1
|
Neeff M, Kimita W, Waldvogel-Thurlow S, Douglas RG, Biswas K. Host-Microbe Interactions in Healthy and CSOM-Affected Middle Ears. Microorganisms 2025; 13:339. [PMID: 40005706 PMCID: PMC11858293 DOI: 10.3390/microorganisms13020339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 01/21/2025] [Accepted: 01/26/2025] [Indexed: 02/27/2025] Open
Abstract
Chronic suppurative otitis media (CSOM) is a chronic middle ear inflammatory condition due to persistent polymicrobial middle ear infection. The interaction between local immune responses and microbial communities is not well understood, complicating the development of targeted therapies. This study aimed to characterise local immune cell responses and microbial composition in CSOM-affected middle ear mucosa, focusing on Pseudomonas aeruginosa and Staphylococcus aureus. A total of 24 CSOM patients and 22 controls undergoing tympanomastoid surgery participated in this prospective study. Middle ear and mastoid mucosa were collected for histological and microbiological analysis. Bacterial identification was performed using standard culture methods and Vitek MS, while immune cell populations were quantified via immunohistochemistry. Statistical analyses were performed using Kruskal-Wallis and Mann-Whitney tests. Microbiology results identified multiple pathogens in CSOM, including S. aureus and P. aeruginosa, with polymicrobial infections in 10 samples. CSOM patients exhibited significantly elevated immune cells, including CD3+, CD20+, and CD68+ cells, compared to controls. Histological analysis showed Gram-positive bacteria in three mastoid samples, with positive antibody staining for S. aureus (20.8%) and P. aeruginosa (12.5%) in CSOM patients. Controls had no bacterial staining. Intracellular bacteria may evade host defences and reduce antibiotic efficacy, contributing to CSOM persistence. Targeting intracellular pathogens in future treatments, along with studying polymicrobial communities, could improve management strategies.
Collapse
Affiliation(s)
- Michel Neeff
- Department of Paediatric Otolaryngology-Head and Neck Surgery, Starship Children’s Hospital, Te Whatu Ora, Health New Zealand, Te Toka Tumai, Auckland 1023, New Zealand
- Department of Surgery, The University of Auckland, Auckland 1023, New Zealand (S.W.-T.); (R.G.D.)
- Department of Otolaryngology-Head and Neck Surgery, Te Whatu Ora, Health New Zealand, Te Toka Tumai, Auckland 1023, New Zealand
| | - Wandia Kimita
- Department of Surgery, The University of Auckland, Auckland 1023, New Zealand (S.W.-T.); (R.G.D.)
| | - Sharon Waldvogel-Thurlow
- Department of Surgery, The University of Auckland, Auckland 1023, New Zealand (S.W.-T.); (R.G.D.)
| | - Richard G. Douglas
- Department of Surgery, The University of Auckland, Auckland 1023, New Zealand (S.W.-T.); (R.G.D.)
- Department of Otolaryngology-Head and Neck Surgery, Te Whatu Ora, Health New Zealand, Te Toka Tumai, Auckland 1023, New Zealand
| | - Kristi Biswas
- Department of Surgery, The University of Auckland, Auckland 1023, New Zealand (S.W.-T.); (R.G.D.)
| |
Collapse
|
2
|
Vodovotz Y, Arciero J, Verschure PF, Katz DL. A multiscale inflammatory map: linking individual stress to societal dysfunction. FRONTIERS IN SCIENCE 2024; 1:1239462. [PMID: 39398282 PMCID: PMC11469639 DOI: 10.3389/fsci.2023.1239462] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
As populations worldwide show increasing levels of stress, understanding emerging links among stress, inflammation, cognition, and behavior is vital to human and planetary health. We hypothesize that inflammation is a multiscale driver connecting stressors that affect individuals to large-scale societal dysfunction and, ultimately, to planetary-scale environmental impacts. We propose a 'central inflammation map' hypothesis to explain how the brain regulates inflammation and how inflammation impairs cognition, emotion, and action. According to our hypothesis, these interdependent inflammatory and neural processes, and the inter-individual transmission of environmental, infectious, and behavioral stressors - amplified via high-throughput digital global communications - can culminate in a multiscale, runaway, feed-forward process that could detrimentally affect human decision-making and behavior at scale, ultimately impairing the ability to address these same stressors. This perspective could provide non-intuitive explanations for behaviors and relationships among cells, organisms, and communities of organisms, potentially including population-level responses to stressors as diverse as global climate change, conflicts, and the COVID-19 pandemic. To illustrate our hypothesis and elucidate its mechanistic underpinnings, we present a mathematical model applicable to the individual and societal levels to test the links among stress, inflammation, control, and healing, including the implications of transmission, intervention (e.g., via lifestyle modification or medication), and resilience. Future research is needed to validate the model's assumptions, expand the factors/variables employed, and validate it against empirical benchmarks. Our model illustrates the need for multilayered, multiscale stress mitigation interventions, including lifestyle measures, precision therapeutics, and human ecosystem design. Our analysis shows the need for a coordinated, interdisciplinary, international research effort to understand the multiscale nature of stress. Doing so would inform the creation of interventions that improve individuals' lives and communities' resilience to stress and mitigate its adverse effects on the world.
Collapse
Affiliation(s)
- Yoram Vodovotz
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Immunology, Center for Systems Immunology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Julia Arciero
- Department of Mathematical Sciences, Indiana University - Purdue University Indianapolis, Indianapolis, IN, United States
| | - Paul Fmj Verschure
- Laboratory of Synthetic, Perceptive, Emotive and Cognitive Systems (SPECS), Donders Centre of Neuroscience, Donders Centre for Brain, Cognition and Behaviour, Faculty of Science and Engineering, Radboud University, Netherlands
| | - David L Katz
- Founder, True Health Initiative, The Health Sciences Academy, London, United Kingdom
- Tangelo Services, Auckland, United States
| |
Collapse
|
3
|
Heme-heme oxygenase-2 reduces the atherosclerosis by preventing inflammation. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2022; 4:100141. [PMID: 36593926 PMCID: PMC9804009 DOI: 10.1016/j.crphar.2022.100141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 11/04/2022] [Accepted: 11/20/2022] [Indexed: 12/14/2022] Open
Abstract
Objective Heme oxygenase (HO) has been shown to have important antioxidant and anti-inflammatory properties, resulting in a vascular antitherogenic effect. This study was undertaken to evaluate the role of HO-2 in atherosclerosis. Method and results The expression levels of HO-2 were evaluated in M1 and M2 bone marrow macrophage induced by LPS and IL4. The expression of HO-2 was significantly higher in M2 macrophage than in M1 macrophage. Western diet (WD) caused a significant increase in HO-2 expression in ApoE-/- mice. The adeno-associated viral (AAV) vectors expressing HO-2 was constructed, and the mice were received saline (ApoE-/-), AAV (ApoE-/-), AAV-HO-2 (ApoE-/-) on WD at 12 weeks and their plasma lipids, inflammatory cytokines, atherosclerosis were evaluated for 16 weeks. The results showed AAV-HO-2 was robust, with a significant decrease in the en face aortas, lipids levels, inflammatory cytokines and M1 macrophage content in AAV-HO-2 ApoE-/- compared to control AAV-ApoE-/-. Conclusion HO-2 expression in macrophages plays an important role of the antiatherogenic effect, decreasing the inflammatory component of atherosclerotic lesions. These results suggest that HO-2 may be a novel therapeutic target for cardiovascular diseases.
Collapse
|
4
|
Bosco A, Dessì A, Zanza C, Pintus R, Fanos V. Resolvins' Obesity-Driven Deficiency: The Implications for Maternal-Fetal Health. Nutrients 2022; 14:nu14081662. [PMID: 35458224 PMCID: PMC9029397 DOI: 10.3390/nu14081662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 04/12/2022] [Accepted: 04/14/2022] [Indexed: 12/10/2022] Open
Abstract
Since pregnancy is already characterized by mild but significant inflammatory activity in physiological conditions, when complicated by obesity the probability of a persistent inflammatory state increases, with consequent multiple repercussions that add up to the complications associated with acute inflammation. In this context, the role of resolvins, specialized pro-resolving mediators (SPMs), deriving from omega-3 essential fatty acids, may be crucial. Indeed, differential production in numerous high-risk conditions associated with both childbirth and neonatal health, the correlation between maternal omega-3 intake and resolvin concentrations in maternal blood and at the placental level, and the high values found in breast milk in the first month of breastfeeding, are some of the most important hallmarks of these autacoids. In addition, a growing body of scientific evidence supports the lack of SPMs, at the level of immune-metabolic tissues, in the case of obesity. Furthermore, the obesity-related lack of SPMs seems to be decisive in the context of the current outbreak of COVID-19, as it appears to be one of the causes associated with the higher incidence of complications and negative outcomes of SARS-CoV-2 infection. The usefulness of metabolomics in this field appears clear, given that through the metabolome it is possible to observe the numerous and complex interactions between the mother, the placenta and the fetus in order to identify specific biomarkers useful in the prediction, diagnosis and monitoring of the various obstetric conditions. However, further investigations are needed in order to evaluate the possible use of some resolvins as biomarkers of maternal–fetal outcomes but also to establish adequate integration values in pregnant women with omega-3 fatty acids or with more active derivatives that guarantee optimal SPM production under risky conditions.
Collapse
|
5
|
Schmid T, Brüne B. Prostanoids and Resolution of Inflammation - Beyond the Lipid-Mediator Class Switch. Front Immunol 2021; 12:714042. [PMID: 34322137 PMCID: PMC8312722 DOI: 10.3389/fimmu.2021.714042] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 06/30/2021] [Indexed: 12/19/2022] Open
Abstract
Bioactive lipid mediators play a major role in regulating inflammatory processes. Herein, early pro-inflammatory phases are characterized and regulated by prostanoids and leukotrienes, whereas specialized pro-resolving mediators (SPM), including lipoxins, resolvins, protectins, and maresins, dominate during the resolution phase. While pro-inflammatory properties of prostanoids have been studied extensively, their impact on later phases of the inflammatory process has been attributed mainly to their ability to initiate the lipid-mediator class switch towards SPM. Yet, there is accumulating evidence that prostanoids directly contribute to the resolution of inflammation and return to homeostasis. In this mini review, we summarize the current knowledge of the resolution-regulatory properties of prostanoids and discuss potential implications for anti-inflammatory, prostanoid-targeted therapeutic interventions.
Collapse
Affiliation(s)
- Tobias Schmid
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt, Germany
| | - Bernhard Brüne
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt, Germany.,German Cancer Consortium (DKTK) Partner Site Frankfurt, Frankfurt, Germany.,Frankfurt Cancer Institute, Goethe-University Frankfurt, Frankfurt, Germany.,Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Frankfurt, Germany
| |
Collapse
|
6
|
Santhakumar P, Prathap L, Roy A, Jayaraman S, Jeevitha M. Molecular docking analysis of furfural and isoginkgetin with heme oxygenase I and PPARγ. Bioinformation 2021; 17:356-362. [PMID: 34234396 PMCID: PMC8225605 DOI: 10.6026/97320630017356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/20/2021] [Accepted: 02/24/2021] [Indexed: 11/23/2022] Open
Abstract
It is of interest to document the molecular docking analysis based binding data of furfural and isoginkgetin with heme oxygenase I and PPARγ in the context of inflammation for further consideration in drug design and development.
