1
|
Deisseroth CA, Lee WS, Kim J, Jeong HH, Dhindsa RS, Wang J, Zoghbi HY, Liu Z. Literature-based predictions of Mendelian disease therapies. Am J Hum Genet 2023; 110:1661-1672. [PMID: 37741276 PMCID: PMC10577072 DOI: 10.1016/j.ajhg.2023.08.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 08/31/2023] [Accepted: 08/31/2023] [Indexed: 09/25/2023] Open
Abstract
In the effort to treat Mendelian disorders, correcting the underlying molecular imbalance may be more effective than symptomatic treatment. Identifying treatments that might accomplish this goal requires extensive and up-to-date knowledge of molecular pathways-including drug-gene and gene-gene relationships. To address this challenge, we present "parsing modifiers via article annotations" (PARMESAN), a computational tool that searches PubMed and PubMed Central for information to assemble these relationships into a central knowledge base. PARMESAN then predicts putatively novel drug-gene relationships, assigning an evidence-based score to each prediction. We compare PARMESAN's drug-gene predictions to all of the drug-gene relationships displayed by the Drug-Gene Interaction Database (DGIdb) and show that higher-scoring relationship predictions are more likely to match the directionality (up- versus down-regulation) indicated by this database. PARMESAN had more than 200,000 drug predictions scoring above 8 (as one example cutoff), for more than 3,700 genes. Among these predicted relationships, 210 were registered in DGIdb and 201 (96%) had matching directionality. This publicly available tool provides an automated way to prioritize drug screens to target the most-promising drugs to test, thereby saving time and resources in the development of therapeutics for genetic disorders.
Collapse
Affiliation(s)
- Cole A Deisseroth
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Won-Seok Lee
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Integrative Molecular and Biomedical Sciences Graduate Program, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jiyoen Kim
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hyun-Hwan Jeong
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Ryan S Dhindsa
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Department of Pathology and Immunology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| | - Julia Wang
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Huda Y Zoghbi
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Integrative Molecular and Biomedical Sciences Graduate Program, Baylor College of Medicine, Houston, TX 77030, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Zhandong Liu
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
2
|
Oladejo M, Nguyen HM, Seah H, Datta A, Wood LM. Tumoral CD105 promotes immunosuppression, metastasis, and angiogenesis in renal cell carcinoma. Cancer Immunol Immunother 2022; 72:1633-1646. [PMID: 36586013 DOI: 10.1007/s00262-022-03356-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 12/23/2022] [Indexed: 01/01/2023]
Abstract
CD105 (endoglin) is a transmembrane protein that functions as a TGF-beta coreceptor and is highly expressed on endothelial cells. Unsurprisingly, preclinical and clinical evidence strongly suggests that CD105 is an important contributor to tumor angiogenesis and tumor progression. Emerging evidence suggests that CD105 is also expressed by tumor cells themselves in certain cancers such as renal cell carcinoma (RCC). In human RCC tumor cells, CD105 expression is associated with stem cell-like properties and contributes to the malignant phenotype in vitro and in xenograft models. However, as a regulator of TGF-beta signaling, there is a striking lack of evidence for the role of tumor-expressed CD105 in the anti-tumor immune response and the tumor microenvironment. In this study, we report that tumor cell-expressed CD105 potentiates both the in vitro and in vivo tumorigenic potential of RCC in a syngeneic murine RCC tumor model. Importantly, we find that tumor cell-expressed CD105 sculpts the tumor microenvironment by enhancing the recruitment of immunosuppressive cell types and inhibiting the polyfunctionality of tumor-infiltrating CD4+ and CD8+ T cells. Finally, while CD105 expression by endothelial cells is a well-established contributor to tumor angiogenesis, we also find that tumor cell-expressed CD105 significantly contributes to tumor angiogenesis in RCC.
Collapse
Affiliation(s)
- Mariam Oladejo
- Department of Immunotherapeutics and Biotechnology, Jerry H Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX, USA
| | - Hong-My Nguyen
- Department of Immunotherapeutics and Biotechnology, Jerry H Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX, USA
| | - Hannah Seah
- Department of Immunotherapeutics and Biotechnology, Jerry H Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX, USA
| | - Arani Datta
- Department of Immunotherapeutics and Biotechnology, Jerry H Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX, USA
| | - Laurence M Wood
- Department of Immunotherapeutics and Biotechnology, Jerry H Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX, USA.
| |
Collapse
|
3
|
Endoglin in the Spotlight to Treat Cancer. Int J Mol Sci 2021; 22:ijms22063186. [PMID: 33804796 PMCID: PMC8003971 DOI: 10.3390/ijms22063186] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/06/2021] [Accepted: 03/17/2021] [Indexed: 01/02/2023] Open
Abstract
A spotlight has been shone on endoglin in recent years due to that fact of its potential to serve as both a reliable disease biomarker and a therapeutic target. Indeed, endoglin has now been assigned many roles in both physiological and pathological processes. From a molecular point of view, endoglin mainly acts as a co-receptor in the canonical TGFβ pathway, but also it may be shed and released from the membrane, giving rise to the soluble form, which also plays important roles in cell signaling. In cancer, in particular, endoglin may contribute to either an oncogenic or a non-oncogenic phenotype depending on the cell context. The fact that endoglin is expressed by neoplastic and non-neoplastic cells within the tumor microenvironment suggests new possibilities for targeted therapies. Here, we aimed to review and discuss the many roles played by endoglin in different tumor types, as well as the strong evidence provided by pre-clinical and clinical studies that supports the therapeutic targeting of endoglin as a novel clinical strategy.
Collapse
|
4
|
Bianchi VJ, Parsons M, Backstein D, Kandel RA. Endoglin Level Is Critical for Cartilage Tissue Formation In Vitro by Passaged Human Chondrocytes. Tissue Eng Part A 2021; 27:1140-1150. [PMID: 33323019 DOI: 10.1089/ten.tea.2020.0120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Transforming growth factor beta (TGFβ) signaling is required for in vitro chondrogenesis. In animal models of osteoarthritis (OA), TGFβ receptor alterations are detected in chondrocytes in severe OA cartilage. It is not known whether such changes are dependent on the grade of human OA and if they affect chondrogenesis. Thus, the purpose of this study was to determine if human OA chondrocytes obtained from low-grade or high-grade disease could form cartilage tissue and to assess the role of the co-receptors, endoglin (ENG) and TGFβ receptor 3 (TGFBRIII), in the regulation of this tissue generation in vitro. We hypothesized that the grade of OA disease would not affect the ability of cells to form cartilage tissue and that the TGFβ co-receptor, ENG, would be critical to regulating tissue formation. Chondrocytes isolated from low-grade OA or high-grade OA human articular cartilage (AC) were analyzed directly (P0) or passaged in monolayer to P2. Expression of the primary TGFβ receptor ALK5, and the co-receptors ENG and TGFβRIII, was assessed by image flow cytometry. To assess the ability to form cartilaginous tissue, cells were placed in three-dimensional culture at high density and cultured in chondrogenic media containing TGFβ3. ENG knockdown was used to determine its role in regulating tissue formation. Overall, grade-specific differences in expression of ALK5, ENG, and TGFβRIII in primary or passaged chondrocytes were not detected; however, ENG expression increased significantly after passaging. Despite the presence of ALK5, P0 cells did not form cartilaginous tissue. In contrast, P2 cells derived from low-grade and high-grade OA AC formed hyaline-like cartilaginous tissues of similar quality. Knockdown of ENG in P2 cells inhibited cartilaginous tissue formation compared to controls indicating that the level of ENG protein expression is critical for in vitro chondrogenesis by passaged articular chondrocytes. This study demonstrates that it is not the grade of OA, but the levels of ENG in the presence of ALK5 that influences the ability of human passaged articular chondrocytes to form cartilaginous tissue in vitro in 3D culture. This has implications for cartilage repair therapies. Impact statement These findings are important clinically, given the limited availability of osteoarthritis (OA) cartilage tissue. Being able to use cells from all grades of OA will increase our ability to obtain sufficient cells for cartilage repair. In addition, it is possible that endoglin (ENG) levels, in the presence of ALK5 expression, may be suitable to use as biomarkers to identify cells able to produce cartilage.
Collapse
Affiliation(s)
- Vanessa J Bianchi
- Lunenfeld-Tanenbaum Research Institute, Toronto, Canada.,Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada
| | | | - David Backstein
- Division of Orthopaedic Surgery, Mount Sinai Hospital, Toronto, Canada
| | - Rita A Kandel
- Lunenfeld-Tanenbaum Research Institute, Toronto, Canada.,Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada.,Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| |
Collapse
|
5
|
Aguado T, García M, García A, Ferrer-Mayorga G, Martínez-Santamaría L, del Río M, Botella LM, Sánchez-Puelles JM. Raloxifene and n-Acetylcysteine Ameliorate TGF-Signalling in Fibroblasts from Patients with Recessive Dominant Epidermolysis Bullosa. Cells 2020; 9:E2108. [PMID: 32947957 PMCID: PMC7565802 DOI: 10.3390/cells9092108] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/10/2020] [Accepted: 09/15/2020] [Indexed: 02/07/2023] Open
Abstract
Recessive dystrophic epidermolysis bullosa (RDEB) is a severe skin disease caused by mutation of the COL7A1 gene. RDEB is associated with high levels of TGF-β1, which is likely to be involved in the fibrosis that develops in this disease. Endoglin (CD105) is a type III coreceptor for TGF-β1 and its overexpression in fibroblasts deregulates physiological Smad/Alk1/Alk5 signalling, repressing the synthesis of TGF-β1 and extracellular matrix (ECM) proteins. Raloxifene is a specific estrogen receptor modulator designated as an orphan drug for hereditary hemorrhagic telangiectasia, a rare vascular disease. Raloxifene stimulates endoglin synthesis, which could attenuate fibrosis. By contrast, the antioxidant N-acetylcysteine may have therapeutic value to rectify inflammation, fibrosis and endothelial dysfunction. Thus, we present here a repurposing strategy based on the molecular and functional screening of fibroblasts from RDEB patients with these drugs, leading us to propose the repositioning of these two well-known drugs currently in clinical use, raloxifene and N-acetylcysteine, to counteract fibrosis and inflammation in RDEB. Both compounds modulate the profibrotic events that may ultimately be responsible for the clinical manifestations in RDEB, suggesting that these findings may also be relevant for other diseases in which fibrosis is an important pathophysiological event.
Collapse
Affiliation(s)
- Tania Aguado
- Department of Molecular Biomedicine, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, U-707 CIBERER, 28040 Madrid, Spain;
| | - Marta García
- Departament of Biomedical Engineering, Universidad Carlos III, 28911 Madrid, Spain; (M.G.); (A.G.); (L.M.-S.); (M.d.R.)
- Spanish Network of Research Groups on Rare Diseases (CIBERER) U714, 28911 Madrid, Spain
- Foundation of the Institute for Health Research, Jiménez Díaz Foundation, 28040 Madrid, Spain
| | - Adela García
- Departament of Biomedical Engineering, Universidad Carlos III, 28911 Madrid, Spain; (M.G.); (A.G.); (L.M.-S.); (M.d.R.)
- Spanish Network of Research Groups on Rare Diseases (CIBERER) U714, 28911 Madrid, Spain
- Foundation of the Institute for Health Research, Jiménez Díaz Foundation, 28040 Madrid, Spain
| | - Gemma Ferrer-Mayorga
- Department of Cancer Biology, Instituto de Investigaciones Biomédicas “Alberto Sols”, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, 28029 Madrid, Spain;
| | - Lucía Martínez-Santamaría
- Departament of Biomedical Engineering, Universidad Carlos III, 28911 Madrid, Spain; (M.G.); (A.G.); (L.M.-S.); (M.d.R.)
- Spanish Network of Research Groups on Rare Diseases (CIBERER) U714, 28911 Madrid, Spain
- Foundation of the Institute for Health Research, Jiménez Díaz Foundation, 28040 Madrid, Spain
| | - Marcela del Río
- Departament of Biomedical Engineering, Universidad Carlos III, 28911 Madrid, Spain; (M.G.); (A.G.); (L.M.-S.); (M.d.R.)
