1
|
Ageeva T, Rizvanov A, Mukhamedshina Y. NF-κB and JAK/STAT Signaling Pathways as Crucial Regulators of Neuroinflammation and Astrocyte Modulation in Spinal Cord Injury. Cells 2024; 13:581. [PMID: 38607020 PMCID: PMC11011519 DOI: 10.3390/cells13070581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/18/2024] [Accepted: 03/26/2024] [Indexed: 04/13/2024] Open
Abstract
Spinal cord injury (SCI) leads to significant functional impairments below the level of the injury, and astrocytes play a crucial role in the pathophysiology of SCI. Astrocytes undergo changes and form a glial scar after SCI, which has traditionally been viewed as a barrier to axonal regeneration and functional recovery. Astrocytes activate intracellular signaling pathways, including nuclear factor κB (NF-κB) and Janus kinase-signal transducers and activators of transcription (JAK/STAT), in response to external stimuli. NF-κB and STAT3 are transcription factors that play a pivotal role in initiating gene expression related to astrogliosis. The JAK/STAT signaling pathway is essential for managing secondary damage and facilitating recovery processes post-SCI: inflammation, glial scar formation, and astrocyte survival. NF-κB activation in astrocytes leads to the production of pro-inflammatory factors by astrocytes. NF-κB and STAT3 signaling pathways are interconnected: NF-κB activation in astrocytes leads to the release of interleukin-6 (IL-6), which interacts with the IL-6 receptor and initiates STAT3 activation. By modulating astrocyte responses, these pathways offer promising avenues for enhancing recovery outcomes, illustrating the crucial need for further investigation into their mechanisms and therapeutic applications in SCI treatment.
Collapse
Affiliation(s)
- Tatyana Ageeva
- OpenLab Gene and Cell Technology, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (A.R.)
| | - Albert Rizvanov
- OpenLab Gene and Cell Technology, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (A.R.)
- Division of Medical and Biological Sciences, Tatarstan Academy of Sciences, 420111 Kazan, Russia
| | - Yana Mukhamedshina
- OpenLab Gene and Cell Technology, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (A.R.)
- Department of Histology, Cytology and Embryology, Kazan State Medical University, 420012 Kazan, Russia
| |
Collapse
|
2
|
Abstract
Although autism spectrum disorder (ASD) has a strong genetic basis, its etiology is complex, with several genetic factors likely to be involved as well as environmental factors. Immune dysregulation has gained significant attention as a causal mechanism in ASD pathogenesis. ASD has been associated with immune abnormalities in the brain and periphery, including inflammatory disorders and autoimmunity in not only the affected individuals but also their mothers. Prenatal exposure to maternal immune activation (MIA) has been implicated as an environmental risk factor for ASD. In support of this notion, animal models have shown that MIA results in offspring with behavioral, neurological, and immunological abnormalities similar to those observed in ASD. This raises the question of how MIA exposure can lead to ASD in susceptible individuals. Recent evidence points to a potential inflammation pathway linking MIA-associated ASD with the activity of T helper 17 (Th17) lymphocytes and their effector cytokine interleukin-17A (IL-17A). IL-17A has been implicated from human studies and elevated IL-17A levels in the blood have been found to correlate with phenotypic severity in a subset of ASD individuals. In MIA model mice, elevated IL-17A levels also have been observed. Additionally, antibody blockade to inhibit IL-17A signaling was found to prevent ASD-like behaviors in offspring exposed to MIA. Therefore, IL-17A dysregulation may play a causal role in the development of ASD. The source of increased IL-17A in the MIA mouse model was attributed to maternal Th17 cells because genetic removal of the transcription factor RORγt to selectively inhibit Th17 differentiation in pregnant mice was able to prevent ASD-like behaviors in the offspring. Similar to ASD individuals, the MIA-exposed offspring also displayed cortical dysplasia which could be prevented by inhibition of IL-17A signaling in pregnant mice. This finding reveals one possible cellular mechanism through which ASD-related cognitive and behavioral deficits may emerge following maternal inflammation. IL-17A can exert strong effects on cell survival and differentiation and the activity of signal transduction cascades, which can have important consequences during cortical development on neural function. This review examines IL-17A signaling pathways in the context of both immunity and neural function that may contribute to the development of ASD associated with MIA.
Collapse
Affiliation(s)
- Helen Wong
- Institute for Behavioral Genetics, University of Colorado-Boulder, CO 80303, United States; Department of Integrative Physiology, University of Colorado-Boulder, Boulder, CO 80303, United States; Linda Crnic Institute, University of Colorado-Anschutz Medical Campus, Aurora, CO 80045, United States
| | - Charles Hoeffer
- Institute for Behavioral Genetics, University of Colorado-Boulder, CO 80303, United States; Department of Integrative Physiology, University of Colorado-Boulder, Boulder, CO 80303, United States; Linda Crnic Institute, University of Colorado-Anschutz Medical Campus, Aurora, CO 80045, United States.
| |
Collapse
|
3
|
Mao X, Phanavanh B, Hamdan H, Moerman-Herzog A, Barger SW. NFκB-inducing kinase inhibits NFκB activity specifically in neurons of the CNS. J Neurochem 2016; 137:154-63. [PMID: 26778773 PMCID: PMC5115916 DOI: 10.1111/jnc.13526] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 12/15/2015] [Accepted: 01/04/2016] [Indexed: 12/30/2022]
Abstract
The control of NFκB in CNS neurons appears to differ from that in other cell types. Studies have reported induction of NFκB in neuronal cultures and immunostaining in vivo, but others have consistently detected little or no transcriptional activation by NFκB in brain neurons. To test if neurons lack some component of the signal transduction system for NFκB activation, we transfected cortical neurons with several members of this signaling system along with a luciferase-based NFκB-reporter plasmid; RelA was cotransfected in some conditions. No component of the NFκB pathway was permissive for endogenous NFκB activity, and none stimulated the activity of exogenous RelA. Surprisingly, however, the latter was inhibited by cotransfection of NFκB-inducing kinase (NIK). Fluorescence imaging of RelA indicated that co-expression of NIK sequestered RelA in the cytoplasm, similar to the effect of IκBα. NIK-knockout mice showed elevated expression of an NFκB-reporter construct in neurons in vivo. Cortical neurons cultured from NIK-knockout mice showed elevated expression of an NFκB-reporter transgene. Consistent with data from other cell types, a C-terminal fragment of NIK suppressed RelA activity in astrocytes as well as neurons. Therefore, the inhibitory ability of the NIK C-terminus was unbiased with regard to cell type. However, inhibition of NFκB by full-length NIK is a novel outcome that appears to be specific to CNS neurons. This has implications for unique aspects of transcription in the CNS, perhaps relevant to aspects of development, neuroplasticity, and neuroinflammation. Full-length NIK was found to inhibit (down arrow) transcriptional activation of NFκB in neurons, while it elevated (up arrow) activity in astrocytes. Deletion constructs corresponding to the N-terminus or C-terminus also inhibited NFκB in neurons, while only the C-terminus did so in astrocytes. One possible explanation is that the inhibition in neurons occurs via two different mechanisms, including the potential for a neuron-specific protein (e.g., one of the 14-3-3 class) to create a novel complex in neurons, whereas the C-terminus may interact directly with NFκB. [Structure of NIK is based on Liu J., Sudom A., Min X., Cao Z., Gao X., Ayres M., Lee F., Cao P., Johnstone S., Plotnikova O., Walker N., Chen G., and Wang Z. (2012) Structure of the nuclear factor κB-inducing kinase (NIK) kinase domain reveals a constitutively active conformation. J Biol Chem. 287, 27326-27334); N-terminal lobe is oriented at top].
