1
|
Zhong S, Kiyoshi CM, Du Y, Wang W, Luo Y, Wu X, Taylor AT, Ma B, Aten S, Liu X, Zhou M. Genesis of a functional astrocyte syncytium in the developing mouse hippocampus. Glia 2023; 71:1081-1098. [PMID: 36598109 PMCID: PMC10777263 DOI: 10.1002/glia.24327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 12/03/2022] [Accepted: 12/15/2022] [Indexed: 01/05/2023]
Abstract
Astrocytes are increasingly shown to operate as an isopotential syncytium in brain function. Protoplasmic astrocytes acquire this ability to functionally go beyond the single-cell level by evolving into a spongiform morphology, cytoplasmically connecting into a syncytium, and expressing a high density of K+ conductance. However, none of these cellular/functional features exist in neonatal newborn astrocytes, which imposes a basic question of when a functional syncytium evolves in the developing brain. Our results show that the spongiform morphology of individual astrocytes and their spatial organization all reach stationary levels by postnatal day (P) 15 in the hippocampal CA1 region. Functionally, astrocytes begin to uniformly express a mature level of passive K+ conductance by P11. We next used syncytial isopotentiality measurement to monitor the maturation of the astrocyte syncytium. In uncoupled P1 astrocytes, the substitution of endogenous K+ by a Na+ -electrode solution ([Na+ ]p ) resulted in the total elimination of the physiological membrane potential (VM ), and outward K+ conductance as predicted by the Goldman-Hodgkin-Katz (GHK) equation. As more astrocytes are coupled to each other through gap junctions during development, the [Na+ ]p -induced loss of physiological VM and the outward K+ conductance is progressively compensated by the neighboring astrocytes. By P15, a stably established syncytial isopotentiality (-73 mV), and a fully compensated outward K+ conductance appeared in all [Na+ ]p -recorded astrocytes. Thus, in view of the developmental timeframe wherein a singular syncytium is anatomically and functionally established for intra-syncytium K+ equilibration, an astrocyte syncytium becomes fully operational at P15 in the mouse hippocampus.
Collapse
Affiliation(s)
- Shiying Zhong
- Department of Neuroscience, Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
- Department of Neurology, Shanghai 10Hospital of Tongji University, School of Medicine, Shanghai, 200072, China
| | - Conrad M. Kiyoshi
- Department of Neuroscience, Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Yixing Du
- Department of Neuroscience, Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Wei Wang
- Department of Neuroscience, Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
- Department of Physiology, Tongji Medical College, Wuhan, 430030, China
| | - Yumeng Luo
- Department of Neuroscience, Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Xiao Wu
- Department of Neurology, Wuhan First Hospital, Wuhan 430022, China
| | - Anne T. Taylor
- Department of Neuroscience, Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Baofeng Ma
- Department of Neuroscience, Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Sydney Aten
- Department of Neuroscience, Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Xueyuan Liu
- Department of Neurology, Shanghai 10Hospital of Tongji University, School of Medicine, Shanghai, 200072, China
| | - Min Zhou
- Department of Neuroscience, Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| |
Collapse
|
2
|
Postnatal Increases in Axonal Conduction Velocity of an Identified Drosophila Interneuron Require Fast Sodium, L-Type Calcium and Shaker Potassium Channels. eNeuro 2019; 6:ENEURO.0181-19.2019. [PMID: 31253715 PMCID: PMC6709211 DOI: 10.1523/eneuro.0181-19.2019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 06/06/2019] [Accepted: 06/12/2019] [Indexed: 11/21/2022] Open
Abstract
During early postnatal life, speed up of signal propagation through many central and peripheral neurons has been associated with an increase in axon diameter or/and myelination. Especially in unmyelinated axons postnatal adjustments of axonal membrane conductances is potentially a third mechanism but solid evidence is lacking. Here, we show that axonal action potential (AP) conduction velocity in the Drosophila giant fiber (GF) interneuron, which is required for fast long-distance signal conduction through the escape circuit, is increased by 80% during the first day of adult life. Genetic manipulations indicate that this postnatal increase in AP conduction velocity in the unmyelinated GF axon is likely owed to adjustments of ion channel expression or properties rather than axon diameter increases. Specifically, targeted RNAi knock-down of either Para fast voltage-gated sodium, Shaker potassium (Kv1 homologue), or surprisingly, L-type like calcium channels counteracts postnatal increases in GF axonal conduction velocity. By contrast, the calcium-dependent potassium channel Slowpoke (BK) is not essential for postnatal speeding, although it also significantly increases conduction velocity. Therefore, we identified multiple ion channels that function to support fast axonal AP conduction velocity, but only a subset of these are regulated during early postnatal life to maximize conduction velocity. Despite its large diameter (∼7 µm) and postnatal regulation of multiple ionic conductances, mature GF axonal conduction velocity is still 20-60 times slower than that of vertebrate Aβ sensory axons and α motoneurons, thus unraveling the limits of long-range information transfer speed through invertebrate circuits.
