1
|
Ghasempouri SK, Askari Z, Mohammadi H. Ameliorative effect of diazepam against ethanol-induced mitochondrial disruption in brains of the mice. Toxicol Rep 2023; 11:405-412. [PMID: 37955036 PMCID: PMC10632119 DOI: 10.1016/j.toxrep.2023.10.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 10/03/2023] [Accepted: 10/23/2023] [Indexed: 11/14/2023] Open
Abstract
Brain oxidative damage and neurodegeneration by ethanol (ETH) are considered as important factors that triggered by oxidative stress. Recently, the abuse of diazepam (DZM) has increased by alcoholism-addicted patients. The present study evaluated the effects of combination treatment of ETH with DZM on oxidative damage induced in brain mitochondria of the mice. Only ETH (0.3, 0.6, and 2.5 g / kg) and ETH+ DZM (2.5 mg / kg) were administered intraperitoneally (ip) to the mice. Pathological changes and oxidative stress biomarkers including ROS, lipid peroxidation, carbonyl protein, mitochondrial function, and glutathione content were evaluated in brain mitochondria after 42 days. Results indicated that co-treatment of DZM and ETH significantly reduced mitochondrial toxicity, oxidative damage, pathological changes and increased level of glutathione. Subchronic ETH administration induced brain oxidative damage, mitochondrial disruption, and serious damage to the brain cells. Whereas, combination treatment improved oxidative damage, mitochondrial function, and pathological changes in brain cells after intoxication by ETH. These findings suggest antioxidant effect of DZM in combination with ETH and can be considered in reducing oxidative stress and mitochondrial damage attenuation in the brain. Combination therapy may be a better therapeutic candidate for prevention of brain oxidative damage induced by ETH.
Collapse
Affiliation(s)
- Seyed Khosro Ghasempouri
- Department of Emergency Medicine, School of Medicine, Antimicrobial Resistance Research Center, Ghaem Shahr Razi Hospital, Mazandaran University of Medical Sciences, Sari, Iran
| | - Zahra Askari
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Hamidreza Mohammadi
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
- Pharmacutical Sciences Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
2
|
Shih CH, Chen JK, Kuo LW, Cho KH, Hsiao TC, Lin ZW, Lin YS, Kang JH, Lo YC, Chuang KJ, Cheng TJ, Chuang HC. Chronic pulmonary exposure to traffic-related fine particulate matter causes brain impairment in adult rats. Part Fibre Toxicol 2018; 15:44. [PMID: 30413208 PMCID: PMC6234801 DOI: 10.1186/s12989-018-0281-1 10.1186/s12989-018-0281-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Effects of air pollution on neurotoxicity and behavioral alterations have been reported. The objective of this study was to investigate the pathophysiology caused by particulate matter (PM) in the brain. We examined the effects of traffic-related particulate matter with an aerodynamic diameter of < 1 μm (PM1), high-efficiency particulate air (HEPA)-filtered air, and clean air on the brain structure, behavioral changes, brainwaves, and bioreactivity of the brain (cortex, cerebellum, and hippocampus), olfactory bulb, and serum after 3 and 6 months of whole-body exposure in 6-month-old Sprague Dawley rats. RESULTS The rats were exposed to 16.3 ± 8.2 (4.7~ 68.8) μg/m3 of PM1 during the study period. An MRI analysis showed that whole-brain and hippocampal volumes increased with 3 and 6 months of PM1 exposure. A short-term memory deficiency occurred with 3 months of exposure to PM1 as determined by a novel object recognition (NOR) task, but there were no significant changes in motor functions. There were no changes in frequency bands or multiscale entropy of brainwaves. Exposure to 3 months of PM1 increased 8-isoporstance in the cortex, cerebellum, and hippocampus as well as hippocampal inflammation (interleukin (IL)-6), but not in the olfactory bulb. Systemic CCL11 (at 3 and 6 months) and IL-4 (at 6 months) increased after PM1 exposure. Light chain 3 (LC3) expression increased in the hippocampus after 6 months of exposure. Spongiosis and neuronal shrinkage were observed in the cortex, cerebellum, and hippocampus (neuronal shrinkage) after exposure to air pollution. Additionally, microabscesses were observed in the cortex after 6 months of PM1 exposure. CONCLUSIONS Our study first observed cerebral edema and brain impairment in adult rats after chronic exposure to traffic-related air pollution.