Collapse
Affiliation(s)
- Xianrong Mao
- Department of Genetics, Washington University, St. Louis MO 63110
| | - Bounleut Phanavanh
- Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock AR 72205
| | - Hamdan Hamdan
- Department of Neuroscience, Baylor College of Medicine, Houston TX 77030
| | - Andréa Moerman-Herzog
- Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock AR 72205
| | - Steven W. Barger
- Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock AR 72205
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock AR 72205
- Geriatric Research Education and Clinical Center, Central Arkansas Veterans Healthcare System, Little Rock AR 72205
| |
Collapse
|
4
|
Abstract
Nuclear factor-kappa B (NF-κB) is a ubiquitous transcription factor that regulates immune and cell-survival signaling pathways. NF-κB has been reported to be present in neurons wherein it reportedly responds to immune and toxic stimuli, glutamate, and synaptic activity. However, because the brain contains many cell types, assays specifically measuring neuronal NF-κB activity are difficult to perform and interpret. To address this, we compared NF-κB activity in cultures of primary neocortical neurons, mixed brain cells, and liver cells, employing Western blot of NF-κB subunits, electrophoretic mobility shift assay (EMSA) of nuclear κB DNA binding, reporter assay of κB DNA binding, immunofluorescence of the NF-κB subunit protein p65, quantitative real-time polymerase chain reaction (PCR) of NF-κB-regulated gene expression, and enzyme-linked immunosorbent assay (ELISA) of produced proteins. Assay of p65 showed its constitutive presence in cytoplasm and nucleus of neurons at levels significantly lower than in mixed brain or liver cells. EMSA and reporter assays showed that constitutive NF-κB activity was nearly absent in neurons. Induced activity was minimal--many fold lower than in other cell types, as measured by phosphorylation and degradation of the inhibitor IκBα, nuclear accumulation of p65, binding to κB DNA consensus sites, NF-κB reporting, or induction of NF-κB-responsive genes. The most efficacious activating stimuli for neurons were the pro-inflammatory cytokines tumor necrosis factor α (TNFα) and interleukin-beta (IL-β). Neuronal NF-κB was not responsive to glutamate in most assays, and it was also unresponsive to hydrogen peroxide, lipopolysaccharide, norepinephrine, ATP, phorbol ester, and nerve growth factor. The chemokine gene transcripts CCL2, CXCL1, and CXCL10 were strongly induced via NF-κB activation by TNFα in neurons, but many candidate responsive genes were not, including the neuroprotective genes SOD2 and Bcl-xL. Importantly, the level of induced neuronal NF-κB activity in response to TNFα or any other stimulus was lower than the level of constitutive activity in non-neuronal cells, calling into question the functional significance of neuronal NF-κB activity.
Collapse
|
5
|
Mao XR, Moerman-Herzog AM, Chen Y, Barger SW. Unique aspects of transcriptional regulation in neurons--nuances in NFkappaB and Sp1-related factors. J Neuroinflammation 2009; 6:16. [PMID: 19450264 PMCID: PMC2693111 DOI: 10.1186/1742-2094-6-16] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2009] [Accepted: 05/18/2009] [Indexed: 12/11/2022] Open
Abstract
The unique physiology and function of neurons create differences in their cellular physiology, including their regulation of gene expression. We began several years ago exploring the relationships between the NFκB transcription factor, neuronal survival, and glutamate receptor activation in telencephalic neurons. These studies led us to conclude that this population of cells is nearly incapable of activating the NFκB that is nonetheless expressed at reasonable levels. A subset of the κB cis elements are instead bound by members of the Sp1 family in neurons. Also surprising was our discovery that Sp1 itself, typically described as ubiquitous, is severely restricted in expression within forebrain neurons; Sp4 seems to be substituted during neuronal differentiation. These findings and their implications for neuronal differentiation – as well as potential dedifferentiation during degenerative processes – are discussed here.
Collapse
Affiliation(s)
- Xianrong R Mao
- Department of Anesthesiology, Washington University School of Medicine, St Louis, MO 63110, USA.
| | | | | | | |
Collapse
|
6
|
Fisher L, Samuelsson M, Jiang Y, Ramberg V, Figueroa R, Hallberg E, Langel U, Iverfeldt K. Targeting cytokine expression in glial cells by cellular delivery of an NF-kappaB decoy. J Mol Neurosci 2008; 31:209-19. [PMID: 17726227 DOI: 10.1385/jmn:31:03:209] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2006] [Revised: 10/18/2006] [Accepted: 11/30/1999] [Indexed: 11/11/2022]
Abstract
Inhibition of nuclear factor (NF)-kappaB has emerged as an important strategy for design of anti-inflammatory therapies. In neurodegenerative disorders like Alzheimer's disease, inflammatory reactions mediated by glial cells are believed to promote disease progression. Here, we report that uptake of a double-stranded oligonucleotide NF-kappaB decoy in rat primary glial cells is clearly facilitated by noncovalent binding to a cell-penetrating peptide, transportan 10, via a complementary peptide nucleic acid (PNA) sequence. Fluorescently labeled oligonucleotide decoy was detected in the cells within 1 h only when cells were incubated with the decoy in the presence of cell-penetrating peptide. Cellular delivery of the decoy also inhibited effects induced by a neurotoxic fragment of the Alzheimer beta-amyloid peptide in the presence of the inflammatory cytokine interleukin (IL)-1beta. Pretreatment of the cells with the complex formed by the decoy and the cell-penetrating peptide-PNA resulted in 80% and 50% inhibition of the NF-kappaB binding activity and IL-6 mRNA expression, respectively.
Collapse
Affiliation(s)
- Linda Fisher
- Department of Neurochemistry, Stockholm University, SE10691 Stockholm, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Mao X, Yang SH, Simpkins JW, Barger SW. Glutamate receptor activation evokes calpain-mediated degradation of Sp3 and Sp4, the prominent Sp-family transcription factors in neurons. J Neurochem 2007; 100:1300-14. [PMID: 17316402 PMCID: PMC1949346 DOI: 10.1111/j.1471-4159.2006.04297.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Sp-family transcription factors (Sp1, Sp3 and Sp4) contain a zinc-finger domain that binds to DNA sequences rich in G-C/T. As assayed by RT-PCR analysis of mRNA, western-blot analysis, immunofluorescence, and antibody-dependent "supershift" of DNA-binding assays, the prominent Sp-family factors in cerebral neurons were identified as Sp3 and Sp4. By contrast, glial cells were found to express Sp1 and Sp3. We previously showed that the pattern of G-C/T binding activity of Sp-family factors is rapidly and specifically altered by the calcium influx accompanying activation of glutamate receptors. Here, we demonstrate that Sp-factor activity is also lost after a cerebral ischemia/reperfusion injury in vivo. Consistent with its calcium-dependent nature, we found that glutamate's effect on Sp-family factors could be blocked by inhibitors of calpains, neutral cysteine proteases activated by calcium. Purified calpain I cleaved Sp3 and Sp4 into products that retained G-C/T-binding activity, consistent with species observed in glutamate-treated neurons. These data provide details of an impact of glutamate-receptor activation on molecular events connected to gene expression.