Collapse
|
3
|
Ih channels prevent overexcitability of early developmental CA1 neurons showing high input resistance in rats. Brain Res Bull 2013; 91:14-20. [DOI: 10.1016/j.brainresbull.2012.11.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 11/23/2012] [Accepted: 11/24/2012] [Indexed: 11/21/2022]
|
4
|
Cho HJ, Furness JB, Jennings EA. Postnatal maturation of the hyperpolarization-activated cation current, I(h), in trigeminal sensory neurons. J Neurophysiol 2011; 106:2045-56. [PMID: 21753027 DOI: 10.1152/jn.00798.2010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Hyperpolarization-activated inward currents (I(h)) contribute to neuronal excitability in sensory neurons. Four subtypes of hyperpolarization-activated cyclic nucleotide-gated (HCN) channels generate I(h), with different activation kinetics and cAMP sensitivities. The aim of the present study was to examine the postnatal development of I(h) and HCN channel subunits in trigeminal ganglion (TG) neurons. I(h) was investigated in acutely dissociated TG neurons from rats aged between postnatal day (P)1 and P35 with whole cell patch-clamp electrophysiology. In voltage-clamp studies, I(h) was activated by a series of hyperpolarizing voltage steps from -40 mV to -120 mV in -10-mV increments. Tail currents from a common voltage step (-100 mV) were used to determine I(h) voltage dependence. I(h) activation was faster in older rats and occurred at more depolarized potentials; the half-maximal activation voltage (V(1/2)) changed from -89.4 mV (P1) to -81.6 mV (P35). In current-clamp studies, blocking I(h) with ZD7288 caused membrane hyperpolarization and increases in action potential half-duration at all postnatal ages examined. ZD7288 also reduced the action potential firing frequency in multiple-firing neurons. Western blot analysis of the TG detected immunoreactive bands corresponding to all HCN subtypes. HCN1 and HCN2 band density increased with postnatal age, whereas the low-intensity HCN3 and moderate-intensity HCN4 bands were not changed. This study suggests that functional I(h) are activated in rat trigeminal sensory neurons from P1 during postnatal development, have an increasing role with age, and modify neuronal excitability.
Collapse
Affiliation(s)
- Hyun-Jung Cho
- Anatomy and Cell Biology, University of Melbourne, Parkville, Victoria, Australia
| | | | | |
Collapse
|
5
|
Matsumoto S, Yoshida S, Ikeda M, Kadoi J, Takahashi M, Tanimoto T, Kitagawa J, Saiki C, Takeda M, Shima Y. Effects of acetazolamide on transient K+ currents and action potentials in nodose ganglion neurons of adult rats. CNS Neurosci Ther 2011; 17:66-79. [PMID: 20370806 PMCID: PMC3047007 DOI: 10.1111/j.1755-5949.2010.00133.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The aim of the present study was to determine whether acetazolamide (AZ) contributes to the inhibition of the fast inactivating transient K(+) current (I(A) ) in adult rat nodose ganglion (NG) neurons. We have previously shown that pretreatment with either AZ or 4-AP attenuated or blocked the CO(2) -induced inhibition of slowly adapting pulmonary stretch receptors in in vivo experiments. The patch-clamp experiments were performed by using the isolated NG neurons. In addition to this, the RT-PCR of mRNA and the expression of voltage-gated K(+) (Kv) 1.4, Kv 4.1, Kv 4.2, and Kv 4.3 channel proteins from nodose ganglia were examined. We used NG neurons sensitive to the 1 mM AZ application. The application of 1 mM AZ inhibited the I(A) by approximately 27% and the additional application of 4-AP (1 mM) further inhibited I(A) by 48%. The application of 0.1 μM α-dendrotoxin (α-DTX), a slow inactivating transient K(+) current (I(D) ) blocker, inhibited the baseline I(A) by approximately 27%, and the additional application of 1 mM AZ further decreased the I(A) by 51%. In current clamp experiments, AZ application (1 mM) increased the number of action potentials due to the decreased duration of the depolarizing phase of action potentials and/or due to a reduction in the resting membrane potential. Four voltage-gated K(+) channel proteins were present, and most (80-90%) of the four Kv channels immunoreactive neurons showed the co-expression of carbonic anhydrase-II (CA-II) immunoreactivity. These results indicate that the application of AZ causes the reduction in I(A) via the inhibition of four voltage-gated K(+) channel (Kv) proteins without affecting I(D).
