natural and Computing Sciences, University of Aberdeen, Aberdeen AB24 3UE, Scotland, UK
| | - Tomoyuki U. Tanaka
- Centre for Gene Regulation and Expression, and Data Analysis Group, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK
| |
Collapse
|
5
|
Gambus A, Khoudoli GA, Jones RC, Blow JJ. MCM2-7 form double hexamers at licensed origins in Xenopus egg extract. J Biol Chem 2011; 286:11855-64. [PMID: 21282109 PMCID: PMC3064236 DOI: 10.1074/jbc.m110.199521] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Revised: 01/06/2011] [Indexed: 02/01/2023] Open
Abstract
In late mitosis and G1, Mcm2-7 are assembled onto replication origins to license them for initiation in the upcoming S phase. After initiation, Mcm2-7 provide helicase activity to unwind DNA at the replication fork. Here we examine the structure of Mcm2-7 on chromatin in Xenopus egg extracts. We show that prior to replication initiation, Mcm2-7 is present at licensed replication origins in a complex with a molecular mass close to double that of the Mcm2-7 hexamer. This complex has approximately stoichiometric quantities of the 6 Mcm2-7 proteins and we conclude that it consists of a double heterohexamer. This provides a configuration potentially capable of initiating a pair of bidirectional replication forks in S phase. We also show that after initiation, Mcm2-7 associate with Cdc45 and GINS to form a relatively stable CMG (Cdc45-MCM-GINS) complex. The CMG proteins also associate less strongly with other replication proteins, consistent with the idea that a single CMG complex forms the core of the replisome.
Collapse
Affiliation(s)
- Agnieszka Gambus
- From the Wellcome Trust Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee DD1 5EH, United Kingdom and
| | - Guennadi A. Khoudoli
- From the Wellcome Trust Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee DD1 5EH, United Kingdom and
| | | | - J. Julian Blow
- From the Wellcome Trust Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee DD1 5EH, United Kingdom and
| |
Collapse
|
6
|
Uncoupling of sister replisomes during eukaryotic DNA replication. Mol Cell 2011; 40:834-40. [PMID: 21145490 DOI: 10.1016/j.molcel.2010.11.027] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Revised: 09/13/2010] [Accepted: 09/24/2010] [Indexed: 01/19/2023]
Abstract
The duplication of eukaryotic genomes involves the replication of DNA from multiple origins of replication. In S phase, two sister replisomes assemble at each active origin, and they replicate DNA in opposite directions. Little is known about the functional relationship between sister replisomes. Some data imply that they travel away from one another and thus function independently. Alternatively, sister replisomes may form a stationary, functional unit that draws parental DNA toward itself. If this "double replisome" model is correct, a constrained DNA molecule should not undergo replication. To test this prediction, lambda DNA was stretched and immobilized at both ends within a microfluidic flow cell. Upon exposure to Xenopus egg extracts, this DNA underwent extensive replication by a single pair of diverging replisomes. The data show that there is no obligatory coupling between sister replisomes and, together with other studies, imply that genome duplication involves autonomously functioning replisomes.
Collapse
|
7
|
Abstract
Duplication of chromosomal DNA is a temporally and spatially regulated process. The timing of DNA replication initiation at various origins is highly coordinated; some origins fire early and others late during S phase. Moreover, inside the nuclei, the bulk of DNA replication is physically organized in replication factories, consisting of DNA polymerases and other replication proteins. In this review article, we discuss how DNA replication is organized and regulated spatially within the nucleus and how this spatial organization is linked to temporal regulation. We focus on DNA replication in budding yeast and fission yeast and, where applicable, compare yeast DNA replication with that in bacteria and metazoans.