Collapse
Affiliation(s)
- Xianrong Mao
- Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | | | | | | |
Collapse
|
8
|
Mao X, Moerman-Herzog AM, Wang W, Barger SW. Differential transcriptional control of the superoxide dismutase-2 kappaB element in neurons and astrocytes. J Biol Chem 2006; 281:35863-72. [PMID: 17023425 PMCID: PMC2063448 DOI: 10.1074/jbc.m604166200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In addition to their conventional G-C/T target sequences, Sp1 family transcription factors (Sp-factors) can interact with a subset of the target sequences for NFkappaB. Due to the low level of bona fide NFkappaB activity in most resting cells, this interaction between Sp-factors and kappaB-sites could play important roles in cell function. Here we used mutagenesis of a canonical kappaB element from the immunoglobulin and HIV promoters to identify the GC-rich sequences at each end required for Sp-factor targeting. Through screening of multiple kappaB elements, a sequence element located in the second intron of superoxide dismutase-2 (SOD2) was identified as a good candidate for both NFkappaB and Sp-factor binding. In neurons, the prominent proteins interacting with this site were Sp3 and Sp4, whereas Sp1, Sp3, and NFkappaB were associated with this site in astroglia. The neuronal Sp-factors repressed transcriptional activity through this kappaB-site. In contrast, astroglial Sp-factors activated promoter activity through the same element. NFkappaB contributed to control of the SOD2 kappaB element only in astrocytes. These findings imply that cell-type specificity of transcription in the central nervous system, particularly with regard to kappaB elements, may include two unique aspects of neurons: 1) a recalcitrant NFkappaB and 2) the substitution of Sp4 for Sp1.
Collapse
Affiliation(s)
- Xianrong Mao
- Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA
| | | | | | | |
Collapse
|
9
|
Mémet S. NF-kappaB functions in the nervous system: from development to disease. Biochem Pharmacol 2006; 72:1180-95. [PMID: 16997282 DOI: 10.1016/j.bcp.2006.09.003] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2006] [Revised: 08/31/2006] [Accepted: 09/05/2006] [Indexed: 01/01/2023]
Abstract
The transcription factor nuclear factor-kappaB (NF-kappaB) is an ubiquitously expressed dimeric molecule with post-translationally regulated activity. Its role in the immune system and host defense has been well characterized over the last two decades. In contrast, our understanding of the function of this transcription factor in the nervous system (NS) is only emerging. Given their cytoplasmic retention and nuclear translocation upon stimulus, NF-kappaB members are likely to exert an important role in transduction of signals from synaptic terminals to nucleus, to initiate transcriptional responses. This report describes recent findings deciphering the diverse functions of NF-kappaB in NS development and activity, which range from the control of cell growth, survival and inflammatory response to synaptic plasticity, behavior and cognition. Particular attention is given to the specific roles of NF-kappaB in the various cells of the NS, e.g. neurons and glia. Current knowledge of the contribution of NF-kappaB to several neurodegenerative disorders, such as Alzheimer's, Parkinson's and Huntington's diseases is also summarized.
Collapse
Affiliation(s)
- Sylvie Mémet
- Unité de Mycologie Moléculaire, FRE CNRS 2849, Department of Infection and Epidemiology, Institut Pasteur, 25 rue du Dr. Roux, 75724 Paris Cedex 15, France.
| |
Collapse
|
10
|
Massa PT, Aleyasin H, Park DS, Mao X, Barger SW. NFkappaB in neurons? The uncertainty principle in neurobiology. J Neurochem 2006; 97:607-18. [PMID: 16573643 PMCID: PMC2063440 DOI: 10.1111/j.1471-4159.2006.03810.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Nuclear factor kappaB (NFkappaB) is a dynamically modulated transcription factor with an extensive literature pertaining to widespread actions across species, cell types and developmental stages. Analysis of NFkappaB in a complex environment such as neural tissue suffers from a difficulty in simultaneously establishing both activity and location. Much of the available data indicate a profound recalcitrance of NFkappaB activation in neurons, as compared with most other cell types. Few studies to date have sought to distinguish between the various combinatorial dimers of NFkappaB family members. Recent research has illuminated the importance of these problems, as well as opportunities to move past them to the nuances manifest through variable activation pathways, subunit complexity and target sequence preferences.
Collapse
Affiliation(s)
- Paul T Massa
- Department of Neurology, State University of New York-Upstate Medical University, Syracuse, New York, USA
| | | | | | | | | |
Collapse
|
11
|
Kaltschmidt B, Widera D, Kaltschmidt C. Signaling via NF-κB in the nervous system. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2005; 1745:287-99. [PMID: 15993497 DOI: 10.1016/j.bbamcr.2005.05.009] [Citation(s) in RCA: 228] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2005] [Revised: 05/20/2005] [Accepted: 05/23/2005] [Indexed: 12/12/2022]
Abstract
Nuclear factor kappa B (NF-kappaB) is an inducible transcription factor present in neurons and glia. Recent genetic models identified a role for NF-kappaB in neuroprotection against various neurotoxins. Furthermore, genetic evidence for a role in learning and memory is now emerging. This review highlights our current understanding of neuronal NF-kappaB in response to synaptic transmission and summarizes potential physiological functions of NF-kappaB in the nervous system. This article contains a listing of NF-kappaB activators and inhibitors in the nervous system, furthermore specific target genes are discussed. Synaptic NF-kappaB activated by glutamate and Ca2+ will be presented in the context of retrograde signaling. A controversial role of NF-kappaB in neurodegenerative diseases will be discussed. A model is proposed explaining this paradox as deregulated physiological NF-kappaB activity, where novel results are integrated, showing that p65 could be turned from an activator to a repressor of anti-apoptotic genes.
Collapse
Affiliation(s)
- Barbara Kaltschmidt
- Institut für Neurobiochemie Universität Witten/Herdecke, Stockumer Street 10, D-58448 Witten, Germany
| | | | | |
Collapse
|
12
|
Liu L, Li Y, Van Eldik LJ, Griffin WST, Barger SW. S100B-induced microglial and neuronal IL-1 expression is mediated by cell type-specific transcription factors. J Neurochem 2005; 92:546-53. [PMID: 15659225 DOI: 10.1111/j.1471-4159.2004.02909.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Both the astrocytic cytokine S100B and the pro-inflammatory interleukin-1 (IL-1) are elevated in Alzheimer's disease, and each has been implicated in Alzheimer-related neuropathology. We examined the gene-regulatory events through which S100B induces IL-1beta expression. In primary microglia, S100B activated the transcription factors Sp1 and NFkappaB, followed by an increase in IL-1beta mRNA levels. The latter was blocked by a peptide inhibitor of NFkappaB or by a double-stranded oligonucleotide containing a NFkappaB-binding site to serve as "decoy" DNA and reduce available NFkappaB. But in primary cortical neurons, decoy and siRNA experiments indicated that the IL-1beta induction by S100B was mediated by Sp1 without evidence of a role for NFkappaB. Our results suggest that the elevation of S100B and IL-1 in Alzheimer brain and consequent neurodegenerative events are mediated through cell-type specific gene-regulatory events, providing mechanistic insight into connections between glial activation and neuronal dysfunction.
Collapse
Affiliation(s)
- Ling Liu
- Department of Geriatrics, University of Arkansas for Medical Sciences, 629 Jack Stephens Drive #807, Little Rock, AR 72205, USA
| | | | | | | | | |
Collapse
|
13
|
Abstract
The transcription factor nuclear factor kappa-B (NF-kappaB) is involved in regulating responses of neurons to activation of several different signaling pathways in a variety of physiological and pathological settings. During development of the nervous system NF-kappaB is activated in growing neurons by neurotrophic factors and can induce the expression of genes involved in cell differentiation and survival. In the mature nervous system NF-kappaB is activated in synapses in response to excitatory synaptic transmission and may play a pivotal role in processes such as learning and memory. NF-kappaB is activated in neurons and glial cells in acute neurodegenerative conditions such as stroke and traumatic injury, as well as in chronic neurodegenerative conditions such as Alzheimer's disease. Activation of NF-kappaB in neurons can promote their survival by inducing the expression of genes encoding anti-apoptotic proteins such as Bcl-2 and the antioxidant enzyme Mn-superoxide dismutase. On the other hand, by inducing the production and release of inflammatory cytokines, reactive oxygen molecules and excitotoxins, activation of NF-kappaB in microglia and astrocytes may contribute to neuronal degeneration. Emerging findings suggest roles for NF-kappaB as a mediator of effects of behavioral and dietary factors on neuronal plasticity. NF-kappaB provides an attractive target for the development of novel therapeutic approaches for a range of neurological disorders.
