1
|
Swerdlow RH. The Alzheimer's Disease Mitochondrial Cascade Hypothesis: A Current Overview. J Alzheimers Dis 2023; 92:751-768. [PMID: 36806512 DOI: 10.3233/jad-221286] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Viable Alzheimer's disease (AD) hypotheses must account for its age-dependence; commonality; association with amyloid precursor protein, tau, and apolipoprotein E biology; connection with vascular, inflammation, and insulin signaling changes; and systemic features. Mitochondria and parameters influenced by mitochondria could link these diverse characteristics. Mitochondrial biology can initiate changes in pathways tied to AD and mediate the dysfunction that produces the clinical phenotype. For these reasons, conceptualizing a mitochondrial cascade hypothesis is a straightforward process and data accumulating over decades argue the validity of its principles. Alternative AD hypotheses may yet account for its mitochondria-related phenomena, but absent this happening a primary mitochondrial cascade hypothesis will continue to evolve and attract interest.
Collapse
Affiliation(s)
- Russell H Swerdlow
- University of Kansas Alzheimer's Disease Research Center, Fairway, KS, USA.,Departments of Neurology, Molecular and Integrative Physiology, and Biochemistry and Molecular Biology, University of Kansas School of Medicine, Kansas City, KS, USA
| |
Collapse
|
2
|
Effect of Protein Denaturation and Enzyme Inhibitors on Proteasomal-Mediated Production of Peptides in Human Embryonic Kidney Cells. Biomolecules 2019; 9:biom9060207. [PMID: 31142026 PMCID: PMC6627375 DOI: 10.3390/biom9060207] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/30/2019] [Accepted: 05/16/2019] [Indexed: 12/13/2022] Open
Abstract
Peptides produced by the proteasome have been proposed to function as signaling molecules that regulate a number of biological processes. In the current study, we used quantitative peptidomics to test whether conditions that affect protein stability, synthesis, or turnover cause changes in the levels of peptides in Human Embryonic Kidney 293T (HEK293T) cells. Mild heat shock (42 °C for 1 h) or treatment with the deubiquitinase inhibitor b-AP15 led to higher levels of ubiquitinated proteins but did not significantly increase the levels of intracellular peptides. Treatment with cycloheximide, an inhibitor of protein translation, did not substantially alter the levels of intracellular peptides identified herein. Cells treated with a combination of epoxomicin and bortezomib showed large increases in the levels of most peptides, relative to the levels in cells treated with either compound alone. Taken together with previous studies, these results support a mechanism in which the proteasome cleaves proteins into peptides that are readily detected in our assays (i.e., 6–37 amino acids) and then further degrades many of these peptides into smaller fragments.
Collapse
|
3
|
Abstract
Decades of research indicate mitochondria from Alzheimer's disease (AD) patients differ from those of non-AD individuals. Initial studies revealed structural differences, and subsequent studies showed functional deficits. Observations of structure and function changes prompted investigators to consider the consequences, significance, and causes of AD-related mitochondrial dysfunction. Currently, extensive research argues mitochondria may mediate, drive, or contribute to a variety of AD pathologies. The perceived significance of these mitochondrial changes continues to grow, and many currently believe AD mitochondrial dysfunction represents a reasonable therapeutic target. Debate continues over the origin of AD mitochondrial changes. Some argue amyloid-β (Aβ) induces AD mitochondrial dysfunction, a view that does not challenge the amyloid cascade hypothesis and that may in fact help explain that hypothesis. Alternatively, data indicate mitochondrial dysfunction exists independent of Aβ, potentially lies upstream of Aβ deposition, and suggest a primary mitochondrial cascade hypothesis that assumes mitochondrial pathology hierarchically supersedes Aβ pathology. Mitochondria, therefore, appear at least to mediate or possibly even initiate pathologic molecular cascades in AD. This review considers studies and data that inform this area of AD research.
Collapse
Affiliation(s)
- Russell H Swerdlow
- University of Kansas Alzheimer's Disease Center and Departments of Neurology, Molecular and Integrative Physiology, and Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
4
|
Mitochondria, Cybrids, Aging, and Alzheimer's Disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 146:259-302. [PMID: 28253988 DOI: 10.1016/bs.pmbts.2016.12.017] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Mitochondrial and bioenergetic function change with advancing age and may drive aging phenotypes. Mitochondrial and bioenergetic changes are also documented in various age-related neurodegenerative diseases, including Alzheimer's disease (AD). In some instances AD mitochondrial and bioenergetic changes are reminiscent of those observed with advancing age but are greater in magnitude. Mitochondrial and bioenergetic dysfunction could, therefore, link neurodegeneration to brain aging. Interestingly, mitochondrial defects in AD patients are not brain-limited, and mitochondrial function can be linked to classic AD histologic changes including amyloid precursor protein processing to beta amyloid. Also, transferring mitochondria from AD subjects to cell lines depleted of endogenous mitochondrial DNA (mtDNA) creates cytoplasmic hybrid (cybrid) cell lines that recapitulate specific biochemical, molecular, and histologic AD features. Such findings have led to the formulation of a "mitochondrial cascade hypothesis" that places mitochondrial dysfunction at the apex of the AD pathology pyramid. Data pertinent to this premise are reviewed.