Collapse
Affiliation(s)
- Shigeji Matsumoto
- Department of Physiology, Nippon Dental University, School of Life Dentistry at Tokyo, 1-9-20 Fujimi, Chiyoda-ku, Tokyo 102-8159, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Husseini L, Schmandt T, Scheffler B, Schröder W, Seifert G, Brüstle O, Steinhäuser C. Functional Analysis of Embryonic Stem Cell–Derived Glial Cells after Integration into Hippocampal Slice Cultures. Stem Cells Dev 2008; 17:1141-52. [DOI: 10.1089/scd.2007.0244] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Affiliation(s)
- Leila Husseini
- Institute of Cellular Neurosciences, University of Bonn, Bonn, Germany
| | - Tanja Schmandt
- Institute of Reconstructive Neurobiology, University of Bonn, Bonn, Germany
| | - Björn Scheffler
- Institute of Reconstructive Neurobiology, University of Bonn, Bonn, Germany
| | - Wolfgang Schröder
- Institute of Cellular Neurosciences, University of Bonn, Bonn, Germany
- Present address: Department of Pharmacology, Grünenthal GmbH, Aachen, Germany
| | - Gerald Seifert
- Institute of Cellular Neurosciences, University of Bonn, Bonn, Germany
| | - Oliver Brüstle
- Institute of Reconstructive Neurobiology, University of Bonn, Bonn, Germany
| | | |
Collapse
|
7
|
Moreira THV, Gover TD, Weinreich D. Electrophysiological properties and chemosensitivity of acutely dissociated trigeminal somata innervating the cornea. Neuroscience 2007; 148:766-74. [PMID: 17706884 PMCID: PMC3390199 DOI: 10.1016/j.neuroscience.2007.03.056] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2006] [Revised: 03/02/2007] [Accepted: 04/04/2007] [Indexed: 11/25/2022]
Abstract
Adult rat sensory trigeminal ganglion neurons innervating the cornea (cTGNs) were isolated and identified following retrograde dye labeling with FM1-43. Using standard whole-cell patch clamp recording techniques, cTGNs could be subdivided by their action potential (AP) duration. Fast cTGNs had AP durations <1 ms (40%) while slow cTGNs had AP durations >1 ms and an inflection on the repolarization phase of the AP. With the exception of membrane input resistance, the passive membrane properties of fast cTGNs were different from those of slow cTGNs (capacitance: 61+/-4.5 pF vs. 42+/-2.6 pF, resting membrane potential: -59+/-0.7 mV vs. -53+/-0.9 mV, for fast and slow cTGNs respectively). Active membrane properties also differed between fast and slow cTGNs. Slow cTGNs had a higher AP threshold (-25+/-1.6 mV vs. -38+/-0.8 mV), a larger rheobase (14+/-1.9 pA/pF vs. 6.8+/-1.0 pA/pF), and a smaller AP undershoot (-56+/-1.7 mV vs. -67+/-2.5 mV). The AP overshoot, however was similar between the two types of neurons (46+/-3.1 mV vs. 48+/-4 mV). Slow cTGNs were depolarized by capsaicin (1 microM, 80%) and 60% of their APs were blocked by tetrodotoxin (TTX) (100 nM). Fast cTGNs were unaffected by capsaicin and 100% of their APs were blocked by TTX. Similarly, cTGNs were also heterogeneous with respect to their responses to exogenous ATP and 5-HT. The current work shows that cTGNs have distinctive electrophysiological properties and chemosensitivity profiles. These characteristics may mirror the distinct properties of corneal sensory nerve terminals. The availability of isolated identified cTGNs constitutes a tractable model system to investigate the biophysical and pharmacological properties of corneal sensory nerve terminals.
Collapse
Affiliation(s)
- Thaís Helena Veiga Moreira
- Department of Pharmacology and Experimental Therapeutics, University of Maryland, School of Medicine, Baltimore, MD, USA
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Tony D Gover
- Department of Pharmacology and Experimental Therapeutics, University of Maryland, School of Medicine, Baltimore, MD, USA
| | - Daniel Weinreich
- Department of Pharmacology and Experimental Therapeutics, University of Maryland, School of Medicine, Baltimore, MD, USA
| |
Collapse
|
8
|
Kitagawa J, Takeda M, Suzuki I, Kadoi J, Tsuboi Y, Honda K, Matsumoto S, Nakagawa H, Tanabe A, Iwata K. Mechanisms involved in modulation of trigeminal primary afferent activity in rats with peripheral mononeuropathy. Eur J Neurosci 2006; 24:1976-86. [PMID: 17040479 DOI: 10.1111/j.1460-9568.2006.05065.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
In order to clarify the mechanisms underlying the changes in primary afferent neurons in trigeminal neuropathic pain, a chronic constriction nerve injury model of the infraorbital nerve (ION-CCI) was developed in rats. Mechanical allodynia was observed at 3 days after ION-CCI and lasted more than 14 days. Single-unit activities were recorded from the ION of anesthetized rats. C-, Abeta- and Adelta-units were identified on the basis of their conduction velocity. Adelta-units were frequently encountered at a later period after ION-CCI. The highest Adelta-spontaneous activity was recorded at 3 days after ION-CCI and progressively decreased after that, but spontaneous activity was still higher at 14 days after ION-CCI than that of naïve rats. Mechanical-evoked responses of Adelta-units were also highest at 3 days after ION-CCI and then gradually decreased. In consideration of these data, patch-clamp recordings were performed on medium to large size neurons of the dissociated trigeminal ganglion (TRG). Patch-clamp recordings revealed that the IK (sustained) and IA (transient) in rats with ION-CCI were significantly smaller than those of naïve rats, and correlated with an increase in duration of repolarization phase and a decrease in duration of depolarization phase, respectively. The hyperpolarization-activated current (Ih) was significantly larger in TRG neurons of rats with ION-CCI as compared with those of naïve rats. The present results suggest that Ih, IK and IA in Adelta-afferent neurons in TRG are significantly involved in the changes in afferent spontaneous activity and mechanically evoked activity that accompany mechanical allodynia produced by trigeminal nerve injury.