Collapse
Affiliation(s)
- Preetha Santhakumar
- Department of Physiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai - 600 077, Tamil Nadu, India
| | - Lavanya Prathap
- Department of Anatomy, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai - 600 077, Tamil Nadu, India
| | - Anitha Roy
- Department of Pharmacology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai - 600 077, Tamil Nadu, India
| | - Selvaraj Jayaraman
- Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai - 600 077, Tamil Nadu, India
| | - M Jeevitha
- Department of Periodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai - 600 077, Tamil Nadu, India
| |
Collapse
|
7
|
Zhao Z, Wei Y, Tao C. An enlightening role for cytokine storm in coronavirus infection. Clin Immunol 2021; 222:108615. [PMID: 33203513 PMCID: PMC7583583 DOI: 10.1016/j.clim.2020.108615] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 02/08/2023]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) outbreak in Wuhan, China has dispersed rapidly worldwide. Although most patients present with mild fever, cough with varying pulmonary shadows, a significant portion still develops severe respiratory dysfunction. And these severe cases are often associated with manifestations outside the respiratory tract. Currently, it is not difficult to find inflammatory cytokines upregulated in the blood of infected patients. However, some complications in addition to respiratory system with the coronavirus disease 2019 (COVID-19) are impossible to explain or cannot be attributed to virus itself. Thus excessive cytokines and their potentially fatal adverse effects are probably the answer to the multiple organ dysfunctions and growing mortality. This review provides a comprehensive overview of the mechanisms underlying cytokine storm, summarizes its pathophysiology and improves understanding of cytokine storm associated with coronavirus infections by comparing SARS-CoV-2 with severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV).
Collapse
Affiliation(s)
- Zhongyi Zhao
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yinhao Wei
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Chuanmin Tao
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| |
Collapse
|
8
|
BML-111 accelerates the resolution of inflammation by modulating the Nrf2/HO-1 and NF-κB pathways in rats with ventilator-induced lung injury. Int Immunopharmacol 2019; 69:289-298. [DOI: 10.1016/j.intimp.2019.02.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 01/21/2019] [Accepted: 02/04/2019] [Indexed: 02/08/2023]
|
9
|
Thatcher TH, Woeller CF, McCarthy CE, Sime PJ. Quenching the fires: Pro-resolving mediators, air pollution, and smoking. Pharmacol Ther 2019; 197:212-224. [PMID: 30759375 DOI: 10.1016/j.pharmthera.2019.02.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Exposure to air pollution and other environmental inhalation hazards, such as occupational exposures to dusts and fumes, aeroallergens, and tobacco smoke, is a significant cause of chronic lung inflammation leading to respiratory disease. It is now recognized that resolution of inflammation is an active process controlled by a novel family of small lipid mediators termed "specialized pro-resolving mediators" or SPMs, derived mainly from dietary omega-3 polyunsaturated fatty acids. Chronic inflammation results from an imbalance between pro-inflammatory and pro-resolution pathways. Research is ongoing to develop SPMs, and the pro-resolution pathway more generally, as a novel therapeutic approach to diseases characterized by chronic inflammation. Here, we will review evidence that the resolution pathway is dysregulated in chronic lung inflammatory diseases, and that SPMs and related molecules have exciting therapeutic potential to reverse or prevent chronic lung inflammation, with a focus on lung inflammation due to inhalation of environmental hazards including urban particulate matter, organic dusts and tobacco smoke.
Collapse
Affiliation(s)
- Thomas H Thatcher
- Division of Pulmonary and Critical Care Medicine, University of Rochester School of Medicine and Dentistry Rochester, NY 14642, United States; Lung Biology and Disease Program, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, United States
| | - Collynn F Woeller
- Lung Biology and Disease Program, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, United States; Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, United States
| | - Claire E McCarthy
- National Cancer Institute, Division of Cancer Biology, 9609 Medical Center Drive, Rockville, MD 20850, United States
| | - Patricia J Sime
- Division of Pulmonary and Critical Care Medicine, University of Rochester School of Medicine and Dentistry Rochester, NY 14642, United States; Lung Biology and Disease Program, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, United States; Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, United States.
| |
Collapse
|
10
|
Schwager J, Gagno L, Richard N, Simon W, Weber P, Bendik I. Z-ligustilide and anti-inflammatory prostaglandins have common biological properties in macrophages and leukocytes. Nutr Metab (Lond) 2018; 15:4. [PMID: 29371874 PMCID: PMC5771029 DOI: 10.1186/s12986-018-0239-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 01/02/2018] [Indexed: 01/22/2023] Open
Affiliation(s)
- Joseph Schwager
- DSM Nutritional Products Ltd., Department of Human Nutrition & Health, P.O. Box 2676, CH-4002 Basel, Switzerland
| | - Lidia Gagno
- DSM Nutritional Products Ltd., Department of Human Nutrition & Health, P.O. Box 2676, CH-4002 Basel, Switzerland
| | - Nathalie Richard
- DSM Nutritional Products Ltd., Department of Human Nutrition & Health, P.O. Box 2676, CH-4002 Basel, Switzerland
| | - Werner Simon
- DSM Nutritional Products Ltd., Department of Human Nutrition & Health, P.O. Box 2676, CH-4002 Basel, Switzerland
| | - Peter Weber
- DSM Nutritional Products Ltd., Department of Human Nutrition & Health, P.O. Box 2676, CH-4002 Basel, Switzerland
| | - Igor Bendik
- DSM Nutritional Products Ltd., Department of Human Nutrition & Health, P.O. Box 2676, CH-4002 Basel, Switzerland
| |
Collapse
|
11
|
Dalli J, Serhan CN. Pro-Resolving Mediators in Regulating and Conferring Macrophage Function. Front Immunol 2017; 8:1400. [PMID: 29163481 PMCID: PMC5671941 DOI: 10.3389/fimmu.2017.01400] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 10/10/2017] [Indexed: 12/31/2022] Open
Abstract
Macrophages are central in coordinating the host response to both sterile and infective insults. Clearance of apoptotic cells and cellular debris is a key biological action preformed by macrophages that paves the way to the resolution of local inflammation, repair and regeneration of damaged tissues, and re-establishment of function. The essential fatty acid-derived autacoids termed specialized pro-resolving mediators (SPM) play central roles in promoting these processes. In the present article, we will review the role of microvesicles in controlling macrophage efferocytosis and SPM production. We will also discuss the role of both apoptotic cells and microvesicles in providing substrate for transcellular biosynthesis of several SPM families during efferocyotsis. In addition, this article will discuss the biological actions of the recently uncovered macrophage-derived SPM termed maresins. These mediators are produced via 14-lipoxygenation of docosahexaenoic acid that is either enzymatically converted to mediators carrying two hydroxyl groups or to autacoids that are peptide-lipid conjugates, coined maresin conjugates in tissue regeneration. The formation of these mediators is temporally regulated during acute self-limited infectious-inflammation where they promote the uptake and clearance of apoptotic cells, regulate several aspects of the tissue repair and regeneration, and display potent anti-nociceptive actions.
Collapse
Affiliation(s)
- Jesmond Dalli
- Lipid Mediator Unit, William Harvey Research Institute, Bart's and the London School of Medicine, Queen Mary University of London, London, United Kingdom
| | - Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Harvard Institutes of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
12
|
Abstract
Macrophages and neutrophils orchestrate acute inflammation and host defense as well as the resolution phase and return to homeostasis. In this article, we review the contribution of macrophages to local lipid mediator (LM) levels and the regulation of macrophage LM profiles by polymorphonuclear neutrophils and neutrophil-derived microparticles. We carried out LM metabololipidomics, profiling distinct phagocytes: neutrophils (PMNs), apoptotic PMNs, and macrophages. Efferocytosis increased specialized proresolving mediator (SPM) biosynthesis, including resolvin D1 (RvD1), RvD2, and RvE2, which were further elevated by PMN microparticles. In studies using deuterium-labeled precursors (d8-arachidonic acid, d5-eicosapentaenoic acid, and d5-docosahexaenoic acid), apoptotic PMNs and microparticles contributed to SPM biosynthesis during efferocytosis. Assessment of macrophage LM profiles in M2 macrophages demonstrated higher SPM levels in this macrophage subset, including maresin 1 (MaR1), and lower amounts of leukotriene B4 (LTB4) and prostaglandins than in M1. Apoptotic PMN uptake by both macrophage subtypes led to modulation of their LM profiles. LTB4 was downregulated in M2, whereas SPMs including lipoxin A4 were increased. Conversely, uptake of apoptotic PMNs by M2 macrophages reduced (∼25%) overall LMs. MaR1 displays potent tissue-regenerative and antinociceptive actions in addition to its proresolving and anti-inflammatory actions. In addition, the MaR1 biosynthetic intermediate 13S,14S-epoxy-maresin is also bioactive, inhibiting LTB4 biosynthesis and switching macrophage phenotypes from M1 to M2. Together, these results establish LM signature profiles of human phagocytes and related subpopulations. They demonstrate microparticle regulation of macrophage-specific endogenous LMs during defined stages of acute inflammation and their dynamic changes in human primary phagocytes.
Collapse
|
13
|
Schwager J, Richard N, Widmer F, Raederstorff D. Resveratrol distinctively modulates the inflammatory profiles of immune and endothelial cells. Altern Ther Health Med 2017; 17:309. [PMID: 28610607 PMCID: PMC5470273 DOI: 10.1186/s12906-017-1823-z] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 06/06/2017] [Indexed: 12/26/2022]
Abstract
Background The phenolic substance resveratrol (RES) is a plant metabolite known to modulate numerous physiological functions and to exert beneficial effects as a cancer-chemopreventing agent and on neurological, hepatic, and cardiovascular systems. Since the compound affects the lifespan of yeast and flies it might be an anti-aging substance. Mechanistically, RES is involved in down regulating the inflammatory response. The pleiotropic effects of RES in cells of the immune and endothelial system were examined in this study. Results Murine macrophages (RAW264.7 cells), human monocytic/leukemia cells (THP-1), PBLs and HUVECs were incubated with RES and activated with inflammatory stimuli such as LPS or TNF-α. Inflammatory mediators and adhesion molecules were measured by multiplex analysis and gene expression was quantified by RT-PCR. In PBLs, which were activated with LPS, RES blunted the production of TNF-α, CCL2/MCP-1, CCL5/RANTES, CXCL8/IL-8, whereas it increased the production of IL-1β, IL-6, CCL4/MIP-1β and CXCL10/IP-10. Thus, in the blood compartment chemokines attracting mainly monocytes were up-regulated by RES, while those attracting T lymphocytes or neutrophils were diminished. At conditions of endothelial dysfunction (ED), RES reduced the expression of cytokines, chemokines, ICAM and GM-CSF in TNF-α activated HUVECs, whereas eNOS expression was corrected to pre-ED homeostasis. In macrophages nitric oxide, PGE2, cytokines (TNF-α, IL-1β, IL-6) and chemokines (CCL2/MCP-1, CCL4/MIP-1β, CCL5/RANTES, CXCL10/IP-10) were reduced by the phenolic substance. Conclusions RES had cell-specific and context-dependent effects, in particular on the expression of IL-1β, IL-6, CCL4/MIP-1β and CXCL10/IP-10. It enhanced cellular features that mirror increased alertness to disturbed immune homeostasis in the vascular-endothelial compartment (e.g. increased production of IL-1β or IL-6), whereas it blunted inflammatory mediators in macrophages and consequently chronic inflammation. We infer from the present in vitro study, that RES has unique properties in the regulation of inflammatory and immune responses, which are controlled in a complex hierarchical and temporal order. Electronic supplementary material The online version of this article (doi:10.1186/s12906-017-1823-z) contains supplementary material, which is available to authorized users.
