1
|
Yonezawa Y, Guo L, Kakinuma H, Otomo N, Yoshino S, Takeda K, Nakajima M, Shiraki T, Ogura Y, Takahashi Y, Koike Y, Minami S, Uno K, Kawakami N, Ito M, Yonezawa I, Watanabe K, Kaito T, Yanagida H, Taneichi H, Harimaya K, Taniguchi Y, Shigematsu H, Iida T, Demura S, Sugawara R, Fujita N, Yagi M, Okada E, Hosogane N, Kono K, Chiba K, Kotani T, Sakuma T, Akazawa T, Suzuki T, Nishida K, Kakutani K, Tsuji T, Sudo H, Iwata A, Sato T, Inami S, Nakamura M, Matsumoto M, Terao C, Watanabe K, Okamoto H, Ikegawa S. Identification of a Functional Susceptibility Variant for Adolescent Idiopathic Scoliosis that Upregulates Early Growth Response 1 (EGR1)-Mediated UNCX Expression. J Bone Miner Res 2023; 38:144-153. [PMID: 36342191 DOI: 10.1002/jbmr.4738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 10/23/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022]
Abstract
Adolescent idiopathic scoliosis (AIS) is a serious health problem affecting 3% of live births all over the world. Many loci associated with AIS have been identified by previous genome wide association studies, but their biological implication remains mostly unclear. In this study, we evaluated the AIS-associated variants in the 7p22.3 locus by combining in silico, in vitro, and in vivo analyses. rs78148157 was located in an enhancer of UNCX, a homeobox gene and its risk allele upregulated the UNCX expression. A transcription factor, early growth response 1 (EGR1), transactivated the rs78148157-located enhancer and showed a higher binding affinity for the risk allele of rs78148157. Furthermore, zebrafish larvae with UNCX messenger RNA (mRNA) injection developed body curvature and defective neurogenesis in a dose-dependent manner. rs78148157 confers the genetic susceptibility to AIS by enhancing the EGR1-regulated UNCX expression. © 2022 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Yoshiro Yonezawa
- Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo, Japan.,Laboratory for Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, Tokyo, Japan
| | - Long Guo
- Laboratory for Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, Tokyo, Japan.,Department of Laboratory Animal Science, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China
| | - Hisaya Kakinuma
- Laboratory for Neural Circuit Dynamics of Decision Making, RIKEN Brain Science Institute, Saitama, Japan
| | - Nao Otomo
- Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Soichiro Yoshino
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.,Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kazuki Takeda
- Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Masahiro Nakajima
- Laboratory for Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, Tokyo, Japan
| | - Toshiyuki Shiraki
- Laboratory for Neural Circuit Dynamics of Decision Making, RIKEN Brain Science Institute, Saitama, Japan
| | - Yoji Ogura
- Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Yohei Takahashi
- Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Yoshinao Koike
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.,Department of Orthopedic Surgery, Graduate School of Medical Sciences, Hokkaido University, Sapporo, Japan
| | - Shohei Minami
- Department of Orthopedic Surgery, Seirei Sakura Citizen Hospital, Chiba, Japan
| | - Koki Uno
- Department of Orthopedic Surgery, National Hospital Organization, Kobe Medical Center, Kobe, Japan
| | | | - Manabu Ito
- Department of Orthopedic Surgery, National Hospital Organization Hokkaido Medical Center, Sapporo, Japan
| | - Ikuho Yonezawa
- Department of Orthopedic Surgery, Juntendo University School of Medicine, Tokyo, Japan
| | - Kei Watanabe
- Department of Orthopedic Surgery, Niigata University Medical and Dental General Hospital, Niigata, Japan
| | - Takashi Kaito
- Department of Orthopedic Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Haruhisa Yanagida
- Department of Orthopedic Surgery, Fukuoka Children's Hospital, Fukuoka, Japan
| | - Hiroshi Taneichi
- Department of Orthopedic Surgery, Dokkyo Medical University School of Medicine, Tochigi, Japan
| | - Katsumi Harimaya
- Department of Orthopedic Surgery, Kyushu University Beppu Hospital, Beppu, Japan
| | - Yuki Taniguchi
- Department of Orthopedic, Surgery, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hideki Shigematsu
- Department of Orthopedic Surgery, Nara Medical University, Nara, Japan
| | - Takahiro Iida
- Department of Orthopedic Surgery, Dokkyo Medical University Koshigaya Hospital, Saitama, Japan
| | - Satoru Demura
- Department of Orthopedic Surgery, Kanazawa University Hospital, Kanazawa, Japan
| | - Ryo Sugawara
- Department of Orthopedic Surgery, Jichi Medical University, Tochigi, Japan
| | - Nobuyuki Fujita
- Department of Orthopedic Surgery, Fujita Health University, Nagoya, Japan
| | - Mitsuru Yagi
- Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Eijiro Okada
- Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Naobumi Hosogane
- Department of Orthopedic Surgery, Kyorin University School of Medicine, Tokyo, Japan
| | - Katsuki Kono
- Department of Orthopedic Surgery, Kono Orthopaedic Clinic, Tokyo, Japan
| | - Kazuhiro Chiba
- Department of Orthopedic Surgery, National Defense Medical College, Saitama, Japan
| | - Toshiaki Kotani
- Department of Orthopedic Surgery, Seirei Sakura Citizen Hospital, Chiba, Japan
| | - Tsuyoshi Sakuma
- Department of Orthopedic Surgery, Seirei Sakura Citizen Hospital, Chiba, Japan
| | - Tsutomu Akazawa
- Department of Orthopedic Surgery, Seirei Sakura Citizen Hospital, Chiba, Japan
| | - Teppei Suzuki
- Department of Orthopedic Surgery, National Hospital Organization, Kobe Medical Center, Kobe, Japan
| | - Kotaro Nishida
- Department of Orthopedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kenichiro Kakutani
- Department of Orthopedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Taichi Tsuji
- Department of Orthopedic Surgery, Meijo Hospital, Nagoya, Japan
| | - Hideki Sudo
- Department of Advanced Medicine for Spine and Spinal Cord Disorders, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Akira Iwata
- Department of Preventive and Therapeutic Research for Metastatic Bone Tumor, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Tatsuya Sato
- Department of Orthopedic Surgery, Juntendo University School of Medicine, Tokyo, Japan
| | - Satoshi Inami
- Department of Orthopedic Surgery, Dokkyo Medical University School of Medicine, Tochigi, Japan
| | - Masaya Nakamura
- Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Morio Matsumoto
- Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Chikashi Terao
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Kota Watanabe
- Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Hitoshi Okamoto
- Laboratory for Neural Circuit Dynamics of Decision Making, RIKEN Brain Science Institute, Saitama, Japan
| | - Shiro Ikegawa
- Laboratory for Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, Tokyo, Japan
| |
Collapse
|
2
|
Physiopathological Role of Neuroactive Steroids in the Peripheral Nervous System. Int J Mol Sci 2020; 21:ijms21239000. [PMID: 33256238 PMCID: PMC7731236 DOI: 10.3390/ijms21239000] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/21/2020] [Accepted: 11/24/2020] [Indexed: 12/21/2022] Open
Abstract
Peripheral neuropathy (PN) refers to many conditions involving damage to the peripheral nervous system (PNS). Usually, PN causes weakness, numbness and pain and is the result of traumatic injuries, infections, metabolic problems, inherited causes, or exposure to chemicals. Despite the high prevalence of PN, available treatments are still unsatisfactory. Neuroactive steroids (i.e., steroid hormones synthesized by peripheral glands as well as steroids directly synthesized in the nervous system) represent important physiological regulators of PNS functionality. Data obtained so far and here discussed, indeed show that in several experimental models of PN the levels of neuroactive steroids are affected by the pathology and that treatment with these molecules is able to exert protective effects on several PN features, including neuropathic pain. Of note, the observations that neuroactive steroid levels are sexually dimorphic not only in physiological status but also in PN, associated with the finding that PN show sex dimorphic manifestations, may suggest the possibility of a sex specific therapy based on neuroactive steroids.
Collapse
|
3
|
Colciago A, Bonalume V, Melfi V, Magnaghi V. Genomic and Non-genomic Action of Neurosteroids in the Peripheral Nervous System. Front Neurosci 2020; 14:796. [PMID: 32848567 PMCID: PMC7403499 DOI: 10.3389/fnins.2020.00796] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 07/07/2020] [Indexed: 01/12/2023] Open
Abstract
Since the former evidence of biologic actions of neurosteroids in the central nervous system, also the peripheral nervous system (PNS) was reported as a structure affected by these substances. Indeed, neurosteroids are synthesized and active in the PNS, exerting many important actions on the different cell types of this system. PNS is a target for neurosteroids, in their native form or as metabolites. In particular, old and recent evidence indicates that the progesterone metabolite allopregnanolone possesses important functions in the PNS, thus contributing to its physiologic processes. In this review, we will survey the more recent findings on the genomic and non-genomic actions of neurosteroids in nerves, ganglia, and cells forming the PNS, focusing on the mechanisms regulating the peripheral neuron-glial crosstalk. Then, we will refer to the physiopathological significance of the neurosteroid signaling disturbances in the PNS, in to identify new molecular targets for promising pharmacotherapeutic approaches.