Collapse
Affiliation(s)
- Junichi Kitagawa
- Department of Physiology, School of Dentistry, Nihon University, 1-8-13 Kandasurugadai, Chiyoda-ku Tokyo, 101-8310, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Yoshida S, Matsumoto S. Effects of alpha-dendrotoxin on K+ currents and action potentials in tetrodotoxin-resistant adult rat trigeminal ganglion neurons. J Pharmacol Exp Ther 2005; 314:437-45. [PMID: 15831438 DOI: 10.1124/jpet.105.084988] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To determine whether the alpha-dendrotoxin (alpha-DTX)-sensitive current [D current, slow inactivating transient current (I(D))] contributes to the modification of neuronal function in small-diameter adult rat trigeminal ganglion (TG) neurons insensitive to 1 microM tetrodotoxin (TTX), we performed two different types of experiments. In the voltage-clamp mode, two distinct K+ current components, a fast inactivating transient current (I(A)) and a dominant sustained current (I(K)), were identified. Alpha-DTX (0.1 microM), ranging from 0.001 to 1 microM, maximally decreased I(A) by approximately 20% and I(K) by approximately 16.1% at a +50-mV step pulse, and 0.1 microM alpha-DTX application increased the number of action potentials without changing the resting membrane potential. Irrespective of the absence and presence of 0.1 microM alpha-DTX, applications of 4-aminopyridine (4-AP; 0.5 mM) and tetraethylammonium (TEA; 2 mM) inhibited approximately 50% inhibition of I(A) and I(K), respectively. 4-AP (0.5 mM) depolarized the resting membrane potential and increased the number of action potentials in the absence or presence of 0.1 microM alpha-DTX. TEA prolonged the duration of action potentials in the absence or presence of 0.1 microM alpha-DTX. These results suggest that I(D) contributes to the modification of neuronal function in adult rat TTX-resistant TG neurons, but after the loss of I(D) due to 0.1 microM alpha-DTX application, 4-AP (0.5 mM) and TEA (2 mM) still regulate the intrinsic firing properties of action potential number and shape.
Collapse
Affiliation(s)
- Shinki Yoshida
- Department of Physiology, Nippon Dental University, School of Dentistry at Tokyo, 1-9-20 Fujimi, Chiyoda-ku, Tokyo 102-8159, Japan.
| | | |
Collapse
|
10
|
Zhong CB, Pan YP, Tong XY, Xu XH, Wang XL. Delayed rectifier potassium currents and Kv2.1 mRNA increase in hippocampal neurons of scopolamine-induced memory-deficient rats. Neurosci Lett 2005; 373:99-104. [PMID: 15567561 DOI: 10.1016/j.neulet.2004.09.069] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2004] [Revised: 09/25/2004] [Accepted: 09/28/2004] [Indexed: 11/22/2022]
Abstract
To explore the ionic mechanisms of memory deficits induced by cholinergic lesion, whole-cell patch clamp recording techniques in combination with single-cell RT-PCR were used to characterize delayed rectifier potassium currents (IK) in acutely isolated hippocampal pyramidal neurons of scopolamine-induced cognitive impairment rats. Scopolamine could induce deficits in spatial memory of rats. The peak amplitude and current density of IK measured in hippocampal pyramidal neurons were increased from 1.2+/-0.6 nA and 38+/-19 pA/pF of the control group (n=12) to 1.8+/-0.5 nA and 62+/-24 pA/pF (n=48, P<0.01) of the scopolamine-treated group. The steady-state activation curve of IK was shifted about 8 mV (P<0.01) in the direction of hyperpolarization in scopolamine-treated rats. The mRNA level of Kv2.1 was increased (P<0.01) in the scopolamine-treated group, but there was no significant change of Kv1.5 mRNA level. The present study demonstrated for the first time that IK was enhanced significantly in hippocampal pyramidal neurons of scopolamine-induced cognitive impairment rats. The increase of Kv2.1 mRNA expression in hippocampal pyramidal cells might be responsible for the enhancement of IK and could be the ionic basis of the memory deficits induced by scopolamine.
Collapse
Affiliation(s)
- Chong-Bo Zhong
- Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, China
| | | | | | | | | |
Collapse
|
11
|
Tsuboi Y, Takeda M, Tanimoto T, Ikeda M, Matsumoto S, Kitagawa J, Teramoto K, Simizu K, Yamazaki Y, Shima A, Ren K, Iwata K. Alteration of the second branch of the trigeminal nerve activity following inferior alveolar nerve transection in rats. Pain 2004; 111:323-334. [PMID: 15363876 DOI: 10.1016/j.pain.2004.07.014] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2004] [Revised: 05/31/2004] [Accepted: 07/12/2004] [Indexed: 12/31/2022]
Abstract
After transection of the inferior alveolar nerve (IAN), the whisker pad area, which is innervated by the infraorbital nerve (ION) that was not injured, showed hypersensitivity to mechanical stimulation. Two days after IAN transection, threshold intensity for escape behavior to mechanical stimulation of the ipsilateral whisker pad area was less than 4.0 g, indicating mechanical allodynia. A total of 68 single fiber discharges were recorded from ION fibers at 3 days after IAN transection. The responses of C- and A-fibers were classified according to their conduction velocity. The C-fiber activities were not affected by IAN transection, whereas A-fiber activities were significantly enhanced by IAN transection as indicated by an increase in background activity and mechanically evoked response. Since the A-fiber responses were significantly affected by IAN transection, patch clamp recording was performed from middle to large diameter retrogradely labeled and acutely dissociated trigeminal ganglion (TRG) neurons. The I(K) (sustained) and I(A) (transient) currents were significantly smaller and hyperpolarization-activated current (I(h)) was significantly larger in TRG neurons of rats with IAN transection as compared to those of naive rats. Furthermore, current injection into TRG neurons induced high frequency spike discharges in rats with IAN transection. These data suggest that changes in K(+) current and I(h) observed in the uninjured TRG neurons reflect an increase in excitability of TRG neurons innervated by the ION after IAN transection, resulting in the development of mechano-allodynia in the area adjacent to the injured IAN innervated region.