- Spanish Network of Research Groups on Rare Diseases (CIBERER) U714, 28911 Madrid, Spain
- Foundation of the Institute for Health Research, Jiménez Díaz Foundation, 28040 Madrid, Spain
| | - Luisa-María Botella
- Department of Molecular Biomedicine, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, U-707 CIBERER, 28040 Madrid, Spain;
| | - José-María Sánchez-Puelles
- Department of Molecular Biomedicine, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, U-707 CIBERER, 28040 Madrid, Spain;
| |
Collapse
|
6
|
Rossi E, Bernabeu C, Smadja DM. Endoglin as an Adhesion Molecule in Mature and Progenitor Endothelial Cells: A Function Beyond TGF-β. Front Med (Lausanne) 2019; 6:10. [PMID: 30761306 PMCID: PMC6363663 DOI: 10.3389/fmed.2019.00010] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 01/14/2019] [Indexed: 12/13/2022] Open
Abstract
Endoglin (ENG) is a transmembrane glycoprotein expressed on endothelial cells that functions as a co-receptor for several ligands of the transforming growth factor beta (TGF-β) family. ENG is also a recognized marker of angiogenesis and mutations in the endoglin gene are responsible for Hereditary Hemorrhagic Telangiectasia (HHT) type 1, a vascular disease characterized by defective angiogenesis, arteriovenous malformations, telangiectasia, and epistaxis. In addition to its involvement in the TGF-β family signaling pathways, several lines of evidence suggest that the extracellular domain of ENG has a role in integrin-mediated cell adhesion via its RGD motif. Indeed, we have described a role for endothelial ENG in leukocyte trafficking and extravasation via its binding to leukocyte integrins. We have also found that ENG is involved in vasculogenic properties of endothelial progenitor cells known as endothelial colony forming cells (ECFCs). Moreover, the binding of endothelial ENG to platelet integrins regulate the resistance to shear during platelet-endothelium interactions under inflammatory conditions. Because of the need for more effective treatments in HHT and the involvement of ENG in angiogenesis, current studies are aimed at identifying novel biological functions of ENG which could serve as a therapeutic target. This review focuses on the interaction between ENG and integrins with the aim to better understand the role of this protein in blood vessel formation driven by progenitor and mature endothelial cells.
Collapse
Affiliation(s)
- Elisa Rossi
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Inserm UMR-S1140, Paris, France
| | - Carmelo Bernabeu
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Centro de Investigación Biomédica en Red de Enfermedades Raras, Madrid, Spain
| | - David M Smadja
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Inserm UMR-S1140, Paris, France.,Department of Hematology, AP-HP, Hôpital Européen Georges Pompidou, Paris, France.,Laboratory of Biosurgical Research, Carpentier Foundation, Hôpital Européen Georges Pompidou, Paris, France
| |
Collapse
|
7
|
Kasprzak A, Adamek A. Role of Endoglin (CD105) in the Progression of Hepatocellular Carcinoma and Anti-Angiogenic Therapy. Int J Mol Sci 2018; 19:E3887. [PMID: 30563158 PMCID: PMC6321450 DOI: 10.3390/ijms19123887] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 12/02/2018] [Accepted: 12/03/2018] [Indexed: 02/08/2023] Open
Abstract
The liver is perfused by both arterial and venous blood, with a resulting abnormal microenvironment selecting for more-aggressive malignancies. Hepatocellular carcinoma (HCC) is the most frequent primary liver cancer, the sixth most common cancer globally, and the third leading cause of cancer-related mortality worldwide. HCC is characterized by its hypervascularization. Improving the efficiency of anti-angiogenic treatment and mitigation of anti-angiogenic drug resistance are the top priorities in the development of non-surgical HCC therapies. Endoglin (CD105), a transmembrane glycoprotein, is one of the transforming growth factor β (TGF-β) co-receptors. Involvement of that protein in angiogenesis of solid tumours is well documented. Endoglin is a marker of activated endothelial cells (ECs), and is preferentially expressed in the angiogenic endothelium of solid tumours, including HCC. HCC is associated with changes in CD105-positive ECs within and around the tumour. The large spectrum of endoglin effects in the liver is cell-type- and HCC- stage-specific. High expression of endoglin in non-tumour tissue suggests that this microenvironment might play an especially important role in the progression of HCC. Evaluation of tissue expression, as well as serum concentrations of this glycoprotein in HCC, tends to confirm its role as an important biomarker in HCC diagnosis and prognosis. The role of endoglin in liver fibrosis and HCC progression also makes it an attractive therapeutic target. Despite these facts, the exact molecular mechanisms of endoglin functioning in hepatocarcinogenesis are still poorly understood. This review summarizes the current data concerning the role and signalling pathways of endoglin in hepatocellular carcinoma development and progression, and provides an overview of the strategies available for a specific targeting of CD105 in anti-angiogenic therapy in HCC.
Collapse
Affiliation(s)
- Aldona Kasprzak
- Department of Histology and Embryology, University of Medical Sciences, Poznań 60-781, Poland.
| | - Agnieszka Adamek
- Department of Infectious Diseases, Hepatology and Acquired Immunodeficiencies, University of Medical Sciences, Poznań 61-285, Poland.
| |
Collapse
|
8
|
Endoglin haploinsufficiency is associated with differential regulation of extracellular matrix production during skin fibrosis and cartilage repair in mice. J Cell Commun Signal 2018; 12:379-388. [PMID: 29488175 DOI: 10.1007/s12079-018-0461-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 02/07/2018] [Indexed: 01/17/2023] Open
Abstract
Transforming growth factor (TGF)-β is a multifunctional growth factor with potent pro-fibrotic effects. Endoglin is a TGF-β co-receptor that strongly regulates TGF-β signaling in a variety of cell types. Although aberrant regulation of TGF-β signaling is known to play a key role in fibrotic diseases such as scleroderma and impaired cartilage repair, the significance of endoglin function in regulating these processes is poorly understood. Here we examined whether endoglin haploinsufficiency regulates extracellular (ECM) protein expression and fibrotic responses during bleomycin induced skin fibrosis and surgically induced osteoarthritis, using endoglin-heterozygous (Eng+/-) mice and wild-type (Eng+/+) littermates. Skin fibrosis was induced by injecting mice intradermally with bleomycin or vehicle. Osteoarthritis was induced surgically by destabilization of medial meniscus. Dermal thickness, cartilage integrity and ECM protein expression were then determined. Eng+/- mice subjected to bleomycin challenge show a marked decrease in dermal thickness (P < 0.005) and reduced collagen content and decreased collagen I, fibronectin, alpha-smooth muscle actin levels as compared to Eng+/+ mice, both under basal and bleomycin treated conditions. Eng+/- mice undergoing surgically induced osteoarthritis show no differences in the degree of cartilage degradation, as compared to Eng+/+ mice, although chondrocytes isolated from Eng+/- display markedly enhanced collagen II levels. Our findings suggest that endoglin haploinsufficiency in mice ameliorates bleomycin-induced skin fibrosis suggesting that endoglin represents a pro-fibrotic factor in the mouse skin. However, endoglin haploinsufficiency does not protect these mice from surgically indiced cartilage degradation, demonstrating differential regulation of endoglin action during skin and cartilage repair.
Collapse
|
9
|
Zamarrón A, García M, Río MD, Larcher F, Juarranz Á. Effects of photodynamic therapy on dermal fibroblasts from xeroderma pigmentosum and Gorlin-Goltz syndrome patients. Oncotarget 2017; 8:77385-77399. [PMID: 29100394 PMCID: PMC5652786 DOI: 10.18632/oncotarget.20485] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 07/26/2017] [Indexed: 12/22/2022] Open
Abstract
PDT is widely applied for the treatment of non-melanoma skin cancer pre-malignant and malignant lesions (actinic keratosis, basal cell carcinoma and in situ squamous cell carcinoma). In photodynamic therapy (PDT) the interaction of a photosensitizer (PS), light and oxygen leads to the formation of reactive oxygen species (ROS) and thus the selective tumor cells eradication. Xeroderma pigmentosum (XP) and Gorlin-Goltz Syndrome (GS) patients are at high risk of developing skin cancer in sun-exposed areas. Therefore, the use of PDT as a preventive treatment may constitute a very promising therapeutic modality for these syndromes. Given the demonstrated role of cancer associated fibroblasts (CAFs) in tumor progression and the putative CAFs features of some cancer-prone genodermatoses fibroblasts, in this study, we have further characterized the phenotype of XP and GS dermal fibroblasts and evaluated their response to methyl-δ-aminolevulinic acid (MAL)-PDT compared to that of dermal fibroblasts obtained from healthy donors. We show here that XP/GS fibroblasts display clear features of CAFs and present a significantly higher response to PDT, even after being stimulated with UV light, underscoring the value of this therapeutic approach for these rare skin conditions and likely to other forms of skin cancer were CAFs play a major role.
Collapse
Affiliation(s)
- Alicia Zamarrón
- Department of Biology, Faculty of Sciences, Autónoma University of Madrid, IRYCIS, Madrid, Spain
| | - Marta García
- Department of Bioengineering, Carlos III University (UC3M), Madrid, Spain
- CIEMAT-Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Madrid, Spain
- Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
| | - Marcela Del Río
- Department of Bioengineering, Carlos III University (UC3M), Madrid, Spain
- CIEMAT-Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Madrid, Spain
- Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
| | - Fernando Larcher
- Department of Bioengineering, Carlos III University (UC3M), Madrid, Spain
- CIEMAT-Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Madrid, Spain
- Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
| | - Ángeles Juarranz
- Department of Biology, Faculty of Sciences, Autónoma University of Madrid, IRYCIS, Madrid, Spain
| |
Collapse
|
10
|
Rossi E, Smadja DM, Boscolo E, Langa C, Arevalo MA, Pericacho M, Gamella-Pozuelo L, Kauskot A, Botella LM, Gaussem P, Bischoff J, Lopez-Novoa JM, Bernabeu C. Endoglin regulates mural cell adhesion in the circulatory system. Cell Mol Life Sci 2016; 73:1715-39. [PMID: 26646071 PMCID: PMC4805714 DOI: 10.1007/s00018-015-2099-4] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 11/19/2015] [Accepted: 11/23/2015] [Indexed: 02/06/2023]
Abstract
The circulatory system is walled off by different cell types, including vascular mural cells and podocytes. The interaction and interplay between endothelial cells (ECs) and mural cells, such as vascular smooth muscle cells or pericytes, play a pivotal role in vascular biology. Endoglin is an RGD-containing counter-receptor for β1 integrins and is highly expressed by ECs during angiogenesis. We find that the adhesion between vascular ECs and mural cells is enhanced by integrin activators and inhibited upon suppression of membrane endoglin or β1-integrin, as well as by addition of soluble endoglin (SolEng), anti-integrin α5β1 antibody or an RGD peptide. Analysis of different endoglin mutants, allowed the mapping of the endoglin RGD motif as involved in the adhesion process. In Eng (+/-) mice, a model for hereditary hemorrhagic telangectasia type 1, endoglin haploinsufficiency induces a pericyte-dependent increase in vascular permeability. Also, transgenic mice overexpressing SolEng, an animal model for preeclampsia, show podocyturia, suggesting that SolEng is responsible for podocytes detachment from glomerular capillaries. These results suggest a critical role for endoglin in integrin-mediated adhesion of mural cells and provide a better understanding on the mechanisms of vessel maturation in normal physiology as well as in pathologies such as preeclampsia or hereditary hemorrhagic telangiectasia.