Collapse
Affiliation(s)
- Alessandra Colciago
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Veronica Bonalume
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Valentina Melfi
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Valerio Magnaghi
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
4
|
Early growth response gene mediates in VEGF and FGF signaling as dissected by CRISPR in corpus luteum of water buffalo. Sci Rep 2020; 10:6849. [PMID: 32321973 PMCID: PMC7176634 DOI: 10.1038/s41598-020-63804-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 03/17/2020] [Indexed: 12/15/2022] Open
Abstract
The EGR family comprises of EGR 1, EGR 2, EGR 3 and EGR 4 which are involved in the transactivation of several genes. A broad range of extracellular stimuli by growth factors is capable of activating EGR mediated transactivation of genes involved in angiogenesis and cell proliferation. However, their role in controlling VEGF A and FGF 2 signaling in the CL of water buffalo is not known. The present study was conducted to understand the role of EGR mediated regulation of VEGF A and FGF 2 signaling in buffalo luteal cells. Towards this goal, luteal cells were cultured and treated with VEGF A and FGF 2 and the mRNA expression pattern of EGR family members were documented. The EGR 1 message was found to be up-regulated in luteal cells of buffalo at 72 hours of culture. The functional validation of EGR 1 gene was accomplished by knocking out (KO) of EGR 1 in cultured luteal cells by CRISPR/Cas9 mediated gene editing technology. The EGR 1 KO cells were then cultured and stimulated with VEGF A and FGF 2. It was observed that VEGF A and FGF 2 induced angiogenesis, cell proliferation and steroidogenesis in wild type luteal cells, whereas the response of the growth factors was attenuated in the EGR 1 KO cells. Taken together our study provides evidence convincingly that both VEGF and FGF mediate their biological action through a common intermediate, EGR 1, to regulate corpus luteum function of buffalo.
Collapse
|
5
|
Giatti S, Diviccaro S, Serafini MM, Caruso D, Garcia-Segura LM, Viviani B, Melcangi RC. Sex differences in steroid levels and steroidogenesis in the nervous system: Physiopathological role. Front Neuroendocrinol 2020; 56:100804. [PMID: 31689419 DOI: 10.1016/j.yfrne.2019.100804] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 10/10/2019] [Accepted: 10/30/2019] [Indexed: 12/13/2022]
Abstract
The nervous system, in addition to be a target for steroid hormones, is the source of a variety of neuroactive steroids, which are synthesized and metabolized by neurons and glial cells. Recent evidence indicates that the expression of neurosteroidogenic proteins and enzymes and the levels of neuroactive steroids are different in the nervous system of males and females. We here summarized the state of the art of neuroactive steroids, particularly taking in consideration sex differences occurring in the synthesis and levels of these molecules. In addition, we discuss the consequences of sex differences in neurosteroidogenesis for the function of the nervous system under healthy and pathological conditions and the implications of neuroactive steroids and neurosteroidogenesis for the development of sex-specific therapeutic interventions.
Collapse
Affiliation(s)
- Silvia Giatti
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Silvia Diviccaro
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Melania Maria Serafini
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Donatella Caruso
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Luis Miguel Garcia-Segura
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain; Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - Barbara Viviani
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Roberto C Melcangi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy.
| |
Collapse
|
6
|
Jure I, De Nicola AF, Labombarda F. Progesterone effects on the oligodendrocyte linage: all roads lead to the progesterone receptor. Neural Regen Res 2019; 14:2029-2034. [PMID: 31397329 PMCID: PMC6788243 DOI: 10.4103/1673-5374.262570] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
A new role has emerged for progesterone after discovering its potent actions away from reproduction in both the central and the peripheral nervous system. The aim of the present report is to discuss progesterone’s mechanisms of action involved in myelination, remyelination and neuroinflammation. The pivotal role of the classic progesterone receptor is described and evidence is compiled about progesterone’s direct effects on oligodendrocyte linage and its indirect effects on oligodendrocyte precursor cell differentiation by decreasing the neuroinflammatory environment.
Collapse
Affiliation(s)
- Ignacio Jure
- Laboratorio de Bioquímica Neuroendocrina, Instituto de Biología y Medicina Experimental, CONICET, Buenos Aires, Argentina
| | - Alejandro F De Nicola
- Laboratorio de Bioquímica Neuroendocrina, Instituto de Biología y Medicina Experimental, CONICET; Departamento de Bioquímica Humana, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Florencia Labombarda
- Laboratorio de Bioquímica Neuroendocrina, Instituto de Biología y Medicina Experimental, CONICET; Departamento de Bioquímica Humana, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
7
|
Duclot F, Kabbaj M. The Role of Early Growth Response 1 (EGR1) in Brain Plasticity and Neuropsychiatric Disorders. Front Behav Neurosci 2017; 11:35. [PMID: 28321184 PMCID: PMC5337695 DOI: 10.3389/fnbeh.2017.00035] [Citation(s) in RCA: 247] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 02/21/2017] [Indexed: 12/11/2022] Open
Abstract
It is now clearly established that complex interactions between genes and environment are involved in multiple aspects of neuropsychiatric disorders, from determining an individual's vulnerability to onset, to influencing its response to therapeutic intervention. In this perspective, it appears crucial to better understand how the organism reacts to environmental stimuli and provide a coordinated and adapted response. In the central nervous system, neuronal plasticity and neurotransmission are among the major processes integrating such complex interactions between genes and environmental stimuli. In particular, immediate early genes (IEGs) are critical components of these interactions as they provide the molecular framework for a rapid and dynamic response to neuronal activity while opening the possibility for a lasting and sustained adaptation through regulation of the expression of a wide range of genes. As a result, IEGs have been tightly associated with neuronal activity as well as a variety of higher order processes within the central nervous system such as learning, memory and sensitivity to reward. The immediate early gene and transcription factor early growth response 1 (EGR1) has thus been revealed as a major mediator and regulator of synaptic plasticity and neuronal activity in both physiological and pathological conditions. In this review article, we will focus on the role of EGR1 in the central nervous system. First, we will summarize the different factors influencing its activity. Then, we will analyze the amount of data, including genome-wide, that has emerged in the recent years describing the wide variety of genes, pathways and biological functions regulated directly or indirectly by EGR1. We will thus be able to gain better insights into the mechanisms underlying EGR1's functions in physiological neuronal activity. Finally, we will discuss and illustrate the role of EGR1 in pathological states with a particular interest in cognitive functions and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Florian Duclot
- Department of Biomedical Sciences, Florida State UniversityTallahassee, FL, USA; Program in Neuroscience, Florida State UniversityTallahassee, FL, USA
| | - Mohamed Kabbaj
- Department of Biomedical Sciences, Florida State UniversityTallahassee, FL, USA; Program in Neuroscience, Florida State UniversityTallahassee, FL, USA
| |
Collapse
|
8
|
17 β-Estradiol Promotes Schwann Cell Proliferation and Differentiation, Accelerating Early Remyelination in a Mouse Peripheral Nerve Injury Model. BIOMED RESEARCH INTERNATIONAL 2016; 2016:7891202. [PMID: 27872858 PMCID: PMC5107215 DOI: 10.1155/2016/7891202] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 10/04/2016] [Indexed: 12/25/2022]
Abstract
Estrogen induces oligodendrocyte remyelination in response to demyelination in the central nervous system. Our objective was to determine the effects of 17β-estradiol (E2) on Schwann cell function and peripheral nerve remyelination after injury. Adult male C57BL/6J mice were used to prepare the sciatic nerve transection injury model and were randomly categorized into control and E2 groups. To study myelination in vitro, dorsal root ganglion (DRG) explant culture was prepared using 13.5-day-old mouse embryos. Primary Schwann cells were isolated from the sciatic nerves of 1- to 3-day-old Sprague–Dawley rats. Immunostaining for myelin basic protein (MBP) expression and toluidine blue staining for myelin sheaths demonstrated that E2 treatment accelerates early remyelination in the “nerve bridge” region between the proximal and distal stumps of the transection injury site in the mouse sciatic nerve. The 5-bromo-2′-deoxyuridine incorporation assay revealed that E2 promotes Schwann cell proliferation in the bridge region and in the primary culture, which is blocked using AKT inhibitor MK2206. The in vitro myelination in the DRG explant culture determined showed that the MBP expression in the E2-treated group is higher than that in the control group. These results show that E2 promotes Schwann cell proliferation and myelination depending on AKT activation.