Collapse
Affiliation(s)
- Yoshiyuki Tsuboi
- Department of Physiology, School of Dentistry, Nihon University, Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan Department of Physiology, School of Dentistry at Tokyo, Nippon Dental University, 1-9-20, Fujimi-cho, Chiyoda-ku, Tokyo 102-8159, Japan Division of Functional Morphology, Dental Research Center, Nihon University School of Dentistry, Tokyo 101-8310, Japan Department of Dysphagia Rehabilitation, Nihon University School of Dentistry, Tokyo 101-8310, Japan Department of Dental Anesthesiology, Nihon University School of Dentistry, Tokyo 101-8310, Japan Department of Biomedical Sciences, University of Maryland Dental School, Baltimore, MD 21201, USA Division of Applied System Neuroscience Advanced Medical Research Center, Nihon University Graduate School of Medical Science, 30-1 Ohyaguchi-Kamimachi Itabashi, Tokyo 173-8610, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Takeda M, Tanimoto T, Ikeda M, Kadoi J, Nasu M, Matsumoto S. Opioidergic modulation of excitability of rat trigeminal root ganglion neuron projections to the superficial layer of cervical dorsal horn. Neuroscience 2004; 125:995-1008. [PMID: 15120859 DOI: 10.1016/j.neuroscience.2004.02.029] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/18/2004] [Indexed: 11/17/2022]
Abstract
The aim of the present study was to investigate the effect of a micro-opioid receptor agonist DAMGO (Tyr-d-Ala-Gly-NMe-Phe-Gly-ol) on the excitability of trigeminal root ganglion (TRG) neurons, projecting onto the superficial layer of the cervical dorsal horn, by using the perforated-patch technique and to determine whether TRG neurons show the expression of mRNA or functional protein for micro-opioid receptors by using reverse transcription-polymerase chain reaction (RT-PCR) and immunohistochemistry. TRG neurons projecting onto the superficial layer of the cervical dorsal horn were retrogradely labeled with Fluorogold (FG). The cell diameter of FG-labeled TRG neurons was small (<30 microm). Under voltage-clamp (V(h)=-60 mV), voltage-dependent K(+) currents were recorded in the TRG neurons and isolated by blocking Na(+) and Ca(2+) currents with appropriate ion replacement. Separation of the K(+) current components was achieved by the response to variation in the conditioning voltage. Two distinct K(+) current components, a transient (I(A)) and sustained (I(K)), were identified. DAMGO significantly increased I(A) by 57% (20 microM) and in a dose-dependent manner (1-50 microM). Similarly, I(K) was also enhanced by DAMGO administration (42%, 20 microM). The augmentation of both I(A) and I(K) was antagonized by a micro-opioid receptor antagonist, CTOP (d-Phe-Cys-Thr-d-Trp-Orn-Thr-Pen-Thr-NH(2)). Hyperpolarization of the membrane potential was elicited by DAMGO (20 microM) and the response was associated with a decrease in the input resistance. DAMGO induced hyperpolarization was blocked by CTOP. DAMGO-sensitive I(A) and I(K) currents were antagonized by K(+) channel blockers, 4-aminopyridine (4-AP) and tetraethylammonium (TEA). In the presence of both 4-AP and TEA, no significant changes in membrane potential induced by DAMGO application were observed. In the presence of BaCl(2), DAMGO evoked hyperpolarization with decreased resistance was observed. The firing rate of action potentials and the first spike duration induced by depolarizing step pulses were decreased in the presence of DAMGO. RT-PCR analysis demonstrated the expression of mRNA for micro-opioid receptors in the trigeminal ganglia. The micro-opioid receptor immunoreactivity was expressed in the small diameter FG-labeled TRG neurons. These results suggest that the activation of micro-opioid receptors inhibits the excitability of rat small diameter TRG neurons projecting on the superficial layer of the cervical dorsal horn and this inhibition is mediated by potentiation of voltage-dependent K(+) currents. We therefore concluded that modulation of nociceptive transmission in the trigeminal system, resulting in the functional activation of micro-opioid receptors, occurs at the level of small TRG cell bodies and/or their primary afferent terminals, which contribute to opioid analgesia in the trigeminal pain.
Collapse
MESH Headings
- Analgesics, Opioid/pharmacology
- Animals
- Cervical Vertebrae
- Dose-Response Relationship, Drug
- Enkephalin, Ala(2)-MePhe(4)-Gly(5)-/pharmacology
- Immunohistochemistry
- Male
- Membrane Potentials/drug effects
- Neurons/metabolism
- Patch-Clamp Techniques
- Posterior Horn Cells/cytology
- Posterior Horn Cells/metabolism
- Potassium Channel Blockers/pharmacology
- Potassium Channels, Voltage-Gated/drug effects
- Potassium Channels, Voltage-Gated/metabolism
- RNA, Messenger/analysis
- Rats
- Receptors, Opioid, mu/agonists
- Receptors, Opioid, mu/drug effects
- Receptors, Opioid, mu/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Somatostatin/analogs & derivatives
- Somatostatin/pharmacology
- Trigeminal Ganglion/drug effects
- Trigeminal Ganglion/physiology
Collapse
Affiliation(s)
- M Takeda
- Department of Physiology, School of Dentistry at Tokyo, Nippon Dental University, 1-9-20, Fujimi-cho, Chiyoda-ku, Tokyo, 102-8159 Japan.