Collapse
|
5
|
Alzheimer's pathogenesis and its link to the mitochondrion. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:803942. [PMID: 25973139 PMCID: PMC4417983 DOI: 10.1155/2015/803942] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 03/16/2015] [Accepted: 04/02/2015] [Indexed: 01/02/2023]
Abstract
Alzheimer's disease (AD) is the most common form of dementia in the elderly. This neurodegenerative disorder is clinically characterized by impairment of cognitive functions and changes in behaviour and personality. The pathogenesis of AD is still unclear. Recent evidence supports some role of mitochondria dysfunction and oxidative stress in the development of the neurodegenerative process. In this review, we discuss the role of mitochondrial dysfunction in AD, focusing on the mechanisms that lead to mitochondrial impairment, oxidative stress, and neurodegeneration, a “vicious circle” that ends in dementia.
Collapse
|
6
|
Cytoplasmic hybrid (cybrid) cell lines as a practical model for mitochondriopathies. Redox Biol 2014; 2:619-31. [PMID: 25460729 PMCID: PMC4297942 DOI: 10.1016/j.redox.2014.03.006] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 03/28/2014] [Indexed: 12/21/2022] Open
Abstract
Cytoplasmic hybrid (cybrid) cell lines can incorporate human subject mitochondria and perpetuate its mitochondrial DNA (mtDNA)-encoded components. Since the nuclear background of different cybrid lines can be kept constant, this technique allows investigators to study the influence of mtDNA on cell function. Prior use of cybrids has elucidated the contribution of mtDNA to a variety of biochemical parameters, including electron transport chain activities, bioenergetic fluxes, and free radical production. While the interpretation of data generated from cybrid cell lines has technical limitations, cybrids have contributed valuable insight into the relationship between mtDNA and phenotype alterations. This review discusses the creation of the cybrid technique and subsequent data obtained from cybrid applications. The cytoplasmic hybrid (cybrid) model can be used to determine mitochondrial DNA (mtDNA) contributions to phenotypic alterations. Cybrids are used to study mitochondriopathies such as Parkinson’s disease and Alzheimer’s disease. mtDNA heteroplasmy threshold and nuclear DNA-mtDNA compatibility can be determined using cybrid models.
Collapse
|
7
|
Wu Q, Lin J, Liu JZ, Wang X, Lim W, Oh M, Park J, Rajashekar CB, Whitham SA, Cheng NH, Hirschi KD, Park S. Ectopic expression of Arabidopsis glutaredoxin AtGRXS17 enhances thermotolerance in tomato. PLANT BIOTECHNOLOGY JOURNAL 2012; 10:945-55. [PMID: 22762155 DOI: 10.1111/j.1467-7652.2012.00723.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
While various signalling networks regulate plant responses to heat stress, the mechanisms regulating and unifying these diverse biological processes are largely unknown. Our previous studies indicate that the Arabidopsis monothiol glutaredoxin, AtGRXS17, is crucial for temperature-dependent postembryonic growth in Arabidopsis. In the present study, we further demonstrate that AtGRXS17 has conserved functions in anti-oxidative stress and thermotolerance in both yeast and plants. In yeast, AtGRXS17 co-localized with yeast ScGrx3 in the nucleus and suppressed the sensitivity of yeast grx3grx4 double-mutant cells to oxidative stress and heat shock. In plants, GFP-AtGRXS17 fusion proteins initially localized in the cytoplasm and the nuclear envelope but migrated to the nucleus during heat stress. Ectopic expression of AtGRXS17 in tomato plants minimized photo-oxidation of chlorophyll and reduced oxidative damage of cell membrane systems under heat stress. This enhanced thermotolerance correlated with increased catalase (CAT) enzyme activity and reduced H₂O₂ accumulation in AtGRXS17-expressing tomatoes. Furthermore, during heat stress, expression of the heat shock transcription factor (HSF) and heat shock protein (HSP) genes was up-regulated in AtGRXS17-expressing transgenic plants compared with wild-type controls. Thus, these findings suggest a specific protective role of a redox protein against temperature stress and provide a genetic engineering strategy to improve crop thermotolerance.
Collapse
Affiliation(s)
- Qingyu Wu
- Department of Horticulture, Forestry and Recreation Resources, Kansas State University, Manhattan, KS, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Swerdlow RH. Mitochondria and cell bioenergetics: increasingly recognized components and a possible etiologic cause of Alzheimer's disease. Antioxid Redox Signal 2012; 16:1434-55. [PMID: 21902597 PMCID: PMC3329949 DOI: 10.1089/ars.2011.4149] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Accepted: 07/28/2011] [Indexed: 12/28/2022]
Abstract
SIGNIFICANCE Mitochondria and brain bioenergetics are increasingly thought to play an important role in Alzheimer's disease (AD). RECENT ADVANCES Data that support this view are discussed from the perspective of the amyloid cascade hypothesis, which assumes beta-amyloid perturbs mitochondrial function, and from an opposite perspective that assumes mitochondrial dysfunction promotes brain amyloidosis. A detailed review of cytoplasmic hybrid (cybrid) studies, which argue mitochondrial DNA (mtDNA) contributes to sporadic AD, is provided. Recent AD endophenotype data that further suggest an mtDNA contribution are also summarized. CRITICAL ISSUES AND FUTURE DIRECTIONS Biochemical, molecular, cybrid, biomarker, and clinical data pertinent to the mitochondria-bioenergetics-AD nexus are synthesized and the mitochondrial cascade hypothesis, which represents a mitochondria-centric attempt to conceptualize sporadic AD, is discussed.