Collapse
Affiliation(s)
- Toyoaki Natsume
- Wellcome Trust Centre for Gene Regulation and Expression, University of Dundee, Dundee, DD1 5EH, UK
| | | |
Collapse
|
8
|
Abstract
High fidelity chromosome transmission requires the pairing of sister chromatids by a group of conserved proteins called cohesins during S-phase. Sister chromatid cohesion is maintained until anaphase onset. Presently, there are two sets of models of cohesin complex popular in the cohesin biology field: one model predicts that single cohesin rings entrap both sister chromatids, and the other model proposes that cohesin complexes associate with each sister chromatid and become paired during DNA replication. It is the first model that currently predominate the field--in part because prior efforts failed to detect higher order cohesin-cohesin interactions. However, the static configuration and size limitation of the one ring embrace model are the major limitations of the embrace model, and cannot explain various functions of cohesin in DNA replication, DNA repair and gene expression. In a recent study published by Zhang et al. in the Journal of Cell Biology describes a two-ring handcuff model for the cohesin complex, and provides new information regarding how sister chromatid cohesion and separation are achieved in vertebrate cell systems.
Collapse
Affiliation(s)
- Nenggang Zhang
- Texas Children’s Cancer Center; Department of Pediatric Hematology/Oncology; Baylor College of Medicine; Houston, Texas USA
| | - Debananda Pati
- Texas Children’s Cancer Center; Department of Pediatric Hematology/Oncology; Baylor College of Medicine; Houston, Texas USA
| |
Collapse
|
9
|
Fanning E, Zhao K. SV40 DNA replication: from the A gene to a nanomachine. Virology 2008; 384:352-9. [PMID: 19101707 DOI: 10.1016/j.virol.2008.11.038] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2008] [Accepted: 11/18/2008] [Indexed: 12/23/2022]
Abstract
Duplication of the simian virus 40 (SV40) genome is the best understood eukaryotic DNA replication process to date. Like most prokaryotic genomes, the SV40 genome is a circular duplex DNA organized in a single replicon. This small viral genome, its association with host histones in nucleosomes, and its dependence on the host cell milieu for replication factors and precursors led to its adoption as a simple and powerful model. The steps in replication, the viral initiator, the host proteins, and their mechanisms of action were initially defined using a cell-free SV40 replication reaction. Although our understanding of the vastly more complex host replication fork is advancing, no eukaryotic replisome has yet been reconstituted and the SV40 paradigm remains a point of reference. This article reviews some of the milestones in the development of this paradigm and speculates on its potential utility to address unsolved questions in eukaryotic genome maintenance.
Collapse
Affiliation(s)
- Ellen Fanning
- Department of Biological Sciences, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN 37235-1634, USA.
| | | |
Collapse
|
10
|
Bermejo R, Branzei D, Foiani M. Cohesion by topology: sister chromatids interlocked by DNA. Genes Dev 2008; 22:2297-301. [PMID: 18765785 DOI: 10.1101/gad.1719308] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Sister chromatid cohesion is coupled with chromosome replication and influences chromosome segregation and intra-S repair. Specialized proteins, the cohesins, together with other pathways contribute to tether sister chromatids. In this issue of Genes & Development, Wang and colleagues (pp. 2426-2433 demonstrate that TopoIV, a type II DNA topoisomerase, modulates cohesion in Escherichia coli, by removing interlocked DNA junctions between sister chromatids. They propose that DNA precatenanes, arising during replication fork progression, hold sister chromatids together.
Collapse
Affiliation(s)
- Rodrigo Bermejo
- Fondazione Italiana per la Ricerca sul Cancro (FIRC) Institute of Molecular Oncology Foundation, 20139 Milan, Italy
| | | | | |
Collapse
|
11
|
Stefanovic D, Kusic J, Divac A, Tomic B. Formation of noncanonical DNA structures mediated by human ORC4, a protein component of the origin recognition complex. Biochemistry 2008; 47:8760-7. [PMID: 18652488 DOI: 10.1021/bi800684f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Many genomic sequences, DNA replication origins included, contain specific structural motifs prone to alternative base pairing. Structural rearrangements of DNA require specific environmental conditions and could be favored by chemical agents or proteins. To improve our understanding of alternative conformations of origins and the manner in which they form, we have investigated the effect of DNA-binding, AAA+ protein human ORC4 on single-stranded origin DNA or various oligonucleotides. Here we demonstrate that human ORC4 stimulated formation of inter- and intramolecular T.A.T triplexes and created novel structures, such as homoadenine duplexes. Adenine-based structures were held together by Hoogsteen hydrogen bonds, as demonstrated on 7-deaza-dAMP- or dAMP-containing substrates, and characterized by increased thermal stability. Adenine pairing occurred only in the presence of human ORC4, in a neutral buffer supplemented with ATP and Mg (2+) ions. The protein mutant that could not bind ATP was inactive in this reaction. Since the action of human ORC4 could be biologically important, its potential impact on DNA replication is discussed.