| | | | | | | | | | | |
Collapse
|
13
|
Takeda M, Tanimoto T, Ikeda M, Kadoi J, Matsumoto S. Activaton of GABAB receptor inhibits the excitability of rat small diameter trigeminal root ganglion neurons. Neuroscience 2004; 123:491-505. [PMID: 14698756 DOI: 10.1016/j.neuroscience.2003.09.022] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
A selective GABA(B) receptor agonist, baclofen, is known to suppress neuropathic pain. In the present study, we investigated the effect of baclofen on the excitability of trigeminal root ganglion (TRG) neurons by using the whole cell and perforated patch-clamp recording techniques. Under voltage-clamp (V(h)=-60 mV), voltage-dependent K(+) currents were recorded in the small diameter TRG neurons (<30 microm) and isolated by blocking Na(+) and Ca(2+) currents with appropriate ion replacement. Separation of the K(+) current components was achieved by the response to variation in the conditioning voltage. Two distinct K(+) current components, a transient (I(A)) and a sustained (I(k)), were identified. Baclofen significantly increased I(A) by 74.8% (50 microM) and in a dose-dependent manner (1-50 microM). Similarly, I(K) was also enhanced by baclofen administration (41.8%: 50 microM). The relative amplitude of potentiation of I(A) was significantly higher than that of I(K) (P<0.05). Baclofen-sensitive I(A) and I(K) currents were antagonized by K(+) channel blockers, 4-aminopyridine (4-AP) and tetraethylammonium (TEA). The augmentation of K(+) currents was antagonized by 3-amino-2-(4-chlorophenyl)-2-hydroxypropylsulfonic acid (saclofen; GABA(B) antagonist). In the current clamp mode, the resting membrane potential was -62+/-1.6 mV (n=24). Hyperpolarization of the membrane potential was elicited by baclofen (10-50 microM), and the response was associated with a decrease in the input resistance. Baclofen induced-hyperpolarization was blocked by saclofen (100 microM). In the presence of both 4-AP and TEA, no significant changes in membrane potential induced by baclofen application were observed. In the presence of BaCl(2), baclofen-evoked hyperpolarization with decreased resistance was observed. During application of baclofen, the firing rate of the action potentials by depolarizing step pulses was decreased. Application of baclofen reduced action potential duration evoked by a depolarization current pulse.These results indicated that activation of GABA(B) receptors inhibits the excitability of rat small diameter TRG neurons and this inhibitory action is mediated by potentiation of voltage-dependent K(+) currents. We therefore concluded that modification of nociceptive transmission in the trigeminal system by activation of GABA(B) receptors occurs at the level of small TRG neuron cell bodies and/or their primary afferent terminals, which are potential targets of analgesia by baclofen.
Collapse
Affiliation(s)
- M Takeda
- Department of Physiology, School of Dentistry at Tokyo, Nippon Dental University, 1-9-20, Fujimi-cho, Chiyoda-ku, Tokyo, 102-8159, Japan.
| | | | | | | | | |
Collapse
|
14
|
Prentice HM, Milton SL, Scheurle D, Lutz PL. Gene transcription of brain voltage-gated potassium channels is reversibly regulated by oxygen supply. Am J Physiol Regul Integr Comp Physiol 2004; 285:R1317-21. [PMID: 14615400 DOI: 10.1152/ajpregu.00261.2003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Voltage-dependent potassium channels (Kv channels) are important determinants of brain electrical activity. Hypoxia may be an important modifier, because several voltage-gated K+ channels are reversibly blocked by acute hypoxia and are thought to act as oxygen sensors. Here we show, using the anoxia-tolerant turtle brain (Trachemys scripta) as a model, that brain Kv1 channel transcription is reversibly regulated by oxygen supply. We found that in turtle brains exposed to 4-h anoxia Kv1 transcripts were reduced to 18.5% of normoxic levels. Kv1 channel mRNA levels were restored to normal within 4 h of subsequent reoxygenation. Our results provide clear evidence that brain Kv channel expression is sensitive to oxygen supply and indicate an important mechanism that matches brain activity to oxygen supply.
Collapse
Affiliation(s)
- Howard M Prentice
- Department of Biomedical Sciences, Florida Atlantic University, Boca Raton 33431, USA.
| | | | | | | |
Collapse
|
15
|
Liu L, Simon SA. Modulation of IA currents by capsaicin in rat trigeminal ganglion neurons. J Neurophysiol 2003; 89:1387-401. [PMID: 12626618 DOI: 10.1152/jn.00210.2002] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
When capsaicin, the pungent compound in hot pepper, is applied to epithelia it produces pain, allodynia, and hyperalgesia. We investigated, using whole cell path clamp, whether some of these responses induced by capsaicin could be a consequence of capsaicin blocking I(A) currents, a reduction in which, such as occurs in injury, increases neuronal excitability. In capsaicin-sensitive (CS) rat trigeminal ganglion (TG) neurons, capsaicin inhibited I(A) currents in a dose-dependent manner. I(A) currents were reduced 49% by 1 microM capsaicin. In capsaicin-insensitive (CIS) rat TG neurons, or small-diameter mouse VR1-/- neurons, 1 microM capsaicin inhibited I(A) currents 9 and 3%, respectively. These data suggest that in CS neurons the vast majority of the capsaicin-induced inhibition of I(A) currents occurs as a consequence of the activation of vanilloid receptors. Capsaicin (1 microM) did not alter the I(A) conductance-voltage relationship but shifted the inactivation-voltage curve about 15 mV to hyperpolarizing voltages, thereby increasing the number of inactivated I(A) channels at the resting potential. I(A) currents were relatively unaffected by 1 mM CTP-cAMP or 500 nM phorbol-12, 13-dibuterate (a protein kinase C agonist) but were inhibited by 20-30% with either 1 mM CTP-cGMP or 25 microM N-(6-aminohexyl)-5-chloro-1-napthalenesulfonamide HCl (a calcium-calmodulin kinase inhibitor). In the presence of 0.5 microM KT5823, an inhibitor of protein kinase G (PKG) pathways, 1 microM capsaicin inhibited I(A) by only 26%. In summary, in CS neurons, capsaicin decreases I(A) currents through the activation of vanilloid receptors. That activation, partially through the activation of cGMP-PKG and calmodulin-dependent pathways should result in increased excitability of capsaicin-sensitive nociceptors.