Collapse
Affiliation(s)
- Russell H Swerdlow
- Department of Neurology, University of Kansas Medical Center, Kansas City, Kansas, USA.
| |
Collapse
|
9
|
Ritchie MF, Zhou Y, Soboloff J. Transcriptional mechanisms regulating Ca(2+) homeostasis. Cell Calcium 2011; 49:314-21. [PMID: 21074851 PMCID: PMC3225030 DOI: 10.1016/j.ceca.2010.10.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2010] [Revised: 09/29/2010] [Accepted: 10/01/2010] [Indexed: 01/08/2023]
Abstract
Ca(2+) is a dynamic cellular secondary messenger which mediates a vast array of cellular responses. Control over these processes is achieved via an extensive combination of pumps and channels which regulate the concentration of Ca(2+) within not only the cytosol but also all intracellular compartments. Precisely how these pumps and channels are regulated is only partially understood, however, recent investigations have identified members of the Early Growth Response (EGR) family of zinc finger transcription factors as critical players in this process. The roles of several other transcription factors in control of Ca(2+) homeostasis have also been demonstrated, including Wilms Tumor Suppressor 1 (WT1), Nuclear Factor of Activated T cells (NFAT) and c-myc. In this review, we will discuss not only how these transcription factors regulate the expression of the major proteins involved in control of Ca(2+) homeostasis, but also how this transcriptional remodeling of Ca(2+) homeostasis affects Ca(2+) dynamics and cellular responses.
Collapse
Affiliation(s)
- Michael F Ritchie
- Department of Biochemistry, Temple University School of Medicine, Philadelphia, PA 19140, United States
| | | | | |
Collapse
|
10
|
Xie J, Zhao J, Xiao C, Xu Y, Yang S, Ni W. Reduced heat shock protein 70 in airway smooth muscle in patients with chronic obstructive pulmonary disease. Exp Lung Res 2010; 36:219-26. [PMID: 20426530 DOI: 10.3109/01902140903349562] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Studies demonstrated that pathophysiological abnormalities of airway smooth muscle (ASM) contribute significantly to chronic obstructive pulmonary disease (COPD) pathogenesis, the aim of this study is to investigate heat shock protein 70 (Hsp70) in ASM in COPD. ASM from 8 COPD patients and 6 controls were isolated for detection of Hsp70 using Western blot. Male adult Wister rats were exposed to mixture of cigarette smoke/air or room air for an indicated period. The lung tissues were obtained for pathological analysis, and ASM were dissected for Hsp70 detection. Normalized Hsp70 in ASM from COPD patients was significantly lower than that from controls (P <.001), and it was a significant positive correlation of Hsp70 and lung function. One-month exposure of rats to cigarette smoke/air mixture led to increased expression of Hsp70 and heat shock transcription factor (Hsf1) in ASM as compared to controls, whereas 3-month exposure caused dramatically reduced Hsp70 and Hsf1 than control animals. In addition, 3-month exposure to cigarette smoke/air mixture resulted in significantly lower Hsp70 and Hsf1 in rats ASM than 1-month exposure (P <.001), and it was a positive correlation of Hsf1 and Hsp70. Long-term cigarette smoking results in reduced expression of Hsp70 in ASM. This finding provides additional insight in understanding molecular changes in ASM during COPD pathogenesis.
Collapse
Affiliation(s)
- Jungang Xie
- 1Department of Respiratory Medicine, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China.
| | | | | | | | | | | |
Collapse
|
11
|
Uehara N, Ookubo K, Shimizu T. Colorimetric assay of glutathione based on the spontaneous disassembly of aggregated gold nanocomposites conjugated with water-soluble polymer. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:6818-6825. [PMID: 20373784 DOI: 10.1021/la100460w] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
This article describes the glutathione-triggered disassembly of gold nanocomposites composed of gold cores and water-soluble copolymers [poly(N-n-isopropylacrylamide-co-acryloyldiethyletriamine)] attached to the surfaces of gold cores. The gold nanocomposites exhibit a bluish purple color because of the assembled gold cores that are conjugated with the diethylenetriamine groups incorporated into the copolymers. Glutathione added to the gold nanocomposite solution adsorbs onto the surface of the gold cores to liberate diethylenetriamine groups, resulting in spontaneous disassembly that changes the color of the solution to a reddish shade. Increasing the glutathione concentration facilitates the spontaneous disassembly of the gold nanocomposites. For the determination of glutathione, the colorimetric change of the gold nanoparticles is quantified with the a* value of the L*a*b* color coordinates defined by the CIE (Commission Internationale de l'Eclairage) chromaticity diagram. A linear relationship between the a* value and the glutathione concentration of up to 6 x 10(-6) mol/L is obtained 15 min after the addition of glutathione that has a detection limit (defined as 3sigma) of 2.9 x 10(-8) mol/L. The colorimetric assay is successfully applied to the determination of glutathione in eye drops and health supplements.