Collapse
|
14
|
Paulino N, Paulino AS, Diniz SN, de Mendonça S, Gonçalves ID, Faião Flores F, Santos RP, Rodrigues C, Pardi PC, Quincoces Suarez JA. Evaluation of the anti-inflammatory action of curcumin analog (DM1): Effect on iNOS and COX-2 gene expression and autophagy pathways. Bioorg Med Chem 2016; 24:1927-35. [PMID: 27010501 DOI: 10.1016/j.bmc.2016.03.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 03/04/2016] [Accepted: 03/12/2016] [Indexed: 02/07/2023]
Abstract
This work describes the anti-inflammatory effect of the curcumin-analog compound, sodium 4-[5-(4-hydroxy-3-methoxyphenyl)-3-oxo-penta-1,4-dienyl]-2-methoxy-phenolate (DM1), and shows that DM1 modulates iNOS and COX-2 gene expression in cultured RAW 264.7 cells and induces autophagy on human melanoma cell line A375.
Collapse
Affiliation(s)
- Niraldo Paulino
- Programa de Pós-graduação em Farmácia, Universidade Anhanguera de São Paulo-UNIAN-SP, Programa de Mestrado Profissional em Farmácia e Programa de Mestrado e Doutorado em Biotecnologia e Inovação em Saúde, Rua Maria Cândida, 1813-Vila Guilherme, São Paulo, SP CEP 02071-013, Brazil.
| | - Amarilis Scremin Paulino
- Universidade Federal de Santa Catarina, Departamento de Ciências Farmacêuticas, Campus Universitário Trindade, Florianópolis, SC CEP 88040-400, Brazil
| | - Susana N Diniz
- Programa de Pós-graduação em Farmácia, Universidade Anhanguera de São Paulo-UNIAN-SP, Programa de Mestrado Profissional em Farmácia e Programa de Mestrado e Doutorado em Biotecnologia e Inovação em Saúde, Rua Maria Cândida, 1813-Vila Guilherme, São Paulo, SP CEP 02071-013, Brazil
| | - Sergio de Mendonça
- Programa de Pós-graduação em Farmácia, Universidade Anhanguera de São Paulo-UNIAN-SP, Programa de Mestrado Profissional em Farmácia e Programa de Mestrado e Doutorado em Biotecnologia e Inovação em Saúde, Rua Maria Cândida, 1813-Vila Guilherme, São Paulo, SP CEP 02071-013, Brazil
| | - Ivair D Gonçalves
- Programa de Pós-graduação em Farmácia, Universidade Anhanguera de São Paulo-UNIAN-SP, Programa de Mestrado Profissional em Farmácia e Programa de Mestrado e Doutorado em Biotecnologia e Inovação em Saúde, Rua Maria Cândida, 1813-Vila Guilherme, São Paulo, SP CEP 02071-013, Brazil
| | - Fernanda Faião Flores
- Universidade de São Paulo, Faculdade de Ciências Farmacêuticas, Departamento de Análises Clínicas e Toxicológicas, Cidade Universitária, Butantã, São Paulo, SP CEP 05508-900, Brazil
| | - Reginaldo Pereira Santos
- Programa de Pós-graduação em Farmácia, Universidade Anhanguera de São Paulo-UNIAN-SP, Programa de Mestrado Profissional em Farmácia e Programa de Mestrado e Doutorado em Biotecnologia e Inovação em Saúde, Rua Maria Cândida, 1813-Vila Guilherme, São Paulo, SP CEP 02071-013, Brazil
| | - Carina Rodrigues
- Programa de Pós-graduação em Farmácia, Universidade Anhanguera de São Paulo-UNIAN-SP, Programa de Mestrado Profissional em Farmácia e Programa de Mestrado e Doutorado em Biotecnologia e Inovação em Saúde, Rua Maria Cândida, 1813-Vila Guilherme, São Paulo, SP CEP 02071-013, Brazil
| | - Paulo Celso Pardi
- Programa de Pós-graduação em Farmácia, Universidade Anhanguera de São Paulo-UNIAN-SP, Programa de Mestrado Profissional em Farmácia e Programa de Mestrado e Doutorado em Biotecnologia e Inovação em Saúde, Rua Maria Cândida, 1813-Vila Guilherme, São Paulo, SP CEP 02071-013, Brazil
| | - José Agustin Quincoces Suarez
- Programa de Pós-graduação em Farmácia, Universidade Anhanguera de São Paulo-UNIAN-SP, Programa de Mestrado Profissional em Farmácia e Programa de Mestrado e Doutorado em Biotecnologia e Inovação em Saúde, Rua Maria Cândida, 1813-Vila Guilherme, São Paulo, SP CEP 02071-013, Brazil
| |
Collapse
|
15
|
Kim W, Kim HU, Lee HN, Kim SH, Kim C, Cha YN, Joe Y, Chung HT, Jang J, Kim K, Suh YG, Jin HO, Lee JK, Surh YJ. Taurine Chloramine Stimulates Efferocytosis Through Upregulation of Nrf2-Mediated Heme Oxygenase-1 Expression in Murine Macrophages: Possible Involvement of Carbon Monoxide. Antioxid Redox Signal 2015; 23:163-77. [PMID: 25816687 PMCID: PMC4492774 DOI: 10.1089/ars.2013.5825] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
AIMS To examine the pro-resolving effects of taurine chloramine (TauCl). RESULTS TauCl injected into the peritoneum of mice enhanced the resolution of zymosan A-induced peritonitis. Furthermore, when the macrophages obtained from peritoneal exudates were treated with TauCl, their efferocytic ability was elevated. In the murine macrophage-like RAW264.7 cells exposed to TauCl, the proportion of macrophages engulfing the apoptotic neutrophils was also increased. In these macrophages treated with TauCl, expression of heme oxygenase-1 (HO-1) was elevated along with increased nuclear translocation of the nuclear factor E2-related factor 2 (Nrf2). TauCl binds directly to Kelch-like ECH association protein 1 (Keap1), which appears to retard the Keap1-driven degradation of Nrf2. This results in stabilization and enhanced nuclear translocation of Nrf2 and upregulation of HO-1 expression. TauCl, when treated to peritoneal macrophages isolated from either Nrf2 or HO-1 wild-type mice, stimulated efferocytosis (phagocytic engulfment of apoptotic neutrophils by macrophages), but not in the macrophages from Nrf2 or HO-1 knockout mice. Furthermore, transcriptional expression of some scavenger receptors recognizing the phosphatidylserines exposed on the surface of apoptotic cells was increased in RAW264.7 cells treated with TauCl. Pharmacologic inhibition of HO-1 activity or knockdown of HO-1 gene in RAW264.7 cells abolished the TauCl-induced efferocytosis, whereas both overexpression of HO-1 and treatment with carbon monoxide (CO), the product of HO, potentiated the efferocytic activity of macrophages. INNOVATION This work provides the first evidence that TauCl stimulates efferocytosis by macrophages. The results of this study suggest the therapeutic potential of TauCl in the management of inflammatory disorders. CONCLUSION TauCl can facilitate resolution of inflammation by increasing the efferocytic activity of macrophages through Nrf2-mediated HO-1 upregulation and subsequent production of CO.
Collapse
Affiliation(s)
- Wonki Kim
- 1 Tumor Microenvironment Global Core Research Center and Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University , Seoul, Republic of Korea
| | - Hoon-Ui Kim
- 1 Tumor Microenvironment Global Core Research Center and Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University , Seoul, Republic of Korea
| | - Ha-Na Lee
- 1 Tumor Microenvironment Global Core Research Center and Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University , Seoul, Republic of Korea
| | - Seung Hyeon Kim
- 1 Tumor Microenvironment Global Core Research Center and Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University , Seoul, Republic of Korea
| | - Chaekyun Kim
- 2 Department of Pharmacology and Toxicology, College of Medicine, Inha University , Incheon, Republic of Korea
| | - Young-Nam Cha
- 2 Department of Pharmacology and Toxicology, College of Medicine, Inha University , Incheon, Republic of Korea
| | - Yeonsoo Joe
- 3 Meta-Inflammation Basic Research Laboratory, School of Biological Sciences, University of Ulsan , Ulsan, Republic of Korea
| | - Hun Taeg Chung
- 3 Meta-Inflammation Basic Research Laboratory, School of Biological Sciences, University of Ulsan , Ulsan, Republic of Korea
| | - Jaebong Jang
- 1 Tumor Microenvironment Global Core Research Center and Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University , Seoul, Republic of Korea
| | - Kyeojin Kim
- 1 Tumor Microenvironment Global Core Research Center and Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University , Seoul, Republic of Korea
| | - Young-Ger Suh
- 1 Tumor Microenvironment Global Core Research Center and Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University , Seoul, Republic of Korea
| | - Hyeon-Ok Jin
- 4 KIRAMS Radiation Biobank, Korea Institute of Radiological & Medical Sciences , Seoul, Republic of Korea
| | - Jin Kyung Lee
- 4 KIRAMS Radiation Biobank, Korea Institute of Radiological & Medical Sciences , Seoul, Republic of Korea
| | - Young-Joon Surh
- 1 Tumor Microenvironment Global Core Research Center and Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University , Seoul, Republic of Korea.,5 Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science, Seoul National University , Seoul, Republic of Korea.,6 Cancer Research Institute, Seoul National University , Seoul, Republic of Korea
| |
Collapse
|
16
|
Mariani F, Roncucci L. Chemerin/chemR23 axis in inflammation onset and resolution. Inflamm Res 2015; 64:85-95. [PMID: 25548799 DOI: 10.1007/s00011-014-0792-7] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 12/11/2014] [Accepted: 12/13/2014] [Indexed: 01/26/2023] Open
Abstract
Chemerin is an adipokine secreted by adipocytes and associated with obesity, insulin resistance and metabolic syndrome. Different chemerin fragments with pro- or anti-inflammatory action can be produced, depending on the class of proteases predominating in the microenvironment. Chemerin binds to three receptors, especially to chemR23, expressed on various cells, as dendritic cells, macrophages and natural killer cells, regulating chemotaxis towards the site of inflammation and activation status. Recently, the chemerin/chemR23 axis has attracted particular attention for the multiple roles related to the control of inflammation, metabolism and cancerogenesis in different organs and systems as lung (allergy and cancer), skin (psoriasis, lupus, cancer, wound repair), cardiovascular system (lipid profile and atherosclerosis), reproductive apparatus (polycystic ovary syndrome, follicular homoeostasis), and digestive tract (inflammatory bowel diseases and cancer). This pathway may regulate immune responses by contributing both to the pathogenesis of inflammatory diseases and to the resolution of acute inflammation. Thus, chemerin-derived peptides or other substances that may affect the chemerin/chemR23 axis could be used in the future for the treatment of many diseases, including cancer at different sites.
Collapse
Affiliation(s)
- Francesco Mariani
- Department of Diagnostic and Clinical Medicine and Public Health, University of Modena and Reggio Emilia, Via Del Pozzo, 71, 41125, Modena, Italy
| | | |
Collapse
|
17
|
Bellner L, Marrazzo G, van Rooijen N, Dunn MW, Abraham NG, Schwartzman ML. Heme oxygenase-2 deletion impairs macrophage function: implication in wound healing. FASEB J 2014; 29:105-15. [PMID: 25342128 DOI: 10.1096/fj.14-256503] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Heme oxygenase (HO)-2 deficiency impairs wound healing and exacerbates inflammation following injury. We examine the impact of HO-2 deficiency on macrophage function and the contribution of macrophage HO-2 to inflammatory and repair responses to injury. Corneal epithelial debridement was performed in control and macrophage-depleted HO-2(-/-) and wild-type (WT) mice and in bone marrow chimeras. Peritoneal macrophages were collected for determination of phagocytic activity and classically activated macrophage (M1)-alternatively activated macrophage (M2) polarization. Depletion of macrophages delayed corneal healing (13.2%) and increased neutrophil infiltration (54.1%) by day 4 in WT mice, whereas in HO-2(-/-) mice, it did not worsen the already impaired wound healing and exacerbated inflammation. HO-2(-/-) macrophages displayed an altered M1 phenotype with no significant expression of M2 or M2-like activated cells and a 31.3% reduction in phagocytic capacity that was restored by inducing HO-1 activity or supplementing biliverdin. Macrophage depletion had no effect, whereas adoptive transfer of WT bone marrow improved wound healing (34% on day 4) but did not resolve the exaggerated inflammatory response in HO-2(-/-) mice. These findings indicate that HO-2-deficient macrophages are dysfunctional and that macrophage HO-2 is required for proper macrophage function but is insufficient to correct the impaired healing of the HO-2(-/-) cornea, suggesting that corneal epithelial expression of HO-2 is a key to resolution and repair in wound healing.