Collapse
MESH Headings
- Animals
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Cell Adhesion/physiology
- Cell Line, Tumor
- Disease Models, Animal
- Endoglin
- Endothelium, Vascular/metabolism
- Female
- Human Umbilical Vein Endothelial Cells/metabolism
- Humans
- Integrin beta1/genetics
- Jurkat Cells
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Nude
- Mice, Transgenic
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/metabolism
- Myocytes, Smooth Muscle/cytology
- Myocytes, Smooth Muscle/metabolism
- Neovascularization, Pathologic/metabolism
- Pericytes/metabolism
- Podocytes/metabolism
- Pre-Eclampsia/genetics
- Pre-Eclampsia/pathology
- Pregnancy
- Protein Binding
- RNA Interference
- RNA, Small Interfering
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Retina/metabolism
- Telangiectasia, Hereditary Hemorrhagic/genetics
- Telangiectasia, Hereditary Hemorrhagic/pathology
Collapse
Affiliation(s)
- Elisa Rossi
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), c/Ramiro de Maeztu 9, 28040, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28040, Madrid, Spain
- Paris Descartes University, Sorbonne Paris Cite, Paris, France
- Hematology Department, AP-HP, Hôpital Européen Georges Pompidou, Paris, France
| | - David M Smadja
- Hematology Department, AP-HP, Hôpital Européen Georges Pompidou, Paris, France
- Faculté de Pharmacie, Inserm UMR-S1140, Paris, France
| | - Elisa Boscolo
- Department of Surgery, Harvard Medical School, Children's Hospital, Boston, MA, 02115, USA
| | - Carmen Langa
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), c/Ramiro de Maeztu 9, 28040, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28040, Madrid, Spain
| | - Miguel A Arevalo
- Departamento de Anatomía e Histología Humanas, Facultad de Medicina, Universidad de Salamanca, 37007, Salamanca, Spain
- Instituto de Investigaciones Biomédicas de Salamanca (IBSAL), 37007, Salamanca, Spain
| | - Miguel Pericacho
- Instituto de Investigaciones Biomédicas de Salamanca (IBSAL), 37007, Salamanca, Spain
- Departamento de Fisiología y Farmacología, Unidad de Fisiopatología Renal y Cardiovascular, Universidad de Salamanca, 37007, Salamanca, Spain
| | - Luis Gamella-Pozuelo
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), c/Ramiro de Maeztu 9, 28040, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28040, Madrid, Spain
- Departamento de Fisiología y Farmacología, Unidad de Fisiopatología Renal y Cardiovascular, Universidad de Salamanca, 37007, Salamanca, Spain
| | - Alexandre Kauskot
- Inserm UMR-S1176, Le Kremlin Bicêtre, Paris, France
- Université Paris Sud, Le Kremlin Bicêtre, Paris, France
| | - Luisa M Botella
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), c/Ramiro de Maeztu 9, 28040, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28040, Madrid, Spain
| | - Pascale Gaussem
- Hematology Department, AP-HP, Hôpital Européen Georges Pompidou, Paris, France
- Faculté de Pharmacie, Inserm UMR-S1140, Paris, France
| | - Joyce Bischoff
- Department of Surgery, Harvard Medical School, Children's Hospital, Boston, MA, 02115, USA
| | - José M Lopez-Novoa
- Instituto de Investigaciones Biomédicas de Salamanca (IBSAL), 37007, Salamanca, Spain
- Departamento de Fisiología y Farmacología, Unidad de Fisiopatología Renal y Cardiovascular, Universidad de Salamanca, 37007, Salamanca, Spain
| | - Carmelo Bernabeu
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), c/Ramiro de Maeztu 9, 28040, Madrid, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28040, Madrid, Spain.
| |
Collapse
|
11
|
Mice Lacking Endoglin in Macrophages Show an Impaired Immune Response. PLoS Genet 2016; 12:e1005935. [PMID: 27010826 PMCID: PMC4806930 DOI: 10.1371/journal.pgen.1005935] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 02/24/2016] [Indexed: 12/26/2022] Open
Abstract
Endoglin is an auxiliary receptor for members of the TGF-β superfamily and plays an important role in the homeostasis of the vessel wall. Mutations in endoglin gene (ENG) or in the closely related TGF-β receptor type I ACVRL1/ALK1 are responsible for a rare dominant vascular dysplasia, the Hereditary Hemorrhagic Telangiectasia (HHT), or Rendu-Osler-Weber syndrome. Endoglin is also expressed in human macrophages, but its role in macrophage function remains unknown. In this work, we show that endoglin expression is triggered during the monocyte-macrophage differentiation process, both in vitro and during the in vivo differentiation of blood monocytes recruited to foci of inflammation in wild-type C57BL/6 mice. To analyze the role of endoglin in macrophages in vivo, an endoglin myeloid lineage specific knock-out mouse line (Engfl/flLysMCre) was generated. These mice show a predisposition to develop spontaneous infections by opportunistic bacteria. Engfl/flLysMCre mice also display increased survival following LPS-induced peritonitis, suggesting a delayed immune response. Phagocytic activity is impaired in peritoneal macrophages, altering one of the main functions of macrophages which contributes to the initiation of the immune response. We also observed altered expression of TGF-β1 target genes in endoglin deficient peritoneal macrophages. Overall, the altered immune activity of endoglin deficient macrophages could help to explain the higher rate of infectious diseases seen in HHT1 patients. Endoglin is a transmembrane protein and an auxiliary receptor for TGF-β with an important role in the homeostasis of the vessel wall. However, endoglin was originally identified as a human cell surface antigen expressed in a pre-B leukemic cell line. Mutations in ENG are responsible for the Hereditary Hemorrhagic Telangiectasia type 1 (HHT1) or Rendu-Osler-Weber syndrome. HHT is a rare disease, with a prevalence of 1/5,000 to 1/8,000. It is an autosomal dominant disorder characterized by a multisystemic vascular dysplasia, recurrent hemorrhages and arteriovenous malformations in internal organs. Interestingly, endoglin expression is also triggered during the monocyte-macrophage differentiation process. In our laboratory, we described that up-regulation of endoglin during in vitro differentiation of blood monocytes is age-dependent and impaired in monocytes from HHT patients, suggesting a role of endoglin in macrophages. In the present work, we first analyzed endoglin expression during differentiation of peripheral blood monocytes to macrophages under in vitro and in vivo conditions. Next, to investigate endoglin’s role in macrophage function in vivo, a myeloid-lineage specific endoglin knock-out mouse line was generated (Engfl/flLysMCre). Endoglin deficiency in macrophages predisposed animals to spontaneous infections and led to delayed endotoxin-induced mortality. Phagocytic activity by peritoneal macrophages was reduced in the absence of endoglin and altered expression of TGF-β target genes was consistent with an altered balance of TGF-β signaling. The results show a novel role for endoglin in mouse macrophages, which if analogous in human macrophages, may explain, at least in part, the increased infection rates seen in HHT patients.
Collapse
|
12
|
Endoglin overexpression mediates gastric cancer peritoneal dissemination by inducing mesothelial cell senescence. Hum Pathol 2016; 51:114-23. [PMID: 27067789 DOI: 10.1016/j.humpath.2015.12.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Revised: 12/22/2015] [Accepted: 12/23/2015] [Indexed: 01/08/2023]
Abstract
Peritoneal dissemination (PD), which is highly frequent in gastric cancer (GC) patients, is the main cause of death in advanced GC. Senescence of human peritoneal mesothelial cells (HPMC) may contribute to GC peritoneal dissemination (GCPD). In this study of 126 patients, we investigated the association between Endoglin expression in GC peritoneum and the clinicopathological features. The prognosis of patients was evaluated according to Endoglin and ID1 expression. In vitro, GC cell (GCC)-HPMC coculture was established. Endoglin and ID1 expression was evaluated by Western blot. Cell cycle and HPMC senescence were analyzed after harvesting HPMC from the coculture. GCC adhesion and invasion to HPMC were also assayed. Our results showed that positive staining of Endoglin (38%) was associated with a higher TNM stage and higher incidence of GCPD (both P < .05). Kaplan-Meier analysis showed that the patients who were Endoglin positive had a shorter survival time compared with Endoglin-negative patients (P = .02). Using the HPMC and GCC adherence and invasion assay, we demonstrated that transforming growth factor beta 1 (TGF-β)1-induced HPMC senescence was attenuated by silencing the Endoglin expression, which also prevented GCC attachment and invasion. Our study indicated a positive correlation between Endoglin overexpression and GCPD. Up-regulated Endoglin expression induced HPMC senescence via TGF-β1 pathway. The findings suggest that Endoglin-induced HPMC senescence may contribute to peritoneal dissemination of GCCs.
Collapse
|
13
|
Nemeth K, Wilson TM, Ren JJ, Sabatino M, Stroncek DM, Krepuska M, Bai Y, Robey PG, Metcalfe DD, Mezey E. Impaired function of bone marrow stromal cells in systemic mastocytosis. Stem Cell Res 2015; 15:42-53. [PMID: 26001169 DOI: 10.1016/j.scr.2015.04.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 03/25/2015] [Accepted: 04/18/2015] [Indexed: 01/23/2023] Open
Abstract
Patients with systemic mastocytosis (SM) have a wide variety of problems, including skeletal abnormalities. The disease results from a mutation of the stem cell receptor (c-kit) in mast cells and we wondered if the function of bone marrow stromal cells (BMSCs; also known as MSCs or mesenchymal stem cells) might be affected by the invasion of bone marrow by mutant mast cells. As expected, BMSCs from SM patients do not have a mutation in c-kit, but they proliferate poorly. In addition, while osteogenic differentiation of the BMSCs seems to be deficient, their adipogenic potential appears to be increased. Since the hematopoietic supportive abilities of BMSCs are also important, we also studied the engraftment in NSG mice of human CD34(+) hematopoietic progenitors, after being co-cultured with BMSCs of healthy volunteers vs. BMSCs derived from patients with SM. BMSCs derived from the bone marrow of patients with SM could not support hematopoiesis to the extent that healthy BMSCs do. Finally, we performed an expression analysis and found significant differences between healthy and SM derived BMSCs in the expression of genes with a variety of functions, including the WNT signaling, ossification, and bone remodeling. We suggest that some of the symptoms associated with SM might be driven by epigenetic changes in BMSCs caused by dysfunctional mast cells in the bone marrow of the patients.
Collapse
Affiliation(s)
- Krisztian Nemeth
- Craniofacial and Skeletal Diseases Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA.
| | - Todd M Wilson
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Jiaqiang J Ren
- Department of Transfusion Medicine, Clinical Center, National Institutes of Health, 10 Center Dr., Bethesda, MD 20892, USA
| | - Marianna Sabatino
- Department of Transfusion Medicine, Clinical Center, National Institutes of Health, 10 Center Dr., Bethesda, MD 20892, USA
| | - David M Stroncek
- Department of Transfusion Medicine, Clinical Center, National Institutes of Health, 10 Center Dr., Bethesda, MD 20892, USA
| | - Miklos Krepuska
- Craniofacial and Skeletal Diseases Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Yun Bai
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Pamela G Robey
- Craniofacial and Skeletal Diseases Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Dean D Metcalfe
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Eva Mezey
- Craniofacial and Skeletal Diseases Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA.
| |
Collapse
|
14
|
Rossi E, Lopez-Novoa JM, Bernabeu C. Endoglin involvement in integrin-mediated cell adhesion as a putative pathogenic mechanism in hereditary hemorrhagic telangiectasia type 1 (HHT1). Front Genet 2015; 5:457. [PMID: 25709613 PMCID: PMC4285797 DOI: 10.3389/fgene.2014.00457] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 12/12/2014] [Indexed: 12/11/2022] Open
Abstract
Mutations in the endoglin gene (ENG) are responsible for ∼50% of all cases with hereditary hemorrhagic telangiectasia (HHT). Because of the absence of effective treatments for HHT symptoms, studies aimed at identifying novel biological functions of endoglin which could serve as therapeutic targets of the disease are needed. Endoglin is an endothelial membrane protein, whose most studied function has been its role as an auxiliary receptor in the TGF-β receptor complex. However, several lines of evidence suggest the involvement of endoglin in TGF-β-independent functions. Endoglin displays, within its zona pellucida domain, an RGD motif, which is a prototypic sequence involved in integrin-based interactions with other proteins. Indeed, we have recently described a novel role for endothelial endoglin in leukocyte trafficking and extravasation via its interaction with leukocyte integrins. In addition, functional, as well as protein and gene expression analysis have shown that ectopic endoglin represses the synthesis of several members of the integrin family and modulates integrin-mediated cell adhesions. This review focuses on the tight link between endoglin and integrins and how the role of endothelial endoglin in integrin-dependent cell adhesion processes can provide a better understanding of the pathogenic mechanisms leading to vascular lesions in endoglin haploinsufficient HHT1 patients.
Collapse
Affiliation(s)
- Elisa Rossi
- INSERM, Faculté des Sciences Pharmaceutiques et Biologiques, Université Paris Descartes, UMR-S 1140 Paris, France
| | - José M Lopez-Novoa
- Renal and Cardiovascular Research Unit, Department of Physiology and Pharmacology, University of Salamanca, and Institute of Biomedical Research of Salamanca Salamanca, Spain
| | - Carmelo Bernabeu
- Centro de Investigaciones Biológicas - Consejo Superior de Investigaciones Científicas and Centro de Investigación Biomédica en Red de Enfermedades Raras Madrid, Spain
| |
Collapse
|
15
|
Abstract
Tubulointerstitial fibrosis and glomerulosclerosis, are a major feature of end stage chronic kidney disease (CKD), characterised by an excessive accumulation of extracellular matrix (ECM) proteins. Transforming growth factor beta-1 (TGF-β1) is a cytokine with an important role in many steps of renal fibrosis such as myofibroblast activation and proliferation, ECM protein synthesis and inflammatory cell infiltration. Endoglin is a TGF-β co-receptor that modulates TGF-β responses in different cell types. In numerous cells types, such as mesangial cells or myoblasts, endoglin regulates negatively TGF-β-induced ECM protein expression. However, recently it has been demonstrated that 'in vivo' endoglin promotes fibrotic responses. Furthermore, several studies have demonstrated an increase of endoglin expression in experimental models of renal fibrosis in the kidney and other tissues. Nevertheless, the role of endoglin in renal fibrosis development is unclear and a question arises: Does endoglin protect against renal fibrosis or promotes its development? The purpose of this review is to critically analyse the recent knowledge relating to endoglin and renal fibrosis. Knowledge of endoglin role in this pathology is necessary to consider endoglin as a possible therapeutic target against renal fibrosis.