Collapse
Affiliation(s)
- Nobuo Uehara
- Graduate School of Engineering, Utsunomiya University, 7-1-2 Yoto, Utsunomiya, Tochigi 321-8585, Japan.
| | | | | |
Collapse
|
12
|
Coskun PE, Wyrembak J, Derbereva O, Melkonian G, Doran E, Lott IT, Head E, Cotman CW, Wallace DC. Systemic mitochondrial dysfunction and the etiology of Alzheimer's disease and down syndrome dementia. J Alzheimers Dis 2010; 20 Suppl 2:S293-310. [PMID: 20463402 PMCID: PMC4175722 DOI: 10.3233/jad-2010-100351] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Increasing evidence is implicating mitochondrial dysfunction as a central factor in the etiology of Alzheimer's disease (AD). The most significant risk factor in AD is advanced age and an important neuropathological correlate of AD is the deposition of amyloid-beta peptide (Abeta40 and Abeta42) in the brain. An AD-like dementia is also common in older individuals with Down syndrome (DS), though with a much earlier onset. We have shown that somatic mitochondrial DNA (mtDNA) control region (CR) mutations accumulate with age in post-mitotic tissues including the brain and that the level of mtDNA mutations is markedly elevated in the brains of AD patients. The elevated mtDNA CR mutations in AD brains are associated with a reduction in the mtDNA copy number and in the mtDNA L-strand transcript levels. We now show that mtDNA CR mutations increase with age in control brains; that they are markedly elevated in the brains of AD and DS and dementia (DSAD) patients; and that the increased mtDNA CR mutation rate in DSAD brains is associated with reduced mtDNA copy number and L-strand transcripts. The increased mtDNA CR mutation rate is also seen in peripheral blood DNA and in lymphoblastoid cell DNAs of AD and DSAD patients, and distinctive somatic mtDNA mutations, often at high heteroplasmy levels, are seen in AD and DSAD brain and blood cells DNA. In aging, DS, and DSAD, the mtDNA mutation level is positively correlated with beta-secretase activity and mtDNA copy number is inversely correlated with insoluble Abeta40 and Abeta42 levels. Therefore, mtDNA alterations may be responsible for both age-related dementia and the associated neuropathological changes observed in AD and DSAD.
Collapse
Affiliation(s)
- Pinar E. Coskun
- Mitochondrial and Molecular Medicine and Genetics (MAMMAG), University of California Irvine, Irvine, CA, USA
- Department of Biological Chemistry, University of California Irvine, Irvine, CA, USA
| | - Joanne Wyrembak
- Mitochondrial and Molecular Medicine and Genetics (MAMMAG), University of California Irvine, Irvine, CA, USA
| | - Olga Derbereva
- Mitochondrial and Molecular Medicine and Genetics (MAMMAG), University of California Irvine, Irvine, CA, USA
- Department of Biological Chemistry, University of California Irvine, Irvine, CA, USA
| | - Goar Melkonian
- Mitochondrial and Molecular Medicine and Genetics (MAMMAG), University of California Irvine, Irvine, CA, USA
- Department of Biological Chemistry, University of California Irvine, Irvine, CA, USA
| | - Eric Doran
- Department of Pediatrics, University of California Irvine, Irvine, CA, USA
| | - Ira T. Lott
- Department of Pediatrics, University of California Irvine, Irvine, CA, USA
| | - Elizabeth Head
- Institute of Brain Aging, University of California Irvine, Irvine, CA, USA
| | - Carl W. Cotman
- Institute of Brain Aging, University of California Irvine, Irvine, CA, USA
| | - Douglas C. Wallace
- Mitochondrial and Molecular Medicine and Genetics (MAMMAG), University of California Irvine, Irvine, CA, USA
- Department of Biological Chemistry, University of California Irvine, Irvine, CA, USA
- Department of Pediatrics, University of California Irvine, Irvine, CA, USA
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, CA, USA
| |
Collapse
|
13
|
O'Brien ML, Spear BT, Glauert HP. Role of Oxidative Stress in Peroxisome Proliferator-Mediated Carcinogenesis. Crit Rev Toxicol 2008; 35:61-88. [PMID: 15742903 DOI: 10.1080/10408440590905957] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
In this review, the evidence about the role of oxidative stress in the induction of hepatocellular carcinomas by peroxisome proliferators is examined. The activation of PPAR-alpha by peroxisome proliferators in rats and mice may produce oxidative stress, due to the induction of enzymes like fatty acyl coenzyme A (CoA) oxidase (AOX) and cytochrome P-450 4A1. The effect of peroxisome proliferators on the antioxidant defense system is reviewed, as is the effect on endpoints resulting from oxidative stress that may be important in carcinogenesis, such as lipid peroxidation, oxidative DNA damage, and transcription factor activation. Peroxisome proliferators clearly inhibit several enzymes in the antioxidant defense system, but studies examining effects on lipid peroxidation and oxidative DNA damage are conflicting. There is a profound species difference in the induction of hepatocellular carcinomas by peroxisome proliferators, with rats and mice being sensitive, whereas species such as nonhuman primates and guinea pigs are not susceptible to the effects of peroxisome proliferators. The possible role of oxidative stress in these species differences is also reviewed. Overall, peroxisome proliferators produce changes in oxidative stress, but whether these changes are important in the carcinogenic process is not clear at this time.