Collapse
Affiliation(s)
- Dragana Stefanovic
- Institute of Molecular Genetics and Genetic Engineering, Vojvode Stepe 444a, P.O. Box 23, 11010 Belgrade, Serbia.
| | | | | | | |
Collapse
|
12
|
Branzei D, Foiani M. Interplay of replication checkpoints and repair proteins at stalled replication forks. DNA Repair (Amst) 2007; 6:994-1003. [PMID: 17382606 DOI: 10.1016/j.dnarep.2007.02.018] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
DNA replication is an essential process that occurs in all growing cells and needs to be tightly regulated in order to preserve genetic integrity. Eukaryotic cells have developed multiple mechanisms to ensure the fidelity of replication and to coordinate the progression of replication forks. Replication is often impeded by DNA damage or replication blocks, and the resulting stalled replication forks are sensed and protected by specialized surveillance mechanisms called checkpoints. The replication checkpoint plays an essential role in preventing the breakdown of stalled replication forks and the accumulation of DNA structures that enhance recombination and chromosomal rearrangements that ultimately lead to genomic instability and cancer development. In addition, the replication checkpoint is thought to assist and coordinate replication fork restart processes by controlling DNA repair pathways, regulating chromatin structure, promoting the recruitment of proteins to sites of damage, and controlling cell cycle progression. In this review we focus mainly on the results obtained in budding yeast to discuss on the multiple roles of checkpoints in maintaining fork integrity and on the enzymatic activities that cooperate with the checkpoint pathway to promote fork resumption and repair of DNA lesions thereby contributing to genome integrity.
Collapse
Affiliation(s)
- Dana Branzei
- FIRC Institute of Molecular Oncology Foundation, Via Adamello 16, 20139 Milan, Italy.
| | | |
Collapse
|
13
|
Storck S, Shukla M, Dimitrov S, Bouvet P. Functions of the histone chaperone nucleolin in diseases. Subcell Biochem 2007; 41:125-44. [PMID: 17484127 DOI: 10.1007/1-4020-5466-1_7] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Alteration of nuclear morphology is often used by pathologist as diagnostic marker for malignancies like cancer. In particular, the staining of cells by the silver staining methods (AgNOR) has been proved to be an important tool for predicting the clinical outcome of some cancer diseases. Two major argyrophilic proteins responsible for the strong staining of cells in interphase are the nucleophosmin (B23) and the nucleolin (C23) nucleolar proteins. Interestingly these two proteins have been described as chromatin associated proteins with histone chaperone activities and also as proteins able to regulate chromatin transcription. Nucleolin seems to be over-expressed in highly proliferative cells and is involved in many aspect of gene expression: chromatin remodeling, DNA recombination and replication, RNA transcription by RNA polymerase I and II, rRNA processing, mRNA stabilisation, cytokinesis and apoptosis. Interestingly, nucleolin is also found on the cell surface in a wide range of cancer cells, a property which is being used as a marker for the diagnosis of cancer and for the development of anti-cancer drugs to inhibit proliferation of cancer cells. In addition to its implication in cancer, nucleolin has been described not only as a marker or as a protein being involved in many diseases like viral infections, autoimmune diseases, Alzheimer's disease pathology but also in drug resistance. In this review we will focus on the chromatin associated functions of nucleolin and discuss the functions of nucleolin or its use as diagnostic marker and as a target for therapy
Collapse
Affiliation(s)
- Sébastien Storck
- Laboratoire Joliot-Curie, Ecole Normale Supérieure de Lyon, 46 Allée d'Italie, 69007 Lyon, France
| | | | | | | |
Collapse
|
14
|
Kitamura E, Blow JJ, Tanaka TU. Live-cell imaging reveals replication of individual replicons in eukaryotic replication factories. Cell 2006; 125:1297-308. [PMID: 16814716 PMCID: PMC3019746 DOI: 10.1016/j.cell.2006.04.041] [Citation(s) in RCA: 160] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2006] [Revised: 03/14/2006] [Accepted: 04/13/2006] [Indexed: 11/25/2022]
Abstract
Faithful DNA replication ensures genetic integrity in eukaryotic cells, but it is still obscure how replication is organized in space and time within the nucleus. Using timelapse microscopy, we have developed a new assay to analyze the dynamics of DNA replication both spatially and temporally in individual Saccharomyces cerevisiae cells. This allowed us to visualize replication factories, nuclear foci consisting of replication proteins where the bulk of DNA synthesis occurs. We show that the formation of replication factories is a consequence of DNA replication itself. Our analyses of replication at specific DNA sequences support a long-standing hypothesis that sister replication forks generated from the same origin stay associated with each other within a replication factory while the entire replicon is replicated. This assay system allows replication to be studied at extremely high temporal resolution in individual cells, thereby opening a window into how replication dynamics vary from cell to cell.