Collapse
Affiliation(s)
| | | | - Nico van Rooijen
- Department of Molecular Cell Biology, Faculty of Medicine, Vrije Universiteit, Amsterdam, The Netherlands
| | | | - Nader G Abraham
- Department of Pharmacology, Department of Medicine, New York Medical College, Valhalla, New York, USA; and
| | | |
Collapse
|
18
|
Abstract
PURPOSE Cyclooxygenase (COX)-, lipoxygenase (LOX)-, and cytochrome P450 monooxygenase (CYP)-derived eicosanoids have been implicated in ocular surface inflammation and neovascularization. These eicosanoids are subjected to regulation by enzymes, such as heme oxygenases (HOs) and ferritin. METHODS Quantitative polymerase chain reaction and lipidomics based on liquid chromatography-tandem mass spectrometry were performed on pterygia from patients undergoing surgical pterygium excision. Control tissues consisted of donor corneas. In addition, lipidomics based on liquid chromatography-tandem mass spectrometry was performed on tears collected from patients before the surgery. RESULTS Messenger RNA (mRNA) expression of HO-2, the constitutive HO isoform, was upregulated by 40% in pterygia compared with control tissue, whereas the mRNA level of the inducible form, HO-1, was downregulated by more than 50%. Levels of CYP4B1 mRNA showed an approximate 2-fold increase in pterygia compared with control. Lipidomic analysis of tissues indicated a moderate elevation in Prostaglandin E2 and thromboxane B2 levels in pterygia compared with control. Among the LOX-derived metabolites, the antiinflammatory-hydroxyeicosatetraenoic acid (15-HETE) levels were significantly reduced in pterygia (79.3 ± 48.11 pg/mg protein) compared with control (586.2 ± 213.5 pg/mg protein), whereas the proinflammatory LOX- and CYP4B1-derived 12-HETE levels were 10-fold higher in pterygia (2768 ± 832.3 pg/mg protein) compared with control (231.4 ± 87.35 pg/mg protein). Prostaglandin E2 and HETEs were also present in tears from patients with pterygium but were not detected in tears from healthy volunteers. The mRNA expression levels of both light and heavy chain ferritin were 60% and 30% lower, respectively, in pterygia compared with control. CONCLUSIONS We believe that a dysfunctional HO-ferritin system leads to increased levels of proinflammatory mediators, thus contributing to the inflammation characteristic of pterygia.
Collapse
|
19
|
Penicillinolide A: a new anti-inflammatory metabolite from the marine fungus Penicillium sp. SF-5292. Mar Drugs 2013; 11:4510-26. [PMID: 24225730 PMCID: PMC3853742 DOI: 10.3390/md11114510] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 10/30/2013] [Accepted: 10/31/2013] [Indexed: 01/04/2023] Open
Abstract
In the course of studies on bioactive metabolites from marine fungi, a new 10-membered lactone, named penicillinolide A (1) was isolated from the organic extract of Penicillium sp. SF-5292 as a potential anti-inflammatory compound. The structure of penicillinolide A (1) was mainly determined by analysis of NMR and MS data and Mosher’s method. Penicillinolide A (1) inhibited the production of NO and PGE2 due to inhibition of the expression of iNOS and COX-2. Penicillinolide A (1) also reduced TNF-α, IL-1β and IL-6 production, and these anti-inflammatory effects were shown to be correlated with the suppression of the phosphorylation and degradation of IκB-α, NF-κB nuclear translocation, and NF-κB DNA binding activity. In addition, using inhibitor tin protoporphyrin (SnPP), a competitive inhibitor of HO activity, it was verified that the inhibitory effects of compound 1 on the production of pro-inflammatory mediators and NF-κB DNA binding activity were partially associated with HO-1 expression through Nrf2 nuclear translocation.
Collapse
|
20
|
Won SY, Kim SR, Maeng S, Jin BK. Interleukin-13/Interleukin-4-induced oxidative stress contributes to death of prothrombinkringle-2 (pKr-2)-activated microglia. J Neuroimmunol 2013; 265:36-42. [PMID: 24090651 DOI: 10.1016/j.jneuroim.2013.09.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 09/12/2013] [Accepted: 09/14/2013] [Indexed: 01/28/2023]
Abstract
The present study examined whether Interleukin-13 (IL-13) or IL-4, an anti-inflammatory cytokine, could induce cell death of activated microglia by prothrombin kringle-2 (pKr-2) which is a domain of prothrombin distinct from thrombin. Microglia cell death was detected at eight days after co-treatment of pKr-2 with IL-13/IL-4 in vitro. This cell death was assessed by live assay, dead assay, TUNEL and MTT assay. In parallel, reactive oxygen species (ROS) production was evident as assessed by superoxide assay, WST-1 and analyzing DCF in combination of pKr-2 and IL-13 or IL-4 treated microglia. The IL-13/IL-4-enhanced ROS production and cell death in pKr-2 activated microglia was partially inhibited by an NADPH oxidase inhibitor, apocynin and/or by several antioxidants. Moreover, Western blot analysis showed a significant increase in cyclooxygenase-2 (COX-2) expression in combination of pKr-2 and IL-13 or IL-4 treated microglia, which was partially inhibited by apocynin and an antioxidant, trolox. Additional studies demonstrated that microglia cell death was reversed by treatment with COX-2 inhibitor, NS398. Our data strongly suggest that oxidative stress and COX-2 activation through NADPH oxidase may contribute to IL-13/IL-4 induced cell death of pKr-2 activated microglia.
Collapse
Affiliation(s)
- So-Yoon Won
- Department of Biochemistry and Medical Research Center, Chungbuk National University College of Medicine, Cheongju 361-763, South Korea
| | | | | | | |
Collapse
|
21
|
Marcon R, Bento AF, Dutra RC, Bicca MA, Leite DFP, Calixto JB. Maresin 1, a proresolving lipid mediator derived from omega-3 polyunsaturated fatty acids, exerts protective actions in murine models of colitis. THE JOURNAL OF IMMUNOLOGY 2013; 191:4288-98. [PMID: 24038091 DOI: 10.4049/jimmunol.1202743] [Citation(s) in RCA: 163] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
It has been previously reported that dietary fish oils, which are rich in the polyunsaturated fatty acids eicosapentaenoic acid and docosahexaenoic acid, can exert beneficial effects in inflammatory bowel disease. In this study, we investigated the effects of docosahexaenoic acid-derived lipid mediator maresin 1 (MaR1) in dextran sulfate sodium (DSS)- and 2,4,6-trinitrobenzenesulfonic acid-induced colitis in mice. Systemic treatment with MaR1 significantly attenuated both DSS- and 2,4,6-trinitrobenzene sulfonic acid-induced colonic inflammation by improving the disease activity index and reducing body weight loss and colonic tissue damage. MaR1 treatment also induced a significant decrease in levels of inflammatory mediators, such as IL-1β, TNF-α, IL-6, and IFN-γ, in the acute protocol, as well as IL-1β and IL-6, but not TNF-α and INF-γ, in the chronic DSS colitis protocol. Additionally, MaR1 decreased ICAM-1 mRNA expression in both the acute and chronic protocols of DSS-induced colitis. Furthermore, the beneficial effects of MaR1 seem to be associated with inhibition of the NF-κB pathway. Moreover, incubation of LPS-stimulated bone marrow-derived macrophage cultures with MaR1 reduced neutrophil migration and reactive oxygen species production, besides decreasing IL-1β, TNF-α, IL-6, and INF-γ production. Interestingly, macrophages incubated only with MaR1 showed a significant upregulation of mannose receptor C, type 1 mRNA expression, an M2 macrophage phenotype marker. These results indicate that MaR1 consistently protects mice against different models of experimental colitis, possibly by inhibiting the NF-κB pathway and consequently multiple inflammatory mediators, as well as by enhancing the macrophage M2 phenotype.
Collapse
Affiliation(s)
- Rodrigo Marcon
- Department of Pharmacology, Federal University of Santa Catarina, Florianópolis, Santa Catarina 88049-900, Brazil
| | | | | | | | | | | |
Collapse
|
22
|
Batista-Duharte A, Portuondo D, Carlos IZ, Pérez O. An approach to local immunotoxicity induced by adjuvanted vaccines. Int Immunopharmacol 2013; 17:526-36. [PMID: 23968848 DOI: 10.1016/j.intimp.2013.07.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Revised: 07/29/2013] [Accepted: 07/30/2013] [Indexed: 12/11/2022]
Abstract
The occurrence of injection site reactions following immunization is the most frequently reported toxicity manifestation of vaccines; however, the different types of local reactions and the different mechanisms involved are still unclear. Here, the current advances in adjuvants and the role that adjuvants play in local reactions are reviewed. The role of adjuvants in the formation of the loco-regional complex (LRC), which consists of the injection site, draining lymphatic vessels and regional lymph nodes, is also discussed. Finally, strategies and recommendations for the rational design of adjuvanted vaccines are discussed, with a particular interest in the reduction of local inflammation.
Collapse
Affiliation(s)
- Alexander Batista-Duharte
- Immunotoxicology Laboratory, Toxicology and Biomedicine Center (TOXIMED), Medical Science University, Autopista Nacional Km. 1 1/2 CP 90400, Santiago de Cuba, Cuba.
| | | | | | | |
Collapse
|
23
|
Haem oxygenase-1 induction reverses the actions of interleukin-1β on hypoxia-inducible transcription factors and human chondrocyte metabolism in hypoxia. Clin Sci (Lond) 2013; 125:99-108. [PMID: 23406266 DOI: 10.1042/cs20120491] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
HO-1 (haem oxygenase-1) catalyses the degradation of haem and possesses anti-inflammatory and cytoprotective properties. The role of inflammatory mediators in the pathogenesis of OA (osteoarthritis) is becoming increasingly appreciated. In the present study, we investigated the effects of HO-1 induction in OA and healthy HACs (human articular chondrocytes) in response to inflammatory cytokine IL-1 β (interleukin-1β) under hypoxic conditions. Hypoxia was investigated as it is a more physiological condition of the avascular cartilage. Hypoxic signalling is mediated by HIFs (hypoxia-inducible factors), of which there are two main isoforms, HIF-1α and HIF-2α. Normal and OA chondrocytes were stimulated with IL-1β. This cytokine suppresses HO-1 expression and exerts both catabolic and anti-anabolic effects, while increasing HIF-1α and suppressing HIF-2α protein levels in OA chondrocytes in hypoxia. Induction of HO-1 by CoPP (cobalt protoporphyrin IX) reversed these IL-1β actions. The hypoxia-induced anabolic pathway involving HIF-2α, SOX9 [SRY (sex determining region Y)-box 9] and COL2A1 (collagen type II α1) was suppressed by IL-1β, but importantly, levels were restored by HO-1 induction, which down-regulated TNFα (tumour necrosis factor α), MMP (matrix metalloproteinase) activity and MMP-13 protein levels. Depletion of HO-1 using siRNA (small interfering RNA) abolished the CoPP effects, further demonstrating that these were due to HO-1. The results of the present study reveal the different mechanisms by which HO-1 exerts protective effects on chondrocytes in physiological levels of hypoxia.