Collapse
|
9
|
Levels and actions of neuroactive steroids in the nervous system under physiological and pathological conditions: Sex-specific features. Neurosci Biobehav Rev 2016; 67:25-40. [DOI: 10.1016/j.neubiorev.2015.09.023] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 09/15/2015] [Accepted: 09/16/2015] [Indexed: 01/21/2023]
|
10
|
Ribeiro JR, Schorl C, Yano N, Romano N, Kim KK, Singh RK, Moore RG. HE4 promotes collateral resistance to cisplatin and paclitaxel in ovarian cancer cells. J Ovarian Res 2016; 9:28. [PMID: 27184254 PMCID: PMC4869286 DOI: 10.1186/s13048-016-0240-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 05/05/2016] [Indexed: 01/09/2023] Open
Abstract
Background Chemotherapy resistance presents a difficult challenge in treating epithelial ovarian cancer patients, particularly when tumors exhibit resistance to multiple chemotherapeutic agents. A few studies have shown that elevated serum levels of the ovarian cancer biomarker HE4 correlate with tumor chemoresistance, response to treatment, and survival. Here, we sought to confirm our previous results that HE4 contributes to collateral resistance to cisplatin and paclitaxel in vitro and uncover factors that may contribute to HE4-mediated chemoresistance. Methods MTS assays and western blots for cleaved PARP were used to assess resistance of HE4-overexpressing SKOV3 and OVCAR8 clones to cisplatin and paclitaxel. CRISPR/Cas technology was used to knockdown HE4 in HE4-overexpressing SKOV3 cells. A microarray was conducted to determine differential gene expression between SKOV3 null vector-transfected and HE4-overexpressing clones upon cisplatin exposure, and results were validated by quantitative RT-PCR. Regulation of mitogen activated protein kinases (MAPKs) and tubulins were assessed by western blot. Results HE4-overexpressing SKOV3 and OVCAR8 clones displayed increased resistance to cisplatin and paclitaxel. Knockdown of HE4 in HE4-overexpressing SKOV3 cells partially reversed chemoresistance. Microarray analysis revealed that HE4 overexpression resulted in suppression of cisplatin-mediated upregulation of EGR1, a MAPK-regulated gene involved in promoting apoptosis. Upregulation of p38, a MAPK activated in response to cisplatin, was suppressed in HE4-overexpressing clones. No differences in extracellular signal-regulated kinase (ERK) activation were noted in HE4-overexpressing clones treated with 25 μM cisplatin, but ERK activation was partially suppressed in HE4-overexpressing clones treated with 80 μM cisplatin. Furthermore, treatment of cells with recombinant HE4 dramatically affected ERK activation in SKOV3 and OVCAR8 wild type cells. Recombinant HE4 also upregulated α-tubulin and β-tubulin levels in SKOV3 and OVCAR8 cells, and microtubule associated protein tau (MAPT) gene expression was increased in SKOV3 HE4-overexpressing clones. Conclusions Overexpression of HE4 promotes collateral resistance to cisplatin and paclitaxel, and downregulation of HE4 partially reverses this chemoresistance. Multiple factors could be involved in HE4-mediated chemoresistance, including deregulation of MAPK signaling, as well as alterations in tubulin levels or stability. Electronic supplementary material The online version of this article (doi:10.1186/s13048-016-0240-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- J R Ribeiro
- Women and Infants Hospital, Department of Obstetrics and Gynecology, Program in Women's Oncology, Molecular Therapeutics Laboratory, 200 Chestnut Street, Providence, RI, 02903, USA.
| | - C Schorl
- Center for Genomics and Proteomics, Genomics Core Facility, Brown University, 70 Ship Street, Providence, RI, 02903, USA
| | - N Yano
- Women and Infants Hospital, Department of Obstetrics and Gynecology, Program in Women's Oncology, Molecular Therapeutics Laboratory, 200 Chestnut Street, Providence, RI, 02903, USA
| | - N Romano
- Women and Infants Hospital, Department of Obstetrics and Gynecology, Program in Women's Oncology, Molecular Therapeutics Laboratory, 200 Chestnut Street, Providence, RI, 02903, USA
| | - K K Kim
- Wilmot Cancer Institute, Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Rochester Medical Center, Rochester, NY, USA
| | - R K Singh
- Women and Infants Hospital, Department of Obstetrics and Gynecology, Program in Women's Oncology, Molecular Therapeutics Laboratory, 200 Chestnut Street, Providence, RI, 02903, USA.,Wilmot Cancer Institute, Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Rochester Medical Center, Rochester, NY, USA
| | - R G Moore
- Women and Infants Hospital, Department of Obstetrics and Gynecology, Program in Women's Oncology, Molecular Therapeutics Laboratory, 200 Chestnut Street, Providence, RI, 02903, USA.,Wilmot Cancer Institute, Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
11
|
Giatti S, Romano S, Pesaresi M, Cermenati G, Mitro N, Caruso D, Tetel MJ, Garcia-Segura LM, Melcangi RC. Neuroactive steroids and the peripheral nervous system: An update. Steroids 2015; 103:23-30. [PMID: 25824325 PMCID: PMC6314841 DOI: 10.1016/j.steroids.2015.03.014] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Revised: 03/14/2015] [Accepted: 03/17/2015] [Indexed: 02/09/2023]
Abstract
In the present review we summarize observations to date supporting the concept that neuroactive steroids are synthesized in the peripheral nervous system, regulate the physiology of peripheral nerves and exert notable neuroprotective actions. Indeed, neuroactive steroids have been recently proposed as therapies for different types of peripheral neuropathy, like for instance those occurring during aging, chemotherapy, physical injury and diabetes. Moreover, pharmacological tools able to increase the synthesis of neuroactive steroids might represent new interesting therapeutic strategy to be applied in case of peripheral neuropathy.
Collapse
Affiliation(s)
- Silvia Giatti
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Simone Romano
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Marzia Pesaresi
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Gaia Cermenati
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Nico Mitro
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Donatella Caruso
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Marc J Tetel
- Neuroscience Program, Wellesley College, Wellesley, MA, USA
| | | | - Roberto C Melcangi
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
12
|
Melcangi RC, Giatti S, Calabrese D, Pesaresi M, Cermenati G, Mitro N, Viviani B, Garcia-Segura LM, Caruso D. Levels and actions of progesterone and its metabolites in the nervous system during physiological and pathological conditions. Prog Neurobiol 2014; 113:56-69. [DOI: 10.1016/j.pneurobio.2013.07.006] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2013] [Revised: 07/17/2013] [Accepted: 07/31/2013] [Indexed: 12/12/2022]
|
13
|
Tortosa R, Castells X, Vidal E, Costa C, Ruiz de Villa MDC, Sánchez A, Barceló A, Torres JM, Pumarola M, Ariño J. Central nervous system gene expression changes in a transgenic mouse model for bovine spongiform encephalopathy. Vet Res 2011; 42:109. [PMID: 22035425 PMCID: PMC3225326 DOI: 10.1186/1297-9716-42-109] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Accepted: 10/28/2011] [Indexed: 12/04/2022] Open
Abstract
Gene expression analysis has proven to be a very useful tool to gain knowledge of the factors involved in the pathogenesis of diseases, particularly in the initial or preclinical stages. With the aim of finding new data on the events occurring in the Central Nervous System in animals affected with Bovine Spongiform Encephalopathy, a comprehensive genome wide gene expression study was conducted at different time points of the disease on mice genetically modified to model the bovine species brain in terms of cellular prion protein. An accurate analysis of the information generated by microarray technique was the key point to assess the biological relevance of the data obtained in terms of Transmissible Spongiform Encephalopathy pathogenesis. Validation of the microarray technique was achieved by RT-PCR confirming the RNA change and immunohistochemistry techniques that verified that expression changes were translated into variable levels of protein for selected genes. Our study reveals changes in the expression of genes, some of them not previously associated with prion diseases, at early stages of the disease previous to the detection of the pathological prion protein, that might have a role in neuronal degeneration and several transcriptional changes showing an important imbalance in the Central Nervous System homeostasis in advanced stages of the disease. Genes whose expression is altered at early stages of the disease should be considered as possible therapeutic targets and potential disease markers in preclinical diagnostic tool development. Genes non-previously related to prion diseases should be taken into consideration for further investigations.
Collapse
Affiliation(s)
- Raül Tortosa
- Departament de Medicina i Cirurgia Animals, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Barcelona, Spain.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Cheval H, Chagneau C, Levasseur G, Veyrac A, Faucon-Biguet N, Laroche S, Davis S. Distinctive features of Egr transcription factor regulation and DNA binding activity in CA1 of the hippocampus in synaptic plasticity and consolidation and reconsolidation of fear memory. Hippocampus 2011; 22:631-42. [PMID: 21425206 DOI: 10.1002/hipo.20926] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2010] [Indexed: 01/17/2023]
Abstract
Activity-dependent regulation of Egr1/Zif268, a transcription factor (TF) of the Egr family, is essential for stabilization of dentate gyrus synaptic plasticity and consolidation and reconsolidation of several forms of memory. The gene can be rapidly induced in selective brain circuits after certain types of learning or after recall. Here, we focused on area CA1 and examined regulation of Egr1, Egr2, and Egr3 mRNA and protein, and their DNA binding activity to the Egr response element (ERE) at different times after LTP in vivo and after learning and recall of a fear memory. We found LTP in CA1 leads to rapid induction of the three Egrs, however only Egr1 protein was overexpressed without a co-ordinated change in binding activity, indicating a fundamental difference between CA1 and dentate gyrus LTP. Our investigations in fear memory reveal that both learning and retrieval lead to an increase in binding of constitutively expressed Egr1 and Egr3 to the ERE, but not Egr2. Memory recall was also associated with increased Egr1 protein translation. The nature and temporal dynamics of these changes and tests for interactions between TFs suggest that in addition to ERE-mediated transcription, Egr1 in CA1 may interact with the TF c-Fos to regulate genes via other DNA response elements.