Collapse
Affiliation(s)
- Michelle L O'Brien
- Graduate Centerfor Toxicology, University of Kentucky, Lexington, Kentucky 40506-0054, USA
| | | | | |
Collapse
|
14
|
Swerdlow RH. Mitochondria in cybrids containing mtDNA from persons with mitochondriopathies. J Neurosci Res 2008; 85:3416-28. [PMID: 17243174 DOI: 10.1002/jnr.21167] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The cytoplasmic hybrid (cybrid) technique allows investigators to express selected mitochondrial DNA (mtDNA) sequences against fixed nuclear DNA (nDNA) backgrounds. Cybrids have been used to study the effects of known mtDNA mutations on mitochondrial biochemistry, mtDNA-nDNA inter-species compatibility, and mtDNA integrity in persons without mtDNA mutations defined previously. This review discusses events leading up to creation of the cybrid technique, as well as data obtained via application of the cybrid strategies listed above. Although interpreting cybrid data requires awareness of technique limitations, valuable insights into mtDNA genotype-functional phenotype relationships are suggested.
Collapse
Affiliation(s)
- Russell H Swerdlow
- Department of Neurology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA.
| |
Collapse
|
15
|
Khan SM, Smigrodzki RM, Swerdlow RH. Cell and animal models of mtDNA biology: progress and prospects. Am J Physiol Cell Physiol 2006; 292:C658-69. [PMID: 16899549 DOI: 10.1152/ajpcell.00224.2006] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The past two decades have witnessed an evolving understanding of the mitochondrial genome's (mtDNA) role in basic biology and disease. From the recognition that mutations in mtDNA can be responsible for human disease to recent efforts showing that mtDNA mutations accumulate over time and may be responsible for some phenotypes of aging, the field of mitochondrial genetics has greatly benefited from the creation of cell and animal models of mtDNA mutation. In this review, we critically discuss the past two decades of efforts and insights gained from cell and animal models of mtDNA mutation. We attempt to reconcile the varied and at times contradictory findings by highlighting the various methodologies employed and using human mtDNA disease as a guide to better understanding of cell and animal mtDNA models. We end with a discussion of scientific and therapeutic challenges and prospects for the future of mtDNA transfection and gene therapy.
Collapse
Affiliation(s)
- Shaharyar M Khan
- Gencia Corp., 706 B Forrest St., Charlottesville, VA 22903, USA.
| | | | | |
Collapse
|
16
|
Carr VM. Induced and constitutive heat shock protein expression in the olfactory system—A review, new findings, and some perspectives. ACTA ACUST UNITED AC 2006; 34:269-93. [PMID: 16841168 DOI: 10.1007/s11068-005-8358-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2005] [Revised: 11/14/2005] [Accepted: 11/15/2005] [Indexed: 12/26/2022]
Abstract
Heat shock, or stress, proteins (HSPs) are cellular proteins induced in response to conditions that cause protein denaturation, and their induction is essential for survival of such conditions. In the olfactory system we have found intense HSP expression occurs during normal processing of environmental odorants/inhalants as well as following hyperthermia and drug exposure. The HSPs involved include ubiquitin, HSP70, HSC70, and HSP25. Responses are both cell type- and stress-specific, occurring primarily in olfactory supporting cells and to some extent in Bowman's gland acinar cells. Responses to these stresses are not seen in olfactory sensory neurons. This article reviews those studies and the significance of their findings. It also discusses a distinct subpopulation of rat olfactory sensory neurons (OSNs), the 2A4(+)OSNs, found to be constitutively reactive with HSP70, the predominantly stress-inducible isoform of the 70 kD HSP family. Their high HSP70 expression appears to confer on the 2A4(+)OSNs an enhanced ability to survive damage-induced OSN turnover. New findings are also presented on HSP25-specific changes following olfactory bulbectomy. All data are discussed in the context of the overall olfactory and bioprotective functions of the olfactory mucosa.
Collapse
Affiliation(s)
- Virginia McMillan Carr
- Department of Neurobiology and Physiology, Northwestern University, Evanston, IL 60208-3520, USA.
| |
Collapse
|
17
|
Saltini G, Dominici R, Lovati C, Cattaneo M, Michelini S, Malferrari G, Caprera A, Milanesi L, Finazzi D, Bertora P, Scarpini E, Galimberti D, Venturelli E, Musicco M, Adorni F, Mariani C, Biunno I. A novel polymorphism in SEL1L confers susceptibility to Alzheimer's disease. Neurosci Lett 2006; 398:53-8. [PMID: 16412574 DOI: 10.1016/j.neulet.2005.12.038] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2005] [Revised: 12/13/2005] [Accepted: 12/14/2005] [Indexed: 01/16/2023]
Abstract
Alzheimer's disease (AD) is considered to be a conformational disease arising from the accumulation of misfolded and unfolded proteins in the endoplasmic reticulum (ER). SEL1L is a component of the ER stress degradation system, which serves to remove unfolded proteins by retrograde degradation using the ubiquitin-proteosome system. In order to identify genetic variations possibly involved in the disease, we analysed the entire SEL1L gene sequence in Italian sporadic AD patients. Here we report on the identification of a new polymorphism within the SEL1L intron 3 (IVS3-88 A>G), which contains potential binding sites for transcription factors involved in ER-induced stress. Our statistical analysis shows a possible role of the novel polymorphism as independent susceptibility factor of Alzheimer's dementia.