Collapse
|
24
|
Iqbal AJ, Regan-Komito D, Christou I, White GE, McNeill E, Kenyon A, Taylor L, Kapellos TS, Fisher EA, Channon KM, Greaves DR. A real time chemotaxis assay unveils unique migratory profiles amongst different primary murine macrophages. PLoS One 2013; 8:e58744. [PMID: 23516549 PMCID: PMC3597586 DOI: 10.1371/journal.pone.0058744] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 02/05/2013] [Indexed: 11/18/2022] Open
Abstract
Chemotaxis assays are an invaluable tool for studying the biological activity of inflammatory mediators such as CC chemokines, which have been implicated in a wide range of chronic inflammatory diseases. Conventional chemotaxis systems such as the modified Boyden chamber are limited in terms of the data captured given that the assays are analysed at a single time-point. We report the optimisation and validation of a label-free, real-time cell migration assay based on electrical cell impedance to measure chemotaxis of different primary murine macrophage populations in response to a range of CC chemokines and other chemoattractant signalling molecules. We clearly demonstrate key differences in the migratory behavior of different murine macrophage populations and show that this dynamic system measures true macrophage chemotaxis rather than chemokinesis or fugetaxis. We highlight an absolute requirement for Gαi signaling and actin cytoskeletal rearrangement as demonstrated by Pertussis toxin and cytochalasin D inhibition. We also studied the chemotaxis of CD14(+) human monocytes and demonstrate distinct chemotactic profiles amongst different monocyte donors to CCL2. This real-time chemotaxis assay will allow a detailed analysis of factors that regulate macrophage responses to chemoattractant cytokines and inflammatory mediators.
Collapse
Affiliation(s)
- Asif J. Iqbal
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
- * E-mail: (AJI); (DRG)
| | - Daniel Regan-Komito
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Ivy Christou
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Gemma E. White
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Eileen McNeill
- Department of Cardiovascular Medicine, University of Oxford, Oxford, United Kingdom
| | - Amy Kenyon
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Lewis Taylor
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Theodore S. Kapellos
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Edward A. Fisher
- NYU School of Medicine, Division of Cardiology, Department of Medicine, and the Marc and Ruti Bell Program in Vascular Biology, New York, New York, United States of America
| | - Keith M. Channon
- Department of Cardiovascular Medicine, University of Oxford, Oxford, United Kingdom
| | - David R. Greaves
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
- * E-mail: (AJI); (DRG)
| |
Collapse
|
25
|
Costa E, Lino R, Gomes M, Nascimento M, Florentino I, Galdino P, Andrade C, Rezende K, Magalhães L, Menegatti R. Anti-inflammatory and antinociceptive activities of LQFM002 — A 4-nerolidylcatechol derivative. Life Sci 2013; 92:237-44. [DOI: 10.1016/j.lfs.2012.12.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Revised: 12/04/2012] [Accepted: 12/14/2012] [Indexed: 01/10/2023]
|
26
|
Cheng HW, Lee KC, Cheah KP, Chang ML, Lin CW, Li JS, Yu WY, Liu ET, Hu CM. Polygonum viviparum L. inhibits the lipopolysaccharide-induced inflammatory response in RAW264.7 macrophages through haem oxygenase-1 induction and activation of the Nrf2 pathway. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2013; 93:491-497. [PMID: 23129114 DOI: 10.1002/jsfa.5795] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Revised: 04/18/2012] [Accepted: 06/06/2012] [Indexed: 06/01/2023]
Abstract
BACKGROUND Polygonum viviparum L. (PV) is a member of the family Polygonaceae and is widely distributed in high-elevation areas. It is used as a folk remedy to treat inflammation-related diseases. This study was focused on the anti-inflammatory response of PV against lipopolysaccharide (LPS)-induced inflammation in RAW264.7 macrophages. RESULTS Treatment with PV did not cause cytotoxicity at 0-50 µg mL(-1) in RAW264.7 macrophages, and the IC(50) value was 270 µg mL(-1). PV inhibited LPS-stimulated nitric oxide (NO), prostaglandin (PG)E(2) , interleukin (IL)-1β and tumour necrosis factor (TNF)-α release and inducible NO synthase (iNOS) and cyclooxygenase (COX)-2 protein expression. In addition, PV suppressed the LPS-induced p65 expression of nuclear factor (NF)-κB, which is associated with the inhibition of IκB-α degradation. These results suggest that, among mechanisms of the anti-inflammatory response, PV inhibits the production of NO and these cytokines by down-regulating iNOS and COX-2 gene expression. Furthermore, PV can induce haem oxygenase (HO)-1 protein expression through nuclear factor E2-related factor 2 (Nrf2) activation. A specific inhibitor of HO-1, zinc(II) protoporphyrin IX, inhibited the suppression of iNOS and COX-2 expression by PV. CONCLUSION These results suggest that PV possesses anti-inflammatory actions in macrophages and works through a novel mechanism involving Nrf2 actions and HO-1. Thus PV could be considered for application as a potential therapeutic approach for inflammation-associated disorders.
Collapse
Affiliation(s)
- Hui-Wen Cheng
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Therapeutic potential of resolvins in the prevention and treatment of inflammatory disorders. Biochem Pharmacol 2012; 84:1340-50. [DOI: 10.1016/j.bcp.2012.08.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
28
|
Specific lipid mediator signatures of human phagocytes: microparticles stimulate macrophage efferocytosis and pro-resolving mediators. Blood 2012; 120:e60-72. [PMID: 22904297 DOI: 10.1182/blood-2012-04-423525] [Citation(s) in RCA: 440] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Phagocytes orchestrate acute inflammation and host defense. Here we carried out lipid mediator (LM) metabololipidomics profiling distinct phagocytes: neutrophils (PMN), apoptotic PMN, and macrophages. Efferocytosis increased specialized pro-resolving mediator (SPM) biosynthesis, including Resolvin D1 (RvD1), RvD2, and RvE2, which were further elevated by PMN microparticles. Apoptotic PMN gave elevated prostaglandin E(2), lipoxin B(4) and RvE2, whereas zymosan-stimulated PMN showed predominantly leukotriene B(4) and 20-OH-leukotriene B(4), as well as lipoxin marker 5,15-diHETE. Using deuterium-labeled precursors (d(8)-arachidonic acid, d(5)-eicosapentaenoic acid, and d(5)-docosahexaenoic acid), we found that apoptotic PMN and microparticles contributed to SPM biosynthesis during efferocytosis. M2 macrophages produced SPM including maresin-1 (299 ± 8 vs 45 ± 6 pg/2.5 × 10(5) cells; P < .01) and lower amounts of leukotriene B(4) and prostaglandin than M1. Apoptotic PMN uptake by both macrophage subtypes led to modulation of their LM profiles. Leukotriene B(4) was down-regulated in M2 (668 ± 81 vs 351 ± 39 pg/2.5 × 10(5) cells; P < .01), whereas SPM including lipoxin A(4) (977 ± 173 vs 675 ± 167 pg/2.5 × 10(5) cells; P < .05) were increased. Conversely, uptake of apoptotic PMN by M2 macrophages reduced (∼ 25%) overall LM. Together, these results establish LM signature profiles of human phagocytes and related subpopulations. Moreover, they provide evidence for microparticle regulation of specific endogenous LM during defined stages of the acute inflammatory process and their dynamic changes in human primary phagocytes.
Collapse
|
29
|
Lundvig DMS, Immenschuh S, Wagener FADTG. Heme oxygenase, inflammation, and fibrosis: the good, the bad, and the ugly? Front Pharmacol 2012; 3:81. [PMID: 22586396 PMCID: PMC3345581 DOI: 10.3389/fphar.2012.00081] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 04/13/2012] [Indexed: 12/13/2022] Open
Abstract
Upon injury, prolonged inflammation and oxidative stress may cause pathological wound healing and fibrosis, leading to formation of excessive scar tissue. Fibrogenesis can occur in most organs and tissues and may ultimately lead to organ dysfunction and failure. The underlying mechanisms of pathological wound healing still remain unclear, and are considered to be multifactorial, but so far, no efficient anti-fibrotic therapies exist. Extra- and intracellular levels of free heme may be increased in a variety of pathological conditions due to release from hemoproteins. Free heme possesses pro-inflammatory and oxidative properties, and may act as a danger signal. Effects of free heme may be counteracted by heme-binding proteins or by heme degradation. Heme is degraded by heme oxygenase (HO) that exists as two isoforms: inducible HO-1 and constitutively expressed HO-2. HO generates the effector molecules biliverdin/bilirubin, carbon monoxide, and free iron/ferritin. HO deficiency in mouse and man leads to exaggerated inflammation following mild insults, and accumulating epidemiological and preclinical studies support the widely recognized notion of the cytoprotective, anti-oxidative, and anti-inflammatory effects of the activity of the HO system and its effector molecules. In this review, we address the potential effects of targeted HO-1 induction or administration of HO-effector molecules as therapeutic targets in fibrotic conditions to counteract inflammatory and oxidative insults. This is exemplified by various clinically relevant conditions, such as hypertrophic scarring, chronic inflammatory liver disease, chronic pancreatitis, and chronic graft rejection in transplantation.
Collapse
Affiliation(s)
- Ditte M S Lundvig
- Department of Orthodontics and Craniofacial Biology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre Nijmegen, Netherlands
| | | | | |
Collapse
|
30
|
Omega-3 docosahexaenoic acid and procyanidins inhibit cyclo-oxygenase activity and attenuate NF-κB activation through a p105/p50 regulatory mechanism in macrophage inflammation. Biochem J 2012; 441:653-63. [PMID: 21954853 DOI: 10.1042/bj20110967] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The inflammatory response has been implicated in the pathogenesis of many chronic diseases. Along these lines, the modulation of inflammation by consuming bioactive food compounds, such as ω-3 fatty acids or procyanidins, is a powerful tool to promote good health. In the present study, the administration of DHA (docosahexaenoic acid) and B1, B2 and C1 procyanidins, alone or in combination, prevented the inflammatory response induced by the LPS (lipopolysaccharide) endotoxin in human macrophages and brought them to the homoeostatic state. DHA and B1 were strong and selective negative regulators of cyclo-oxygenase 1 activity, with IC50 values of 13.5 μM and 8.0 μM respectively. Additionally, B2 and C1 were selective inhibitors of pro-inflammatory cyclo-oxygenase 2 activity, with IC50 values of 9.7 μM and 3.3 μM respectively. Moreover, DHA and procyanidins prevented the activation of the NF-κB (nuclear factor κB) cascade at both early and late stages with shared mechanisms. These included inhibiting IκBα (inhibitor of NF-κB α) phosphorylation, inducing the cytoplasmic retention of pro-inflammatory NF-κB proteins through p105 (NF-κB1) overexpression, favouring the nuclear translocation of the p50-p50 transcriptional repressor homodimer instead of the p50-p65 pro-inflammatory heterodimer, inhibiting binding of NF-κB DNA to κB sites and, finally, decreasing the release of NF-κB-regulated cytokines and prostaglandins. In conclusion, DHA and procyanidins are strong and selective inhibitors of cyclo-oxygenase activity and NF-κB activation through a p105/p50-dependent regulatory mechanism.