Collapse
Affiliation(s)
- Hélène Cheval
- CNRS, Centre de Neurosciences Paris-Sud, UMR 8195, Orsay, F-91405, France.
| | | | | | | | | | | | | |
Collapse
|
15
|
Melcangi RC, Giatti S, Pesaresi M, Calabrese D, Mitro N, Caruso D, Garcia-Segura LM. Role of neuroactive steroids in the peripheral nervous system. Front Endocrinol (Lausanne) 2011; 2:104. [PMID: 22654839 PMCID: PMC3356101 DOI: 10.3389/fendo.2011.00104] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Accepted: 12/05/2011] [Indexed: 01/05/2023] Open
Abstract
Several reviews have so far pointed out on the relevant physiological and pharmacological role exerted by neuroactive steroids in the central nervous system. In the present review we summarize observations indicating that synthesis and metabolism of neuroactive steroids also occur in the peripheral nerves. Interestingly, peripheral nervous system is also a target of their action. Indeed, as here reported neuroactive steroids are physiological regulators of peripheral nerve functions and they may also represent interesting therapeutic tools for different types of peripheral neuropathy.
Collapse
Affiliation(s)
- Roberto Cosimo Melcangi
- Department of Endocrinology, Pathophysiology and Applied Biology – Center of Excellence on Neurodegenerative Diseases, Università degli Studi di MilanoMilano, Italy
- *Correspondence: Roberto Cosimo Melcangi, Department of Endocrinology, Pathophysiology and Applied Biology – Center of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy. e-mail:
| | - Silvia Giatti
- Department of Endocrinology, Pathophysiology and Applied Biology – Center of Excellence on Neurodegenerative Diseases, Università degli Studi di MilanoMilano, Italy
| | - Marzia Pesaresi
- Department of Endocrinology, Pathophysiology and Applied Biology – Center of Excellence on Neurodegenerative Diseases, Università degli Studi di MilanoMilano, Italy
| | - Donato Calabrese
- Department of Endocrinology, Pathophysiology and Applied Biology – Center of Excellence on Neurodegenerative Diseases, Università degli Studi di MilanoMilano, Italy
| | - Nico Mitro
- Giovanni Armenise-Harvard Foundation Laboratory, Department of Pharmacological Sciences, Università degli Studi di MilanoMilano, Italy
- Laboratory of Biochemistry, Molecular Biology of Lipids and Mass Spectrometry “Giovanni Galli”, Department of Pharmacological Sciences, Università degli Studi di MilanoMilano, Italy
| | - Donatella Caruso
- Laboratory of Biochemistry, Molecular Biology of Lipids and Mass Spectrometry “Giovanni Galli”, Department of Pharmacological Sciences, Università degli Studi di MilanoMilano, Italy
| | | |
Collapse
|
16
|
Riveros C, Mellor D, Gandhi KS, McKay FC, Cox MB, Berretta R, Vaezpour SY, Inostroza-Ponta M, Broadley SA, Heard RN, Vucic S, Stewart GJ, Williams DW, Scott RJ, Lechner-Scott J, Booth DR, Moscato P. A transcription factor map as revealed by a genome-wide gene expression analysis of whole-blood mRNA transcriptome in multiple sclerosis. PLoS One 2010; 5:e14176. [PMID: 21152067 PMCID: PMC2995726 DOI: 10.1371/journal.pone.0014176] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Accepted: 10/20/2010] [Indexed: 12/03/2022] Open
Abstract
Background Several lines of evidence suggest that transcription factors are involved in the pathogenesis of Multiple Sclerosis (MS) but complete mapping of the whole network has been elusive. One of the reasons is that there are several clinical subtypes of MS and transcription factors that may be involved in one subtype may not be in others. We investigate the possibility that this network could be mapped using microarray technologies and contemporary bioinformatics methods on a dataset derived from whole blood in 99 untreated MS patients (36 Relapse Remitting MS, 43 Primary Progressive MS, and 20 Secondary Progressive MS) and 45 age-matched healthy controls. Methodology/Principal Findings We have used two different analytical methodologies: a non-standard differential expression analysis and a differential co-expression analysis, which have converged on a significant number of regulatory motifs that are statistically overrepresented in genes that are either differentially expressed (or differentially co-expressed) in cases and controls (e.g., V$KROX_Q6, p-value <3.31E-6; V$CREBP1_Q2, p-value <9.93E-6, V$YY1_02, p-value <1.65E-5). Conclusions/Significance Our analysis uncovered a network of transcription factors that potentially dysregulate several genes in MS or one or more of its disease subtypes. The most significant transcription factor motifs were for the Early Growth Response EGR/KROX family, ATF2, YY1 (Yin and Yang 1), E2F-1/DP-1 and E2F-4/DP-2 heterodimers, SOX5, and CREB and ATF families. These transcription factors are involved in early T-lymphocyte specification and commitment as well as in oligodendrocyte dedifferentiation and development, both pathways that have significant biological plausibility in MS causation.
Collapse
Affiliation(s)
- Carlos Riveros
- Centre for Bioinformatics, Biomarker Discovery & Information-Based Medicine, University of Newcastle, and Hunter Medical Research Institute, Newcastle, Australia
| | - Drew Mellor
- Centre for Bioinformatics, Biomarker Discovery & Information-Based Medicine, University of Newcastle, and Hunter Medical Research Institute, Newcastle, Australia
- School of Computer Science and Software Engineering, The University of Western Australia, Crawley, Australia
| | - Kaushal S. Gandhi
- Westmead Millennium Institute, University of Sydney, Westmead, Australia
| | - Fiona C. McKay
- Westmead Millennium Institute, University of Sydney, Westmead, Australia
| | - Mathew B. Cox
- Centre for Bioinformatics, Biomarker Discovery & Information-Based Medicine, University of Newcastle, and Hunter Medical Research Institute, Newcastle, Australia
- Hunter Medical Research Institute, Newcastle, Australia
| | - Regina Berretta
- Centre for Bioinformatics, Biomarker Discovery & Information-Based Medicine, University of Newcastle, and Hunter Medical Research Institute, Newcastle, Australia
| | - S. Yahya Vaezpour
- Centre for Bioinformatics, Biomarker Discovery & Information-Based Medicine, University of Newcastle, and Hunter Medical Research Institute, Newcastle, Australia
- Department of Computer Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Mario Inostroza-Ponta
- Centre for Bioinformatics, Biomarker Discovery & Information-Based Medicine, University of Newcastle, and Hunter Medical Research Institute, Newcastle, Australia
- Departamento de Ingeniería Informática, Universidad de Santiago de Chile, Santiago, Chile
| | - Simon A. Broadley
- School of Medicine, Griffith University, Brisbane, Australia
- Department of Neurology, Gold Coast Hospital, Southport, Australia
| | - Robert N. Heard
- Westmead Millennium Institute, University of Sydney, Westmead, Australia
| | - Stephen Vucic
- Westmead Millennium Institute, University of Sydney, Westmead, Australia
| | - Graeme J. Stewart
- Westmead Millennium Institute, University of Sydney, Westmead, Australia
| | | | - Rodney J. Scott
- Centre for Bioinformatics, Biomarker Discovery & Information-Based Medicine, University of Newcastle, and Hunter Medical Research Institute, Newcastle, Australia
| | - Jeanette Lechner-Scott
- Centre for Bioinformatics, Biomarker Discovery & Information-Based Medicine, University of Newcastle, and Hunter Medical Research Institute, Newcastle, Australia
| | - David R. Booth
- Westmead Millennium Institute, University of Sydney, Westmead, Australia
| | - Pablo Moscato
- Centre for Bioinformatics, Biomarker Discovery & Information-Based Medicine, University of Newcastle, and Hunter Medical Research Institute, Newcastle, Australia
- Australian Research Council Centre of Excellence in Bioinformatics, St Lucia, Australia
- * E-mail:
| | | |
Collapse
|
17
|
Neurosteroid withdrawal regulates GABA-A receptor α4-subunit expression and seizure susceptibility by activation of progesterone receptor-independent early growth response factor-3 pathway. Neuroscience 2010; 170:865-80. [PMID: 20670676 DOI: 10.1016/j.neuroscience.2010.07.037] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Revised: 07/02/2010] [Accepted: 07/20/2010] [Indexed: 02/08/2023]
Abstract
Neurosteroids regulate GABA-A receptor plasticity. Neurosteroid withdrawal occurs during menstruation and is associated with a marked increase in expression of GABA-A receptor α4-subunit, a key subunit linked to enhanced neuronal excitability, seizure susceptibility and benzodiazepine resistance. However, the molecular mechanisms underlying the upregulation of α4-subunit expression remain unclear. Here we utilized the progesterone receptor (PR) knockout mouse to investigate molecular pathways of PR and the transcription factor early growth response factor-3 (Egr3) in regulation of the GABA-A receptor α4-subunit expression in the hippocampus in a mouse neurosteroid withdrawal paradigm. Neurosteroid withdrawal induced a threefold increase in α4-subunit expression in wild-type mice, but this upregulation was unchanged in PR knockout mice. The expression of Egr3, which controls α4-subunit transcription, was increased significantly following neurosteroid withdrawal in wild-type and PR knockout mice. Neurosteroid withdrawal-induced α4-subunit upregulation was completely suppressed by antisense Egr3 inhibition. In the hippocampus kindling model of epilepsy, there was heightened seizure activity, significant reduction in the antiseizure sensitivity of diazepam (a benzodiazepine insensitive at α4βγ-receptors) and conferral of increased seizure protection of flumazenil (a low-affinity agonist at α4βγ-receptors) in neurosteroid-withdrawn wild-type and PR knockout mice. These observations are consistent with enhanced α4-containing receptor abundance in vivo. Neurosteroid withdrawal-induced seizure exacerbation, diazepam insensitivity, and flumazenil efficacy in the kindling model were reversed by inhibition of Egr3. These results indicate that neurosteroid withdrawal-induced upregulation of GABA-A receptor α4-subunit expression is mediated by the Egr3 via a PR-independent signaling pathway. These findings help advance our understanding of the molecular basis of catamenial epilepsy, a neuroendocrine condition that occurs around the perimenstrual period and is characterized by neurosteroid withdrawal-linked seizure exacerbations in women with epilepsy.