Collapse
|
16
|
Ghanian Z, Maleki S, Park S, Sorenson CM, Sheibani N, Ranji M. Organ specific optical imaging of mitochondrial redox state in a rodent model of hereditary hemorrhagic telangiectasia-1. JOURNAL OF BIOPHOTONICS 2014; 7:799-809. [PMID: 23740865 PMCID: PMC4324470 DOI: 10.1002/jbio.201300033] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2013] [Revised: 04/24/2013] [Accepted: 05/13/2013] [Indexed: 05/09/2023]
Abstract
Hereditary Hemorrhagic Telangiectasia-1 (HHT-1) is a vascular disease caused by mutations in the endoglin (Eng)/CD105 gene. The objective of this study was to quantify the oxidative state of a rodent model of HHT-1 using an optical imaging technique. We used a cryofluorescence imaging instrument to quantitatively assess tissue metabolism in this model. Mitochondrial redox ratio (FAD/NADH), FAD RR, was used as a quantitative marker of the metabolic status and was examined in the kidneys, and eyes of wild-type and Eng +/- mice. Kidneys and eyes from wild-type P21, 6W, and 10M old mice showed, respectively, a 9% (±2), 24% (±0.4), 15% (±1), and 23% (±4), 33% (±0.6), and 30% (±2) change in the mean FAD RR compared to Eng +/- mice at the same age. Thus, endoglin haploinsufficiency is associated with less oxidative stress in various organs and mitigation of angiogenesis.
Collapse
Affiliation(s)
- Zahra Ghanian
- Department of Electrical Engineering, University of Wisconsin Milwaukee, Milwaukee, WI, USA
| | - Sepideh Maleki
- Department of Electrical Engineering, University of Wisconsin Milwaukee, Milwaukee, WI, USA
| | - SunYoung Park
- Departments of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Christine M. Sorenson
- Departments of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Nader Sheibani
- Departments of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Mahsa Ranji
- Department of Electrical Engineering, University of Wisconsin Milwaukee, Milwaukee, WI, USA
| |
Collapse
|
17
|
Tobar N, Avalos MC, Méndez N, Smith PC, Bernabeu C, Quintanilla M, Martínez J. Soluble MMP-14 produced by bone marrow-derived stromal cells sheds epithelial endoglin modulating the migratory properties of human breast cancer cells. Carcinogenesis 2014; 35:1770-9. [PMID: 24618373 DOI: 10.1093/carcin/bgu061] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
It has been proposed that epithelial cells can acquire invasive properties through exposure to paracrine signals originated from mesenchymal cells within the tumor microenvironment. Transforming growth factor-β (TGF-β) has been revealed as an active factor that mediates the epithelial-stroma cross-talk that facilitates cell invasion and metastasis. TGF-β signaling is modulated by the coreceptor Endoglin (Eng), which shows a tumor suppressor activity in epithelial cells and regulates the ALK1-Smad1,5,8 as well as the ALK5-Smad2,3 signaling pathways. In the current work, we present evidence showing that cell surface Eng abundance in epithelial MCF-7 breast cancer cells is inversely related with cell motility. Shedding of Eng in MCF-7 cell surface by soluble matrix metalloproteinase-14 (MMP-14) derived from the HS-5 bone-marrow-derived cell line induces a motile epithelial phenotype. On the other hand, restoration of full-length Eng expression blocks the stromal stimulus on migration. Processing of surface Eng by stromal factors was demonstrated by biotin-neutravidin labeling of cell surface proteins and this processing generated a shift in TGF-β signaling through the activation of Smad2,3 pathway. Stromal MMP-14 abundance was stimulated by TGF-β secreted by MCF-7 cells acting in a paracrine manner. In turn, the stromal proteolytic activity of soluble MMP-14, by inducing Eng shedding, promoted malignant progression. From these data, and due to the capacity of TGF-β to regulate malignancy in epithelial cancer, we propose that stromal-dependent epithelial Eng shedding constitutes a putative mechanism that exerts an environmental control of cell malignancy.
Collapse
Affiliation(s)
- Nicolás Tobar
- Laboratorio de Biología Celular, INTA, Universidad de Chile, Santiago 7830490, Chile, Laboratorio de Fisiología Periodontal, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28040 Madrid, Spain and Instituto de Investigaciones Biomédicas Alberto Sols, CSIC, 28029 Madrid, Spain
| | - M Celeste Avalos
- Laboratorio de Biología Celular, INTA, Universidad de Chile, Santiago 7830490, Chile, Laboratorio de Fisiología Periodontal, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28040 Madrid, Spain and Instituto de Investigaciones Biomédicas Alberto Sols, CSIC, 28029 Madrid, Spain
| | - Nicolás Méndez
- Laboratorio de Biología Celular, INTA, Universidad de Chile, Santiago 7830490, Chile, Laboratorio de Fisiología Periodontal, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28040 Madrid, Spain and Instituto de Investigaciones Biomédicas Alberto Sols, CSIC, 28029 Madrid, Spain
| | - Patricio C Smith
- Laboratorio de Fisiología Periodontal, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Carmelo Bernabeu
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28040 Madrid, Spain and
| | - Miguel Quintanilla
- Instituto de Investigaciones Biomédicas Alberto Sols, CSIC, 28029 Madrid, Spain
| | - Jorge Martínez
- Laboratorio de Biología Celular, INTA, Universidad de Chile, Santiago 7830490, Chile, Laboratorio de Fisiología Periodontal, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28040 Madrid, Spain and Instituto de Investigaciones Biomédicas Alberto Sols, CSIC, 28029 Madrid, Spain
| |
Collapse
|
18
|
Kershaw RM, Siddiqui YH, Roberts D, Jayaraman PS, Gaston K. PRH/HHex inhibits the migration of breast and prostate epithelial cells through direct transcriptional regulation of Endoglin. Oncogene 2013; 33:5592-600. [PMID: 24240683 DOI: 10.1038/onc.2013.496] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 09/19/2013] [Accepted: 10/11/2013] [Indexed: 12/16/2022]
Abstract
PRH/HHex (proline-rich homeodomain protein) is a transcription factor that controls cell proliferation and cell differentiation in a variety of tissues. Aberrant subcellular localisation of PRH is associated with breast cancer and thyroid cancer. Further, in blast crisis chronic myeloid leukaemia, and a subset of acute myeloid leukaemias, PRH is aberrantly localised and its activity is downregulated. Here we show that PRH is involved in the regulation of cell migration and cancer cell invasion. We show for the first time that PRH is expressed in prostate cells and that a decrease in PRH protein levels increases the migration of normal prostate epithelial cells. We show that a decrease in PRH protein levels also increases the migration of normal breast epithelial cells. Conversely, PRH overexpression inhibits cell migration and cell invasion by PC3 and DU145 prostate cancer cells and MDA-MB-231 breast cancer cells. Previous work has shown that the transforming growth factor-β co-receptor Endoglin inhibits the migration of prostate and breast cancer cells. Here we show that PRH can bind to the Endoglin promoter in immortalised prostate and breast cells. PRH overexpression in these cells results in increased Endoglin protein expression, whereas PRH knockdown results in decreased Endoglin protein expression. Moreover, we demonstrate that Endoglin overexpression abrogates the increased migration shown by PRH knockdown cells. Our data suggest that PRH controls the migration of multiple epithelial cell lineages in part at least through the direct transcriptional regulation of Endoglin. We discuss these results in terms of the functions of PRH in normal cells and the mislocalisation of PRH seen in multiple cancer cell types.
Collapse
Affiliation(s)
- R M Kershaw
- Division of Immunity and Infection, School of Medicine, University of Birmingham, Edgbaston, Birmingham, UK
| | - Y H Siddiqui
- School of Biochemistry, University Walk, University of Bristol, Bristol, UK
| | - D Roberts
- Division of Immunity and Infection, School of Medicine, University of Birmingham, Edgbaston, Birmingham, UK
| | - P-S Jayaraman
- Division of Immunity and Infection, School of Medicine, University of Birmingham, Edgbaston, Birmingham, UK
| | - K Gaston
- School of Biochemistry, University Walk, University of Bristol, Bristol, UK
| |
Collapse
|
19
|
Meurer SK, Alsamman M, Sahin H, Wasmuth HE, Kisseleva T, Brenner DA, Trautwein C, Weiskirchen R, Scholten D. Overexpression of endoglin modulates TGF-β1-signalling pathways in a novel immortalized mouse hepatic stellate cell line. PLoS One 2013; 8:e56116. [PMID: 23437087 PMCID: PMC3577806 DOI: 10.1371/journal.pone.0056116] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Accepted: 01/04/2013] [Indexed: 12/18/2022] Open
Abstract
Hepatic stellate cells (HSCs) play a major role in the pathogenesis of liver fibrosis. Working on primary HSCs requires difficult isolation procedures; therefore we have generated and here characterize a mouse hepatic stellate cell line expressing GFP under control of the collagen 1(I) promoter/enhancer. These cells are responsive to pro-fibrogenic stimuIi, such as PDGF or TGF-β1, and are able to activate intracellular signalling pathways including Smads and MAP kinases. Nevertheless, due to the basal level of activation, TGF-β1 did not significantly induce GFP expression contrasting the TGF-β1 regulated endogenous collagen I expression. We could demonstrate that the accessory TGF-β-receptor endoglin, which is endogenously expressed at very low levels, has a differential effect on signalling of these cells when transiently overexpressed. In the presence of endoglin activation of Smad1/5/8 was drastically enhanced. Moreover, the phosphorylation of ERK1/2 was increased, and the expression of vimentin, α-smooth muscle actin and connective tissue growth factor was upregulated. Endoglin induced a slight increase in expression of the inhibitor of differentiation-2 while the amount of endogenous collagen type I was reduced. Therefore, this profibrogenic cell line with hepatic stellate cell origin is not only a promising novel experimental tool, which can be used in vivo for cell tracing experiments. Furthermore it allows investigating the impact of various regulatory proteins (e.g. endoglin) on profibrogenic signal transduction, differentiation and hepatic stellate cell biology.
Collapse
Affiliation(s)
- Steffen K Meurer
- Institute of Clinical Chemistry and Pathobiochemistry, RWTH University Hospital Aachen, Aachen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Endothelial endoglin is involved in inflammation: role in leukocyte adhesion and transmigration. Blood 2012; 121:403-15. [PMID: 23074273 DOI: 10.1182/blood-2012-06-435347] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Human endoglin is an RGD-containing transmembrane glycoprotein identified in vascular endothelial cells. Although endoglin is essential for angiogenesis and its expression is up-regulated in inflammation and at sites of leukocyte extravasation, its role in leukocyte trafficking is unknown. This function was tested in endoglin heterozygous mice (Eng(+/-)) and their wild-type siblings Eng(+/+) treated with carrageenan or LPS as inflammatory agents. Both stimuli showed that inflammation-induced leukocyte transendothelial migration to peritoneum or lungs was significantly lower in Eng(+/-) than in Eng(+/+) mice. Leukocyte transmigration through cell monolayers of endoglin transfectants was clearly enhanced in the presence of endoglin. Coating transwells with the RGD-containing extracellular domain of endoglin, enhanced leukocyte transmigration, and this increased motility was inhibited by soluble endoglin. Leukocytes stimulated with CXCL12, a chemokine involved in inflammation, strongly adhered to endoglin-coated plates and to endoglin-expressing endothelial cells. This endoglin-dependent adhesion was abolished by soluble endoglin, RGD peptides, the anti-integrin α5β1 inhibitory antibody LIA1/2 and the chemokine receptor inhibitor AMD3100. These results demonstrate for the first time that endothelial endoglin interacts with leukocyte integrin α5β1 via its RGD motif, and this adhesion process is stimulated by the inflammatory chemokine CXCL12, suggesting a regulatory role for endoglin in transendothelial leukocyte trafficking.