Collapse
Affiliation(s)
- Mark P Mattson
- Laboratory of Neurosciences, National Institute on Aging Gerontology Research Center, 5600 Nathan Shock Drive, Baltimore, MD 21224, USA.
| |
Collapse
|
14
|
Fisher L, Soomets U, Cortés Toro V, Chilton L, Jiang Y, Langel U, Iverfeldt K. Cellular delivery of a double-stranded oligonucleotide NFkappaB decoy by hybridization to complementary PNA linked to a cell-penetrating peptide. Gene Ther 2004; 11:1264-72. [PMID: 15292915 DOI: 10.1038/sj.gt.3302291] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The activation of nuclear factor kappaB (NFkappaB) is a key event in immune and inflammatory responses. In this study, a cell-penetrating transport peptide, transportan (TP) or its shorter analogue TP 10, was used to facilitate the cellular uptake of an NFkappaB decoy. Peptide nucleic acid (PNA) hexamer or nonamer was linked to the transport peptide by a disulfide bond. NFkappaB decoy oligonucleotide consisted of a double-stranded consensus sequence corresponding to the kappaB site localized in the IL-6 gene promoter, 5'-GGGACTTTCCC-3', with a single-stranded protruding 3'-terminal sequence complementary to the PNA sequence was hybridized to the transport peptide-PNA construct. The ability of the transport peptide-PNA-NFkappaB decoy complex to block the effect of interleukin (IL)-1beta-induced NFkappaB activation and IL-6 gene expression was analyzed by electrophoretic mobility shift assay and reverse transcriptase-polymerase chain reaction in rat Rinm5F insulinoma cells. Preincubation with transport peptide-PNA-NFkappaB decoy (1 microM, 1 h) blocked IL-1beta-induced NFkappaB-binding activity and significantly reduced the IL-6 mRNA expression. The same concentration of NFkappaB decoy in the absence of transport peptide-PNA had no effect even after longer incubations. Our results showed that binding of the oligonucleotide NFkappaB decoy to the nonamer PNA sequence resulted in a stable complex that was efficiently translocated across the plasma membrane.
Collapse
Affiliation(s)
- L Fisher
- Department of Neurochemistry and Neurotoxicology, Stockholm University, Stockholm, Sweden
| | | | | | | | | | | | | |
Collapse
|
15
|
Aleyasin H, Cregan SP, Iyirhiaro G, O'Hare MJ, Callaghan SM, Slack RS, Park DS. Nuclear factor-(kappa)B modulates the p53 response in neurons exposed to DNA damage. J Neurosci 2004; 24:2963-73. [PMID: 15044535 PMCID: PMC6729853 DOI: 10.1523/jneurosci.0155-04.2004] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Previous studies have shown that DNA damage-evoked death of primary cortical neurons occurs in a p53 and cyclin-dependent kinase-dependent (CDK) manner. The manner by which these signals modulate death is unclear. Nuclear factor-kappaB (NF-kappaB) is a group of transcription factors that potentially interact with these pathways. Presently, we show that NF-kappaB is activated shortly after induction of DNA damage in a manner independent of the classic IkappaB kinase (IKK) activation pathway, CDKs, ATM, and p53. Acute inhibition of NF-kappaB via expression of a stable IkappaB mutant, downregulation of the p65 NF-kappaB subunit by RNA interference (RNAi), or pharmacological NF-kappaB inhibitors significantly protected against DNA damage-induced neuronal death. NF-kappaB inhibition also reduced p53 transcripts and p53 activity as measured by the p53-inducible messages, Puma and Noxa, implicating the p53 tumor suppressor in the mechanism of NF-kappaB-mediated neuronal death. Importantly, p53 expression still induces death in the presence of NF-kappaB inhibition, indicating that p53 acts downstream of NF-kappaB. Interestingly, neurons cultured from p65 or p50 NF-kappaB-deficient mice were not resistant to death and did not show diminished p53 activity, suggesting compensatory processes attributable to germline deficiencies, which allow p53 activation still to occur. In contrast to acute NF-kappaB inhibition, prolonged NF-kappaB inhibition caused neuronal death in the absence of DNA damage. These results uniquely define a signaling paradigm by which NF-kappaB serves both an acute p53-dependent pro-apoptotic function in the presence of DNA damage and an anti-apoptotic function in untreated normal neurons.
Collapse
Affiliation(s)
- Hossein Aleyasin
- Ottawa Health Research Institute, Neurosciences, East Division, Ottawa, Ontario, Canada K1H 8M5
| | | | | | | | | | | | | |
Collapse
|
16
|
Kucharczak J, Simmons MJ, Fan Y, Gélinas C. To be, or not to be: NF-kappaB is the answer--role of Rel/NF-kappaB in the regulation of apoptosis. Oncogene 2004; 22:8961-82. [PMID: 14663476 DOI: 10.1038/sj.onc.1207230] [Citation(s) in RCA: 592] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
During their lifetime, cells encounter many life or death situations that challenge their very own existence. Their survival depends on the interplay within a complex yet precisely orchestrated network of proteins. The Rel/NF-kappaB signaling pathway and the transcription factors that it activates have emerged as critical regulators of the apoptotic response. These proteins are best known for the key roles that they play in normal immune and inflammatory responses, but they are also implicated in the control of cell proliferation, differentiation, apoptosis and oncogenesis. In recent years, there has been remarkable progress in understanding the pathways that activate the Rel/NF-kappaB factors and their role in the cell's decision to either fight or surrender to apoptotic challenge. Whereas NF-kappaB is most commonly involved in suppressing apoptosis by transactivating the expression of antiapoptotic genes, it can promote programmed cell death in response to certain death-inducing signals and in certain cell types. This review surveys our current understanding of the role of NF-kappaB in the apoptotic response and focuses on many developments since this topic was last reviewed in Oncogene 4 years ago. These recent findings shed new light on the activity of NF-kappaB as a critical regulator of apoptosis in the immune, hepatic, epidermal and nervous systems, on the mechanisms through which it operates and on its role in tissue development, homoeostasis and cancer.
Collapse
Affiliation(s)
- Jérôme Kucharczak
- Center for Advanced Biotechnology and Medicine, 679 Hoes Lane, Piscataway, NJ, USA
| | | | | | | |
Collapse
|
17
|
Campbell DB, Levitt P. Regionally restricted expression of the transcription factor c-myc intron 1 binding protein during brain development. J Comp Neurol 2003; 467:581-92. [PMID: 14624490 DOI: 10.1002/cne.10958] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Transcription factors regulate proliferation, differentiation, and regionalization of the central nervous system. In a screen of developing cerebral cortex, we identified the transcription factor c-myc intron 1 binding protein (mibp1) due to its abundant expression. In this study, we analyzed the temporal and spatial expression patterns of mibp1 mRNA in developing mouse brain to address the putative role of this transcription factor in neural differentiation. Northern hybridization studies revealed that mibp1 is expressed first in the mouse dorsal telencephalon at embryonic day (E) 14.5, during peak neuronal production. In situ hybridization experiments revealed that mibp1 expression in the cerebral wall is most abundant in postmitotic cells of the cortical plate and absent from proliferative zones. Moreover, mibp1 is restricted to dorsal telencephalon during embryogenesis with expression only in the cerebral wall, olfactory bulb, and hippocampus. N-myc, a potential target of mibp1 regulation, exhibited complementary, nonoverlapping expression patterns in the telencephalon with greatest expression in proliferating cells of the ventricular zone from E12.5 to E14.5; N-myc was absent from the telencephalon by E15.5. The specificity and timing of mibp1 expression in the cerebral cortex suggests a role in maintaining a state of neuronal differentiation in the dorsal telencephalon.