Collapse
|
18
|
Jessen KR, Mirsky R. Negative regulation of myelination: relevance for development, injury, and demyelinating disease. Glia 2009; 56:1552-1565. [PMID: 18803323 DOI: 10.1002/glia.20761] [Citation(s) in RCA: 386] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Dedifferentiation of myelinating Schwann cells is a key feature of nerve injury and demyelinating neuropathies. We review recent evidence that this dedifferentiation depends on activation of specific intracellular signaling molecules that drive the dedifferentiation program. In particular, we discuss the idea that Schwann cells contain negative transcriptional regulators of myelination that functionally complement positive regulators such as Krox-20, and that myelination is therefore determined by a balance between two opposing transcriptional programs. Negative transcriptional regulators should be expressed prior to myelination, downregulated as myelination starts but reactivated as Schwann cells dedifferentiate following injury. The clearest evidence for a factor that works in this way relates to c-Jun, while other factors may include Notch, Sox-2, Pax-3, Id2, Krox-24, and Egr-3. The role of cell-cell signals such as neuregulin-1 and cytoplasmic signaling pathways such as the extracellular-related kinase (ERK)1/2 pathway in promoting dedifferentiation of myelinating cells is also discussed. We also review evidence that neurotrophin 3 (NT3), purinergic signaling, and nitric oxide synthase are involved in suppressing myelination. The realization that myelination is subject to negative as well as positive controls contributes significantly to the understanding of Schwann cell plasticity. Negative regulators are likely to have a major role during injury, because they promote the transformation of damaged nerves to an environment that fosters neuronal survival and axonal regrowth. In neuropathies, however, activation of these pathways is likely to be harmful because they may be key contributors to demyelination, a situation which would open new routes for clinical intervention.
Collapse
Affiliation(s)
- Kristján R Jessen
- Department of Cell and Developmental Biology, University College London, London, United Kingdom.
| | | |
Collapse
|
19
|
Transdifferentiation of bone marrow stromal cells into Schwann cell phenotype using progesterone as inducer. Brain Res 2008; 1208:17-24. [PMID: 18378218 DOI: 10.1016/j.brainres.2008.02.071] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2007] [Revised: 02/07/2008] [Accepted: 02/18/2008] [Indexed: 01/20/2023]
Abstract
Bone marrow stromal cells (BMSCs) were reported to transdifferentiate into Schwann cells by a two-stage protocol, using beta-mercaptoethanol and retinoic acid (BME-RA) as preinducers (preinduction stage: PS) and platelet derived growth factor (PDGF), basic fibroblast growth factor (bFGF), forskolin (FSK) and heregulin (HRG) as inducers (induction stage: IS). In this study, six groups were used, group one was used as control (PS: BME-RA; IS: PDGF, bFGF, FSK and HRG). In group 2, the preinducer was similar to group 1, and in the induction stage, progesterone replaced HRG. In groups 3 and 4, the preinducer was progesterone; and at the induction stage, the inducer was similar to groups 1 and 2. Accordingly, in groups 5 and 6, the preinducer was FSK. The immunohistochemical differentiation markers were S-100 and P0, and RT-PCR markers were OCT-4 and P0 at the preinduction stage, while at the induction stage P0 and NeuroD were used. The results of the study showed that S-100 was expressed in the groups after the induction stage, however, P0 was not expressed in any group. There was not any significant difference between the percentage of S100 positive cells in the 1st and 2nd groups. P0 was expressed at the mRNA level in the undifferentiated BMSCs and in the 3rd and 4th groups after the preinduction and the induction stages. The conclusion of this study is that progesterone can induce BMSCs into Schwann cell phenotype.
Collapse
|
20
|
Magnaghi V, Ballabio M, Roglio I, Melcangi RC. Progesterone derivatives increase expression of Krox-20 and Sox-10 in rat Schwann cells. J Mol Neurosci 2008; 31:149-57. [PMID: 17478888 DOI: 10.1385/jmn/31:02:149] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2006] [Revised: 11/30/1999] [Accepted: 11/01/2006] [Indexed: 11/11/2022]
Abstract
Neuroactive steroids, like progesterone (P) and its 5alpha-reduced derivatives dihydroprogesterone (DHP) and tetrahydroprogesterone (THP), are involved in the control of Schwann cell proliferation and in the myelinating program of these cells. Here, we demonstrate that in culture of rat Schwann cells, P and its derivatives also increase expression of Sox-10 and Krox-20 (i.e., two transcription factors with a key role in Schwann cell physiology and in their myelinating program). Data obtained by quantitative RT-PCR analysis show that treatment with P, DHP, or THP increases mRNA levels of Krox-20. This stimulatory effect anticipates that exerted by P and DHP on Sox-10 gene expression. Thus, although the effect on Krox-20 occurs after 1 h, that on Sox-10 reaches a peak after 2 h. A similar pattern of effect is also evident on their protein levels. As evaluated by Western blot analysis, Krox-20 is increased after 3 h of treatment with P, DHP, or THP, whereas P or DHP stimulates the expression of Sox-10 after 6 h of exposure. A computer analysis performed on rat and human promoters of these two transcription factors shows that putative P-responsive elements are present in Krox-20 but not in Sox-10. Interestingly, many putative binding sites for Krox-20 are present in the Sox-10 promoter. The observations reported here, together with the concept that P and its derivatives are able to influence directly the expression of myelin proteins, suggest that these neuroactive steroids might coordinate the Schwann cell-myelinating program utilizing different intracellular pathways.
Collapse
Affiliation(s)
- Valerio Magnaghi
- Department of Endocrinology and Center of Excellence of Neurodegenerative Diseases, University of Milan, 20133 Milan, Italy
| | | | | | | |
Collapse
|
21
|
Liu D, Evans I, Britton G, Zachary I. The zinc-finger transcription factor, early growth response 3, mediates VEGF-induced angiogenesis. Oncogene 2007; 27:2989-98. [PMID: 18059339 DOI: 10.1038/sj.onc.1210959] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Early growth response 3 (Egr3) is a member of a zinc-finger transcription factor subfamily, which we previously found to be strongly upregulated by vascular endothelial growth factor (VEGF)-A in an oligonucleotide microarray screen of endothelial cells. Here, we show that Egr3 is the predominant Egr family member upregulated by VEGF in endothelial cells at 45 min, and that VEGF induced a rapid increase in Egr-dependent transcriptional activation mediated via its major signalling receptor, VEGFR2/KDR, and the protein kinase C (PKC) pathway. VEGF-induced Egr3 gene expression was also mediated in part via a PKC-dependent activation of protein kinase D. Inhibition of Egr3 gene expression by RNA interference was effective in inhibiting basal and VEGF-induced Egr3 gene expression, and it also inhibited VEGF-mediated endothelial cell proliferation, migration and tubulogenesis. These findings indicate that Egr3 has an essential downstream role in VEGF-mediated endothelial functions leading to angiogenesis and may have particular relevance for adult angiogenic processes involved in vascular repair and neovascular disease.