Collapse
Affiliation(s)
- L Liu
- Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina 27710, USA.
| | | |
Collapse
|
16
|
Matthias K, Seifert G, Reinhardt S, Steinhäuser C. Modulation of voltage-gated K(+) channels Kv11 and Kv1 4 by forskolin. Neuropharmacology 2002; 43:444-9. [PMID: 12243774 DOI: 10.1016/s0028-3908(02)00115-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Forskolin (FSK) affects voltage-gated K(+) (Kv) currents in different cell types, but it is not known which of the various subunits form FSK-sensitive Kv channels. We compared the effect of the compound at Kv1.1 and Kv1.4 channels ectopically expressed in HEK 293 cells. Low FSK concentrations induced a phosphorylation-dependent potentiation of Kv1.1 currents. At higher concentrations, this effect was superimposed by a fast, cAMP-independent channel block. Kv1.4 currents were inhibited with lower potency by FSK but were not modified by phosphorylation. The variable effect of the compound might help to distinguish between Kv subunits expressed by native cells.
Collapse
Affiliation(s)
- K Matthias
- Experimental Neurobiology, Neurosurgery, University of Bonn, Sigmund-Freud-Str. 25, 53105, Bonn, Germany
| | | | | | | |
Collapse
|
17
|
Cabanes C, López de Armentia M, Viana F, Belmonte C. Postnatal changes in membrane properties of mice trigeminal ganglion neurons. J Neurophysiol 2002; 87:2398-407. [PMID: 11976377 DOI: 10.1152/jn.2002.87.5.2398] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Intracellular recordings from neurons in the mouse trigeminal ganglion (TG) in vitro were used to characterize changes in membrane properties that take place from early postnatal stages (P0-P7) to adulthood (>P21). All neonatal TG neurons had uniformly slow conduction velocities, whereas adult neurons could be separated according to their conduction velocity into Adelta and C neurons. Based on the presence or absence of a marked inflection or hump in the repolarization phase of the action potential (AP), neonatal neurons were divided into S- (slow) and F-type (fast) neurons. Their passive and subthreshold properties (resting membrane potential, input resistance, membrane capacitance, and inward rectification) were nearly identical, but they showed marked differences in AP amplitude, AP overshoot, AP duration, rate of AP depolarization, rate of AP repolarization, and afterhyperpolarization (AHP) duration. Adult TG neurons also segregated into S- and F-type groups. Differences in their mean AP amplitude, AP overshoot, AP duration, rate of AP depolarization, rate of AP repolarization, and AHP duration were also prominent. In addition, axons of 90% of F-type neurons and 60% of S-type neurons became faster conducting in their central and peripheral branch, suggestive of axonal myelination. The proportion of S- and F-type neurons did not vary during postnatal development, suggesting that these phenotypes were established early in development. Membrane properties of both types of TG neurons evolved differently during postnatal development. The nature of many of these changes was linked to the process of myelination. Thus myelination was accompanied by a decrease in AP duration, input resistance (R(in)), and increase in membrane capacitance (C). These properties remained constant in unmyelinated neurons (both F- and S-type). In adult TG, all F-type neurons with inward rectification were also fast-conducting Adelta, suggesting that those F-type neurons showing inward rectification at birth will evolve to F-type Adelta neurons with age. The percentage of F-type neurons showing inward rectification also increased with age. Both F- and S-type neurons displayed changes in the sensitivity of the AP to reductions in extracellular Ca(2+) or substitution with Co(2+) during the process of maturation.
Collapse
Affiliation(s)
- Carmen Cabanes
- Instituto de Neurociencias-Consejo Superior de Investigaciones Científicas, Universidad Miguel Hernández, San Juan de Alicante 03550, Spain.
| | | | | | | |
Collapse
|
18
|
Schröder W, Seifert G, Hüttmann K, Hinterkeuser S, Steinhäuser C. AMPA receptor-mediated modulation of inward rectifier K+ channels in astrocytes of mouse hippocampus. Mol Cell Neurosci 2002; 19:447-58. [PMID: 11906215 DOI: 10.1006/mcne.2001.1080] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Astrocytes and neurons are tightly associated and recent data suggest a direct signaling between neuronal and glial cells in vivo. To further analyze these interactions, the patch-clamp technique was combined with single-cell RT-PCR in acute hippocampal brain slices. Subsequent to functional analysis, the cytoplasm of the same cell was harvested to perform transcript analysis and identify subunits that underlie inwardly rectifying K+ currents (I(Kir)) in astrocytes of the CA1 stratum radiatum. Transcripts encoding Kir2.1, Kir2.2, or Kir2.3, were encountered in a majority of cells, while Kir4.1 was less frequent. Further investigation revealed that glial Kir channels are rapidly inhibited upon activation of AMPA-type glutamate receptors, most probably due a receptor-mediated influx of Na+, which plugs the channels from the intracellular side. A transient inhibition of I(Kir) in astrocytes in response to neuronal glutamate release and glial AMPA receptor activation represents a further, so far undetected mechanism to balance neuronal excitability.