Collapse
Affiliation(s)
- Daniel B Campbell
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | |
Collapse
|
18
|
Hong JW, Allen CE, Wu LC. Inhibition of NF-kappaB by ZAS3, a zinc-finger protein that also binds to the kappaB motif. Proc Natl Acad Sci U S A 2003; 100:12301-6. [PMID: 14530385 PMCID: PMC218753 DOI: 10.1073/pnas.2133048100] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The ZAS proteins are large zinc-finger transcriptional proteins implicated in growth, signal transduction, and lymphoid development. Recombinant ZAS fusion proteins containing one of the two DNA-binding domains have been shown to bind specifically to the kappaB motif, but the endogenous ZAS proteins or their physiological functions are largely unknown. The kappaB motif, GGGACTTTCC, is a gene regulatory element found in promoters and enhancers of genes involved in immunity, inflammation, and growth. The Rel family of NF-kappaB, predominantly p65.p50 and p50.p50, are transcription factors well known for inducing gene expression by means of interaction with the kappaB motif during acute-phase responses. A functional link between ZAS and NF-kappaB, two distinct families of kappaB-binding proteins, stems from our previous in vitro studies that show that a representative member, ZAS3, associates with TRAF2, an adaptor molecule in tumor necrosis factor signaling, to inhibit NF-kappaB activation. Biochemical and genetic evidence presented herein shows that ZAS3 encodes major kappaB-binding proteins in B lymphocytes, and that NF-kappaB is constitutively activated in ZAS3-deficient B cells. The data suggest that ZAS3 plays crucial functions in maintaining cellular homeostasis, at least in part by inhibiting NF-kappaB by means of three mechanisms: inhibition of nuclear translocation of p65, competition for kappaB gene regulatory elements, and repression of target gene transcription.
Collapse
Affiliation(s)
- Joung-Woo Hong
- Ohio State Biochemistry Program, Ohio State University, Columbus, OH 43210, USA
| | | | | |
Collapse
|
19
|
Montpied P, de Bock F, Rondouin G, Niel G, Briant L, Courseau AS, Lerner-Natoli M, Bockaert J. Caffeic acid phenethyl ester (CAPE) prevents inflammatory stress in organotypic hippocampal slice cultures. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2003; 115:111-20. [PMID: 12877982 DOI: 10.1016/s0169-328x(03)00178-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Caffeic acid phenethyl ester (CAPE) is an antioxidant component of propolis, a natural product secreted by honeybee. Recent literature shows that CAPE inhibits nuclear factor kappa B (NFkappaB) activation in cell lines. Since NFkappaB was shown to be a crucial factor in neuroinflammation and to be associated with some neuropathologies, CAPE might reduce these disorders in brain too and have therapeutic applications. To test this hypothesis we used a model of endotoxic insult (interferon-gamma, followed by lipopolysaccharide) on rat organotypic hippocampal cultures. Cerebral inflammatory responses were strongly inhibited by CAPE (100 microM): reductions of NFkappaB nuclear activity, tumor necrosis factor alpha and nitric oxide productions were observed. At the dose of maximal effects (100 microM), an increase of cAMP-responsive element binding protein (CREB) activity, which anti-inflammatory role is well known, was seen. We compared CAPE effects with those of other drugs: anti-inflammatory as acetyl-salicylate and dexamethasone (glucocorticoid), antioxidant as pyrrolidine dithiocarbamate, or selective permeant inhibitor of NFkappaB as SN 50 peptide. These studies lead us to conclude that CAPE presents an interesting and original neuropharmacological profile compared to these drugs and might be helpful in the prevention of neurotoxic events due to excessive inflammatory reaction in brain. CAPE interferes with several effectors of neuroinflammation that might have complementary and synergic effects and allows a rather durable control since an acute treatment at the time of endotoxin exposure allows to control inflammatory factors for over 48 h.
Collapse
Affiliation(s)
- Pascale Montpied
- Faculté de Pharmacie, CNRS-UMR 5094, 15 Avenue Charles Flahault, 34060 Montpellier Cedex 2, France.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Yu Z, Cheng G, Wen X, Wu GD, Lee WT, Pleasure D. Tumor necrosis factor alpha increases neuronal vulnerability to excitotoxic necrosis by inducing expression of the AMPA-glutamate receptor subunit GluR1 via an acid sphingomyelinase- and NF-kappaB-dependent mechanism. Neurobiol Dis 2002; 11:199-213. [PMID: 12460558 DOI: 10.1006/nbdi.2002.0530] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Acid sphingomyelinase (ASMase) and NF-kappaB participate in tumor necrosis factor alpha (TNFalpha) signal transduction. Mice in which the genes encoding ASMase or the p50 subunit of NF-kappaB are disrupted have been reported to be less vulnerable than wild-type mice to focal brain ischemia. We now demonstrate selective diminution in expression of GluR1, an alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate-type glutamate receptor (AMPA-GluR) protein subunit, in these two groups of knockout mice. To confirm that neuronal GluR1 expression is regulated by ASMase and NF-kappaB, and to learn whether this regulation has pathophysiological significance, we treated cultured human NT2-N neurons with TNFalpha. This induced GluR1 expression and increased susceptibility of the neurons to kainate necrosis. Both induction of GluR1 and heightened vulnerability to kainate were blocked by inhibiting ASMase or by antisense knockdown of NF-kappaB p50. We conclude that TNFalpha can sensitize neurons to excitotoxic necrosis by inducing expression of GluR1 via an ASMase- and NF-kappaB-dependent mechanism. TNFalpha levels are frequently elevated during ischemia and other CNS diseases in which excitotoxicity contributes to neuronal loss. Our results suggest that inhibiting TNFalpha signal transduction will diminish neuronal necrosis in these diseases.
Collapse
Affiliation(s)
- ZaiFang Yu
- Department of Neurology Research, University of Pennsylvania School of Medicine, Philadelphia 19104, USA
| | | | | | | | | | | |
Collapse
|
21
|
Mao X, Moerman AM, Barger SW. Neuronal kappa B-binding factors consist of Sp1-related proteins. Functional implications for autoregulation of N-methyl-D-aspartate receptor-1 expression. J Biol Chem 2002; 277:44911-9. [PMID: 12244044 DOI: 10.1074/jbc.m204292200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Neurons contain a protein factor capable of binding DNA elements normally bound by the transcription factor NF-kappaB. However, several lines of evidence suggest that this neuronal kappaB-binding factor (NKBF) is not bona fide NF-kappaB. We have identified NKBF from cultures of neocortical neurons as a complex containing proteins related to Sp1. This complex was bound by antibodies to Sp1, Sp3, and Sp4 and was competed from binding to an NF-kappaB element by an oligonucleotide containing an Sp1-binding site. This Sp1 oligonucleotide detected an abundant factor in neuronal nuclei that migrated in electrophoretic mobility shift assays at a position consistent with NKBF. Expression of transfected Sp1 stimulated transcription in a manner dependent upon a kappaB cis-element. Similar to our previous reports for NKBF (Mao, X., Moerman, A. M., Lucas, M. M., and Barger, S. W. (1999) J. Neurochem. 73, 1851-1858 and Moerman, A. M., Mao, X., Lucas, M. M., and Barger, S. W. (1999) Mol. Brain Res. 67, 303-315), the activity of the Sp1-related factor was reduced by activation of ionotropic glutamate receptors, consistent with proteolytic degradation of all three Sp1-related factors. Expression of the N-methyl-d-aspartate receptor-1 (NR1) subunit of glutamate receptors correlated with the activity of the Sp1-related factor, specifically through an Sp1 element in the NR1 promoter. These data provide the first evidence that Sp1 or related family members are responsible for kappaB-binding activity and are involved in a negative feedback for NR1 in central nervous system neurons.