Collapse
Affiliation(s)
- Chi-Hsiang Shih
- 0000 0000 9337 0481grid.412896.0School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Jen-Kun Chen
- 0000000406229172grid.59784.37Institute of Biomedical Engineering & Nanomedicine, National Health Research Institutes, Miaoli, Taiwan
| | - Li-Wei Kuo
- 0000000406229172grid.59784.37Institute of Biomedical Engineering & Nanomedicine, National Health Research Institutes, Miaoli, Taiwan
| | - Kuan-Hung Cho
- 0000000406229172grid.59784.37Institute of Biomedical Engineering & Nanomedicine, National Health Research Institutes, Miaoli, Taiwan
| | - Ta-Chih Hsiao
- 0000 0004 0546 0241grid.19188.39Graduate Institute of Environmental Engineering, National Taiwan University, Taipei, Taiwan
| | - Zhe-Wei Lin
- 0000 0000 9337 0481grid.412896.0School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yi-Syuan Lin
- 0000 0000 9337 0481grid.412896.0School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Jiunn-Horng Kang
- 0000 0004 0639 0994grid.412897.1Department of Physical Medicine and Rehabilitation, Taipei Medical University Hospital, Taipei, Taiwan ,0000 0000 9337 0481grid.412896.0Department of Physical Medicine and Rehabilitation, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yu-Chun Lo
- 0000 0000 9337 0481grid.412896.0The Ph.D Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Kai-Jen Chuang
- 0000 0000 9337 0481grid.412896.0School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan ,0000 0000 9337 0481grid.412896.0Department of Public Health, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Tsun-Jen Cheng
- 0000 0004 0546 0241grid.19188.39Institute of Occupational Medicine and Industrial Hygiene, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Hsiao-Chi Chuang
- 0000 0000 9337 0481grid.412896.0School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan ,0000 0000 9337 0481grid.412896.0School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan ,0000 0000 9337 0481grid.412896.0Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| |
Collapse
|
3
|
Shih CH, Chen JK, Kuo LW, Cho KH, Hsiao TC, Lin ZW, Lin YS, Kang JH, Lo YC, Chuang KJ, Cheng TJ, Chuang HC. Chronic pulmonary exposure to traffic-related fine particulate matter causes brain impairment in adult rats. Part Fibre Toxicol 2018; 15:44. [PMID: 30413208 PMCID: PMC6234801 DOI: 10.1186/s12989-018-0281-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 10/24/2018] [Indexed: 11/30/2022] Open
Abstract
Background Effects of air pollution on neurotoxicity and behavioral alterations have been reported. The objective of this study was to investigate the pathophysiology caused by particulate matter (PM) in the brain. We examined the effects of traffic-related particulate matter with an aerodynamic diameter of < 1 μm (PM1), high-efficiency particulate air (HEPA)-filtered air, and clean air on the brain structure, behavioral changes, brainwaves, and bioreactivity of the brain (cortex, cerebellum, and hippocampus), olfactory bulb, and serum after 3 and 6 months of whole-body exposure in 6-month-old Sprague Dawley rats. Results The rats were exposed to 16.3 ± 8.2 (4.7~ 68.8) μg/m3 of PM1 during the study period. An MRI analysis showed that whole-brain and hippocampal volumes increased with 3 and 6 months of PM1 exposure. A short-term memory deficiency occurred with 3 months of exposure to PM1 as determined by a novel object recognition (NOR) task, but there were no significant changes in motor functions. There were no changes in frequency bands or multiscale entropy of brainwaves. Exposure to 3 months of PM1 increased 8-isoporstance in the cortex, cerebellum, and hippocampus as well as hippocampal inflammation (interleukin (IL)-6), but not in the olfactory bulb. Systemic CCL11 (at 3 and 6 months) and IL-4 (at 