Collapse
Affiliation(s)
- Wolfgang Schröder
- Experimental Neurobiology, Neurosurgery, University of Bonn, 53105 Bonn, Germany
| | | | | | | | | |
Collapse
|
19
|
Abstract
Depolarization-activated, Ca2+-independent K+ currents can be largely divided into delayed rectifiers and transient A-type currents. In mammals, each of these subtypes exhibits large variations in voltage dependence and kinetics according to cell types. At the molecular level, the principal subunits of depolarization-activated K+ channels are thought to be coded by genes from nine subfamilies, Kv1 through Kv9, of which members within each of the Kv1-Kv4 subfamilies can form either homomeric or heteromeric, functional tetrameric channels. The variations in current properties and the large number of genes make it difficult to identify genes responsible for native K(+) channels in mammalian neurons. Nevertheless, progress has been made in recent years, in which the single cell/reverse transcription/polymerase chain reaction (scRT-PCR) protocol combined with patch clamp recording played important roles. With this technique, it has been shown in a number of neuronal phenotypes that mammalian neurons create diversity of channel function by coexpression of members of different Kv subfamilies, coexpression of multiple members of a Kv subfamily, and coexpression of multiple principal and auxiliary subunits. Some genes appear to be expressed at higher levels than others. In the somatodendritic domain, evidence is accumulating that Kv4 subfamily is a major contributor for the typical A-type current, while delayed rectifiers are often attributable to Kv2 and Kv3 subfamily genes. It thus appears that mammalian neurons express some particular Kv genes at higher levels while coexpress multiple genes for the composition of depolarization-activated K+ channels. In addition to the evolution of a large number of K+ channel genes, coexpression of multiple members of the genes in a single neuron also appears to be a strategy for mammalian neurons to create channel diversity.
Collapse
Affiliation(s)
- Wen Jie Song
- Department of Electronic Engineering, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita 565-0871, Japan.
| |
Collapse
|
20
|
Riazanski V, Becker A, Chen J, Sochivko D, Lie A, Wiestler OD, Elger CE, Beck H. Functional and molecular analysis of transient voltage-dependent K+ currents in rat hippocampal granule cells. J Physiol 2001; 537:391-406. [PMID: 11731573 PMCID: PMC2278961 DOI: 10.1111/j.1469-7793.2001.00391.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
1. We have investigated voltage-dependent outward K+ currents of dentate granule cells (DGCs) in acute brain slices from young and adult rats using nucleated and outside-out patch recordings. 2. In adult DGCs, the outward current pattern was dominated by a transient K+ current component. One portion of this current (approximately 60%) was blocked by micromolar concentrations of tetraethylammonium (TEA; IC50 42 microM) and BDS-I, a specific blocker of Kv3.4 subunits (2.5 microM). A second component was insensitive to tetraethylammonium (10 mM) and BDS-I. The transient outward current could be completely blocked by 4-aminopyridine (IC50 296 microM). 3. The TEA- and BDS-I-sensitive and the TEA-resistant current components were isolated pharmacologically. The current component that was blocked by BDS-I and TEA showed a depolarized threshold of activation (approximately -30 mV) reminiscent of Kv3.4 subunits, while the current component resistant to TEA activated at more hyperpolarized potentials (approximately -60 mV). 4. In nucleated patches obtained by placing the patch pipette adjacent to the apical dendrite, only small Na+ currents and small BDS-I-sensitive transient currents were detected. Nucleated patches obtained from either the cell soma (see above) or the axon hillock showed significantly larger amplitude Na+ currents as well as larger BDS-I-sensitive currents, indicating that this current was predominantly localized within the axosomatic compartment. This result was in good agreement with the distribution of Kv3.4 protein as determined by immunohistochemistry. 5. Current-clamp as well as mock action potential-clamp experiments revealed that the BDS-sensitive current component contributes to action potential repolarization. 6. A comparison of the two age groups (4-10 days and 60-100 days) revealed a marked developmental up-regulation of the BDS-I-sensitive component. These functional changes are paralleled by a developmental increase in Kv3.4 mRNA expression determined by quantitative real-time RT-PCR, as well as a pronounced up-regulation of Kv3.4 on the protein level determined by immunohistochemistry. 7. These functional and molecular results argue that Kv3.4 channels located predominantly in the axosomatic compartment underlie a transient K+ current in adult DGCs, and that these channels are functionally important for regulating spike repolarization. The marked developmental regulation suggests an important role of Kv3.4 in neuronal maturation.
Collapse
Affiliation(s)
- V Riazanski
- Department of Epileptology, University of Bonn Medical Center, Sigmund-Freud Strasse 25, 53105 Bonn, Germany
| | | | | | | | | | | | | | | |
Collapse
|