Collapse
Affiliation(s)
- D Liu
- BHF Laboratories, Department of Medicine, University College London, London, UK
| | | | | | | |
Collapse
|
22
|
Abstract
Whereas the central nervous system (CNS) usually cannot regenerate, peripheral nerves regenerate spontaneously after injury because of a permissive environment and activation of the intrinsic growth capacity of neurons. Functional regeneration requires axon regrowth and remyelination of the regenerated axons by Schwann cells. Multiple factors including neurotrophic factors, extracellular matrix (ECM) proteins, and hormones participate in Schwann cell dedifferentiation, proliferation, and remyelination. We describe the current understanding of peripheral axon regeneration and focus on the molecules and potential mechanisms involved in remyelination.
Collapse
Affiliation(s)
- Zu-Lin Chen
- Laboratory of Neurobiology and Genetics, The Rockefeller University, New York, NY 10021, USA.
| | | | | |
Collapse
|
23
|
Roglio I, Giatti S, Pesaresi M, Bianchi R, Cavaletti G, Lauria G, Garcia-Segura LM, Melcangi RC. Neuroactive steroids and peripheral neuropathy. ACTA ACUST UNITED AC 2007; 57:460-9. [PMID: 17543391 DOI: 10.1016/j.brainresrev.2007.04.010] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2007] [Revised: 04/25/2007] [Accepted: 04/25/2007] [Indexed: 02/01/2023]
Abstract
Peripheral neuropathy, either inherited or acquired, represents a very common disorder for which effective clinical treatments are not available yet. Observations here summarized indicate that neuroactive steroids, such as progesterone, testosterone and their reduced metabolites, might represent a promising therapeutic option. Peripheral nerves are able to synthesize and metabolize neuroactive steroids and are a target for these molecules, since they express classical and non-classical steroid receptors. Neuroactive steroids modulate the expression of key transcription factors for Schwann cell function, regulate Schwann cell proliferation and promote the expression of myelin proteins involved in the maintenance of myelin multilamellar structure, such as myelin protein zero and peripheral myelin protein 22. These actions may result in the protection and regeneration of peripheral nerves affected by different forms of pathological alterations. Indeed, neuroactive steroids are able to counteract biochemical, morphological and functional alterations of peripheral nerves in different experimental models of neuropathy, including the alterations caused by aging, diabetic neuropathy and physical injury. Therefore, neuroactive steroids, pharmacological agents able to increase their local synthesis and synthetic ligands for their receptors have a promising potential for the treatment of different forms of peripheral neuropathy.
Collapse
Affiliation(s)
- Ilaria Roglio
- Department of Endocrinology and Center of Excellence on Neurodegenerative Diseases, University of Milan, Via Balzaretti 9, 20133, Milan, Italy
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
Hormonal and locally produced steroids act in the nervous system as neuroendocrine regulators, as trophic factors and as neuromodulators and have a major impact on neural development and function. Glial cells play a prominent role in the local production of steroids and in the mediation of steroid effects on neurons and other glial cells. In this review, we examine the role of glia in the synthesis and metabolism of steroids and the functional implications of glial steroidogenesis. We analyze the mechanisms of steroid signaling on glia, including the role of nuclear receptors and the mechanisms of membrane and cytoplasmic signaling mediated by changes in intracellular calcium levels and activation of signaling kinases. Effects of steroids on functional parameters of glia, such as proliferation, myelin formation, metabolism, cytoskeletal reorganization, and gliosis are also reviewed, as well as the implications of steroid actions on glia for the regulation of synaptic function and connectivity, the regulation of neuroendocrine events, and the response of neural tissue to injury.
Collapse
|
25
|
Groyer G, Eychenne B, Girard C, Rajkowski K, Schumacher M, Cadepond F. Expression and functional state of the corticosteroid receptors and 11 beta-hydroxysteroid dehydrogenase type 2 in Schwann cells. Endocrinology 2006; 147:4339-50. [PMID: 16763064 DOI: 10.1210/en.2005-1625] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
To investigate the role of steroid receptors in mediating the reported effects of steroids on Schwann cell (SC) myelination and growth, we determined mRNA contents and transcriptional activities of the corticosteroid (glucocorticosteroid and mineralocorticosteroid) receptors (GR and MR) and sex steroid (progesterone, androgen, and estrogen alpha and beta) receptors in rat SC cultured under proliferative (in the presence of insulin and forskolin, which induces a high intracellular cAMP content) and quiescent conditions. We found no or very low expression and activity of the sex steroid receptors, as shown by mRNA concentrations determined with real-time PCR and transcriptional activities using transient expression of reporter plasmids in SC. These data and binding studies in SC lines demonstrated that the levels of the sex steroid receptors were the limiting factors. GR was clearly expressed (approximately 8000 sequences/ng total RNA) and functional. No significant modification in GR mRNA levels was observed, but an increase in transcriptional efficiency was recorded in proliferating cells compared with quiescent cells. MR was also significantly expressed at the mRNA level (approximately 450 sequences/ng total RNA) under the two culture conditions. No MR transcriptional activity was observed in SC, but a low specific binding of aldosterone was detected in SC lines. 11 beta-Hydroxysteroid-dehydrogenase type 2 (HSD2), an enzyme that inactivates glucocorticoids, was strongly expressed and active in quiescent SC, although in proliferating cells, HSD2 exhibited a strong decrease in activity and mRNA concentration. These data support a physiological role for HSD2 regulation of glucocorticosteroid concentrations in nerve SC.
Collapse
MESH Headings
- 11-beta-Hydroxysteroid Dehydrogenase Type 2/genetics
- 11-beta-Hydroxysteroid Dehydrogenase Type 2/metabolism
- Animals
- Cell Division
- Cells, Cultured
- Colforsin/pharmacology
- Estrogen Receptor alpha/genetics
- Estrogen Receptor alpha/metabolism
- Estrogen Receptor beta/genetics
- Estrogen Receptor beta/metabolism
- Gene Expression Regulation, Enzymologic/drug effects
- Genes, Reporter/genetics
- Glucocorticoids/pharmacology
- Gonadal Steroid Hormones/metabolism
- Insulin/pharmacology
- Promoter Regions, Genetic/genetics
- RNA, Messenger/analysis
- Rats
- Rats, Sprague-Dawley
- Receptors, Androgen/genetics
- Receptors, Androgen/metabolism
- Receptors, Glucocorticoid/genetics
- Receptors, Glucocorticoid/metabolism
- Receptors, Mineralocorticoid/genetics
- Receptors, Mineralocorticoid/metabolism
- Receptors, Progesterone/genetics
- Receptors, Progesterone/metabolism
- Receptors, Steroid/genetics
- Receptors, Steroid/metabolism
- Response Elements/genetics
- Reverse Transcriptase Polymerase Chain Reaction
- Schwann Cells/chemistry
- Schwann Cells/cytology
- Schwann Cells/metabolism
- Sciatic Nerve/cytology
- Transcription, Genetic
- Transfection
Collapse
Affiliation(s)
- Ghislaine Groyer
- Unité Mixte de Recherche 788, Institut National de la Santé et de la Recherche Médicale and University Paris-Sud 11, 94276 Le Kremlin-Bicêtre, France
| | | | | | | | | | | |
Collapse
|
26
|
Grenier J, Tomkiewicz C, Trousson A, Rajkowski KM, Schumacher M, Massaad C. Identification by microarray analysis of aspartate aminotransferase and glutamine synthetase as glucocorticoid target genes in a mouse Schwann cell line. J Steroid Biochem Mol Biol 2005; 97:342-52. [PMID: 16182522 DOI: 10.1016/j.jsbmb.2005.06.034] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2004] [Accepted: 06/21/2005] [Indexed: 12/20/2022]
Abstract
Schwann cells have been identified as targets for glucocorticoids. Besides genes implicated in the myelination process, the target genes of glucocorticoids have not been identified in these cells. For that purpose, we performed microarray analysis on MSC80 (mouse Schwann cells) treated with a synthetic glucocorticoid, dexamethasone. These cells express a functional glucocorticoid receptor (GR), but none of the other steroid receptors. This allowed us to identify genes specifically regulated by GR in the absence of the mineralocorticoid receptor. Among the 5000 genes analyzed, 12 were at least two-fold upregulated and 91 genes were at least two-fold down-regulated upon treatment with dexamethasone. Because of their potential role in Schwann cell homeostasis, we selected, for further analysis, the upregulated genes encoding glutamine synthetase (GS) and cytosolic aspartate aminotransferase (cAspAT). These genes play a crucial role in the glutamate cycle which was shown to be vital in neuron-astrocyte cross-talk in the central nervous system. Their activation was confirmed by semi-quantitative and real-time PCR. A detailed analysis of cAspAT promoter activity revealed that the mechanism of regulation by GR in Schwann cells differs from that in hepatoma cells, suggesting a cell-specific regulation. The transactivation potency of the two Glucocorticoid Responsive Units (GRU) present in the cAspAT promoter seems to be dependent on the levels of the GR in MSC80 cells. Furthermore, we show that an increase in GR levels under certain circumstances could considerably potentiate the effects of glucocorticoids on the cAspAT promoter via synergistic activation of both GRU, To the opposite, an enhancement in GR levels did not further potentiate Dex-activation of the GS promoter, showing a differential mechanism of action of GR in the context of both promoters.