Collapse
|
31
|
Kaur S, Bijjem KRV, Sharma PL. Anti-inflammatory and antihyperalgesic effects of the combination of ibuprofen and hemin in adjuvant-induced arthritis in the Wistar rat. Inflammopharmacology 2011; 19:265-72. [PMID: 21858725 DOI: 10.1007/s10787-011-0090-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Accepted: 08/03/2011] [Indexed: 12/20/2022]
Abstract
AIM Although, pharmacological activation of heme oxygenase (HO)-1 has shown to produce ameliorative effects in various experimental models of inflammation, but such beneficial effects have not been observed in adjuvant-induced arthritis. Further, the upregulated activity of HO-1 has been implicated in the pathogenesis of adjuvant arthritis. The present study was designed to investigate the anti-inflammatory and antihyperalgesic effects of the prophylactic use of hemin alone and/or in combination with ibuprofen using adjuvant-induced arthritis in Wistar rat. METHODS Arthritis was induced by an intradermal injection of complete Freund's adjuvant (CFA) into left hind paw. Paw volume, thermal hyperalgesia, mechanical allodynia, joint stiffness and mobility behaviors (score) were measured. RESULTS Administration of ibuprofen (8.75, 17.5, 35 mg/kg/day, p.o.) and hemin (1, 5, 10 mg/kg/day, i.p.) were significantly effective in suppressing CFA-induced paw oedema, thermal and mechanical hyperalgesia, joint stiffness and mobility. The combination of low doses of ibuprofen (8.75 mg/kg, p.o.) and hemin (1 mg/kg, i.p.) significantly reduced paw volume, thermal and mechanical hyperalgesia, as compared to the individual dose of the ibuprofen and hemin alone. CONCLUSIONS Hence, it may be concluded that the prophylactic administration of either hemin produced significantly enhanced anti-inflammatory and analgesic effects. Further, concurrent low dose administration of hemin and ibuprofen produced significantly enhanced anti-inflammatory and analgesic effects, as compared to the either treatment alone, in CFA-induced arthritis in Wistar rats.
Collapse
Affiliation(s)
- Shamsherjit Kaur
- Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | | | | |
Collapse
|
32
|
Fredman G, Serhan C. Specialized proresolving mediator targets for RvE1 and RvD1 in peripheral blood and mechanisms of resolution. Biochem J 2011; 437:185-97. [PMID: 21711247 PMCID: PMC3133883 DOI: 10.1042/bj20110327] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Revised: 03/15/2011] [Accepted: 03/17/2011] [Indexed: 01/17/2023]
Abstract
Inflammation when unchecked is associated with many prevalent disorders such as the classic inflammatory diseases arthritis and periodontal disease, as well as the more recent additions that include diabetes and cardiovascular maladies. Hence mechanisms to curtail the inflammatory response and promote catabasis are of immense interest. In recent years, evidence has prompted a paradigm shift whereby the resolution of acute inflammation is a biochemically active process regulated in part by endogenous PUFA (polyunsaturated fatty acid)-derived autacoids. Among these are a novel genus of SPMs (specialized proresolving mediators) that comprise novel families of mediators including lipoxins, resolvins, protectins and maresins. SPMs have distinct structures and act via specific G-protein seven transmembrane receptors that signal intracellular events on selective cellular targets activating proresolving programmes while countering pro-inflammatory signals. An appreciation of these endogenous pathways and mediators that control timely resolution opened a new terrain for therapeutic approaches targeted at stimulating resolution of local inflammation. In the present review, we provide an overview of the biosynthesis and actions of resolvin E1, underscoring its protective role in vascular systems and regulating platelet responses. We also give an overview of newly described resolution circuitry whereby resolvins govern miRNAs (microRNAs), and transcription factors that counter-regulate pro-inflammatory chemokines, cytokines and lipid mediators.
Collapse
Key Words
- lipid mediator
- microrna
- omega-3 fatty acid
- platelet
- resolution
- aa, arachidonic acid
- alx/fpr2, g-protein-coupled receptor for lipoxin a4
- apoe, apolipoprotein e
- cd, cluster of differentiation
- chemr23, g-protein-coupled receptor for rve1
- cox, cyclo-oxygenase
- crp, c-reactive protein
- dha, docosahexaenoic acid
- epa, eicosapentaenoic acid
- erk, extracellular-signal-regulated
- gpr32, g-protein-coupled receptor for rvd1
- hete, hydroxyeicosatetraenoic acid
- ifn, interferon
- iκb, inhibitory κb
- il, interleukin
- lc-ms/ms, liquid chromatography-tandem ms
- ldl, low-density lipoprotein
- lox, lipoxygenase
- ltb4, leukotriene b4
- lx, lipoxin
- mapk, mitogen-activated protein kinase
- mirna, microrna
- nf-κb, nuclear factor κb
- p70s6k, ribosomal protein s6 kinase
- pdgf, platelet-derived growth factor
- pdgfr, pdgf receptor
- pi3k, phosphoinositide 3-kinase
- pgi2, prostacyclin
- pgi3, δ17-prostacyclin
- pglyrp, peptidoglycan recognition protein
- pmn, polymorphonuclear cell/neutrophil
- pufa, polyunsaturated fatty acid
- rs6, ribosomal protein s6
- rvd1, resolvin d1
- rve1, resolvin e1
- spm, specialized proresolving mediator
- tf, transcription factor
- 7-tm, g-protein-coupled seven-transmembrane receptor
- tlr, toll-like receptor
- tnf, tumour necrosis factor
- tx, thromboxane
- vmsc, vascular smooth muscle cell
Collapse
Affiliation(s)
- Gabrielle Fredman
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative, and Pain Medicine, Brigham and Women's Hospital, Harvard Institutes of Medicine and Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, U.S.A
| | - Charles N. Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative, and Pain Medicine, Brigham and Women's Hospital, Harvard Institutes of Medicine and Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, U.S.A
| |
Collapse
|
33
|
Lee DS, Jeong GS, Li B, Lee SU, Oh H, Kim YC. Asperlin from the marine-derived fungus Aspergillus sp. SF-5044 exerts anti-inflammatory effects through heme oxygenase-1 expression in murine macrophages. J Pharmacol Sci 2011; 116:283-95. [PMID: 21705844 DOI: 10.1254/jphs.10219fp] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Asperlin is a fungal metabolite isolated from Aspergillus sp. SF-5044. In the present study, we isolated asperlin from the marine-derived fungus Aspergillus sp. SF-5044 and demonstrated that it inhibited inducible nitric oxide synthase (iNOS) expression, reduced iNOS-derived NO, suppressed cyclooxygenase (COX)-2 expression, and reduced COX-derived prostaglandin (PG) E₂ production in lipopolysaccharide (LPS)-stimulated RAW264.7 and murine peritoneal macrophages. Similarly, asperlin reduced the production of tumor necrosis factor (TNF)-α and interleukin (IL)-1β. In addition, asperlin inhibited the phosphorylation and degradation of IκB-α, as well as the nuclear translocation of p65 caused by the stimulation of LPS in RAW264.7 macrophages. Furthermore, asperlin induced heme oxygenase (HO)-1 expression through nuclear translocation of nuclear factor E2-related factor 2 and increased HO activity in RAW264.7 macrophages. The effects of asperlin on the LPS-induced expression of iNOS and COX-2 and production of NO, PGE₂, TNF-α, and IL-1β were partially reversed by a HO-1 inhibitor, tin protoporphyrin. These findings suggest that asperlin-induced HO-1 expression plays a role in the anti-inflammatory effects of asperlin in macrophages.
Collapse
Affiliation(s)
- Dong-Sung Lee
- Standardized Material Bank for New Botanical Drugs, College of Pharmacy, Wonkwang University, Iksan, Republic of Korea
| | | | | | | | | | | |
Collapse
|
34
|
Marrazzo G, Bellner L, Halilovic A, Li Volti G, Drago F, Dunn MW, Schwartzman ML. The role of neutrophils in corneal wound healing in HO-2 null mice. PLoS One 2011; 6:e21180. [PMID: 21695050 PMCID: PMC3117875 DOI: 10.1371/journal.pone.0021180] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Accepted: 05/22/2011] [Indexed: 01/25/2023] Open
Abstract
Our studies demonstrated that Heme oxygenase (HO), in particular, the constitutive HO-2, is critical for a self-resolving inflammatory and repair response in the cornea. Epithelial injury in HO-2 null mice leads to impaired wound closure and chronic inflammation in the cornea. This study was undertaken to examine the possible relationship between HO-2 and the recruitment of neutrophils following a corneal surface injury in wild type (WT) and HO-2 knockout (HO-2−/−) mice treated with Gr-1 monoclonal antibody to deplete peripheral neutrophils. Epithelial injury was performed by removing the entire corneal epithelium. Infiltration of inflammatory cell into the cornea in response to injury was higher in HO-2−/− than in WT. However, the rate of corneal wound closure following neutrophil depletion was markedly inhibited in both WT and HO-2−/− mice by 60% and 85%, respectively. Neutropenia induced HO-1 expression in WT but not in HO-2−/− mice. Moreover, endothelial cells lacking HO-2 expressed higher levels of the Midkine and VE-cadherin and displayed strong adhesion to neutrophils suggesting that perturbation in endothelial cell function caused by HO-2 depletion underlies the increased infiltration of neutrophils into the HO-2−/− cornea. Moreover, the fact that neutropenia worsened epithelial healing of the injured cornea in both WT and HO-2−/− mice suggest that cells other than neutrophils contribute to the exaggerated inflammation and impaired wound healing seen in the HO-2 null cornea.