Collapse
Affiliation(s)
- Giuliana Saltini
- Department of Sciences and Biomedical Technologies, University of Milan Via F.lli Cervi 93, 20090 Segrate-Milan, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Son GH, Geum D, Chung S, Park E, Lee KH, Choi S, Kim K. A protective role of 27-kDa heat shock protein in glucocorticoid-evoked apoptotic cell death of hippocampal progenitor cells. Biochem Biophys Res Commun 2005; 338:1751-8. [PMID: 16288720 DOI: 10.1016/j.bbrc.2005.10.152] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2005] [Accepted: 10/24/2005] [Indexed: 10/25/2022]
Abstract
Hippocampus is one of the most vulnerable tissues to glucocorticoid (GC). In the present study, we demonstrate that dexamethasone (DEX), a synthetic GC, induces apoptotic cell death in hippocampal progenitor HiB5 cells without any additional insult. Interestingly, expression of 27-kDa heat shock protein (HSP27) was markedly induced by DEX in time- and dose-dependent manners. This induction was dependent on the production of reactive oxygen species (ROS), suggesting that DEX-evoked oxidative damage to HiB5 cells is responsible for the HSP27 induction. To evaluate a possible role of HSP27, we generated two mutant HiB5 cell lines, in which expression of HSP27 was inhibited or enhanced by the over-expression of HSP27 cDNA with antisense or sense orientation (AS-HSP27 and S-HSP27, respectively). DEX-induced apoptotic cell population was significantly increased in AS-HSP27 HiB5 cells and evidently decreased in S-HSP27 cells. These results indicate that HSP27 protects hippocampal progenitor cells from GC-induced apoptotic cell death.
Collapse
Affiliation(s)
- Gi Hoon Son
- School of Biological Sciences, Seoul National University, Seoul 151-742, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
19
|
Hsiao CJJ, Stapleton SR. Characterization of Cd-induced molecular events prior to cellular damage in primary rat hepatocytes in culture: activation of the stress activated signal protein JNK and transcription factor AP-1. J Biochem Mol Toxicol 2005; 18:133-42. [PMID: 15252869 DOI: 10.1002/jbt.20018] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The effect of Cadmium (Cd) on the expression of c-Jun N-terminal kinase (JNK), c-jun, and activator protein-1 (AP-1) has been investigated. We previously reported that Cd causes cell damage as indicated by increases in the cytotoxic parameters, lactate dehydrogenase and lipid peroxidation, and this damage was mediated by decreases in cellular concentration of glutathione. In the present study, we investigate the molecular events involved prior to the Cd-induced cellular toxicity and damage in primary rat hepatocytes. We propose that Cd, through the generation of reactive oxygen species (ROS) and prior to significant cellular damage, activates the stress activated signal protein JNK, regulates c-jun expression, and promotes the binding of a redox sensitive transcription factor AP-1. We show JNK activity and c-jun mRNA level significantly increased at 1 h and AP-1 DNA binding activity significantly enhanced at 3 h in the presence of 4 microM cadmium chloride. Blocking the Cd induction of JNK activity, c-jun mRNA level, and AP-1 binding activity using the antioxidants N-acetyl cysteine (10 mM) or carnosol (0.5 microg/mL) suggests a role for ROS. Blocking JNK activity and c-jun mRNA by SP600125 (20 microM), a JNK inhibitor, supports the role of JNK in transmission of signals induced by Cd.
Collapse
Affiliation(s)
- Chin-ju J Hsiao
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008, USA
| | | |
Collapse
|
20
|
Swerdlow RH, Khan SM. A "mitochondrial cascade hypothesis" for sporadic Alzheimer's disease. Med Hypotheses 2005; 63:8-20. [PMID: 15193340 DOI: 10.1016/j.mehy.2003.12.045] [Citation(s) in RCA: 526] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2003] [Accepted: 12/30/2003] [Indexed: 02/06/2023]
Abstract
Alzheimer's disease (AD) includes etiologically heterogeneous disorders characterized by senile or presenile dementia, extracellular amyloid protein aggregations containing an insoluble amyloid precursor protein derivative, and intracytoplasmic tau protein aggregations. Recent studies also show excess neuronal aneuploidy, programmed cell death (PCD), and mitochondrial dysfunction. The leading AD molecular paradigm, the "amyloid cascade hypothesis", is based on studies of rare autosomal dominant variants and does not specify what initiates the common late-onset, sporadic form. We propose for late-onset, sporadic AD a "mitochondrial cascade hypothesis" that comprehensively reconciles seemingly disparate histopathologic and pathophysiologic features. In our model, the inherited, gene-determined make-up of an individual's electron transport chain sets basal rates of reactive oxygen species (ROS) production, which determines the pace at which acquired mitochondrial damage accumulates. Oxidative mitochondrial DNA, RNA, lipid, and protein damage amplifies ROS production and triggers three events: (1) a reset response in which cells respond to elevated ROS by generating the beta-sheet protein, beta amyloid, which further perturbs mitochondrial function, (2) a removal response in which compromised cells are purged via PCD mechanisms, and (3) a replace response in which neuronal progenitors unsuccessfully attempt to re-enter the cell cycle, with resultant aneuploidy, tau phosphorylation, and neurofibrillary tangle formation. In addition to defining a role for aging in AD pathogenesis, the mitochondrial cascade hypothesis also allows and accounts for histopathologic overlap between the sporadic, late-onset and autosomal dominant, early onset forms of the disease.