Collapse
Affiliation(s)
- Etsushi Kitamura
- School of Life Sciences, University of Dundee, Wellcome Trust Biocentre, Dow Street, Dundee, UK
| | | | | |
Collapse
|
15
|
Breier AM, Weier HUG, Cozzarelli NR. Independence of replisomes in Escherichia coli chromosomal replication. Proc Natl Acad Sci U S A 2005; 102:3942-7. [PMID: 15738384 PMCID: PMC552787 DOI: 10.1073/pnas.0500812102] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In Escherichia coli DNA replication is carried out by the coordinated action of the proteins within a replisome. After replication initiation, the two bidirectionally oriented replisomes from a single origin are colocalized into higher-order structures termed replication factories. The factory model postulated that the two replisomes are also functionally coupled. We tested this hypothesis by using DNA combing and whole-genome microarrays. Nascent DNA surrounding oriC in single, combed chromosomes showed instead that one replisome, usually the leftward one, was significantly ahead of the other 70% of the time. We next used microarrays to follow replication throughout the genome by measuring DNA copy number. We found in multiple E. coli strains that the replisomes are independent, with the leftward replisome ahead of the rightward one. The size of the bias was strain-specific, varying from 50 to 130 kb in the array results. When we artificially blocked one replisome, the other continued unabated, again demonstrating independence. We suggest an improved version of the factory model that retains the advantages of threading DNA through colocalized replisomes at about equal rates, but allows the cell flexibility to overcome obstacles encountered during elongation.
Collapse
Affiliation(s)
- Adam M Breier
- Graduate Group in Biophysics and Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | | | | |
Collapse
|
16
|
Gomez-Lorenzo MG, Valle M, Frank J, Gruss C, Sorzano COS, Chen XS, Donate LE, Carazo JM. Large T antigen on the simian virus 40 origin of replication: a 3D snapshot prior to DNA replication. EMBO J 2004; 22:6205-13. [PMID: 14633980 PMCID: PMC291853 DOI: 10.1093/emboj/cdg612] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Large T antigen is the replicative helicase of simian virus 40. Its specific binding to the origin of replication and oligomerization into a double hexamer distorts and unwinds dsDNA. In viral replication, T antigen acts as a functional homolog of the eukaryotic minichromosome maintenance factor MCM. T antigen is also an oncoprotein involved in transformation through interaction with p53 and pRb. We obtained the three-dimensional structure of the full-length T antigen double hexamer assembled at its origin of replication by cryoelectron microscopy and single-particle reconstruction techniques. The double hexamer shows different degrees of bending along the DNA axis. The two hexamers are differentiated entities rotated relative to each other. Isolated strands of density, putatively assigned to ssDNA, protrude from the hexamer-hexamer junction mainly at two opposite sites. The structure of the T antigen at the origin of replication can be understood as a snapshot of the dynamic events leading to DNA unwinding. Based on these results a model for the initiation of simian virus 40 DNA replication is proposed.