Collapse
|
21
|
Alt A, Miguel-Romero L, Donderis J, Aristorena M, Blanco FJ, Round A, Rubio V, Bernabeu C, Marina A. Structural and functional insights into endoglin ligand recognition and binding. PLoS One 2012; 7:e29948. [PMID: 22347366 PMCID: PMC3275592 DOI: 10.1371/journal.pone.0029948] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Accepted: 12/08/2011] [Indexed: 11/19/2022] Open
Abstract
Endoglin, a type I membrane glycoprotein expressed as a disulfide-linked homodimer on human vascular endothelial cells, is a component of the transforming growth factor (TGF)-β receptor complex and is implicated in a dominant vascular dysplasia known as hereditary hemorrhagic telangiectasia as well as in preeclampsia. It interacts with the type I TGF-β signaling receptor activin receptor-like kinase (ALK)1 and modulates cellular responses to Bone Morphogenetic Protein (BMP)-9 and BMP-10. Structurally, besides carrying a zona pellucida (ZP) domain, endoglin contains at its N-terminal extracellular region a domain of unknown function and without homology to any other known protein, therefore called the orphan domain (OD). In this study, we have determined the recognition and binding ability of full length ALK1, endoglin and constructs encompassing the OD to BMP-9 using combined methods, consisting of surface plasmon resonance and cellular assays. ALK1 and endoglin ectodomains bind, independently of their glycosylation state and without cooperativity, to different sites of BMP-9. The OD comprising residues 22 to 337 was identified among the present constructs as the minimal active endoglin domain needed for partner recognition. These studies also pinpointed to Cys350 as being responsible for the dimerization of endoglin. In contrast to the complete endoglin ectodomain, the OD is a monomer and its small angle X-ray scattering characterization revealed a compact conformation in solution into which a de novo model was fitted.
Collapse
Affiliation(s)
- Aaron Alt
- Instituto de Biomedicina de Valencia, Valencia, Spain
| | | | - Jordi Donderis
- Instituto de Biomedicina de Valencia, Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III, Valencia, Spain
| | - Mikel Aristorena
- Centro de Investigaciones Biologicas, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III, Valencia, Spain
| | - Francisco J. Blanco
- Centro de Investigaciones Biologicas, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III, Valencia, Spain
| | - Adam Round
- European Molecular Biology Laboratory, Grenoble, France
| | - Vicente Rubio
- Instituto de Biomedicina de Valencia, Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III, Valencia, Spain
| | - Carmelo Bernabeu
- Centro de Investigaciones Biologicas, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III, Valencia, Spain
| | - Alberto Marina
- Instituto de Biomedicina de Valencia, Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III, Valencia, Spain
| |
Collapse
|
22
|
Rossi E, Langa C, Gilsanz A, Blanco FJ, Ayllón J, Villar E, Botella LM, Cabañas C, Shaw M, Bernabeu C. Characterization of chicken endoglin, a member of the zona pellucida family of proteins, and its tissue expression. Gene 2012; 491:31-9. [DOI: 10.1016/j.gene.2011.09.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Revised: 09/08/2011] [Accepted: 09/14/2011] [Indexed: 10/17/2022]
|
23
|
Vassilopoulos SI, Tosios KI, Panis VG, Vrotsos JA. Endothelial cells of oral pyogenic granulomas express eNOS and CD105/endoglin: an immunohistochemical study. J Oral Pathol Med 2010; 40:345-51. [DOI: 10.1111/j.1600-0714.2010.00969.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
24
|
Muenzner P, Bachmann V, Zimmermann W, Hentschel J, Hauck CR. Human-restricted bacterial pathogens block shedding of epithelial cells by stimulating integrin activation. Science 2010; 329:1197-201. [PMID: 20813953 DOI: 10.1126/science.1190892] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Colonization of mucosal surfaces is the key initial step in most bacterial infections. One mechanism protecting the mucosa is the rapid shedding of epithelial cells, also termed exfoliation, but it is unclear how pathogens counteract this process. We found that carcinoembryonic antigen (CEA)-binding bacteria colonized the urogenital tract of CEA transgenic mice, but not of wild-type mice, by suppressing exfoliation of mucosal cells. CEA binding triggered de novo expression of the transforming growth factor receptor CD105, changing focal adhesion composition and activating beta1 integrins. This manipulation of integrin inside-out signaling promotes efficient mucosal colonization and represents a potential target to prevent or cure bacterial infections.
Collapse
Affiliation(s)
- Petra Muenzner
- Lehrstuhl Zellbiologie, Fachbereich Biologie, Universität Konstanz, 78457 Konstanz, Germany
| | | | | | | | | |
Collapse
|
25
|
López-Novoa JM, Bernabeu C. The physiological role of endoglin in the cardiovascular system. Am J Physiol Heart Circ Physiol 2010; 299:H959-74. [PMID: 20656886 DOI: 10.1152/ajpheart.01251.2009] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Endoglin (CD105) is an integral membrane glycoprotein that serves as a coreceptor for members of the transforming growth factor-β superfamily of proteins. A major role for endoglin in regulating transforming growth factor-β-dependent vascular remodeling and angiogenesis has been postulated based on the following: 1) endoglin is the gene mutated in hereditary hemorrhagic telangiectasia type 1, a disease characterized by vascular malformations; 2) endoglin knockout mice die at midgestation because of defective angiogenesis; 3) endoglin is overexpressed in neoangiogenic vessels, during inflammation, and in solid tumors; and 4) endoglin regulates the expression and activity of endothelial nitric oxide synthase, which is involved in angiogenesis and vascular tone. Besides the predominant form of the endoglin receptor (long endoglin isoform), two additional forms of endoglin have been recently reported to play a role in the vascular pathology and homeostasis: the alternatively spliced short endoglin isoform and a soluble endoglin form that is proteolytically cleaved from membrane-bound endoglin. The purpose of this review is to underline the role that the different forms of endoglin play in regulating angiogenesis, vascular remodeling, and vascular tone, as well as to analyze the molecular and cellular mechanisms supporting these effects.
Collapse
Affiliation(s)
- José M López-Novoa
- Instituto Reina Sofía de Investigación Nefrológica, Departamento de Fisiologia y Farmacologia, Universidad de Salamanca, and Red de Investigación Renal, Instituto de Salud Carlos III, Salamanca, Spain.
| | | |
Collapse
|
26
|
Alvarez-Muñoz P, Mauer M, Kim Y, Rich SS, Miller ME, Russell GB, Lopez-Novoa JM, Caramori ML. Cellular basis of diabetic nephropathy: V. Endoglin expression levels and diabetic nephropathy risk in patients with Type 1 diabetes. J Diabetes Complications 2010; 24:242-9. [PMID: 19395281 PMCID: PMC3645259 DOI: 10.1016/j.jdiacomp.2009.03.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2008] [Revised: 02/05/2009] [Accepted: 03/20/2009] [Indexed: 02/01/2023]
Abstract
Endoglin is an accessory receptor molecule that, in association with transforming growth factor beta (TGF-beta) family receptors Types I and II, binds TGF-beta1, TGF-beta3, activin A, bone morphogenetic protein (BMP)-2 and BMP-7, regulating TGF-beta dependent cellular responses. Relevant to diabetic nephropathy, endoglin, expressed in vascular endothelial and smooth muscle cells, fibroblasts, and mesangial cells, negatively regulates extracellular matrix (ECM). The aim of this study was to evaluate endoglin expression in cultured skin fibroblasts from patients with Type 1 diabetes with and without diabetic nephropathy. Kidney and skin biopsies were performed in 125 Type 1 diabetic patients. The 20 with the fastest rate of mesangial expansion (estimated by electron microscopy) and proteinuria ("fast-track") and the 20 with the slowest rate and normoalbuminuria ("slow-track"), along with 20 controls were studied. Endoglin mRNA expression was assessed by microarray and quantitative real-time polymerase chain reaction (QRT-PCR) and protein expression by Western blot. Age and sex distribution were similar among groups. Diabetes duration was similar (20+/-8 vs. 24+/-7 years), hemoglobin A1c lower (8.4+/-1.2% vs. 9.4+/-1.5%), and glomerular filtration rate higher (115+/-13 vs. 72+/-20 ml/min per 1.73 m2) in slow-track vs. fast-track patients. Microarray endoglin mRNA expression levels were higher in slow-track (1516.0+/-349.9) than fast-track (1211.0+/-274.9; P=.008) patients or controls (1223.1+/-422.9; P=.018). This was confirmed by QRT-PCR. Endoglin protein expression levels correlated with microarray (r=0.59; P=.044) and QRTPCR (r=0.61; P=.034) endoglin mRNA expression. These studies are compatible with the hypothesis that slow-track Type 1 diabetic patients, strongly protected from diabetic nephropathy, have distinct cellular behaviors that may be associated with reduced ECM production.
Collapse
Affiliation(s)
| | - Michael Mauer
- Department of Medicine, University of Minnesota, Minnesota, USA
- Department of Pediatrics, University of Minnesota, Minnesota, USA
| | - Youngki Kim
- Department of Pediatrics, University of Minnesota, Minnesota, USA
| | - Stephen S. Rich
- Department of Public Health Sciences, University of Virginia, Virginia, USA
| | - Michael E. Miller
- Department of Biostatistical Sciences, Wake Forest University School of Medicine, North Carolina, USA
| | - Gregory B. Russell
- Department of Biostatistical Sciences, Wake Forest University School of Medicine, North Carolina, USA
| | | | - M. Luiza Caramori
- Department of Medicine, University of Minnesota, Minnesota, USA
- Corresponding Author: M. Luiza Caramori, MD, PhD, 420 Delaware Street S.E., Mayo Mail Code 101, Minneapolis, MN 55455, Phone: (612) 624-5150, FAX: (612) 626-3133,
| |
Collapse
|
27
|
Ermolina LV, Martynova NI, Zaraĭskiĭ AG. [The cytoskeletal protein zyxin--a universal regulator of cell adhesion and gene expression]. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2010; 36:29-37. [PMID: 20386576 DOI: 10.1134/s1068162010010036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The attachment of a cell to an extracellular matrix or the surface of another cells affects not only the cell motility, but also gene expression. In view of this, an important problem is to establish the molecular mechanisms of signal transduction from the receptors of cell adhesion to the nucleus, in particular, to identify and investigate the protein transducers of these signals. One of these transducers, the LIM domain protein zyxin, is predominantly localized at the sites of cell adhesion, where it participates in the assembly of actin filaments. Owing to its location near the inner surface of the membrane, zyxin can interact with the transmembrane receptors of some signaling cascades and affect the signal transduction from the extracellular ligands of these receptors. Furthermore, under particular conditions, zyxin moves from the sites of cell contacts to the nucleus, where it directly participates in the regulation of gene expression. Of particular interest is the function of zyxin as a possible coordinator of gene expression and morphogenetic movements in embryogenesis. The published data discussed in the present review indicate the important role of zyxin in transmitting information from the regions of cell contacts to the genetic apparatus of the cell.
Collapse
|
28
|
Mitchell D, Pobre EG, Mulivor AW, Grinberg AV, Castonguay R, Monnell TE, Solban N, Ucran JA, Pearsall RS, Underwood KW, Seehra J, Kumar R. ALK1-Fc inhibits multiple mediators of angiogenesis and suppresses tumor growth. Mol Cancer Ther 2010; 9:379-88. [PMID: 20124460 DOI: 10.1158/1535-7163.mct-09-0650] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Activin receptor-like kinase-1 (ALK1) is a type I, endothelial cell-specific member of the transforming growth factor-beta superfamily of receptors known to play an essential role in modulating angiogenesis and vessel maintenance. In the present study, we sought to examine the angiogenic and tumorigenic effects mediated upon the inhibition of ALK1 signaling using a soluble chimeric protein (ALK1-Fc). Of 29 transforming growth factor-beta-related ligands screened by surface plasmon resonance, only bone morphogenetic protein (BMP9) and BMP10 displayed high-affinity binding to ALK1-Fc. In cell-based assays, ALK1-Fc inhibited BMP9-mediated Id-1 expression in human umbilical vein endothelial cells and inhibited cord formation by these cells on a Matrigel substrate. In a chick chorioallantoic membrane assay, ALK1-Fc reduced vascular endothelial growth factor-, fibroblast growth factor-, and BMP10-mediated vessel formation. The growth of B16 melanoma explants was also inhibited significantly by ALK1-Fc in this assay. Finally, ALK1-Fc treatment reduced tumor burden in mice receiving orthotopic grafts of MCF7 mammary adenocarcinoma cells. These data show the efficacy of chimeric ALK1-Fc proteins in mitigating vessel formation and support the view that ALK1-Fc is a powerful antiangiogenic agent capable of blocking vascularization.