Collapse
Affiliation(s)
- Russell H Swerdlow
- Department of Neurology, McKim Hall, University of Virginia Health System, PO Box 800394, 1 Hospital Drive, Charlottesville, VA, USA.
| | | |
Collapse
|
21
|
Barrett MJ, Alones V, Wang KX, Phan L, Swerdlow RH. Mitochondria-derived oxidative stress induces a heat shock protein response. J Neurosci Res 2004; 78:420-9. [PMID: 15389841 DOI: 10.1002/jnr.20249] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In addition to minimizing native and non-native protein aggregations, heat shock proteins (HSPs) regulate programmed cell death pathways. Members of this conserved protein family are in general activated by oxidative stress, and likely help maintain viability under this stress condition. To further our understanding of heat shock protein physiology, we studied whether a specific subtype of oxidative stress, namely that arising from mitochondrial electron transport chain inhibition, induced a heat shock protein response. We exposed human teratocarcinoma (NT2) cells to varying concentrations of the cytochrome oxidase inhibitor sodium azide. Micromolar exposures resulted in a cytoplasm to nucleus translocation of the inducible Hsp70 and of Hsp40, and this was followed by an overall upregulation. The response did not coincide temporally with the onset of azide exposure, but rather was activated when the degree of cytochrome oxidase inhibition (which was progressive over time) surpassed a threshold. Azide did not affect either Hsp70 or Hsp40 dynamics in NT2 rho0 cells, which lack functional electron transport chains. For the azide-exposed native cell line, addition of the antioxidant trolox to the medium abrogated both Hsp70/Hsp40 translocation and upregulation. We conclude that mitochondrial electron transport chain dysfunction activates a heat shock protein response, and that this response is mediated by oxidative stress.
Collapse
Affiliation(s)
- Matthew J Barrett
- Department of Neurology, University of Virginia Health System, 1 Hospital Drive, Charlottesville, VA 22908, USA
| | | | | | | | | |
Collapse
|
22
|
Cardoso SM, Proença MT, Santos S, Santana I, Oliveira CR. Cytochrome c oxidase is decreased in Alzheimer's disease platelets. Neurobiol Aging 2004; 25:105-10. [PMID: 14675736 DOI: 10.1016/s0197-4580(03)00033-2] [Citation(s) in RCA: 208] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Cytochrome c oxidase (COX) activity reportedly is reduced in Alzheimer's disease (AD) brain and platelets. The reasons for the defect in either tissue are unknown, but its presence in a non-degenerating tissue suggests it is not simply a consequence of neurodegeneration. We now offer confirmation of the AD platelet COX defect. Compared to age-matched controls, in mitochondria isolated from AD platelets there was a 15% decrease in COX activity despite the fact that COX subunits were present at normal levels. Platelet ATP levels were diminished in AD (from 11.33 +/- 0.52 to 9.11 +/- 0.72 nmol/mg), while reactive oxygen species (ROS) were increased (from 97.03 +/- 25.9 to 338.3 +/- 100 K/mg). Platelet membrane fluidity, Vitamin E, and cholesterol content were similar between groups. We conclude that COX catalytic activity is indeed diminished in AD platelet mitochondria, does not result from altered membrane fluidity, and is associated with ROS overproduction and ATP under-production.
Collapse
Affiliation(s)
- Sandra Morais Cardoso
- Faculty of Medicine, Center for Neuroscience of Coimbra, University of Coimbra, 3004 517, Portugal
| | | | | | | | | |
Collapse
|
23
|
Abstract
Neuronal cell death in response to oxidative stress may reflect the failure of endogenous adaptive mechanisms. However, the transcriptional activators induced by oxidative stress in neurons that trigger adaptive genetic responses have yet to be fully elucidated. We report that basal DNA binding of the zinc finger transcription factors Sp1 and Sp3 is unexpectedly low in cortical neurons in vitro and is significantly induced by glutathione depletion-induced or hydrogen peroxide-induced oxidative stress in these cells. The increases in Sp1/Sp3 DNA binding reflect, in part, increased levels of Sp1 and Sp3 protein in the nuclei of cortical neurons. Similar induction of Sp1 and Sp3 protein is also observed in neurons in vivo in a chemical or a genetic model of Huntington's disease, two rodent models in which neuronal loss has been attributed to oxidative stress. Sustained high-level expression of full-length Sp1 or full-length Sp3, but not the Sp1 zinc finger DNA-binding domain alone, prevents death in response to oxidative stress, DNA damage, or both. Taken together, these results establish Sp1 and Sp3 as oxidative stress-induced transcription factors in cortical neurons that positively regulate neuronal survival.