Collapse
Affiliation(s)
- Giuseppina Marrazzo
- Department of Pharmacology and Ophthalmology, New York Medical College, Valhalla, New York, United States of America
- Department of Drug Sciences Section of Biochemistry, University of Catania, Catania, Italy
- * E-mail: (GM); (MLS)
| | - Lars Bellner
- Department of Pharmacology and Ophthalmology, New York Medical College, Valhalla, New York, United States of America
| | - Adna Halilovic
- Department of Pharmacology and Ophthalmology, New York Medical College, Valhalla, New York, United States of America
| | - Giovanni Li Volti
- Department of Drug Sciences Section of Biochemistry, University of Catania, Catania, Italy
| | - Filippo Drago
- Department of Experimental and Clinical Pharmacology, University of Catania, Catania, Italy
| | - Michael W. Dunn
- Department of Pharmacology and Ophthalmology, New York Medical College, Valhalla, New York, United States of America
| | - Michal Laniado Schwartzman
- Department of Pharmacology and Ophthalmology, New York Medical College, Valhalla, New York, United States of America
- * E-mail: (GM); (MLS)
| |
Collapse
|
35
|
Pontes-Arruda A, Martins LF, de Lima SM, Isola AM, Toledo D, Rezende E, Maia M, Magnan GB. Enteral nutrition with eicosapentaenoic acid, γ-linolenic acid and antioxidants in the early treatment of sepsis: results from a multicenter, prospective, randomized, double-blinded, controlled study: the INTERSEPT study. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2011; 15:R144. [PMID: 21658240 PMCID: PMC3219016 DOI: 10.1186/cc10267] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Revised: 04/26/2011] [Accepted: 06/09/2011] [Indexed: 12/28/2022]
Abstract
Introduction Enteral nutrition (EN) with eicosapentaenoic acid (EPA)/γ-linolenic acid (GLA) is recommended for mechanically ventilated patients with severe lung injury. EPA/GLA has anti-inflammatory benefits, as evidenced by its association with reduction in pulmonary inflammation, improvement in oxygenation and improved clinical outcomes in patients with severe forms of acute lung injury. This study was a prospective, multicenter, randomized, double-blinded, controlled trial designed to investigate whether EPA/GLA could have an effective role in the treatment of patients with early sepsis (systemic inflammatory response syndrome with confirmed or presumed infection and without any organ dysfunction) by reducing the progression of the disease to severe sepsis (sepsis associated with at least one organ failure) or septic shock (sepsis associated with hypotension despite adequate fluid resuscitation). Secondary outcomes included the development of individual organ failure, increased ICU and hospital length of stay, need for mechanical ventilation and 28-day all-cause mortality. Methods Randomization was concealed, and patients were allocated to receive, for seven days, either an EPA/GLA diet or an isocaloric, isonitrogenous control diet not enhanced with lipids. Patients were continuously tube-fed at a minimum of 75% of basal energy expenditure × 1.3. To evaluate the progression to severe sepsis and/or septic shock, daily screening for individual organ failure was performed. All clinical outcomes were recorded during a 28-day follow-up period. Results A total of 115 patients in the early stages of sepsis requiring EN were included, among whom 106 were considered evaluable. Intention-to-treat (ITT) analysis demonstrated that patients fed the EPA/GLA diet developed less severe sepsis and/or septic shock than patients fed the control diet (26.3% versus 50%, respectively; P = 0.0259), with similar results observed for the evaluable patients (26.4% versus 50.9% respectively; P = 0.0217). The ITT analysis demonstrated that patients in the study group developed cardiovascular failure (36.2% versus 21%, respectively; P = 0.0381) and respiratory failure (39.6% versus 24.6%, respectively; P = 0.0362) less often than the control group. Similarly, when considering only the evaluable patients, fewer patientsdeveloped cardiovascular failure (20.7% versus 37.7%, respectively; P = 0.03) and respiratory failure (26.4% versus 39.6%, respectively; P = 0.04). The percentage of patients fed the EPA/GLA diet requiring invasive mechanical ventilation was reduced compared with controls (ITT patients: 18.9% versus 33.9%, respectively; P = 0.394; evaluable patients: 17.5% versus 34.5%, respectively; P = 0.295). Patients nourished with the EPA/GLA diet remained in the ICU fewer days than the control population (ITT patients: 21.1 ICU-free days versus 14.7 ICU-free days, respectively; P < 0.0001; evaluable patients: 20.8 ICU-free days versus 14.3 ICU-free days, respectively; P < 0.0001) and fewer days at the hospital (ITT patients: 19.5 hospital-free days versus 10.3 hospital-free days, respectively; P < 0.0001; evaluable patients: 19.1 hospital-free days versus 10.2 hospital-free days, respectively; P < 0.001) (all numbers expressed as means). No significant differences in 28-day all-cause mortality were observed (ITT patients: 26.2% EPA/GLA diet versus 27.6% control diet, respectively; P = 0.72; evaluable: 26.4 EPA/GLA diet versus 30.18 control diet, respectively; P = 0.79). Conclusions These data suggest that EPA/GLA may play a beneficial role in the treatment of enterally fed patients in the early stages of sepsis without associated organ dysfunction by contributing to slowing the progression of sepsis-related organ dysfunction, especially with regard to cardiovascular and respiratory dysfunction. Trial Registration ClinicalTrials.gov: NCT00981877
Collapse
Affiliation(s)
- Alessandro Pontes-Arruda
- Department of Nutrition and Intensive Care, Fernandes Távora Hospital, Avenida Francisco Sá, 5445, Fortaleza, Ceará, 60,30-002, Brazil.
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Börgeson E, Docherty NG, Murphy M, Rodgers K, Ryan A, O'Sullivan TP, Guiry PJ, Goldschmeding R, Higgins DF, Godson C. Lipoxin A
4
and benzo‐lipoxin A
4
attenuate experimental renal fibrosis. FASEB J 2011; 25:2967-79. [DOI: 10.1096/fj.11-185017] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Emma Börgeson
- University College Dublin (UCD) Diabetes Research CentreUCD Conway InstituteSchool of Medicine and Medical SciencesDublinIreland
| | | | - Madeline Murphy
- University College Dublin (UCD) Diabetes Research CentreUCD Conway InstituteSchool of Medicine and Medical SciencesDublinIreland
| | - Karen Rodgers
- University College Dublin (UCD) Diabetes Research CentreUCD Conway InstituteSchool of Medicine and Medical SciencesDublinIreland
| | - Aidan Ryan
- University College Dublin (UCD) Diabetes Research CentreUCD Conway InstituteSchool of Medicine and Medical SciencesDublinIreland
| | - Tim P. O'Sullivan
- Department of PhysiologySchool of MedicineTrinity CollegeDublinIreland
| | - Patrick J. Guiry
- Department of PhysiologySchool of MedicineTrinity CollegeDublinIreland
| | - Roel Goldschmeding
- Department of PathologyUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Debra F. Higgins
- University College Dublin (UCD) Diabetes Research CentreUCD Conway InstituteSchool of Medicine and Medical SciencesDublinIreland
| | - Catherine Godson
- University College Dublin (UCD) Diabetes Research CentreUCD Conway InstituteSchool of Medicine and Medical SciencesDublinIreland
| |
Collapse
|
37
|
Hunter DA, Barr GA, Shivers KY, Amador N, Jenab S, Inturrisi C, Quinones-Jenab V. Interactions of estradiol and NSAIDS on carrageenan-induced hyperalgesia. Brain Res 2011; 1382:181-8. [PMID: 21281615 PMCID: PMC3068478 DOI: 10.1016/j.brainres.2011.01.075] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Revised: 01/20/2011] [Accepted: 01/22/2011] [Indexed: 11/28/2022]
Abstract
How exogenous estrogen affects inflammatory responses is poorly understood despite the large numbers of women receiving estrogen-alone hormone therapy. The aim of this study was to determine if estradiol alters injury- or inflammation-induced nociceptive responses after carrageenan administration in females and whether its effects are mediated through cyclo-oxygenase (COX) and prostaglandins (PG). To this end, paw withdrawal latencies and serum levels of PGE2 and PGD2 were measured in rats treated with estradiol (0, 10, 20, and 30%) and/or SC560 (COX-1 inhibitor) or NS398 (COX-2 inhibitor) after intraplantar carrageenan administration. Estradiol significantly increased withdrawal latencies before (baseline condition) and after carrageenan administration to one hindpaw. NS398 was anti-nociceptive only in carrageenan treated animals. SC560 increased withdrawal latencies in both paws at 1 and 5hours after carrageenan administration. Co-administration of estradiol and NS398, but not SC560, was additive except for a prolonged anti-nociceptive effects of estradiol combined with NS398. The anti-nociceptive effect extended beyond that observed with either drug or estradiol alone at the 5-hour time point. Estradiol had no significant effect on PGE2 serum levels, but both COX antagonists decreased them. Although neither estradiol nor the COX inhibitors alone had an effect on PGD2 serum levels, co-administration of NS398 and estradiol significantly elevated PGD2 levels. Taken together, our results suggest that estradiol is anti-nociceptive in the thermal test and reduces carrageenan-induced hyperalgesia. These effects are minimally altered through PG-mediated mechanisms.
Collapse
Affiliation(s)
- Deirtra A. Hunter
- Hunter College and The Graduate Center, The City University of New York, New York, 10065
- New York State Psychiatric Institute, New York, New York, 10032
| | - Gordon A. Barr
- New York State Psychiatric Institute, New York, New York, 10032
- Children Hospital of Philadelphia, Philadelphia, Pennsylvania 19104
| | - Kai-Yvonne Shivers
- Hunter College and The Graduate Center, The City University of New York, New York, 10065
| | - Nicole Amador
- Hunter College and The Graduate Center, The City University of New York, New York, 10065
| | - Shirzad Jenab
- Hunter College and The Graduate Center, The City University of New York, New York, 10065
| | - Charles Inturrisi
- Weill Cornell Medical College, Department of Pharmacology, New York, New York 10065
| | - Vanya Quinones-Jenab
- Hunter College and The Graduate Center, The City University of New York, New York, 10065
| |
Collapse
|
38
|
Secretory phospholipase A₂-mediated progression of hepatotoxicity initiated by acetaminophen is exacerbated in the absence of hepatic COX-2. Toxicol Appl Pharmacol 2011; 251:173-80. [PMID: 21277885 DOI: 10.1016/j.taap.2011.01.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Revised: 01/18/2011] [Accepted: 01/19/2011] [Indexed: 02/05/2023]
Abstract
We have previously reported that among the other death proteins, hepatic secretory phospholipase A₂ (sPLA₂) is a leading mediator of progression of liver injury initiated by CCl₄ in rats. The aim of our present study was to test the hypothesis that increased hepatic sPLA₂ released after acetaminophen (APAP) challenge mediates progression of liver injury in wild type (WT) and COX-2 knockout (KO) mice. COX-2 WT and KO mice were administered a normally non lethal dose (400 mg/kg) of acetaminophen. The COX-2 KO mice suffered 60% mortality compared to 100% survival of the WT mice, suggesting higher susceptibility of COX-2 KO mice to sPLA₂-mediated progression of acetaminophen hepatotoxicity. Liver injury was significantly higher at later time points in the KO mice compared to the WT mice indicating that the abatement of progression of injury requires the presence of COX-2. This difference in hepatotoxicity was not due to increased bioactivation of acetaminophen as indicated by unchanged cyp2E1 protein and covalently bound ¹⁴C-APAP in the livers of KO mice. Hepatic sPLA₂ activity and plasma TNF-α were significantly higher after APAP administration in the KO mice. This was accompanied by a corresponding fall in hepatic PGE₂ and lower compensatory liver regeneration and repair (³H-thymidine incorporation) in the KO mice. These results suggest that hindered compensatory tissue repair and poor resolution of inflammation for want of beneficial prostaglandins render the liver very vulnerable to sPLA₂-mediated progression of liver injury. These findings are consistent with the destructive role of sPLA₂ in the progression and expansion of tissue injury as a result of continued hydrolytic breakdown of plasma membrane phospholipids of perinecrotic hepatocytes unless mitigated by sufficient co-induction of COX-2.
Collapse
|
39
|
Bannenberg G, Serhan CN. Specialized pro-resolving lipid mediators in the inflammatory response: An update. BIOCHIMICA ET BIOPHYSICA ACTA 2010; 1801:1260-73. [PMID: 20708099 PMCID: PMC2994245 DOI: 10.1016/j.bbalip.2010.08.002] [Citation(s) in RCA: 325] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Revised: 07/23/2010] [Accepted: 08/02/2010] [Indexed: 12/25/2022]
Abstract
A new genus of specialized pro-resolving mediators (SPM) which include several families of distinct local mediators (lipoxins, resolvins, protectins, and maresins) are actively involved in the clearance and regulation of inflammatory exudates to permit restoration of tissue homeostasis. Classic lipid mediators that are temporally regulated are formed from arachidonic acid, and novel local mediators were uncovered that are biosynthesized from ω-3 poly-unsaturated fatty acids, such as eicosapentaenoic acid, docosapentaenoic acid and docosahexaenoic acid. The biosynthetic pathways for resolvins are constituted by fatty acid lipoxygenases and cyclooxygenase-2 via transcellular interactions established by innate immune effector cells which migrate from the vasculature to inflamed tissue sites. SPM provide local control over the execution of an inflammatory response towards resolution, and include recently recognized actions of SPM such as tissue protection and host defense. The structural families of the SPM do not resemble classic eicosanoids (PG or LT) and are novel structures that function uniquely via pro-resolving cellular and molecular targets. The extravasation of inflammatory cells expressing SPM biosynthetic routes are matched by the temporal provision of essential fatty acids from circulation needed as substrate for the formation of SPM. The present review provides an update and overview of the biosynthetic pathways and actions of SPM, and examines resolution as an integrated component of the inflammatory response and its return to homeostasis via biochemically active resolution mechanisms.