Collapse
|
17
|
Chilkova O, Jonsson BH, Johansson E. The quaternary structure of DNA polymerase epsilon from Saccharomyces cerevisiae. J Biol Chem 2003; 278:14082-6. [PMID: 12571237 DOI: 10.1074/jbc.m211818200] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DNA polymerase epsilon (Pol epsilon) from Saccharomyces cerevisiae consists of four subunits (Pol2, Dpb2, Dpb3, and Dpb4) and is essential for chromosomal DNA replication. Biochemical characterizations of Pol epsilon have been cumbersome due to protease sensitivity and the limited amounts of Pol epsilon in cells. We have developed a protocol for overexpression and purification of Pol epsilon from S. cerevisiae. The native four-subunit complex was purified to homogeneity by conventional chromatography. Pol epsilon was characterized biochemically by sedimentation velocity experiments and gel filtration experiments. The stoichiometry of the four subunits was estimated to be 1:1:1:1 from colloidal Coomassie-stained gels. Based on the sedimentation coefficient (11.9 S) and the Stokes radius (74.5 A), a molecular mass for Pol epsilon of 371 kDa was calculated, in good agreement with the calculated molecular mass of 379 kDa for a heterotetramer. Furthermore, analytical equilibrium ultracentrifugation experiments support the proposed heterotetrameric structure of Pol epsilon. Thus, both DNA polymerase delta and Pol epsilon are purified as monomeric complexes, in agreement with accumulating evidence that Pol delta and Pol epsilon are located on opposite strands of the eukaryotic replication fork.
Collapse
Affiliation(s)
- Olga Chilkova
- Department of Medical Biochemistry and Biophysics, Umeå University, Sweden
| | | | | |
Collapse
|
18
|
Seinsoth S, Uhlmann-Schiffler H, Stahl H. Bidirectional DNA unwinding by a ternary complex of T antigen, nucleolin and topoisomerase I. EMBO Rep 2003; 4:263-8. [PMID: 12634843 PMCID: PMC1315898 DOI: 10.1038/sj.embor.embor770] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2002] [Revised: 12/19/2002] [Accepted: 01/14/2003] [Indexed: 11/09/2022] Open
Abstract
The simian virus 40 large tumour-antigen (T antigen) DNA helicase is a hexameric structure; it has been proposed that, in viral DNA replication, two of these hexamers are combined to form a bipartite holoenzyme that acts concurrently at both forks of a replication bubble. In a search for structural components of this helicase complex, we have identified nucleolin as a specific binding protein for the T-antigen hexamer. We show that nucleolin, in co-operation with human topoisomerase I, mediates the cohesion of the T-antigen helicase holoenzyme during plasmid unwinding. Our results provide biochemical evidence for a direct role of nucleolin in DNA replication, in addition to its known function in ribosome biogenesis. The data presented here suggest that nucleolin enables the formation of a functional 'helicase-swivelase' complex at the replication fork.
Collapse
Affiliation(s)
- Stephanie Seinsoth
- Medizinische Biochemie und Molekularbiologie, Universität des Saarlandes, Gebaude 45, D-66421 Homburg, Germany
- Present address: Abteilung Arzneimittelzulassung, Pfizer, Postfach 4949, D-76032 Karlsruhe, Germany
| | - Heike Uhlmann-Schiffler
- Medizinische Biochemie und Molekularbiologie, Universität des Saarlandes, Gebaude 45, D-66421 Homburg, Germany
| | - Hans Stahl
- Medizinische Biochemie und Molekularbiologie, Universität des Saarlandes, Gebaude 45, D-66421 Homburg, Germany
| |
Collapse
|
19
|
Cordeiro-Stone M, Nikolaishvili-Feinberg N. Asymmetry of DNA replication and translesion synthesis of UV-induced thymine dimers. Mutat Res 2002; 510:91-106. [PMID: 12459446 DOI: 10.1016/s0027-5107(02)00255-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In vitro replication assays for detection and quantification of bypass of UV-induced DNA photoproducts were used to compare the capacity of extracts prepared from different human cell lines to replicate past the cis,syn cyclobutane thymine dimer ([c,s]TT). The results demonstrated that neither nucleotide excision repair (NER) nor mismatch repair (MMR) activities in the intact cells interfered with measurements of bypass replication efficiencies in vitro. Extracts prepared from HeLa (NER- and MMR-proficient), xeroderma pigmentosum group A (NER-deficient), and HCT116 (MMR-deficient) cells displayed similar capacity for translesion synthesis, when the substrate carried the