Collapse
|
29
|
Ishibashi O, Ikegame M, Takizawa F, Yoshizawa T, Moksed MA, Iizawa F, Mera H, Matsuda A, Kawashima H. Endoglin is involved in BMP-2-induced osteogenic differentiation of periodontal ligament cells through a pathway independent of Smad-1/5/8 phosphorylation. J Cell Physiol 2009; 222:465-73. [PMID: 19918795 DOI: 10.1002/jcp.21968] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The periodontal ligament (PDL), a connective tissue located between the cementum of teeth and the alveolar bone of mandibula, plays a crucial role in the maintenance and regeneration of periodontal tissues. The PDL contains fibroblastic cells of a heterogeneous cell population, from which we have established several cell lines previously. To analyze characteristics unique for PDL at a molecular level, we performed cDNA microarray analysis of the PDL cells versus MC3T3-E1 osteoblastic cells. The analysis followed by validation by reverse transcription-polymerase chain reaction and immunochemical staining revealed that endoglin, which had been shown to associate with transforming growth factor (TGF)-beta and bone morphogenetic proteins (BMPs) as signaling modulators, was abundantly expressed in PDL cells but absent in osteoblastic cells. The knockdown of endoglin greatly suppressed the BMP-2-induced osteoblastic differentiation of PDL cells and subsequent mineralization. Interestingly, the endoglin knockdown did not alter the level of Smad-1/5/8 phosphorylation induced by BMP-2, while it suppressed the BMP-2-induced expression of Id1, a representative BMP-responsive gene. Therefore, it is conceivable that endoglin regulates the expression of BMP-2-responsive genes in PDL cells at some site downstream of Smad-1/5/8 phosphorylation. Alternatively, we found that Smad-2 as well as Smad-1/5/8 was phosphorylated by BMP-2 in the PDL cells, and that the BMP-2-induced Smad-2 phosphorylation was suppressed by the endoglin knockdown. These results, taken together, raise a possibility that PDL cells respond to BMP-2 via a unique signaling pathway dependent on endoglin, which is involved in the osteoblastic differentiation and mineralization of the cells.
Collapse
Affiliation(s)
- Osamu Ishibashi
- Department of Molecular Anatomy and Medicine, Nippon Medical School, Tokyo, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Fonsatti E, Nicolay HJM, Altomonte M, Covre A, Maio M. Targeting cancer vasculature via endoglin/CD105: a novel antibody-based diagnostic and therapeutic strategy in solid tumours. Cardiovasc Res 2009; 86:12-9. [PMID: 19812043 DOI: 10.1093/cvr/cvp332] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Endoglin/CD105 is well acknowledged as being the most reliable marker of proliferation of endothelial cells, and it is overexpressed on tumour neovasculature. Our current knowledge of its structure, physiological role, and tissue distribution suggests that targeting of endoglin/CD105 is a novel and powerful diagnostic and therapeutic strategy in human malignancies, through the imaging of tumour-associated angiogenesis and the inhibition of endothelial cell functions related to tumour angiogenesis. Among biotherapeutic agents, monoclonal antibodies have shown a major impact on the clinical course of human malignancies of different histotypes. Along this line, the potential efficacy of anti-endoglin/CD105 antibodies and their derivatives for clinical purposes in cancer is supported by a large body of available pre-clinical in vitro and in vivo data. In this review, the main findings supporting the translation of antibody-based endoglin/CD105 targeting from pre-clinical studies to clinical applications in human cancer are summarized and discussed.
Collapse
Affiliation(s)
- Ester Fonsatti
- Division of Medical Oncology and Immunotherapy, Department of Oncology, Istituto Toscano Tumori, University Hospital of Siena, Strada delle Scotte 14, 53100 Siena, Italy
| | | | | | | | | |
Collapse
|
31
|
Romero D, Terzic A, Conley BA, Craft CS, Jovanovic B, Bergan RC, Vary CPH. Endoglin phosphorylation by ALK2 contributes to the regulation of prostate cancer cell migration. Carcinogenesis 2009; 31:359-66. [PMID: 19736306 DOI: 10.1093/carcin/bgp217] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Endoglin, a transmembrane glycoprotein that acts as a transforming growth factor-beta (TGF-beta) coreceptor, is downregulated in PC3-M metastatic prostate cancer cells. When restored, endoglin expression in PC3-M cells inhibits cell migration in vitro and attenuates the tumorigenicity of PC3-M cells in SCID mice, though the mechanism of endoglin regulation of migration in prostate cancer cells is not known. The current study indicates that endoglin is phosphorylated on cytosolic domain threonine residues by the TGF-beta type I receptors ALK2 and ALK5 in prostate cancer cells. Importantly, in the presence of constitutively active ALK2, endoglin did not inhibit cell migration, suggesting that endoglin phosphorylation regulated PC3-M cell migration. Therefore, our results suggest that endoglin phosphorylation is a mechanism with relevant functional consequences in prostate cancer cells. These data demonstrate for the first time that TGF-beta receptor-mediated phosphorylation of endoglin is a Smad-independent mechanism involved in the regulation of prostate cancer cell migration.
Collapse
Affiliation(s)
- Diana Romero
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, ME 04074, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Bernabeu C, Lopez-Novoa JM, Quintanilla M. The emerging role of TGF-beta superfamily coreceptors in cancer. Biochim Biophys Acta Mol Basis Dis 2009; 1792:954-73. [PMID: 19607914 DOI: 10.1016/j.bbadis.2009.07.003] [Citation(s) in RCA: 195] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2009] [Revised: 07/02/2009] [Accepted: 07/06/2009] [Indexed: 12/23/2022]
Abstract
The transforming growth factor beta (TGF-beta) signaling pathway plays a key role in different physiological processes such as development, cellular proliferation, extracellular matrix synthesis, angiogenesis or immune responses and its deregulation may result in tumor development. The TGF-beta coreceptors endoglin and betaglycan are emerging as modulators of the TGF-beta response with important roles in cancer. Endoglin is highly expressed in the tumor-associated vascular endothelium with prognostic significance in selected neoplasias and with potential to be a prime vascular target for antiangiogenic cancer therapy. On the other hand, the expression of endoglin and betaglycan in tumor cells themselves appears to play an important role in the progression of cancer, influencing cell proliferation, motility, invasiveness and tumorigenicity. In addition, experiments in vitro and in vivo in which endoglin or betaglycan expression is modulated have provided evidence that they act as tumor suppressors. The purpose of this review was to highlight the potential of membrane and soluble forms of the endoglin and betaglycan proteins as molecular targets in cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Carmelo Bernabeu
- Centro de Investigaciones Biologicas, Consejo Superior de Investigaciones Cientificas (CSIC), and CIBER de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), 28040 Madrid, Spain.
| | | | | |
Collapse
|
33
|
Zhang Y, He Y, Bharadwaj S, Hammam N, Carnagey K, Myers R, Atala A, Van Dyke M. Tissue-specific extracellular matrix coatings for the promotion of cell proliferation and maintenance of cell phenotype. Biomaterials 2009; 30:4021-8. [PMID: 19410290 DOI: 10.1016/j.biomaterials.2009.04.005] [Citation(s) in RCA: 196] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2009] [Accepted: 04/02/2009] [Indexed: 01/31/2023]
Abstract
Recent studies have shown that extracellular matrix (ECM) substitutes can have a dramatic impact on cell growth, differentiation and function. However, these ECMs are often applied generically and have yet to be developed for specific cell types. In this study, we developed tissue-specific ECM-based coating substrates for skin, skeletal muscle and liver cell cultures. Cellular components were removed from adult skin, skeletal muscle, and liver tissues, and the resulting acellular matrices were homogenized and dissolved. The ECM solutions were used to coat culture dishes. Tissue matched and non-tissue matched cell types were grown on these coatings to assess adhesion, proliferation, maintenance of phenotype and cell function at several time points. Each cell type showed better proliferation and differentiation in cultures containing ECM from their tissue of origin. Although subtle compositional differences in the three ECM types were not investigated in this study, these results suggest that tissue-specific ECMs provide a culture microenvironment that is similar to the in vivo environment when used as coating substrates, and this new culture technique has the potential for use in drug development and the development of cell-based therapies.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Medical Center Blvd., Winston-Salem, NC 27157, United States.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Nachtigal P, Pospisilova N, Vecerova L, Micuda S, Brcakova E, Pospechova K, Semecky V. Atorvastatin Increases Endoglin, SMAD2, Phosphorylated SMAD2/3 and eNOS Expression in ApoE/LDLR Double Knockout Mice. J Atheroscler Thromb 2009; 16:265-74. [DOI: 10.5551/jat.e745] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
35
|
Wong VCL, Chan PL, Bernabeu C, Law S, Wang LD, Li JL, Tsao SW, Srivastava G, Lung ML. Identification of an invasion and tumor-suppressing gene,Endoglin(ENG), silenced by both epigenetic inactivation and allelic loss in esophageal squamous cell carcinoma. Int J Cancer 2008; 123:2816-23. [DOI: 10.1002/ijc.23882] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
36
|
ALK1 opposes ALK5/Smad3 signaling and expression of extracellular matrix components in human chondrocytes. J Bone Miner Res 2008; 23:896-906. [PMID: 18333754 DOI: 10.1359/jbmr.080209] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
INTRODUCTION TGF-beta is a multifunctional regulator of chondrocyte proliferation, differentiation, and extracellular matrix production. Dysregulation of TGF-beta action has been implicated in cartilage diseases such as osteoarthritis. TGF-beta signaling is transduced through a pair of transmembrane serine/threonine kinases, known as the type I (ALK5) and type II receptors. However, recent studies on endothelial cells have identified ALK1 as a second type I TGF-beta receptor and have shown that ALK1 and ALK5 have opposing functions in these cells. Here we examined ALK1 expression and its regulation of TGF-beta signaling and responses in human chondrocytes. MATERIALS AND METHODS ALK1 expression in human chondrocytes was examined by RT-PCR and Western blot. The ability of ALK1 to form complexes with other TGF-beta receptors was determined by affinity labeling/immunoprecipitation and by immunoprecipitation followed by Western blot. The effect of ALK1 on TGF-beta1-induced signaling and responses was determined by varying ALK1 expression levels and measuring transcriptional activity using promoter/luciferase assays, Smad1/5 and Smad3 phosphorylation, and expression of type II collagen, PAI-1, and fibronectin. RESULTS Our results indicate that ALK1 is expressed in human chondrocytes and that it is a component of the TGF-beta receptor system, associating with ALK5, type II TGF-beta receptor, endoglin, and betaglycan. Furthermore, we show that both ALK1 and ALK5 are needed for TGF-beta-induced phosphorylation of intracellular mediators Smad1/5, whereas only ALK5 is essential for TGF-beta1-induced phosphorylation of Smad3. In addition, our results show that ALK1 inhibits, whereas ALK5 potentiates, TGF-beta-induced Smad3-driven transcriptional activity and the expression of PAI-1, fibronectin, and type II collagen in chondrocytes. CONCLUSIONS Our results suggest that ALK1 and ALK5 display opposing functions in human chondrocytes, implicating an essential role for ALK1 in the regulation of TGF-beta signaling and function in these cells.
Collapse
|
37
|
De Paepe ME, Patel C, Tsai A, Gundavarapu S, Mao Q. Endoglin (CD105) up-regulation in pulmonary microvasculature of ventilated preterm infants. Am J Respir Crit Care Med 2008; 178:180-7. [PMID: 18420967 DOI: 10.1164/rccm.200608-1240oc] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
RATIONALE Preterm infants exposed to mechanical ventilation and oxygen are at risk for bronchopulmonary dysplasia (BPD), a multifactorial chronic lung disorder characterized by arrested alveolar development. Studies have described disruption of microvascular development in BPD, characterized by primitive angioarchitectural patterns reminiscent of the canalicular/saccular stages of lung development. The molecular regulation of this BPD-associated dysangiogenesis remains undetermined. OBJECTIVES Endoglin (CD105), a hypoxia-inducible transforming growth factor-beta coreceptor, has been implicated as an important regulator of angiogenesis in various neoplastic and nonneoplastic conditions. The aim of this study was to investigate the expression of endoglin and other angiogenesis-related factors in ventilated preterm human lungs. METHODS We have studied endoglin protein and mRNA expression in postmortem lungs of short-term and long-term ventilated preterm infants. Control subjects were age-matched infants who had lived for less than 1 hour. MEASUREMENTS AND MAIN RESULTS Lungs of short-term ventilated preterm infants showed significant upregulation of endoglin mRNA and protein levels, immunolocalized to the microvasculature. Similar but more variable endoglin upregulation was noted in lungs of long-term ventilated infants with BPD. The mRNA levels of vascular endothelial growth factor, angiopoietin-1, and their respective receptors were significantly lower in ventilated lungs than in age-matched nonventilated control lungs. CONCLUSIONS BPD is associated with a shift from traditional angiogenic growth factors (vascular endothelial growth factor, angiopoietin-1) to alternative regulators such as endoglin, which may contribute to BPD-associated microvascular dysangiogenesis.