6 months) increased after PM1 exposure. Light chain 3 (LC3) expression increased in the hippocampus after 6 months of exposure. Spongiosis and neuronal shrinkage were observed in the cortex, cerebellum, and hippocampus (neuronal shrinkage) after exposure to air pollution. Additionally, microabscesses were observed in the cortex after 6 months of PM1 exposure. Conclusions Our study first observed cerebral edema and brain impairment in adult rats after chronic exposure to traffic-related air pollution. Electronic supplementary material The online version of this article (10.1186/s12989-018-0281-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chi-Hsiang Shih
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Jen-Kun Chen
- Institute of Biomedical Engineering & Nanomedicine, National Health Research Institutes, Miaoli, Taiwan
| | - Li-Wei Kuo
- Institute of Biomedical Engineering & Nanomedicine, National Health Research Institutes, Miaoli, Taiwan
| | - Kuan-Hung Cho
- Institute of Biomedical Engineering & Nanomedicine, National Health Research Institutes, Miaoli, Taiwan
| | - Ta-Chih Hsiao
- Graduate Institute of Environmental Engineering, National Taiwan University, Taipei, Taiwan
| | - Zhe-Wei Lin
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yi-Syuan Lin
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Jiunn-Horng Kang
- Department of Physical Medicine and Rehabilitation, Taipei Medical University Hospital, Taipei, Taiwan.,Department of Physical Medicine and Rehabilitation, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yu-Chun Lo
- The Ph.D Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Kai-Jen Chuang
- School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan.,Department of Public Health, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Tsun-Jen Cheng
- Institute of Occupational Medicine and Industrial Hygiene, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Hsiao-Chi Chuang
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan. .,School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan. .,Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.
| |
Collapse
|
4
|
Cyclin-dependent kinase 5-mediated phosphorylation of chloride intracellular channel 4 promotes oxidative stress-induced neuronal death. Cell Death Dis 2018; 9:951. [PMID: 30237421 PMCID: PMC6147799 DOI: 10.1038/s41419-018-0983-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 08/06/2018] [Accepted: 08/20/2018] [Indexed: 01/06/2023]
Abstract
Oxidative stress can cause apoptosis in neurons and may result in neurodegenerative diseases. However, the signaling mechanisms leading to oxidative stress–induced neuronal apoptosis are not fully understood. Oxidative stress stimulates aberrant activation of cyclin-dependent kinase 5 (CDK5), thought to promote neuronal apoptosis by phosphorylating many cell death-related substrates. Here, using protein pulldown methods, immunofluorescence experiments and in vitro kinase assays, we identified chloride intracellular channel 4 (CLIC4), the expression of which increases during neuronal apoptosis, as a CDK5 substrate. We found that activated CDK5 phosphorylated serine 108 in CLIC4, increasing CLIC4 protein stability, and accumulation. Pharmacological inhibition or shRNA-mediated silencing of CDK5 decreased CLIC4 levels in neurons. Moreover, CLIC4 overexpression led to neuronal apoptosis, whereas knockdown or pharmacological inhibition of CLIC4 attenuated H2O2-induced neuronal apoptosis. These results implied that CLIC4, by acting as a substrate of CDK5, mediated neuronal apoptosis induced by aberrant CDK5 activation. Targeting CLIC4 in neurons may therefore provide a therapeutic approach for managing progressive neurodegenerative diseases that arise from neuronal apoptosis.