site-specific [c,s]TT on the template for the leading or the lagging strand of nascent DNA. Extracts from xeroderma pigmentosum variant cells, which lack DNA polymerase eta, were devoid of bypass activity. Bypass-proficient extracts as a group (n=16 for 3 extracts) displayed higher efficiency (P=0.005) for replication past the [c,s]TT during leading strand synthesis (84+/-22%) than during lagging strand synthesis (64+/-13%). These findings are compared to previous results concerning the bypass of the (6-4) photoproduct [Biochemistry 40 (2001) 15215] and analyzed in the context of the reported characteristics of bypass DNA polymerases implicated in translesion synthesis of UV-induced DNA lesions. Models to explain how these enzymes might interact with the DNA replication machinery are considered. An alternative pathway of bypass replication, which avoids translesion synthesis, and the mutagenic potential of post-replication repair mechanisms that contribute to the duplication of the human genome damaged by UV are discussed.
Collapse
Affiliation(s)
- Marila Cordeiro-Stone
- Department of Pathology and Laboratory Medicine, Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina,Chapel Hill, NC 27599-7525, USA.
| | | |
Collapse
|
20
|
Nasheuer HP, Smith R, Bauerschmidt C, Grosse F, Weisshart K. Initiation of eukaryotic DNA replication: regulation and mechanisms. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2002; 72:41-94. [PMID: 12206458 DOI: 10.1016/s0079-6603(02)72067-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The accurate and timely duplication of the genome is a major task for eukaryotic cells. This process requires the cooperation of multiple factors to ensure the stability of the genetic information of each cell. Mutations, rearrangements, or loss of chromosomes can be detrimental to a single cell as well as to the whole organism, causing failures, disease, or death. Because of the size of eukaryotic genomes, chromosomal duplication is accomplished in a multiparallel process. In human somatic cells between 10,000 and 100,000 parallel synthesis sites are present. This raises fundamental problems for eukaryotic cells to coordinate the start of DNA replication at each origin and to prevent replication of already duplicated DNA regions. Since these general phenomena were recognized in the middle of the 20th century the regulation and mechanisms of the initiation of eukaryotic DNA replication have been intensively investigated. These studies were carried out to find the essential factors involved in the process and to determine their functions during DNA replication. These studies gave rise to a model of the organization and the coordination of DNA replication within the eukaryotic cell. The elegant experiments carried out by Rao and Johnson (1970) (1), who fused cells in different phases of the cell cycle, showed that G1 cells are competent for replication of their chromosomes, but lack a specific diffusible factor required to activate their replicaton machinery and showed that G2 cells are incompetent for DNA replication. These findings suggested that eukaryotic cells exist in two states. In G1 phase, cells are competent to initiate DNA replication, which is subsequently triggered in S phase. After completion of S phase, cells in G2 are no longer able to initiate DNA replication and they require a transition through mitosis to reenable initiation of DNA replication to take place in the next S phase. The Xenopus cell-free replication system has proved a good model system in which to study DNA replication in vitro as well as the mechanism preventing rereplication within a single cell cycle (2). Studies using this system resulted in the development of a model postulating the existence of a replication licensing factor, which binds to chromatin before the G1-S transition and which is displaced during replication (2, 3). These results were supported by genetic and biochemical experiments in Saccharomyces cerevisiae (budding yeast) and Schizosaccharomyces pombe (fission yeast) (4, 5). The investigation of cell division cycle mutants and the budding yeast origin of replication resulted in the concept of a prereplicative and a postreplicative complex of initiation proteins (6-9). These three individual concepts have recently started to merge and it has become obvious that initiation in eukaryotes is generally governed by the same ubiquitous mechanisms.