Collapse
Affiliation(s)
- Xianrong Mao
- Department of Anatomy and Neurobiology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA
| | | | | |
Collapse
|
22
|
Tanaka S, Takehashi M, Matoh N, Iida S, Suzuki T, Futaki S, Hamada H, Masliah E, Sugiura Y, Ueda K. Generation of reactive oxygen species and activation of NF-kappaB by non-Abeta component of Alzheimer's disease amyloid. J Neurochem 2002; 82:305-15. [PMID: 12124431 DOI: 10.1046/j.1471-4159.2002.00958.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Non-amyloid beta (Abeta) component of Alzheimer's disease (AD) amyloid (NAC) coexists with Abeta protein in senile plaques. After exposure to NAC fibrils, cortical neurons of rat brain primary culture became apoptotic, while astrocytes were activated with extension of their processes. NAC fibrils decreased the activity of reducing 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) in cortical neurons more markedly (IC(50) = 5.6 microm) than in astrocytes (IC(50) approximately 50 microm). The neuron-specific toxicity of NAC fibrils was indicated also by an increased release of lactate dehydrogenase from the cells. Neuronal apoptosis was suppressed by pre-treatment with the antioxidants, propyl gallate (PG) and N-t-butyl-phenylnitrone (BPN), or overexpression of human Bcl-2. Exposure to NAC fibrils enhanced generation of reactive oxygen species (ROS) in neurons and less efficiently in astrocytes, as demonstrated by oxidation of 2',7'-dichlorofluorescin. The site of ROS generation was shown to be mitochondria by oxidation of chloromethyl-tetramethyl rosamine. Exposure to NAC fibrils increased also the nuclear translocation of nuclear factor kappa B (NF-kappaB) and enhanced its DNA-binding activity, which was inhibited by PG and BPN more efficiently in neurons than in astrocytes. These results suggest that NAC fibrils increase mitochondrial ROS generation and activate NF-kappaB, thereby causing a differential change in gene expression between neurons and astrocytes in the AD brain.
Collapse
Affiliation(s)
- Seigo Tanaka
- Laboratory of Molecular Clinical Chemistry, Institute for Chemical Research, Kyoto University, Uji, Kyoto, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Hicar MD, Robinson ML, Wu LC. Embryonic expression and regulation of the large zinc finger protein KRC. Genesis 2002; 33:8-20. [PMID: 12001065 DOI: 10.1002/gene.10084] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
KRC fusion proteins bind to the kappaB enhancer motif and to the signal sequences of V(D)J recombination. Here we have characterized endogenous KRC in mouse embryos and lymphoma cell lines. Starting from midgestation, neuronal- and lymphoid-restricted expression of KRC was observed from the dorsal root ganglia, trigeminal ganglion, thymus, and cerebral cortex. Several B-cell lines produced an alternatively spliced KRC transcript of 4.5 kb and a 115-kDa DNA-binding protein isoform. Additionally, that KRC transcript was induced by lipopolysaccharide, a potent activator of cells in immunity and inflammation. In genetic-engineered B cells stably transfected with inducible expression vectors for the recombination activating genes RAG1, RAG2, or both, the avidity of KRC to DNA was markedly decreased when RAG1 and RAG2 were overexpressed. We hypothesize that KRC may function in developing thymocytes and neurons, where its role might be transcription regulation or DNA recombination.
Collapse
Affiliation(s)
- Mark D Hicar
- Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University, College of Medicine and Public Health, Columbus 43210, USA
| | | | | |
Collapse
|
24
|
Chen CD, Sawyers CL. NF-kappa B activates prostate-specific antigen expression and is upregulated in androgen-independent prostate cancer. Mol Cell Biol 2002; 22:2862-70. [PMID: 11909978 PMCID: PMC133743 DOI: 10.1128/mcb.22.8.2862-2870.2002] [Citation(s) in RCA: 148] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The transcription factor NF-kappa B regulates gene expression involved in cell growth and survival and has been implicated in progression of hormone-independent breast cancer. By expressing a dominant-active form of mitogen-activated protein kinase kinase kinase 1, by exposure to tumor necrosis factor alpha, or by overexpression of p50/p65, we show that NF-kappa B activates a transcription regulatory element of the prostate-specific antigen (PSA)-encoding gene, a marker for prostate cancer development, treatment, and progression. By DNase I footprinting, we identified four NF-kappa B binding sites in the PSA core enhancer. We also demonstrate that androgen-independent prostate cancer xenografts have higher constitutive NF-kappa B binding activity than their androgen-dependent counterparts. These results suggest a role of NF-kappa B in prostate cancer progression.
Collapse
Affiliation(s)
- Charlie D Chen
- Division of Hematology/Oncology, Department of Medicine, University of California at Los Angeles, Los Angeles, California 90095-1678, USA
| | | |
Collapse
|
25
|
Abstract
A ZAS gene encodes a large protein with two separate C2H2 zinc finger pairs that independently bind to specific DNA sequences, including the kappaB motif. Three paralogous mammalian genes, ZAS1, ZAS2, and ZAS3, and a related Drosophila gene, Schnurri, have been cloned and characterized. The ZAS genes encode transcriptional proteins that activate or repress the transcription of a variety of genes involved in growth, development, and metastasis. In addition, ZAS3 associates with a TNF receptor-associated factor to inhibit NF-kappaB- and JNK/ SAPK-mediated signaling of TNF-alpha. Genetic experiments show that ZAS3 deficiency leads to proliferation of cells and tumor formation in mice. The data suggest that ZAS3 is important in controlling cell growth, apoptosis, and inflammation. The potent vasoactive hormone endothelin and transcription factor AP2 gene families also each consist of three members. The ZAS, endothelin, and transcription factor AP2 genes form several linkage groups. Knowledge of the chromosomal locations of these genes provides valuable clues to the evolution of the vertebrate genome.