Collapse
|
5
|
Wang H, Wang X, Li Y, Yu H, Wang C, Feng C, Xu G, Chen J, You J, Wang P, Wu X, Zhao R, Zhang G. Chronic ethanol exposure induces SK-N-SH cell apoptosis by increasing N-methyl-D-aspartic acid receptor expression and intracellular calcium. Exp Ther Med 2018; 15:3791-3800. [PMID: 29581737 PMCID: PMC5863573 DOI: 10.3892/etm.2018.5902] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 01/12/2018] [Indexed: 01/26/2023] Open
Abstract
It has been identified that chronic ethanol exposure damages the nervous system, particularly neurons. There is scientific evidence suggesting that neuronal loss caused by chronic ethanol exposure has an association with neuron apoptosis and intracellular calcium oscillation is one of the primary inducers of apoptosis. Therefore, the present study aimed to investigate the inductive effects of intracellular calcium oscillation on apoptosis in SK-N-SH human neuroblastoma cells and the protective effects of the N-methyl-D-aspartic acid receptor (NMDAR) antagonist, memantine, on SK-N-SH cell apoptosis caused by chronic ethanol exposure. SK-N-SH cells were treated with 100 mM ethanol and memantine (4 µM) for 2 days. Protein expression of NR1 was downregulated by RNA interference (RNAi). Apoptosis was detected by Annexin V/propidium iodide (PI) double-staining and flow cytometry and cell viability was detected using an MTS kit. Fluorescence dual wavelength spectrophotometry was used to determine the intracellular calcium concentration and the levels of NR1 and caspase-3 were detected using western blotting. NR1 mRNA levels were also detected using qPCR. It was found that chronic ethanol exposure reduced neuronal cell viability and caused apoptosis of SK-N-SH cells, and the extent of damage in SK-N-SH cells was associated with ethanol exposure concentration and time. In addition, chronic ethanol exposure increased the concentration of intracellular calcium in SK-N-SH cells by inducing the expression of NMDAR, resulting in apoptosis, and memantine treatment reduced ethanol-induced cell apoptosis. The results of the present study indicate that the application of memantine may provide a novel strategy for the treatment of alcoholic dementia.
Collapse
Affiliation(s)
- Hongbo Wang
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Xiaolong Wang
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Yan Li
- No.1 English Department, School of Fundamental Sciences, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Hao Yu
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Changliang Wang
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Chunmei Feng
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Guohui Xu
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Jiajun Chen
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Jiabin You
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Pengfei Wang
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Xu Wu
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Rui Zhao
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Guohua Zhang
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, Liaoning 110122, P.R. China
| |
Collapse
|
6
|
Rachdaoui N, Li L, Willard B, Kasumov T, Previs S, Sarkar D. Turnover of histones and histone variants in postnatal rat brain: effects of alcohol exposure. Clin Epigenetics 2017; 9:117. [PMID: 29075360 PMCID: PMC5654083 DOI: 10.1186/s13148-017-0416-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Accepted: 10/04/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Alcohol consumption during pregnancy is a significant public health problem and can result in a continuum of adverse outcomes to the fetus known as fetal alcohol spectrum disorders (FASD). Subjects with FASD show significant neurological deficits, ranging from microencephaly, neurobehavioral, and mental health problems to poor social adjustment and stress tolerance. Neurons are particularly sensitive to alcohol exposure. The neurotoxic action of alcohol, i.e., through ROS production, induces DNA damage and neuronal cell death by apoptosis. In addition, epigenetics, including DNA methylation, histone posttranslational modifications (PTMs), and non-coding RNA, play an important role in the neuropathology of FASD. However, little is known about the temporal dynamics and kinetics of histones and their PTMs in FASD. RESULTS We examined the effects of postnatal alcohol exposure (PAE), an animal model of human third-trimester equivalent, on the kinetics of various histone proteins in two distinct brain regions, the frontal cortex, and the hypothalamus, using in vivo 2H2O-labeling combined with mass spectrometry-based proteomics. We show that histones have long half-lives that are in the order of days. We also show that H3.3 and H2Az histone variants have faster turnovers than canonical histones and that acetylated histones, in general, have a faster turnover than unmodified and methylated histones. Our work is the first to show that PAE induces a differential reduction in turnover rates of histones in both brain regions studied. These alterations in histone turnover were associated with increased DNA damage and decreased cell proliferation in postnatal rat brain. CONCLUSION Alterations in histone turnover might interfere with histone deposition and chromatin stability, resulting in deregulated cell-specific gene expression and therefore contribute to the development of the neurological disorders associated with FASD. Using in vivo 2H2O-labeling and mass spectrometry-based proteomics might help in the understanding of histone turnover following alcohol exposure and could be of great importance in enabling researchers to identify novel targets and/or biomarkers for the prevention and management of fetal alcohol spectrum disorders.