Collapse
Affiliation(s)
- Gerard Bannenberg
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología/CSIC, Madrid, Spain.
| | | |
Collapse
|
40
|
Maia Filho ALM, Villaverde AB, Munin E, Aimbire F, Albertini R. Comparative study of the topical application of Aloe vera gel, therapeutic ultrasound and phonophoresis on the tissue repair in collagenase-induced rat tendinitis. ULTRASOUND IN MEDICINE & BIOLOGY 2010; 36:1682-1690. [PMID: 20800944 DOI: 10.1016/j.ultrasmedbio.2010.06.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2009] [Revised: 05/06/2010] [Accepted: 06/15/2010] [Indexed: 05/29/2023]
Abstract
The aim of our study was to compare topical use of Aloe vera gel, pulsed mode ultrasound (US) and Aloe vera phonophoresis on rat paw with collagenase-induced tendinitis. Edema size, tensile tendon strength, tendon elasticity, number of inflammatory cells and tissue histology were studied at 7 and 14 days after tendinitis induction. Pulse mode US parameters were: 1 MHz frequency, 100 Hz repetition rate, 10% duty cycle, and 0.5 W/cm(2) intensity, applied for 2 min each session. A 0.5 mL of Aloe vera gel at 2% concentration was applied for 2 min per session, topically and by phonophoresis. Topical application of Aloe vera gel did not show any statistically significant improvement in the inflammatory process, whereas phonophoresis enhanced the gel action reducing edema and number of inflammatory cells, promoting the rearrangement of collagen fibers and promoting also the recovery of the tensile strength and elasticity of the inflamed tendon to recover their normal pre-injury status. Results seem to indicate that Aloe vera phonophoresis is a promising technique for tendinitis treatment, without the adverse effect provoked by systemic anti-inflammatory drugs.
Collapse
|
41
|
Gronert K. Resolution, the grail for healthy ocular inflammation. Exp Eye Res 2010; 91:478-85. [PMID: 20637194 DOI: 10.1016/j.exer.2010.07.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Revised: 07/03/2010] [Accepted: 07/07/2010] [Indexed: 01/06/2023]
Abstract
Acute inflammation is a frequent, essential and beneficial response to maintain normal tissue function. PMN are the primary effector cells of acute inflammatory responses and their timely resolution by macrophages from an injured, stressed or infected tissues are required for the successful execution of this routine tissue response. Dysregulation of this fundamental program is a major factor in the global disease burden and contributes to many ocular diseases. Counter-regulatory signals are critical to the controlled activation of innate and adaptive immune responses in the eye and recent studies have identified two circuits in the cornea, uvea and/or retina, namely 15-lipoxygenase and heme-oxygenase, which control inflammation, promote resolution of PMN and afford neuroprotection. The role of these counter-regulator and pro-resolution circuits may provide insight into ocular inflammatory diseases and opportunities to restore stressed ocular tissue to a pre-inflammatory state, namely homeostasis, rather than limiting therapeutic options to palliative inhibition of pro-inflammatory circuits.
Collapse
Affiliation(s)
- Karsten Gronert
- Vision Science Program, School of Optometry, University of California, 594 Minor Hall, MC 2020, Berkeley, CA 94720, USA.
| |
Collapse
|
42
|
Yu AL, Lu CY, Wang TS, Tsai CW, Liu KL, Cheng YP, Chang HC, Lii CK, Chen HW. Induction of heme oxygenase 1 and inhibition of tumor necrosis factor alpha-induced intercellular adhesion molecule expression by andrographolide in EA.hy926 cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2010; 58:7641-7648. [PMID: 20536138 DOI: 10.1021/jf101353c] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Andrographolide is the most abundant diterpene lactone in Andrographis paniculata, which is widely used as a traditional medicine in Southeast Asia. Heme oxygenase 1 (HO-1) is an antioxidant enzyme encoded by a stress-responsive gene. HO-1 has been reported to inhibit the expression of adhesion molecules in vascular endothelial cells (EC). Intercellular adhesion molecule (ICAM-1) is an inflammatory biomarker that is involved in the adhesion of monocytes to EC. In this study, we investigated the effect of andrographolide on the expression of ICAM-1 induced by tumor necrosis factor alpha (TNF-alpha) in EA.hy926 cells and the possible mechanisms involved. Andrographolide (2.5-7.5 microM) inhibited the TNF-alpha-induced expression of ICAM-1 in a dose-dependent manner and resulted in a decrease in HL-60 cell adhesion to EA.hy926 cells (p < 0.05). In parallel, andrographolide significantly induced the expression of HO-1 in a concentration-dependent fashion (p < 0.05). Andrographolide increased the rate of nuclear translocation of nuclear factor erythroid 2-related 2 (Nrf2) and induced antioxidant response element-luciferase reporter activity. Transfection with HO-1-specific small interfering RNA knocked down HO-1 expression, and the inhibition of expression of ICAM-1 by andrographolide was significantly reversed. These results suggest that stimulation of Nrf2-dependent HO-1 expression is involved in the suppression of TNF-alpha-induced ICAM-1 expression exerted by andrographolide.
Collapse
Affiliation(s)
- Ai-Lin Yu
- Department of Nutrition, China Medical University, Taichung, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Tabas I. Macrophage death and defective inflammation resolution in atherosclerosis. Nat Rev Immunol 2009; 10:36-46. [PMID: 19960040 DOI: 10.1038/nri2675] [Citation(s) in RCA: 846] [Impact Index Per Article: 52.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A key event in atherosclerosis is a maladaptive inflammatory response to subendothelial lipoproteins. A crucial aspect of this response is a failure to resolve inflammation, which normally involves the suppression of inflammatory cell influx, effective clearance of apoptotic cells and promotion of inflammatory cell egress. Defects in these processes promote the progression of atherosclerotic lesions into dangerous plaques, which can trigger atherothrombotic vascular disease, the leading cause of death in industrialized societies. In this Review I provide an overview of these concepts, with a focus on macrophage death and defective apoptotic cell clearance, and discuss new therapeutic strategies designed to boost inflammation resolution in atherosclerosis.
Collapse
Affiliation(s)
- Ira Tabas
- Department of Medicine, Physiology and Cellular Biophysics, Columbia University, New York, New York 10032, USA.
| |
Collapse
|
44
|
Loss of Kupffer cells in diet-induced obesity is associated with increased hepatic steatosis, STAT3 signaling, and further decreases in insulin signaling. Biochim Biophys Acta Mol Basis Dis 2009; 1792:1062-72. [PMID: 19699298 DOI: 10.1016/j.bbadis.2009.08.007] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2008] [Revised: 08/11/2009] [Accepted: 08/13/2009] [Indexed: 01/07/2023]
Abstract
While adipose tissue-associated macrophages contribute to development of chronic inflammation and insulin resistance of obesity, little is known about the role of hepatic Kupffer cells in this environment. Here we address the impact of Kupffer cell ablation using clodronate-encapsulated liposome depletion in a diet-induced obese (DIO) and insulin resistant mouse model. Hepatic expression of macrophage markers measured by realtime RT-PCR remained unaltered in DIO mice despite characteristic expansion of adipose tissue-associated macrophages. DIO mouse livers displayed increased expression of alternative activation markers but unaltered proinflammatory cytokine expression when compared to lean mice. Kupffer cell ablation reduced hepatic anti-inflammatory cytokine IL-10 mRNA expression in lean and DIO mice by 95% and 84%, respectively. Despite decreased hepatic IL-6 gene expression after ablation in lean and DIO mice, hepatic STAT3 phosphorylation, Socs3 and acute phase protein mRNA expression increased. Kupffer cell ablation in DIO mice resulted in additional hepatic triglyceride accumulation and a 30-40% reduction in hepatic insulin receptor autophosphorylation and Akt activation. Implicating systemic loss of IL-10, high-fat-fed IL-10 knockout mice also displayed increased hepatic STAT3 signaling and hepatic triglyceride accumulation. Insulin signaling was not altered, however. In conclusion, Kupffer cells are a major source of hepatic IL-10 expression, the loss of which is associated with increased STAT3-dependent signaling and steatosis. One or more additional factors appear to be required, however, for the Kupffer cell-dependent protective effect on insulin receptor signaling in DIO mice.
Collapse
|
45
|
Therapeutic effects of heme oxygenase-1 on psoriasiform skin lesions in guinea pigs. Arch Dermatol Res 2009; 301:459-66. [DOI: 10.1007/s00403-009-0956-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2009] [Revised: 04/09/2009] [Accepted: 04/19/2009] [Indexed: 12/22/2022]
|
46
|
Pae HO, Chung HT. Heme oxygenase-1: its therapeutic roles in inflammatory diseases. Immune Netw 2009; 9:12-9. [PMID: 20107533 PMCID: PMC2803295 DOI: 10.4110/in.2009.9.1.12] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2009] [Accepted: 01/26/2009] [Indexed: 01/05/2023] Open
Abstract
Heme oxygenase (HO)-1 is an inducible enzyme that catalyzes the first and rate-limiting step in the oxidative degradation of free heme into ferrous iron, carbon monoxide (CO), and biliverdin (BV), the latter being subsequently converted into bilirubin (BR). HO-1, once expressed during inflammation, forms high concentrations of its enzymatic by-products that can influence various biological events, and this expression is proven to be associated with the resolution of inflammation. The degradation of heme by HO-1 itself, the signaling actions of CO, the antioxidant properties of BV/BR, and the sequestration of ferrous iron by ferritin all concertedly contribute to the anti-inflammatory effects of HO-1. This review focuses on the anti-inflammatory mechanisms of HO-1 actions and its roles in inflammatory diseases.
Collapse
Affiliation(s)
- Hyun-Ock Pae
- Department of Microbiology and Immunology, Wonkwang University School of Medicine, Iksan, Korea
| | | |
Collapse
|
47
|
Cudratricusxanthone A from Cudrania tricuspidata suppresses pro-inflammatory mediators through expression of anti-inflammatory heme oxygenase-1 in RAW264.7 macrophages. Int Immunopharmacol 2009; 9:241-6. [DOI: 10.1016/j.intimp.2008.11.008] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2008] [Revised: 11/14/2008] [Accepted: 11/20/2008] [Indexed: 12/17/2022]
|
48
|
KING JN, DAWSON J, ESSER RE, FUJIMOTO R, KIMBLE EF, MANIARA W, MARSHALL PJ, O’BYRNE L, QUADROS E, TOUTAIN PL, LEES P. Preclinical pharmacology of robenacoxib: a novel selective inhibitor of cyclooxygenase-2. J Vet Pharmacol Ther 2009; 32:1-17. [DOI: 10.1111/j.1365-2885.2008.00962.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
49
|
Enteral Nutrition with Anti-inflammatory Lipids in ALI/ARDS. Intensive Care Med 2009. [DOI: 10.1007/978-0-387-92278-2_64] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
50
|
Abstract
Extracellular adenosine is produced in a coordinated manner from cells following cellular challenge or tissue injury. Once produced, it serves as an autocrine- and paracrine-signaling molecule through its interactions with seven-membrane-spanning G-protein-coupled adenosine receptors. These signaling pathways have widespread physiological and pathophysiological functions. Immune cells express adenosine receptors and respond to adenosine or adenosine agonists in diverse manners. Extensive in vitro and in vivo studies have identified potent anti-inflammatory functions for all of the adenosine receptors on many different inflammatory cells and in various inflammatory disease processes. In addition, specific proinflammatory functions have also been ascribed to adenosine receptor activation. The potent effects of adenosine signaling on the regulation of inflammation suggest that targeting specific adenosine receptor activation or inactivation using selective agonists and antagonists could have important therapeutic implications in numerous diseases. This review is designed to summarize the current status of adenosine receptor signaling in various inflammatory cells and in models of inflammation, with an emphasis on the advancement of adenosine-based therapeutics to treat inflammatory disorders.
Collapse
Affiliation(s)
- Michael R Blackburn
- Department of Biochemistry and Molecular Biology, The University of Texas-Houston Medical School, Houston, TX 77030, USA.
| | | | | | | |
Collapse
|