Collapse
|
21
|
Ohya T, Kawasaki Y, Hiraga SI, Kanbara S, Nakajo K, Nakashima N, Suzuki A, Sugino A. The DNA polymerase domain of pol(epsilon) is required for rapid, efficient, and highly accurate chromosomal DNA replication, telomere length maintenance, and normal cell senescence in Saccharomyces cerevisiae. J Biol Chem 2002; 277:28099-108. [PMID: 12015307 DOI: 10.1074/jbc.m111573200] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Saccharomyces cerevisiae POL2 encodes the catalytic subunit of DNA polymerase epsilon. This study investigates the cellular functions performed by the polymerase domain of Pol2p and its role in DNA metabolism. The pol2-16 mutation has a deletion in the catalytic domain of DNA polymerase epsilon that eliminates its polymerase and exonuclease activities. It is a viable mutant, which displays temperature sensitivity for growth and a defect in elongation step of chromosomal DNA replication even at permissive temperatures. This mutation is synthetic lethal in combination with temperature-sensitive mutants or the 3'- to 5'-exonuclease-deficient mutant of DNA polymerase delta in a haploid cell. These results suggest that the catalytic activity of DNA polymerase epsilon participates in the same pathway as DNA polymerase delta, and this is consistent with the observation that DNA polymerases delta and epsilon colocalize in some punctate foci on yeast chromatids during S phase. The pol2-16 mutant senesces more rapidly than wild type strain and also has shorter telomeres. These results indicate that the DNA polymerase domain of Pol2p is required for rapid, efficient, and highly accurate chromosomal DNA replication in yeast.
Collapse
Affiliation(s)
- Tomoko Ohya
- Department of Biochemistry and Molecular Biology, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Schub O, Rohaly G, Smith RW, Schneider A, Dehde S, Dornreiter I, Nasheuer HP. Multiple phosphorylation sites of DNA polymerase alpha-primase cooperate to regulate the initiation of DNA replication in vitro. J Biol Chem 2001; 276:38076-83. [PMID: 11502743 DOI: 10.1074/jbc.m104975200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DNA polymerase alpha-primase (pol-prim) is the only enzyme that can start DNA replication de novo. The 180-kDa (p180) and 68-kDa (p68) subunits of the human four-subunit enzyme are phosphorylated by Cyclin-dependent kinases (Cdks) in a cell cycle-dependent manner. Cyclin A-Cdk2 physically interacts with pol-prim and phosphorylates N-terminal amino acids of the p180 and the p68 subunits, leading to an inhibition of pol-prim in initiating cell-free SV40 DNA replication. Mutation of conserved putative Cdk phosphorylation sites in the N terminus of human p180 and p68 reduced their phosphorylation by Cyclin A-Cdk2 in vitro. In contrast to wild-type pol-prim these mutants were no longer inhibited by Cyclin A-Cdk2 in the initiation of viral DNA replication. Importantly, rather than inhibiting it, Cyclin A-Cdk2 stimulated the initiation activity of pol-prim containing a triple N-terminal alanine mutant of the p180 subunit. Together these results suggest that Cyclin A-Cdk2 executes both stimulatory and inhibitory effects on the activity of pol-prim in initiating DNA replication.
Collapse
Affiliation(s)
- O Schub
- Institut für Molekulare Biotechnologie, Abteilung Biochemie, Beutenbergstrasse 11, D-07745 Jena, Germany
| | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
The in vivo intracellular location of components of the Caulobacter replication apparatus was visualized during the cell cycle. Replisome assembly occurs at the chromosomal origin located at the stalked cell pole, coincident with the initiation of DNA replication. The replisome gradually moves to midcell as DNA replication proceeds and disassembles upon completion of DNA replication. Although the newly replicated origin regions of the chromosome are rapidly moved to opposite cell poles by an active process, the replisome appears to be an untethered replication factory that is passively displaced towards the center of the cell by the newly replicated DNA. These results are consistent with a model in which unreplicated DNA is pulled into the replication factory and newly replicated DNA is bidirectionally extruded from the complex, perhaps contributing to chromosome segregation.