Collapse
Affiliation(s)
- Nadia Rachdaoui
- Department of Animal Sciences, Rutgers Endocrine Research Program, Rutgers, the State University of New Jersey, 67 Poultry Farm Lane, New Brunswick, NJ 08901 USA
| | - Ling Li
- Department of Research Core Services, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44106 USA
| | - Belinda Willard
- Department of Research Core Services, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44106 USA
| | - Takhar Kasumov
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272 USA
| | - Stephen Previs
- Cardiometabolic Disease, Merck & Co., Inc, Kenilworth, NJ USA
| | - Dipak Sarkar
- Department of Animal Sciences, Rutgers Endocrine Research Program, Rutgers, the State University of New Jersey, 67 Poultry Farm Lane, New Brunswick, NJ 08901 USA
| |
Collapse
|
7
|
Yang JL, Chen WY, Chen SD. The Emerging Role of GLP-1 Receptors in DNA Repair: Implications in Neurological Disorders. Int J Mol Sci 2017; 18:ijms18091861. [PMID: 28846606 PMCID: PMC5618510 DOI: 10.3390/ijms18091861] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 08/19/2017] [Accepted: 08/23/2017] [Indexed: 12/16/2022] Open
Abstract
Glucagon-like peptide-1 (GLP-1) is originally found as a metabolic hormone (incretin) that is able to regulate blood-glucose levels via promoting synthesis and secretion of insulin. GLP-1 and many analogues are approved for treatment of type II diabetes. Accumulating results imply that GLP-1 performs multiple functions in various tissues and organs beyond regulation of blood-glucose. The neuroprotective function of GLP-1 has been extensively explored during the past two decades. Three of our previous studies have shown that apurinic/apyrimidinic endonuclease 1 (APE1) is the only protein of the base excision repair (BER) pathway able to be regulated by oxidative stress or exogenous stimulations in rat primary cortical neurons. In this article, we review the role of APE1 in neurodegenerative diseases and its relationship to neuroprotective mechanisms of the activated GLP-1 receptor (GLP-1R) in neurodegenerative disorders. The purpose of this article is to provide new insight, from the aspect of DNA damage and repair, for studying potential treatments in neurodegenerative diseases.
Collapse
Affiliation(s)
- Jenq-Lin Yang
- Institute for Translation Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, 123 Dapi Road, Kaohsiung 83301, Taiwan.
| | - Wei-Yu Chen
- Institute for Translation Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, 123 Dapi Road, Kaohsiung 83301, Taiwan.
| | - Shang-Der Chen
- Institute for Translation Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, 123 Dapi Road, Kaohsiung 83301, Taiwan.
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, 123 Dapi Road, Kaohsiung 83301, Taiwan.
- College of Medicine, Chang Gung University, 259 Wenhua 1st Road, Taoyuan 33302, Taiwan.
| |
Collapse
|
8
|
Can A, Castro VM, Ozdemir YH, Dagen S, Dligach D, Finan S, Yu S, Gainer V, Shadick NA, Savova G, Murphy S, Cai T, Weiss ST, Du R. Alcohol Consumption and Aneurysmal Subarachnoid Hemorrhage. Transl Stroke Res 2017; 9:13-19. [PMID: 28752411 DOI: 10.1007/s12975-017-0557-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 07/18/2017] [Accepted: 07/19/2017] [Indexed: 12/11/2022]
Abstract
Alcohol consumption may be a modifiable risk factor for rupture of intracranial aneurysms. Our aim is to evaluate the association between ruptured aneurysms and alcohol consumption, intensity, and cessation. The medical records of 4701 patients with 6411 radiographically confirmed intracranial aneurysms diagnosed at the Brigham and Women's Hospital and Massachusetts General Hospital between 1990 and 2016 were reviewed. Individuals were divided into cases with ruptured aneurysms and controls with unruptured aneurysms. Univariable and multivariable logistic regression analyses were performed to determine the association between alcohol consumption and rupture of intracranial aneurysms. In multivariable analysis, current alcohol use (OR 1.36, 95% CI 1.17-1.58) was associated with rupture status compared with never drinkers, whereas former alcohol use was not significant (OR 1.23, 95% CI 0.92-1.63). In addition, the number of alcoholic beverages per day among current alcohol users (OR 1.13, 95% CI 1.04-1.23) was significantly associated with rupture status, whereas alcohol use intensity was not significant among former users (OR 1.02, 95% CI 0.94-1.11). Current alcohol use and intensity are significantly associated with intracranial aneurysm rupture. However, this increased risk does not persist in former alcohol users, emphasizing the potential importance of alcohol cessation in patients harboring unruptured aneurysms.