Collapse
Affiliation(s)
- Julien Grenier
- Inserm UMR488, Faculté de Médecine Paris-Sud, 80, Rue du Général Leclerc, 94276 Le Kremlin-Bicêtre, France
| | | | | | | | | | | |
Collapse
|
27
|
Melcangi RC, Cavarretta ITR, Ballabio M, Leonelli E, Schenone A, Azcoitia I, Miguel Garcia-Segura L, Magnaghi V. Peripheral nerves: a target for the action of neuroactive steroids. ACTA ACUST UNITED AC 2005; 48:328-38. [PMID: 15850671 DOI: 10.1016/j.brainresrev.2004.12.021] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2004] [Accepted: 12/09/2004] [Indexed: 10/25/2022]
Abstract
Peripheral nervous system possesses both classical and non-classical steroid receptors and consequently may represent a target for the action of neuroactive steroids. The present review summarizes the state of art of this intriguing field of research reporting data which indicate that neuroactive steroids, like for instance progesterone, dihydroprogesterone, tetrahydroprogesterone, dihydrotestosterone and 3alpha-diol, stimulate the expression of two important proteins of the myelin of peripheral nerves, the glycoprotein P0 (P0) and the peripheral myelin protein 22 (PMP22). Interestingly, the mechanisms by which neuroactive steroids exert their effects involve classical steroid receptors, like for instance progesterone and androgen receptors, in case of P0 and non-classical steroid receptors, like GABA(A) receptor, in case of PMP22. Moreover, neuroactive steroids not only control the expression of these specific myelin proteins, but also influence the morphology of myelin sheaths and axons suggesting that these molecules may represent an interesting new therapeutic approach to maintain peripheral nerve integrity during neurodegenerative events.
Collapse
|
28
|
Luo X, Ding L, Xu J, Williams RS, Chegini N. Leiomyoma and myometrial gene expression profiles and their responses to gonadotropin-releasing hormone analog therapy. Endocrinology 2005; 146:1074-96. [PMID: 15604208 DOI: 10.1210/en.2004-1384] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Gene microarray was used to characterize the molecular environment of leiomyoma and matched myometrium during growth and in response to GnRH analog (GnRHa) therapy as well as GnRHa direct action on primary cultures of leiomyoma and myometrial smooth muscle cells (LSMC and MSMC). Unsupervised and supervised analysis of gene expression values and statistical analysis in R programming with a false discovery rate of P < or = 0.02 resulted in identification of 153 and 122 differentially expressed genes in leiomyoma and myometrium in untreated and GnRHa-treated cohorts, respectively. The expression of 170 and 164 genes was affected by GnRHa therapy in these tissues compared with their respective untreated group. GnRHa (0.1 microm), in a time-dependent manner (2, 6, and 12 h), targeted the expression of 281 genes (P < or = 0.005) in LSMC and MSMC, 48 of which genes were found in common with GnRHa-treated tissues. Functional annotations assigned these genes as key regulators of processes involving transcription, translational, signal transduction, structural activities, and apoptosis. We validated the expression of IL-11, early growth response 3, TGF-beta-induced factor, TGF-beta-inducible early gene response, CITED2 (cAMP response element binding protein-binding protein/p300-interacting transactivator with ED-rich tail), Nur77, growth arrest-specific 1, p27, p57, and G protein-coupled receptor kinase 5, representing cytokine, common transcription factors, cell cycle regulators, and signal transduction, at tissue levels and in LSMC and MSMC in response to GnRHa time-dependent action using real-time PCR, Western blotting, and immunohistochemistry. In conclusion, using different, complementary approaches, we characterized leiomyoma and myometrium molecular fingerprints and identified several previously unrecognized genes as targets of GnRHa action, implying that local expression and activation of these genes may represent features differentiating leiomyoma and myometrial environments during growth and GnRHa-induced regression.
Collapse
MESH Headings
- Active Transport, Cell Nucleus
- Blotting, Western
- Cluster Analysis
- Cohort Studies
- DNA, Complementary/metabolism
- DNA-Binding Proteins/metabolism
- Down-Regulation
- Female
- Gene Expression Regulation
- Gene Expression Regulation, Neoplastic
- Gonadotropin-Releasing Hormone/analogs & derivatives
- Humans
- Immunohistochemistry
- Leiomyoma/metabolism
- Models, Biological
- Myocytes, Smooth Muscle/cytology
- Myometrium/metabolism
- Nuclear Receptor Subfamily 4, Group A, Member 1
- Oligonucleotide Array Sequence Analysis
- Premenopause
- Protein Processing, Post-Translational
- RNA, Messenger/metabolism
- Receptors, Cytoplasmic and Nuclear
- Receptors, Steroid
- Repressor Proteins/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Time Factors
- Trans-Activators/metabolism
- Transcription Factors/metabolism
- Up-Regulation
- Uterine Neoplasms/metabolism
Collapse
Affiliation(s)
- Xiaoping Luo
- Department of Obstetrics and Gynecology, University of Florida, Box 100294, Gainesville, Florida 32610, USA
| | | | | | | | | |
Collapse
|
29
|
Correia HR, Balseiro SC, de Areia ML. Are genes of human intelligence related to the metabolism of thyroid and steroids hormones? – Endocrine changes may explain human evolution and higher intelligence. Med Hypotheses 2005; 65:1016-23. [PMID: 16122877 DOI: 10.1016/j.mehy.2005.07.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2005] [Accepted: 07/08/2005] [Indexed: 10/25/2022]
Abstract
We propose the hypothesis that genes of human intelligence are related with metabolism of thyroid and steroids hormones, which have a crucial role in brain development and function. First, there is evidence to support the idea that during hominid evolution small genetic differences were related with significant endocrine changes in thyroid and steroids hormones. Second, these neuroactive hormones are also related with unique features of human evolution such as body and brain size increase, penis and breast enlargement, pelvic sexual dimorphism, active sexuality, relative lack of hair and higher longevity. Besides underling many of the differences between humans and great apes, steroids hormones promote brain growth and development, are important in the myelination process, explain sexual dimorphisms in brain and intelligence and improve specific cognitive abilities in humans. Supporting our hypothesis, recent studies indicate differences in neuroactive hormones metabolism between humans and non-human primates. Furthermore, a link between X chromosome genes and sex steroids may explain why the frequency of genes affecting intelligence is so high on the X chromosome. This association suggests that, during hominid evolution, there was a positive feedback in both sexes on the same genes responsible for secondary sexual character development and intelligence. This interaction leads to acceleration of development of human brain and intelligence. Finally, we propose that neuroactive hormone therapy may provide significant improvement in some cognitive deficits in all stages of human life and in cases of neurodegenerative diseases. However, further investigation is needed, mainly in the enzymatic machinery, in order to understand the direct role of these hormones in intelligence.
Collapse
Affiliation(s)
- H R Correia
- Department of Anthropology, University of Coimbra, Rua Paulo Quintela, 329, Lote 7, 3A. 3030 393 Coimbra, Portugal.
| | | | | |
Collapse
|
30
|
Temple JL, Laing E, Sunder A, Wray S. Direct action of estradiol on gonadotropin-releasing hormone-1 neuronal activity via a transcription-dependent mechanism. J Neurosci 2004; 24:6326-33. [PMID: 15254088 PMCID: PMC6729551 DOI: 10.1523/jneurosci.1006-04.2004] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2004] [Revised: 05/21/2004] [Accepted: 06/02/2004] [Indexed: 11/21/2022] Open
Abstract
Pulsatile secretion of gonadotropin-releasing hormone-1 (GnRH-1) is essential for reproduction. GnRH-1 induces gonadotropin release and is regulated by 17beta-estradiol (E2). Although a subpopulation of GnRH-1 neurons expresses estrogen receptor (ER) beta, it is unclear whether E2 acts directly on GnRH-1 neurons or indirectly through interneuronal connections. To test the hypothesis that E2 acts directly on GnRH-1 neurons to regulate neuronal activity, we used calcium imaging to monitor intracellular calcium oscillations in GnRH-1 neurons maintained in nasal explants. TTX was used to minimize synaptic input from other cells. Consistent with previous studies, TTX reduced the activity of individual GnRH-1 neurons to a basal level, while the population of cells maintained synchronized calcium oscillations. Exposure of GnRH-1 cells to TTX plus E2 increased the number of calcium peaks/cell, percentage of cells with > or =10 peaks, mean peak amplitude, and percentage of cells that contributed to each calcium pulse in explants maintained in vitro for 7 d (7 div) compared with TTX alone. These effects were induced within 30 min and were not mimicked by 17alpha-estradiol, E2 conjugated to BSA (which does not cross the plasma membrane), or seen at 21 div, when the percentage of GnRH-1 cells expressing ERbeta transcripts declines. In addition, these effects were inhibited by the ER antagonist ICI 182,780 and prevented by inhibition of gene transcription. These data suggest that, via ERbeta, E2 can rapidly act as a hormone-activated transcription complex and are the first to show that E2 directly increases GnRH-1 neuronal activity and synchronization.