Collapse
Affiliation(s)
- Lai-Chu Wu
- Department of Molecular and Cellular Biochemistry, The Ohio State University, College of Medicine and Public Health, Columbus 43210, USA.
| |
Collapse
|
26
|
Bruce-Keller AJ, Barger SW, Moss NI, Pham JT, Keller JN, Nath A. Pro-inflammatory and pro-oxidant properties of the HIV protein Tat in a microglial cell line: attenuation by 17 beta-estradiol. J Neurochem 2001; 78:1315-24. [PMID: 11579140 DOI: 10.1046/j.1471-4159.2001.00511.x] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Microglia are activated in humans following infection with human immunodeficiency virus (HIV), and brain inflammation is thought to be involved in neuronal injury and dysfunction during HIV infection. Numerous studies indicate a role for the HIV regulatory protein Tat in HIV-related inflammatory and neurodegenerative processes, although the specific effects of Tat on microglial activation, and the signal transduction mechanisms thereof, have not been elucidated. In the present study, we document the effects of Tat on microglial activation and characterize the signal transduction pathways responsible for Tat's pro-inflammatory effects. Application of Tat to N9 microglial cells increased multiple parameters of microglial activation, including superoxide production, phagocytosis, nitric oxide release and TNF alpha release. Tat also caused activation of both p42/p44 mitogen activated protein kinase (MAPK) and NF kappa B pathways. Inhibitor studies revealed that Tat-induced NF kappa B activation was responsible for increased nitrite release, while MAPK activation mediated superoxide release, TNF alpha release, and phagocytosis. Lastly, pre-treatment of microglial cells with physiological concentrations of 17 beta-estradiol suppressed Tat-mediated microglial activation by interfering with Tat-induced MAPK activation. Together, these data elucidate specific components of the microglial response to Tat and suggest that Tat could contribute to the neuropathology associated with HIV infection through microglial promulgation of oxidative stress.
Collapse
Affiliation(s)
- A J Bruce-Keller
- Department of Anatomy, University of Kentucky, Lexington, Kentucky, USA.
| | | | | | | | | | | |
Collapse
|
27
|
Mattson MP, Camandola S. NF-kappaB in neuronal plasticity and neurodegenerative disorders. J Clin Invest 2001; 107:247-54. [PMID: 11160145 PMCID: PMC199201 DOI: 10.1172/jci11916] [Citation(s) in RCA: 679] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- M P Mattson
- Laboratory of Neurosciences, National Institute on Aging Gerontology Research Center 4F02, 5600 Nathan Shock Drive, Baltimore, Maryland 21224, USA.
| | | |
Collapse
|
28
|
Hicar MD, Liu Y, Allen CE, Wu LC. Structure of the human zinc finger protein HIVEP3: molecular cloning, expression, exon-intron structure, and comparison with paralogous genes HIVEP1 and HIVEP2. Genomics 2001; 71:89-100. [PMID: 11161801 DOI: 10.1006/geno.2000.6425] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Here we report the cloning and characterization of HIVEP3, the newest member in the human immunodeficiency virus type 1 enhancer-binding protein family that encodes large zinc finger proteins and regulates transcription via the kappaB enhancer motif. The largest open reading frame of HIVEP3 contains 2406 aa. and is approximately 80% identical to the mouse counterpart. The HIVEP3 gene is located in the chromosomal region 1p34 and is at least 300 kb with 10 exons. RNA studies show that multiple HIVEP3 transcripts are differentially expressed and regulated. Additionally, transcription termination occurs in the ultimate exon, exon 10, or in exon 6. Therefore, HIVEP3 may produce protein isoforms that contain or exclude the carboxyl DNA binding domain and the leucine zipper by alternative RNA splicing and differential polyadenylation. Sequence homologous to HIVEP3 exon 6 is not found in mouse nor are the paralogous genes HIVEP1 and HIVEP2. Zoo-blot analysis suggests that sequences homologous to the human exon 6 are present only in primates and cow. Therefore, a foreign DNA harboring a termination exon likely was inserted into the HIVEP3 locus relatively recently in evolution, resulting in the acquisition of novel gene regulatory mechanisms as well as the generation of structural and functional diversity.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Blotting, Northern
- Blotting, Southern
- Brain/metabolism
- Carrier Proteins/chemistry
- Carrier Proteins/genetics
- Chromosomes, Human, Pair 1
- Cloning, Molecular
- Cosmids
- DNA, Complementary/metabolism
- DNA-Binding Proteins/biosynthesis
- DNA-Binding Proteins/chemistry
- DNA-Binding Proteins/genetics
- Exons
- Expressed Sequence Tags
- Gene Library
- Humans
- Introns
- Mice
- Models, Genetic
- Molecular Sequence Data
- Oligonucleotide Probes/metabolism
- Open Reading Frames
- Phylogeny
- Poly A/metabolism
- Protein Isoforms
- Protein Structure, Tertiary
- Reverse Transcriptase Polymerase Chain Reaction
- Sequence Homology, Amino Acid
- Tissue Distribution
- Transcription Factors
- Transcription, Genetic
- Zinc Fingers
Collapse
Affiliation(s)
- M D Hicar
- Department of Molecular Virology, Immunology, and Medical Genetics, College of Medicine and Public Health, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | |
Collapse
|
29
|
Baldwin AS. Series introduction: the transcription factor NF-kappaB and human disease. J Clin Invest 2001; 107:3-6. [PMID: 11134170 PMCID: PMC198555 DOI: 10.1172/jci11891] [Citation(s) in RCA: 766] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- A S Baldwin
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599-7295, USA.
| |
Collapse
|
30
|
Denk A, Wirth T, Baumann B. NF-kappaB transcription factors: critical regulators of hematopoiesis and neuronal survival. Cytokine Growth Factor Rev 2000; 11:303-20. [PMID: 10959078 DOI: 10.1016/s1359-6101(00)00009-5] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The Rel/NF-kappaB family of transcription factors has been implicated in the regulation of genes involved in immune and inflammatory responses, and of processes such as cell survival, apoptosis, development, differentiation, cell growth and neoplastic transformation. In this report we will summarize recent findings which highlight critical roles of NF-kappaB in different processes in hematopoietic and neuronal cells.
Collapse
Affiliation(s)
- A Denk
- Department of Physiological Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | | | | |
Collapse
|
31
|
Camandola S, Mattson MP. Pro-apoptotic action of PAR-4 involves inhibition of NF-kappaB activity and suppression of BCL-2 expression. J Neurosci Res 2000; 61:134-9. [PMID: 10878585 DOI: 10.1002/1097-4547(20000715)61:2<134::aid-jnr3>3.0.co;2-p] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Par-4(1) (prostate apoptosis response 4) is known to function at an early stage in apoptosis in several different cell types, including neurons. On the other hand, activation of the transcription factor NF-kappaB can prevent apoptosis in various cancer cells and neurons. We now report that overexpression of full-length Par-4 in cultured PC12 cells results in a suppression of basal NF-kappaB DNA-binding activity and NF-kappaB activation following trophic factor withdrawal (TFW). The decreased NF-kappaB activity is correlated with enhanced apoptosis. Conversely, NF-kappaB activity is increased and vulnerability to apoptosis reduced in cells overexpressing a dominant-negative form of Par-4. Par-4 overexpression or functional blockade had no effect on AP-1 DNA-binding activity. Expression of the antiapoptotic protein Bcl-2 was dramatically reduced in PC12 cells overexpressing Par-4. Our data suggest that suppression of NF-kappaB activation plays a major role in the proapoptotic function of Par-4.
Collapse
Affiliation(s)
- S Camandola
- Sanders-Brown Research Center on Aging and Department of Anatomy and Neurobiology, University of Kentucky, Lexington, USA
| | | |
Collapse
|
32
|
Glazner GW, Camandola S, Mattson MP. Nuclear factor-kappaB mediates the cell survival-promoting action of activity-dependent neurotrophic factor peptide-9. J Neurochem 2000; 75:101-8. [PMID: 10854252 DOI: 10.1046/j.1471-4159.2000.0750101.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Activity-dependent neurotrophic factor (ADNF) is produced by astrocytes in response to neuronal depolarization and, in turn, promotes neuronal survival. A nineamino acid ADNF peptide (ADNF9) exhibits full neurotrophic activity and potently protects cultured embryonic rat hippocampal neurons from oxidative injury and apoptosis. Picomolar concentrations of ADNF9 induced an increase in nuclear factor-kappaB (NF-kappaB) DNA-binding activity within 1 h of exposure, with a maximum increase of approximately 10-fold by 6 h. Activation of NF-kappaB was correlated with increased resistance of neurons to apoptosis induced by exposure to Fe(2+). The antiapoptotic action of ADNF9 was abolished when NF-kappaB activation was specifically blocked with kappaB decoy DNA. Oxidative stress was attenuated in neurons pretreated with ADNF9, and this effect of ADNF9 was blocked by kappaB decoy DNA, suggesting that ADNF9 suppresses apoptosis by reducing oxidative stress. ADNF9 also prevented neuronal apoptosis following trophic factor withdrawal via an NF-kappaB-mediated mechanism. Thus, NF-kappaB mediates the neuron survival-promoting effects of ADNF9 in experimental models relevant to developmental neuronal death and neurodegenerative disorders.