Collapse
|
24
|
Swerdlow RH, Kish SJ. Mitochondria in Alzheimer's disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2003; 53:341-85. [PMID: 12512346 DOI: 10.1016/s0074-7742(02)53013-0] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Russell H Swerdlow
- Department of Neurology, University of Virginia, Charlottesville, Virginia 22908, USA
| | | |
Collapse
|
25
|
|
26
|
Yang H, Wang J, Huang ZZ, Ou X, Lu SC. Cloning and characterization of the 5'-flanking region of the rat glutamate-cysteine ligase catalytic subunit. Biochem J 2001; 357:447-55. [PMID: 11439094 PMCID: PMC1221971 DOI: 10.1042/0264-6021:3570447] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Glutamate-cysteine ligase (GCL), the rate-limiting enzyme in glutathione synthesis, is made up of two subunits, a catalytic (heavy) subunit (GCLC) and a modifier (light) subunit (GCLM), which are differentially regulated. Increased hepatic GCLC expression occurs during rapid growth, oxidative stress and after ethanol treatment. To facilitate studies of GCLC transcriptional regulation, we have cloned and characterized a 1.8 kb 5'-flanking region of the rat GCLC (GenBank accession number AF218362). A consensus TATA box and one transcriptional start site are located at 302 and 197 nucleotides upstream of the translational start site, respectively. The promoter contains consensus binding sites for many transcription factors including nuclear factor kappaB (NF-kappaB) and activator protein 1 (AP-1). The rat GCLC promoter was able to efficiently drive luciferase expression in H4IIE cells. Sequential deletion analysis revealed that three DNA regions, -595 to -111, -1108 to -705 and -705 to -595, are involved in positive (the first two regions) and negative (the latter region) gene regulation. Specific protein binding to these regions was confirmed by DNase I footprinting and electrophoretic mobility-shift assays (EMSAs). Ethanol-fed livers exhibit increased protein binding to region -416 to -336 on DNase I footprinting analysis, which was found to be NF-kappaB and AP-1 on EMSA and supershift analysis. Acetaldehyde treatment of H4IIE cells led to a time- and dose-dependent increase in GCLC mRNA levels, binding of NF-kappaB and AP-1 to the GCLC promoter, and luciferase activity driven by the GCLC promoter fragment containing these binding sites.
Collapse
Affiliation(s)
- H Yang
- Division of Gastrointestinal and Liver Diseases, HMR Building 415, Department of Medicine, Keck School of Medicine USC, 2011 Zonal Avenue, Los Angeles, CA 90033, USA
| | | | | | | | | |
Collapse
|
27
|
Carr VM, Menco BP, Yankova MP, Morimoto RI, Farbman AI. Odorants as cell-type specific activators of a heat shock response in the rat olfactory mucosa. J Comp Neurol 2001; 432:425-39. [PMID: 11268007 DOI: 10.1002/cne.1112] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Heat shock, or stress, proteins (HSPs) are induced in response to conditions that cause protein denaturation. Activation of cellular stress responses as a protective and survival mechanism is often associated with chemical exposure. One interface between the body and the external environment and chemical or biological agents therein is the olfactory epithelium (OE). To determine whether environmental odorants affect OE HSP expression, rats were exposed to a variety of odorants added to the cage bedding. Odorant exposure led to transient, selective induction of HSP70, HSC70, HSP25, and ubiquitin immunoreactivities (IRs) in supporting cells and subepithelial Bowman's gland acinar cells, two OE non-neuronal cell populations involved with inhalant biotransformation, detoxification, and maintenance of overall OE integrity. Responses exhibited odor specificity and dose dependency. HSP70 and HSC70 IRs occurred throughout the apical region of supporting cells; ubiquitin IR was confined to a supranuclear cone-shaped region. Electron microscopic examination confirmed these observations and, additionally, revealed odor-induced formation of dense vesicular arrays in the cone-like regions. HSP25 IR occurred throughout the entire supporting cell cytoplasm. In contrast to classical stress responses, in which the entire array of stress proteins is induced, no increases in HSP40 and HSP90 IRs were observed. Extended exposure to higher odorant doses caused prolonged activation of the same HSP subset in the non-neuronal cells and severe morphological damage in both supporting cells and olfactory receptor neurons (ORNs), suggesting that non-neuronal cytoprotective stress response mechanisms had been overwhelmed and could no longer adequately maintain OE integrity. Significantly, ORNs showed no stress responses in any of our studies. These findings suggest a novel role for these HSPs in olfaction and, in turn, possible involvement in other normal neurophysiological processes.
Collapse
Affiliation(s)
- V M Carr
- Department of Neurobiology and Physiology, Northwestern University, Evanston, Illinois 60208-3520, USA.
| | | | | | | | | |
Collapse
|
28
|
Marshall HE, Merchant K, Stamler JS. Nitrosation and oxidation in the regulation of gene expression. FASEB J 2000; 14:1889-900. [PMID: 11023973 DOI: 10.1096/fj.00.011rev] [Citation(s) in RCA: 312] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A growing body of evidence suggests that the cellular response to oxidative and nitrosative stress is primarily regulated at the level of transcription. Posttranslational modification of transcription factors may provide a mechanism by which cells sense these redox changes. In bacteria, for example, OxyR senses redox-related changes via oxidation or nitrosylation of a free thiol in the DNA binding region. This mode of regulation may serve as a paradigm for redox-sensing by eukaryotic transcription factors as most-including NF-kappaB, AP-1, and p53-contain reactive thiols in their DNA binding regions, the modification of which alters binding in vitro. Several of these transcription factors have been found to be sensitive to both reactive oxygen species and nitric oxide-related species in vivo. It remains entirely unclear, however, if oxidation or nitrosylation of eukaryotic transcription factors is an important mode of regulation, or whether transcriptional activating pathways are principally controlled at other redox-sensitive levels.-Marshall, H. E., Merchant, K., Stamler, J. S. Nitrosation and oxidation in the regulation of gene expression.
Collapse
Affiliation(s)
- H E Marshall
- Howard Hughes Medical Institute, Departments of Medicine and Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | |
Collapse
|