Collapse
Affiliation(s)
- Jennifer L Temple
- Cellular and Developmental Neurobiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
31
|
Magnaghi V, Ballabio M, Gonzalez LC, Leonelli E, Motta M, Melcangi RC. The synthesis of glycoprotein Po and peripheral myelin protein 22 in sciatic nerve of male rats is modulated by testosterone metabolites. ACTA ACUST UNITED AC 2004; 126:67-73. [PMID: 15207917 DOI: 10.1016/j.molbrainres.2004.03.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2004] [Indexed: 11/20/2022]
Abstract
Glycoprotein Po (Po) and peripheral myelin protein 22 (PMP22) are two proteins playing a crucial physiological role in the maintenance of the multilamellar structure of peripheral myelin. We here demonstrate that the removal of circulating androgens by orchidectomy induces a significant decrease of the synthesis of Po and PMP22 in the rat sciatic nerve. In case of Po, this effect may be counteracted by the subsequent treatment with testosterone metabolites, dihydrotestosterone or 5alpha-androstan-3alpha,17beta-diol (3alpha-diol). Experiments have been consequently performed in order to evaluate the role of androgen receptor (AR) in the control of Po synthesis. In vivo treatment with flutamide (i.e., an antagonist of AR) induces a decrease of the synthesis of this myelin protein in the sciatic nerve of intact male rats confirming a role for this steroid receptor. On the contrary, PMP22 seems not to be under the control of AR, but a role for GABAA receptor may be proposed. This concept is based on the findings that: (a) only 3alpha-diol, which is able to interact with GABAA receptor, is effective in stimulating the synthesis of PMP22 in the sciatic nerve of castrated male rats, and (b) flutamide treatment is ineffective in decreasing the protein levels in intact male rats. The observations here reported clearly show similarities and dissimilarities with the effects exerted by other members of neuroactive steroid family, like for instance progesterone derivatives, which will be discussed in text.
Collapse
Affiliation(s)
- Valerio Magnaghi
- Department of Endocrinology and Center of Excellence on Neurodegenerative Diseases, University of Milan, Via G. Balzaretti 9, 20133 Milan, Italy
| | | | | | | | | | | |
Collapse
|
32
|
Alonso MBD, Zoidl G, Taveggia C, Bosse F, Zoidl C, Rahman M, Parmantier E, Dean CH, Harris BS, Wrabetz L, Müller HW, Jessen KR, Mirsky R. Identification and characterization of ZFP-57, a novel zinc finger transcription factor in the mammalian peripheral nervous system. J Biol Chem 2004; 279:25653-25664. [PMID: 15070898 DOI: 10.1074/jbc.m400415200] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
To isolate new zinc finger genes expressed at early stages of peripheral nerve development, we have used PCR to amplify conserved zinc finger sequences. RNA from rat embryonic day 12 and 13 sciatic nerves, a stage when nerves contain Schwann cell precursors, was used to identify several genes not previously described in Schwann cells. One of them, zinc finger protein (ZFP)-57, proved to be the homologue of a mouse gene found in F9 teratocarcinoma cells. Its mRNA expression profile within embryonic and adult normal and transected peripheral nerves, and its distribution in the rest of the nervous system is described. High levels of expression are seen in embryonic nerves and spinal cord. These drop rapidly during the first few weeks after birth, a pattern mirrored in other parts of the nervous system. ZFP-57 localizes to the nucleus of Schwann and other cells. The sequence contains an N-terminal Krüppel-associated box (KRAB) domain and ZFP-57 constructs containing green fluorescent protein reveal that the protein colocalizes with heterochromatin protein 1alpha to centromeric heterochromatin in a characteristic speckled pattern in NIH3T3 cells. The KRAB domain is required for this localization, because constructs lacking it target the protein to the nucleus but not to the centromeric heterochromatin. When fused to a heterologous DNA binding domain, the KRAB domain of ZFP-57 represses transcription, and full-length ZFP-57 represses Schwann cell transcription from myelin basic protein and P(0) promoters in co-transfection assays. Zfp-57 mRNA is up-regulated in Schwann cells in response to leukemia inhibitory factor and fibroblast growth factor 2.
Collapse
Affiliation(s)
- María B Durán Alonso
- Department of Anatomy and Developmental Biology, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Ghoumari AM, Ibanez C, El-Etr M, Leclerc P, Eychenne B, O'Malley BW, Baulieu EE, Schumacher M. Progesterone and its metabolites increase myelin basic protein expression in organotypic slice cultures of rat cerebellum. J Neurochem 2003; 86:848-59. [PMID: 12887683 DOI: 10.1046/j.1471-4159.2003.01881.x] [Citation(s) in RCA: 212] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
We have previously shown that progesterone (PROG) is synthesized by Schwann cells and promotes myelin formation in the peripheral nervous system (PNS). We now report that this neurosteroid also stimulates myelination in organotypic slice cultures of 7-day-old (P7) rat and mouse cerebellum. Myelination was evaluated by immunofluorescence analysis of the myelin basic protein (MBP). After 7 days in culture (7DIV), we found that adding PROG (2(-5) x 10(-5) M) to the culture medium caused a fourfold increase in MBP expression when compared to control slices. The effect of PROG on MBP expression involves the classical intracellular PROG receptor (PR): the selective PR agonist R5020 significantly increased MBP expression and the PR antagonist mifepristone (RU486) completely abolished the effect of PROG on this MBP expression. Moreover, treatment of P7-cerebellar slice cultures from PR knockout (PRKO) mice with PROG had no significant effect on MBP expression. PROG was metabolized in the cerebellar slices to 5alpha-dihydroprogesterone (5alpha-DHP) and to the GABAA receptor-active metabolite 3alpha,5alpha-tetrahydroprogesterone (3alpha,5alpha-THP, allopregnanolone). The 5alpha-reductase inhibitor L685-273 partially inhibited the effect of PROG, and 3alpha,5alpha-THP (2(-5) x 10(-5) M) significantly stimulated the MBP expression, although to a lesser extent than PROG. The increase in MBP expression by 3alpha,5alpha-THP involved GABAA receptors, as it could be inhibited by the selective GABAA receptor antagonist bicuculline. These findings suggest that progestins stimulate MBP expression and consequently suggest an increase in CNS myelination via two signalling systems, the intracellular PR and membrane GABAA receptors, and they confirm a new role of GABAA receptors in myelination.
Collapse
|
34
|
Non-neuronal cells in the nervous system: sources and targets of neuroactive steroids. ADVANCES IN MOLECULAR AND CELL BIOLOGY 2003. [DOI: 10.1016/s1569-2558(03)31024-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
35
|
Korsisaari N, Rossi DJ, Paetau A, Charnay P, Henkemeyer M, Mäkelä TP. Conditional ablation of the Mat1 subunit of TFIIH in Schwann cells provides evidence that Mat1 is not required for general transcription. J Cell Sci 2002; 115:4275-84. [PMID: 12376559 DOI: 10.1242/jcs.00121] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The mammalian Mat1 protein has been implicated in cell cycle regulation as part of the Cdk activating kinase (CAK), and in regulation of transcription as a subunit of transcription factor TFIIH. To address the role of Mat1 in vivo, we have used a Cre/loxP system to conditionally ablate Mat1 in adult mitotic and post-mitotic lineages. We found that the mitotic cells of the germ lineage died rapidly upon disruption of Mat1 indicating an absolute requirement of Mat1 in these cells. By contrast, post-mitotic myelinating Schwann cells were able to attain a mature myelinated phenotype in the absence of Mat1. Moreover, mutant animals did not show morphological or physiological signs of Schwann cell dysfunction into early adulthood. Beyond 3 months of age, however, myelinated Schwann cells in the sciatic nerves acquired a severe hypomyelinating morphology with alterations ranging from cells undergoing degeneration to completely denuded axons. This phenotype was coupled to extensive proliferation and remyelination that our evidence suggests was undertaken by the non-myelinated Schwann cell pool. These results indicate that Mat1 is not essential for the transcriptional program underlying the myelination of peripheral axons by Schwann cells and suggest that the function of Mat1 in RNA polymerase II-mediated transcription in these cells is regulatory rather than essential.
Collapse
Affiliation(s)
- Nina Korsisaari
- Haartman Institute and Helsinki University Central Hospital, Biomedicum Helsinki, PO Box 63, Haartmaninkatu 8, 00014 University of Helsinki, Finland
| | | | | | | | | | | |
Collapse
|