Collapse
Affiliation(s)
- Rasmus B. Jensen
- Department of Developmental Biology, Beckman Center, Stanford University School of Medicine, Stanford, CA 94305-5329, USA
Present address: Genencor International Inc., 925 Page Mill Road, Palo Alto, CA 94304-1013, USA Corresponding author e-mail:
| | | | - Lucy Shapiro
- Department of Developmental Biology, Beckman Center, Stanford University School of Medicine, Stanford, CA 94305-5329, USA
Present address: Genencor International Inc., 925 Page Mill Road, Palo Alto, CA 94304-1013, USA Corresponding author e-mail:
| |
Collapse
|
24
|
Kautz AR, Weisshart K, Schneider A, Grosse F, Nasheuer HP. Amino acids 257 to 288 of mouse p48 control the cooperation of polyomavirus large T antigen, replication protein A, and DNA polymerase alpha-primase to synthesize DNA in vitro. J Virol 2001; 75:8569-78. [PMID: 11507202 PMCID: PMC115102 DOI: 10.1128/jvi.75.18.8569-8578.2001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although p48 is the most conserved subunit of mammalian DNA polymerase alpha-primase (pol-prim), the polypeptide is the major species-specific factor for mouse polyomavirus (PyV) DNA replication. Human and murine p48 contain two regions (A and B) that show significantly lower homology than the rest of the protein. Chimerical human-murine p48 was prepared and coexpressed with three wild-type subunits of pol-prim, and four subunit protein complexes were purified. All enzyme complexes synthesized DNA on single-stranded (ss) DNA and replicated simian virus 40 DNA. Although the recombinant protein complexes physically interacted with PyV T antigen (Tag), we determined that the murine region A mediates the species specificity of PyV DNA replication in vitro. More precisely, the nonconserved phenylalanine 262 of mouse p48 is crucial for this activity, and pol-prim with mutant p48, h-S262F, supports PyV DNA replication in vitro. DNA synthesis on RPA-bound ssDNA revealed that amino acid (aa) 262, aa 266, and aa 273 to 288 are involved in the functional cooperation of RPA, pol-prim, and PyV Tag.
Collapse
Affiliation(s)
- A R Kautz
- Abteilung Biochemie, Institut für Molekulare Biotechnologie e.V., D-07745 Jena, Germany
| | | | | | | | | |
Collapse
|
25
|
Wu C, Roy R, Simmons DT. Role of single-stranded DNA binding activity of T antigen in simian virus 40 DNA replication. J Virol 2001; 75:2839-47. [PMID: 11222709 PMCID: PMC115910 DOI: 10.1128/jvi.75.6.2839-2847.2001] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have previously mapped the single-stranded DNA binding domain of large T antigen to amino acid residues 259 to 627. By using internal deletion mutants, we show that this domain most likely begins after residue 301 and that the region between residues 501 and 550 is not required. To study the function of this binding activity, a series of single-point substitutions were introduced in this domain, and the mutants were tested for their ability to support simian virus 40 (SV40) replication and to bind to single-stranded DNA. Two replication-defective mutants (429DA and 460EA) were grossly impaired in single-stranded DNA binding. These two mutants were further tested for other biochemical activities needed for viral DNA replication. They bound to origin DNA and formed double hexamers in the presence of ATP. Their ability to unwind origin DNA and a helicase substrate was severely reduced, although they still had ATPase activity. These results suggest that the single-stranded DNA binding activity is involved in DNA unwinding. The two mutants were also very defective in structural distortion of origin DNA, making it likely that single-stranded DNA binding is also required for this process. These data show that single-stranded DNA binding is needed for at least two steps during SV40 DNA replication.
Collapse
Affiliation(s)
- C Wu
- Department of Biological Sciences, University of Delaware, Newark, Delaware 19716-2590, USA
| | | | | |
Collapse
|
26
|
Lehmann AR. Replication of UV-damaged DNA: new insights into links between DNA polymerases, mutagenesis and human disease. Gene 2000; 253:1-12. [PMID: 10925197 DOI: 10.1016/s0378-1119(00)00250-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- A R Lehmann
- MRC Cell Mutation Unit, University of Sussex, Falmer, BN1 9RR, Brighton, UK.
| |
Collapse
|