Collapse
Affiliation(s)
- Anil Can
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, 60 Fenwood Road, Boston, MA, 02115, USA
| | - Victor M Castro
- Research Information Systems and Computing, Partners Healthcare, Boston, MA, USA
| | - Yildirim H Ozdemir
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, 60 Fenwood Road, Boston, MA, 02115, USA
| | - Sarajune Dagen
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, 60 Fenwood Road, Boston, MA, 02115, USA
| | - Dmitriy Dligach
- Boston Children's Hospital Informatics Program, Boston, MA, USA
- Department of Computer Science, Loyola University, Chicago, IL, USA
| | - Sean Finan
- Boston Children's Hospital Informatics Program, Boston, MA, USA
| | - Sheng Yu
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Center for Statistical Science, Tsinghua University, Beijing, China
| | - Vivian Gainer
- Research Information Systems and Computing, Partners Healthcare, Boston, MA, USA
| | - Nancy A Shadick
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital, Boston, MA, USA
| | - Guergana Savova
- Boston Children's Hospital Informatics Program, Boston, MA, USA
| | - Shawn Murphy
- Research Information Systems and Computing, Partners Healthcare, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Tianxi Cai
- Biostatistics, Harvard School of Public Health, Boston, MA, USA
| | - Scott T Weiss
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Rose Du
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, 60 Fenwood Road, Boston, MA, 02115, USA.
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA.
| |
Collapse
|
9
|
Navarro-Tapia E, Nana RK, Querol A, Pérez-Torrado R. Ethanol Cellular Defense Induce Unfolded Protein Response in Yeast. Front Microbiol 2016; 7:189. [PMID: 26925053 PMCID: PMC4757686 DOI: 10.3389/fmicb.2016.00189] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 02/03/2016] [Indexed: 12/05/2022] Open
Abstract
Ethanol is a valuable industrial product and a common metabolite used by many cell types. However, this molecule produces high levels of cytotoxicity affecting cellular performance at several levels. In the presence of ethanol, cells must adjust some of their components, such as the membrane lipids to maintain homeostasis. In the case of microorganism as Saccharomyces cerevisiae, ethanol is one of the principal products of their metabolism and is the main stress factor during fermentation. Although, many efforts have been made, mechanisms of ethanol tolerance are not fully understood and very little evidence is available to date for specific signaling by ethanol in the cell. This work studied two S. cerevisiae strains, CECT10094, and Temohaya-MI26, isolated from flor wine and agave fermentation (a traditional fermentation from Mexico) respectively, which differ in ethanol tolerance, in order to understand the molecular mechanisms underlying the ethanol stress response and the reasons for different ethanol tolerance. The transcriptome was analyzed after ethanol stress and, among others, an increased activation of genes related with the unfolded protein response (UPR) and its transcription factor, Hac1p, was observed in the tolerant strain CECT10094. We observed that this strain also resist more UPR agents than Temohaya-MI26 and the UPR-ethanol stress correlation was corroborated observing growth of 15 more strains and discarding UPR correlation with other stresses as thermal or oxidative stress. Furthermore, higher activation of UPR pathway in the tolerant strain CECT10094 was observed using a UPR mCherry reporter. Finally, we observed UPR activation in response to ethanol stress in other S. cerevisiae ethanol tolerant strains as the wine strains T73 and EC1118. This work demonstrates that the UPR pathway is activated under ethanol stress occurring in a standard fermentation and links this response to an enhanced ethanol tolerance. Thus, our data suggest that there is a room for ethanol tolerance improvement by enhancing UPR response.