Collapse
Affiliation(s)
- G W Glazner
- Sanders-Brown Research Center on Aging and Department of Anatomy and Neurobiology, University of Kentucky, Lexington, Kentucky, USA
| | | | | |
Collapse
|
33
|
Mattson MP, Culmsee C, Yu Z, Camandola S. Roles of nuclear factor kappaB in neuronal survival and plasticity. J Neurochem 2000; 74:443-56. [PMID: 10646495 DOI: 10.1046/j.1471-4159.2000.740443.x] [Citation(s) in RCA: 343] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The transcription factor nuclear factor kappaB (NF-kappaB) is moving to the forefront of the fields of apoptosis and neuronal plasticity because of recent findings showing that activation of NF-kappaB prevents neuronal apoptosis in various cell culture and in vivo models and because NF-kappaB is activated in association with synaptic plasticity. Activation of NF-kappaB was first shown to mediate antiapoptotic actions of tumor necrosis factor in cultured neurons and was subsequently shown to prevent death of various nonneuronal cells. NF-kappaB is activated by several cytokines and neurotrophic factors and in response to various cell stressors. Oxidative stress and elevation of intracellular calcium levels are particularly important inducers of NF-kappaB activation. Activation of NF-kappaB can interrupt apoptotic biochemical cascades at relatively early steps, before mitochondrial dysfunction and oxyradical production. Gene targets for NF-kappaB that may mediate its antiapoptotic actions include the antioxidant enzyme manganese superoxide dismutase, members of the inhibitor of apoptosis family of proteins, and the calcium-binding protein calbindin D28k. NF-kappaB is activated by synaptic activity and may play important roles in the process of learning and memory. The available data identify NF-kappaB as an important regulator of evolutionarily conserved biochemical and molecular cascades designed to prevent cell death and promote neuronal plasticity. Because NF-kappaB may play roles in a range of neurological disorders that involve neuronal degeneration and/or perturbed synaptic function, pharmacological and genetic manipulations of NF-kappaB signaling are being developed that may prove valuable in treating disorders ranging from Alzheimer's disease to schizophrenia.
Collapse
Affiliation(s)
- M P Mattson
- Sanders-Brown Research Center on Aging and Department of Anatomy and Neurobiology, University of Kentucky, Lexington, USA.
| | | | | | | |
Collapse
|
34
|
Mechanistic and Metaphorical Connections Between NF-KB and the Secreted Alzheimer’s β-Amyloid Precursor Protein. RESEARCH AND PERSPECTIVES IN NEUROSCIENCES 2000. [DOI: 10.1007/978-3-642-59643-8_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
35
|
Li Y, Barger SW, Liu L, Mrak RE, Griffin WS. S100beta induction of the proinflammatory cytokine interleukin-6 in neurons. J Neurochem 2000; 74:143-50. [PMID: 10617115 PMCID: PMC3836592 DOI: 10.1046/j.1471-4159.2000.0740143.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Levels of the neurotrophic cytokine S100beta and the proinflammatory cytokine interleukin-6 (IL-6) are both elevated in Alzheimer's brain, and both have been implicated in beta-amyloid plaque formation and progression. We used RT-PCR and electrophoretic mobility shift assay to assess S100beta induction of IL-6 expression and the role of kappaB-dependent transcription in this induction in neuron-enriched cultures and in neuron-glia mixed cultures from fetal rat cortex. S100beta (10 or 100 ng/ml x 24 h) increased IL-6 mRNA levels two- and fivefold, respectively (p<0.05 in each case), and S100beta (100-1,000 ng/ml) induced increases in medium levels of biologically active IL-6 (30-80%). Combined in situ hybridization and immunohistochemistry preparations localized IL-6 mRNA to neurons in these cultures. S100beta induction of IL-6 expression correlated with an increase in DNA binding activity specific for a KB element and was inhibited (75%) by suppression of kappaB binding with double-stranded "decoy" oligonucleotides. The low levels of S100beta required to induce IL-6 overexpression in neurons, shown here, suggest that overexpression of S100beta induces neuronal expression of IL-6 and of IL-6-induced neurodegenerative cascades in Alzheimer's disease.
Collapse
Affiliation(s)
- Y Li
- Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, USA
| | | | | | | | | |
Collapse
|
36
|
Abstract
Apoptosis is a physiological process critical for organ development, tissue homeostasis, and elimination of defective or potentially dangerous cells in complex organisms. Apoptosis can be initiated by a wide variety of stimuli, which activate a cell suicide program that is constitutively present in most vertebrate cells. In diverse cell types, Rel/NF-kappaB transcription factors have been shown to have a role in regulating the apoptotic program, either as essential for the induction of apoptosis or, perhaps more commonly, as blockers of apoptosis. Whether Rel/NF-kappaB promotes or inhibits apoptosis appears to depend on the specific cell type and the type of inducer. An understanding of the role of Rel/NF-kappaB transcription factors in controlling apoptosis may lead to the development of therapeutics for a wide variety of human diseases, including neurodegenerative and immune diseases, and cancer.
Collapse
Affiliation(s)
- M Barkett
- Boston University, Biology Department, 5 Cummington Street, Boston, Massachusetts, MA 02215, USA
| | | |
Collapse
|
37
|
Lack of the p50 subunit of nuclear factor-kappaB increases the vulnerability of hippocampal neurons to excitotoxic injury. J Neurosci 1999. [PMID: 10516305 DOI: 10.1523/jneurosci.19-20-08856.1999] [Citation(s) in RCA: 180] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Nuclear factor-kappaB (NF-kappaB) is activated in brain cells after various insults, including cerebral ischemia and epileptic seizures. Although cell culture studies have suggested that the activation of NF-kappaB can prevent neuronal apoptosis, the role of this transcription factor in neuronal injury in vivo is unclear, and the specific kappaB subunits involved are unknown. We now report that mice lacking the p50 subunit of NF-kappaB exhibit increased damage to hippocampal pyramidal neurons after administration of the excitotoxin kainate. Gel-shift analyses showed that p50 is required for the majority of kappaB DNA-binding activity in hippocampus. Intraventricular administration of kappaB decoy DNA before kainate administration in wild-type mice resulted in an enhancement of damage to hippocampal pyramidal neurons, indicating that reduced NF-kappaB activity was sufficient to account for the enhanced excitotoxic neuronal injury in p50(-/-) mice. Cultured hippocampal neurons from p50(-/-) mice exhibited enhanced elevations of intracellular calcium levels and increased levels of oxidative stress after exposure to glutamate and were more vulnerable to excitotoxicity than were neurons from p50(+/+) and p50(+/-) mice. Collectively, our data demonstrate an important role for the p50 subunit of NF-kappaB in protecting neurons against excitotoxic cell death.
Collapse
|