Collapse
Affiliation(s)
- Monique E De Paepe
- Women and Infants Hospital, Department of Pathology, 101 Dudley Street, Providence, RI 02905, USA.
| | | | | | | | | |
Collapse
|
38
|
Bernabeu C, Conley BA, Vary CPH. Novel biochemical pathways of endoglin in vascular cell physiology. J Cell Biochem 2008; 102:1375-88. [PMID: 17975795 DOI: 10.1002/jcb.21594] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The broad role of the transforming growth factor beta (TGFbeta) signaling pathway in vascular development, homeostasis, and repair is well appreciated. Endoglin is emerging as a novel, complex, and poorly understood regulatory component of the TGFbeta receptor complex, whose importance is underscored by its recognition as the site of mutations causing hereditary hemorrhagic telangiectasia (HHT) [McAllister et al., 1994]. Extensive analyses of endoglin function in normal developmental mouse models [Bourdeau et al., 1999; Li et al., 1999; Arthur et al., 2000] and in HHT animal models [Bourdeau et al., 2000; Torsney et al., 2003] exemplify the importance of understanding endoglin's biochemical functions. However, novel mechanisms underlying the regulation of these pathways continue to emerge. These mechanisms include modification of TGFbeta receptor signaling at the ligand and receptor activation level, direct effects of endoglin on cell adhesion and migration, and emerging roles for endoglin in the determination of stem cell fate and tissue patterning. The purpose of this review is to highlight the cellular and molecular studies that underscore the central role of endoglin in vascular development and disease.
Collapse
Affiliation(s)
- Carmelo Bernabeu
- Centro de Investigaciones Biologicas, Consejo Superior de Investigaciones Cientificas (CSIC), 28040 Madrid, Spain
| | | | | |
Collapse
|
39
|
Blaha M, Cermanova M, Blaha V, Jarolim P, Andrys C, Blazek M, Maly J, Smolej L, Zajic J, Masin V, Zimova R, Rehacek V. Elevated serum soluble endoglin (sCD105) decreased during extracorporeal elimination therapy for familial hypercholesterolemia. Atherosclerosis 2008; 197:264-70. [PMID: 17540382 DOI: 10.1016/j.atherosclerosis.2007.04.022] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2006] [Revised: 04/14/2007] [Accepted: 04/18/2007] [Indexed: 10/23/2022]
Abstract
Extracorporeal elimination is a method of LDL-lowering therapy that is used in severe familial hypercholesterolemia (FH) after other therapeutic approaches have failed. There are currently no universally accepted biomarkers that would allow determining necessary intensity of therapy and frequency of future therapeutic interventions. An ideal tool for immediate evaluation would be a readily measurable serum marker. We hypothesized that soluble endoglin (sCD105), a recently described indicator of endothelial dysfunction, may represent such a tool. Eleven patients with FH (three homozygous, eight heterozygous; Fredrickson type IIa, IIb) that have been monitored for 4.5+/-2.8 years were treated; eight by LDL-apheresis and three by hemorheopheresis. 40 sCD105 measurements were done, before and after two consecutive elimination procedures. Baseline serum sCD105 levels were significantly higher in the patients (5.74+/-1.47 microg/l in series I, 6.85+/-1.85 microg/l in series II) than in the control group (3.85+/-1.25 microg/l). They decreased to normal after LDL-elimination (p=0.0003) in all except for one patient. This return to normal was not due to a non-specific capture of endoglin in adsorption or filtration columns as demonstrated by measurement of sCD105 before and after passage through the elimination media. We conclude that the soluble endoglin levels in patients with severe FH remain elevated despite long-term intensive therapy and that they decrease after extracorporeal elimination. Endoglin can therefore serve as a marker for evaluation of the treatment efficacy and of the decreased atherosclerotic activity in patients with FH treated by extracorporeal LDL-cholesterol elimination.
Collapse
Affiliation(s)
- Milan Blaha
- 2nd Internal Clinic, Charles University School of Medicine and the Faculty Hospital, Hradec Kralove, Czech Republic.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Henry-Berger J, Mouzat K, Baron S, Bernabeu C, Marceau G, Saru JP, Sapin V, Lobaccaro JMA, Caira F. Endoglin (CD105) expression is regulated by the liver X receptor alpha (NR1H3) in human trophoblast cell line JAR. Biol Reprod 2008; 78:968-75. [PMID: 18276933 DOI: 10.1095/biolreprod.107.066498] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Human implantation involves invasion of the uterine wall and remodeling of uterine arteries by extravillous cytotrophoblasts. Defects in these early steps of placental development lead to poor placentation and are often associated with preeclampsia, a frequent complication of human pregnancy. One of the complex mechanisms controlling trophoblast invasion involves the activation of the liver X receptor beta (or NR1H2, more commonly known as LXRbeta) by oxysterols known as potent LXR activators. This activation of LXRbeta leads to a decrease of trophoblast invasion. The identification of new target genes of LXR in the placenta could aid in the understanding of their physiological roles in trophoblast invasion. In the present study, we show that the endoglin (ENG) gene is a direct target of the liver X receptor alpha (NR1H3, also known as LXRalpha). ENG, whose gene is highly expressed in syncytiotrophoblasts, is part of the transforming growth factor (TGF) receptor complex that binds several members of the TGFbeta superfamily. In the human placenta, ENG has been shown to be involved in the inhibition of trophoblast invasion. Treatment of human choriocarcinoma JAR cells with T0901317, a synthetic LXR-selective agonist, leads to a significant increase in ENG mRNA and protein levels. Using transfection and electrophoretic mobility shift assays, we demonstrate that LXR (as a heterodimer with the retinoid X receptor) is able to bind the ENG promoter on an LXR response element and mediates the activation of ENG gene expression by LXRalpha in JAR cells. This study suggests a novel mechanism by which LXR may regulate trophoblast invasion in pathological pregnancy such as preeclampsia.
Collapse
Affiliation(s)
- Joëlle Henry-Berger
- CNRS UMR6247-GreD, Centre de Recherche en Nutrition Humaine d'Auvergne, Clermont Université, 63177 Aubière, France
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Relationship among soluble CD105, hypersensitive C-reactive protein and coronary plaque morphology: an intravascular ultrasound study. Chin Med J (Engl) 2008. [DOI: 10.1097/00029330-200801020-00007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
42
|
Muñoz R, Arias Y, Ferreras JM, Rojo MA, Gayoso MJ, Nocito M, Benitez J, Jiménez P, Bernabéu C, Girbés T. Targeting a marker of the tumour neovasculature using a novel anti-human CD105-immunotoxin containing the non-toxic type 2 ribosome-inactivating protein nigrin b. Cancer Lett 2007; 256:73-80. [PMID: 17637501 DOI: 10.1016/j.canlet.2007.05.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2007] [Revised: 05/18/2007] [Accepted: 05/23/2007] [Indexed: 01/16/2023]
Abstract
Targeting tumour neovasculature using antibodies to the endothelial receptor CD105 (endoglin), is a potentially useful approach for anti-tumour therapy. We report on the preparation and the cytotoxicity of a novel immunotoxin consisting in the non-toxic type 2 ribosome-inactivating protein (RIP) nigrin b linked to the monoclonal anti-human CD105 (hCD105) antibody 44G4. The immunotoxin kills specifically mouse fibroblasts expressing the biomarker CD105 (L929-hCD105+ cells) with an IC(50) value of 6x10(-10)M while nigrin b does it at 2.4x10(-7)M. Immunofluorescence analysis indicated that the immunotoxin accumulates in a perinuclear region. In contrast, 44G4 showed a specific localization on the cell surface.
Collapse
Affiliation(s)
- Raquel Muñoz
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de Valladolid, E-47005 Valladolid, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Nachtigal P, Pospisilova N, Jamborova G, Pospechova K, Solichova D, Andrys C, Zdansky P, Semecky V. Endothelial expression of endoglin in normocholesterolemic and hypercholesterolemic C57BL/6J mice before and after atorvastatin treatment. Can J Physiol Pharmacol 2007; 85:767-73. [PMID: 17901886 DOI: 10.1139/y07-068] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Endoglin (CD105) is a homodimeric transmembrane glycoprotein strongly related to transforming growth factor (TGF)-β signaling and many pathological states. In this study, we wanted to evaluate whether endoglin is expressed in normocholesterolemic and hypercholesterolemic C57BL/6J mice as well as whether it is affected by atorvastatin treatment in these mice. C57BL/6J mice were fed with chow diet or an atherogenic diet for 12 weeks after weaning. In 2 atorvastatin-treated groups, mice were fed the same diets (chow or atherogenic) as described above except atorvastatin was added at the dosage of 10 mg·kg–1·day–1for the last 8 weeks before euthanasia. Biochemical analysis of blood samples revealed that administration of atherogenic diet significantly increased levels of total cholesterol, VLDL, LDL, and decreased levels of HDL. Atorvastatin treatment resulted in a significant decrease in total cholesterol and VLDL only in mice fed by atherogenic diet. Quantitative stereological analysis revealed that atorvastatin significantly decreased endothelial expression of endoglin in C57BL/6J mice fed the atherogenic diet. In conclusion, we demonstrated that endothelial expression of endoglin is upregulated by hypercholesterolemia and decreased by the hypolipidemic effect of atorvastatin in C57BL/6J mice, suggesting that endoglin expression could be involved in atherogenesis.
Collapse
Affiliation(s)
- Petr Nachtigal
- Department of Biological and Medical Sciences, Faculty of Pharmacy, Charles University, Hradec Kralove, Heyrovskeho 1203, Hradec Kralove 50005, Czech Republic.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Mancini ML, Verdi JM, Conley BA, Nicola T, Spicer DB, Oxburgh LH, Vary CP. Endoglin is required for myogenic differentiation potential of neural crest stem cells. Dev Biol 2007; 308:520-33. [PMID: 17628518 PMCID: PMC2041841 DOI: 10.1016/j.ydbio.2007.06.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2007] [Revised: 05/04/2007] [Accepted: 06/11/2007] [Indexed: 01/02/2023]
Abstract
Genetic studies show that TGFbeta signaling is essential for vascular development, although the mechanism through which this pathway operates is incompletely understood. Here we demonstrate that the TGFbeta auxiliary coreceptor endoglin (eng, CD105) is expressed in a subset of neural crest stem cells (NCSCs) in vivo and is required for their myogenic differentiation. Overexpression of endoglin in the neural crest caused pericardial hemorrhaging, correlating with altered vascular smooth muscle cell investment in the walls of major vessels and upregulation of smooth muscle alpha-actin protein levels. Clonogenic differentiation assay of NCSCs derived from neural tube explants demonstrated that only NCSC expressing high levels of endoglin (NCSC(CD105+)) had myogenic differentiation potential. Furthermore, myogenic potential was deficient in NCSCs obtained from endoglin null embryos. Expression of endoglin in NCSCs declined with age, coinciding with a reduction in both smooth muscle differentiation potential and TGFbeta1 responsiveness. These findings demonstrate a cell autonomous role for endoglin in smooth muscle cell specification contributing to vascular integrity.
Collapse
MESH Headings
- Animals
- Base Sequence
- Cell Movement
- Cells, Cultured
- DNA Primers/genetics
- Embryonic Stem Cells/cytology
- Embryonic Stem Cells/metabolism
- Endoglin
- Gene Expression Regulation, Developmental
- Intracellular Signaling Peptides and Proteins/deficiency
- Intracellular Signaling Peptides and Proteins/genetics
- Intracellular Signaling Peptides and Proteins/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Models, Biological
- Muscle Development/genetics
- Muscle Development/physiology
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/embryology
- Muscle, Smooth, Vascular/metabolism
- Neural Crest/cytology
- Neural Crest/metabolism
- Rats
- Signal Transduction
- Smad Proteins/metabolism
Collapse
Affiliation(s)
- Maria L. Mancini
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine 04074
| | - Joseph M. Verdi
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine 04074
| | - Barbara A. Conley
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine 04074
| | - Teodora Nicola
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine 04074
| | - Douglas B. Spicer
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine 04074
| | - Leif H. Oxburgh
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine 04074
| | - Calvin P.H. Vary
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine 04074
- Corresponding Author: Center for Molecular Medicine; Maine Medical Center Research Institute, 81 Research Drive, Scarborough, ME 04074; USA; Telephone (207) 885-8148; Fax (207) 885-8179; Email
| |
Collapse
|
45
|
Fernandez-L A, Fernandez-Lopez A, Garrido-Martin EM, Sanz-Rodriguez F, Pericacho M, Rodriguez-Barbero A, Eleno N, Lopez-Novoa JM, Düwell A, Vega MA, Bernabeu C, Botella LM. Gene expression fingerprinting for human hereditary hemorrhagic telangiectasia. Hum Mol Genet 2007; 16:1515-33. [PMID: 17420163 DOI: 10.1093/hmg/ddm069] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Hereditary hemorrhagic telangiectasia (HHT) or Osler-Weber-Rendu syndrome is an autosomal dominant vascular disorder characterized by telangiectases and internal arteriovenous malformations. It is caused by mutations in elements of the transforming growth factor-beta (TGF-beta) receptor complex: endoglin, a co-receptor, responsible for HHT1, or ALK1 (activin receptor-like kinase 1), a type I receptor leading to HHT2. Recently, we have established cultures of HHT endothelial cells, primary targets of the disease. These cells showed deficient TGF-beta signaling and angiogenesis, representing a useful human model to study the molecular mechanism of this disease. To understand the pathogenic mechanism underlying HHT, we have used total RNA probes to compare HHT versus non-HHT cells by expression microarrays. This work represents a systematic study to identify target genes affected in HHT cells. Given the similarity of symptoms in HHT1 and HHT2, special interest has been put on the identification of common targets for both HHT types. As a result, 277 downregulated and 63 upregulated genes were identified in HHT versus control cells. These genes are involved in biological processes relevant to the HHT pathology, such as angiogenesis, cytoskeleton, cell migration, proliferation and NO synthesis. The type of misregulated genes found in HHT endothelial cells lead us to propose a model of HHT pathogenesis, opening new perspectives to understand this disorder. Moreover, as the disease is originated by mutations in proteins of the TGF-beta receptor complex, these results may be useful to find out targets of the TGF-beta pathway in endothelium.
Collapse
Affiliation(s)
- Africa Fernandez-L
- Centro de Investigaciones Biológicas, CSIC, Madrid, Spain, 2 Center for Biomedical Research on Rare Diseases (CIBERER), Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Relationship between intravascular ultrasound imaging features of coronary plaques and soluble CD105 level in patients with coronary heart disease. Chin Med J (Engl) 2007. [DOI: 10.1097/00029330-200704010-00013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
47
|
Llorca O, Trujillo A, Blanco FJ, Bernabeu C. Structural model of human endoglin, a transmembrane receptor responsible for hereditary hemorrhagic telangiectasia. J Mol Biol 2006; 365:694-705. [PMID: 17081563 DOI: 10.1016/j.jmb.2006.10.015] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2006] [Revised: 09/08/2006] [Accepted: 10/05/2006] [Indexed: 12/15/2022]
Abstract
Endoglin is a type I membrane protein expressed as a disulphide-linked homodimer on human vascular endothelial cells whose haploinsufficiency is responsible for the dominant vascular dysplasia known as hereditary hemorrhagic telangiectasia (HHT). Structurally, endoglin belongs to the zona pellucida (ZP) family of proteins that share a ZP domain of approximately 260 amino acid residues at their extracellular region. Endoglin is a component of the TGF-beta receptor complex, interacts with the TGF-beta signalling receptors types I and II, and modulates cellular responses to TGF-beta. Here, we have determined for the first time the three-dimensional structure of the approximately 140 kDa extracellular domain of endoglin at 25 A resolution, using single-particle electron microscopy (EM). This reconstruction provides the general architecture of endoglin, which arranges as a dome made of antiparallel oriented monomers enclosing a cavity at one end. A high-resolution structure of endoglin has also been modelled de novo and found to be consistent with the experimental reconstruction. Each subunit comprises three well-defined domains, two of them corresponding to ZP regions, organised into an open U-shaped monomer. This domain arrangement was found to closely resemble the overall structure derived experimentally and the three modelled de novo domains were tentatively assigned to the domains observed in the EM reconstruction. This molecular model was further tested by tagging endoglin's C terminus with an IgG Fc fragment visible after 3D reconstruction of the labelled protein. Combined, these data provide the structural framework to interpret endoglin's functional domains and mutations found in HHT patients.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antigens, CD/chemistry
- Antigens, CD/ultrastructure
- CHO Cells
- Cricetinae
- Cricetulus
- Endoglin
- Humans
- Membrane Proteins/chemistry
- Membrane Proteins/ultrastructure
- Microscopy, Electron
- Models, Molecular
- Molecular Sequence Data
- Mutation, Missense/genetics
- Protein Structure, Secondary
- Protein Structure, Tertiary
- Receptors, Cell Surface/chemistry
- Receptors, Cell Surface/ultrastructure
- Receptors, Fc/chemistry
- Receptors, Fc/ultrastructure
- Recombinant Proteins/chemistry
- Recombinant Proteins/ultrastructure
- Sequence Homology
- Solubility
- Telangiectasia, Hereditary Hemorrhagic/genetics
- Telangiectasia, Hereditary Hemorrhagic/pathology
Collapse
Affiliation(s)
- Oscar Llorca
- Centro de Investigaciones Biologicas, Consejo Superior de Investigaciones Cientificas (CSIC), Ramiro de Maetzu 9, 28040 Madrid, Spain
| | | | | | | |
Collapse
|
48
|
Docherty NG, López-Novoa JM, Arevalo M, Düwel A, Rodriguez-Peña A, Pérez-Barriocanal F, Bernabeu C, Eleno N. Endoglin regulates renal ischaemia-reperfusion injury. Nephrol Dial Transplant 2006; 21:2106-19. [PMID: 16751653 DOI: 10.1093/ndt/gfl179] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Renal ischaemia-reperfusion (I-R) can cause acute tubular necrosis and chronic renal deterioration. Endoglin, an accessory receptor for Transforming Growth Factor-beta1 (TGF-beta1), is expressed on activated endothelium during macrophage maturation and implicated in the control of fibrosis, angiogenesis and inflammation. METHODS Endoglin expression was monitored over 14 days after renal I-R in rats. As endoglin-null mice are not viable, the role of endoglin in I-R was studied by comparing renal I-R injury in haploinsufficient mice (Eng(+/-)) and their wild-type littermates (Eng(+/+)). Renal function, morphology and molecular markers of acute renal injury and inflammation were compared. RESULTS Endoglin mRNA up-regulation in the post-ischaemic kidneys of rats occurred at 12 h after I-R; endoglin protein levels were elevated throughout the study period. Expression was initially localized to the vascular endothelium, then extended to fibrotic and inflamed areas of the interstitium. Two days after I-R, plasma creatinine elevation and acute tubular necrosis were less marked in Eng(+/-) than in Eng(+/+) mice. Significant up-regulation of endoglin protein was found only in the post-ischaemic kidneys of Eng(+/+) mice and coincided with an increased mRNA expression of the TGF-beta1 and collagen IV (alpha1) chain genes. Significant increases in vascular cell adhesion molecule-1 (VCAM-1) and inducible nitric oxide synthase (iNOS) expression, nitrosative stress, myeloperoxidase activity and CD68 staining for macrophages were evident in post-ischaemic kidneys of Eng(+/+), but not Eng(+/-) mice, suggesting that impaired endothelial activation and macrophage maturation may account for the reduced injury in post-ischaemic kidneys of Eng(+/-) mice. CONCLUSIONS Endoglin is up-regulated in the post-ischaemic kidney and endoglin-haploinsufficient mice are protected from renal I-R injury. Endoglin may play a primary role in promoting inflammatory responses following renal I-R.
Collapse
MESH Headings
- Animals
- Antigens, CD/biosynthesis
- Antigens, CD/genetics
- Antigens, Differentiation, Myelomonocytic/biosynthesis
- Antigens, Differentiation, Myelomonocytic/genetics
- Collagen Type IV/biosynthesis
- Collagen Type IV/genetics
- Creatinine/blood
- Endoglin
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/pathology
- Enzyme Induction
- Fibrosis
- Gene Expression Regulation
- Heterozygote
- Inflammation
- Intracellular Signaling Peptides and Proteins/genetics
- Intracellular Signaling Peptides and Proteins/physiology
- Kidney/blood supply
- Kidney/metabolism
- Kidney/pathology
- Kidney Tubular Necrosis, Acute/etiology
- Kidney Tubular Necrosis, Acute/physiopathology
- Macrophages/enzymology
- Macrophages/pathology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Mutant Strains
- Monocytes/enzymology
- Monocytes/pathology
- Nitric Oxide Synthase Type II/biosynthesis
- Nitric Oxide Synthase Type II/genetics
- Peroxidase/analysis
- RNA, Messenger/biosynthesis
- Rats
- Rats, Wistar
- Reperfusion Injury/complications
- Reperfusion Injury/physiopathology
- Transforming Growth Factor beta1/biosynthesis
- Transforming Growth Factor beta1/genetics
- Vascular Cell Adhesion Molecule-1/biosynthesis
- Vascular Cell Adhesion Molecule-1/genetics
Collapse
Affiliation(s)
- Neil G Docherty
- Departamento de Fisiología y Farmacología, Edificio Departamental, Campus Miguel de Unamuno 37007, Salamanca, Spain
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Prieto M, Rodríguez-Peña AB, Düwel A, Rivas JV, Docherty N, Pérez-Barriocanal F, Arévalo M, Vary CPH, Bernabeu C, López-Novoa JM, Eleno N. Temporal changes in renal endoglin and TGF-beta1 expression following ureteral obstruction in rats. J Physiol Biochem 2006; 61:457-67. [PMID: 16440600 DOI: 10.1007/bf03168452] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Chronic renal disease is characterized by the accumulation of extracellular matrix proteins in the kidney and a loss of renal function. Tubulointerstitial fibrosis has been reported to play an important role in the progression of chronic renal diseases. Transforming growth factor-beta1 (TGF-beta1) is a profibrotic cytokine playing a major contribution to fibrotic kidney disease. Endoglin is a membrane glycoprotein of the TGF-beta1 receptor system. The aim of this work was to determine the time-course expression of renal type I and IV collagens, endoglin and TGF-beta1 in a rat model of induced tubulointerstitial fibrosis at 1, 3, 10 and 17 days after unilateral ureteral obstruction (UUO). In 17 days-ligated (L)-renal samples, a marked interstitial fibrosis was detected by Masson's trichromic and Sirius red staining, accompanied by an increase in type I collagen expression as shown by immunohistochemical analysis. Northern blot studies revealed a progressive increase in collagen alpha2(I), TGF-beta1 and endoglin mRNA expression in L kidneys when compared with the corresponding non-ligated (NL) kidneys from the animals subjected to left UUO. Seventeen days after UUO, significant increases in collagen alpha2(I), collagen alpha1(IV), TGF-beta1 and endoglin mRNA levels were detected in L kidneys vs NL kidneys. Significantly higher levels of the protein endoglin were found in L kidneys than in NL kidneys 10 and 17 days following obstruction. A marked increase expression for endoglin and TGF-beta1 was localized in renal interstitium by immunohistochemical studies 17 days after obstruction. In conclusion, this work reports the upregulation of endoglin coincident to that of its ligand TGF-beta1 in the kidneys of rats with progressive tubulointerstitial fibrosis induced by UUO.
Collapse
Affiliation(s)
- M Prieto
- Instituto Reina Sofia de Investigación Nefrológica and Departamento de Fisiología y Farmacología, Salamanca, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Seth A, Catzavelos C, Vary C, Ascione R. ETS transcription factors and targets in tumour invasion, angiogenesis and bone metastasis. ACTA ACUST UNITED AC 2005; 5:87-107. [PMID: 15992169 DOI: 10.1517/14728222.5.1.87] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The ETS gene family encodes unique transcription regulators that have a common ETS DNA binding domain. At least 25 distinct ETS related genes have been isolated from various species. The ETS family transcription factors are known to regulate genetic programs essential for differentiation and development processes and play diverse roles in a number of biological processes such as organogenesis and tissue remodelling during murine development, hematopoiesis, B-cell development, activation of T-cells and signal transduction, as well as osteogenesis, osteoblast differentiation and extracellular matrix mineralization. Based on the observation of overexpression of ETS related genes in various primary and metastatic tumors, their utility as potential therapeutic targets has been suggested. Antisense oligonucleotides, transdominant, and dominant-negative mutants have been exploited to target and inhibit ETS gene expression selectively. These ETS-targeted studies are being pursued to assess their antitumour effect, and hold the potential that such specific ETS-targeted inhibitors may become a viable option for cancer therapy. Collectively, these studies also demonstrate that Ets factors can regulate multiple aspects of the malignant phenotype of many tumor cells in particular neoangiogenesis and extracellular matrix-regulated (ECM-regulated) cell proliferation, motility and invasiveness.
Collapse
Affiliation(s)
- A Seth
- Department of Anatomic Pathology, Sunnybrook and Women's College Health Sciences Centre, University of Toronto, Ontario, Canada.
| | | | | | | |
Collapse
|