Collapse
Affiliation(s)
- Elisabet Navarro-Tapia
- Instituto de Agroquímica y Tecnología de los Alimentos-Consejo Superior de Investigaciones Científicas Valencia, Spain
| | - Rebeca K Nana
- Instituto de Agroquímica y Tecnología de los Alimentos-Consejo Superior de Investigaciones Científicas Valencia, Spain
| | - Amparo Querol
- Instituto de Agroquímica y Tecnología de los Alimentos-Consejo Superior de Investigaciones Científicas Valencia, Spain
| | - Roberto Pérez-Torrado
- Instituto de Agroquímica y Tecnología de los Alimentos-Consejo Superior de Investigaciones Científicas Valencia, Spain
| |
Collapse
|
10
|
Costa PA, Poli JHZ, Sperotto NDM, Moura DJ, Saffi J, Nin MS, Barros HMT. Brain DNA damage and behavioral changes after repeated intermittent acute ethanol withdrawal by young rats. Psychopharmacology (Berl) 2015; 232:3623-36. [PMID: 26231496 DOI: 10.1007/s00213-015-4015-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Accepted: 06/30/2015] [Indexed: 01/10/2023]
Abstract
RATIONALE Alcohol addiction causes severe problems, and its deprivation may potentiate symptoms such as anxiety. Furthermore, ethanol is a neurotoxic agent that induces degeneration and the consequences underlying alcohol-mediated brain damage remain unclear. OBJECTIVES This study assessed the behavioral changes during acute ethanol withdrawal periods and determined the levels of DNA damage and reactive oxygen species (ROS) in multiple brain areas. METHODS Male Wistar rats were subjected to an oral ethanol self-administration procedure with a forced diet where they were offered 8% (v/v) ethanol solution for 21 days followed by five repeated 24-h cycles alternating between ethanol withdrawal and re-exposure. Control animals received an isocaloric control diet without ethanol. Behavioral changes were analyzed on ethanol withdrawal days in the open-field (OF) and elevated plus-maze (EPM) tests within the first 6 h of ethanol deprivation. The pre-frontal cortex, hypothalamus, striatum, hippocampus, and cerebellum were dissected for alkaline and neutral comet assays and for dichlorofluorescein ROS testing. RESULTS The repeated intermittent ethanol access enhanced solution intake and alcohol-seeking behavior. Decreased exploratory activity was observed in the OF test, and the animals stretched less in the EPM test. DNA single-strand breaks and ROS production were significantly higher in all structures evaluated in the ethanol-treated rats compared with controls. CONCLUSIONS The animal model of repeated intermittent ethanol access induced behavioral changes in rats, and this ethanol exposure model induced an increase in DNA single-strand breaks and ROS production in all brain areas. Our results suggest that these brain damages may influence future behaviors.
Collapse
Affiliation(s)
- Priscila A Costa
- Laboratory of Neuropsycopharmacology, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
| | | | | | | | | | | | | |
Collapse
|
11
|
Whittom A, Villarreal A, Soni M, Owusu-Duku B, Meshram A, Rajkowska G, Stockmeier CA, Miguel-Hidalgo JJ. Markers of apoptosis induction and proliferation in the orbitofrontal cortex in alcohol dependence. Alcohol Clin Exp Res 2015; 38:2790-9. [PMID: 25421516 DOI: 10.1111/acer.12559] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 08/29/2014] [Indexed: 11/30/2022]
Abstract
BACKGROUND Alcohol-dependent (ALC) subjects exhibit glial and neuronal pathology in the prefrontal cortex (PFC). However, in many patients, neurophysiological disturbances are not associated with catastrophic cell depletion despite prolonged alcohol abuse. It is still unclear how some relevant markers of a cell's propensity to degenerate or proliferate are changed in the PFC of ALC subjects without major neurological disorders. METHODS Levels of pro-apoptotic caspase 8 (C8), X-linked inhibitor of apoptosis protein (XIAP), direct IAP binding protein with low pI (DIABLO), proliferating cell nuclear antigen (PCNA), and density of cells immunoreactive for proliferation marker Ki-67 (Ki-67-IR) were measured postmortem in the left orbitofrontal cortex (OFC) of 29 subjects with alcohol dependence and 23 nonpsychiatric comparison subjects. RESULTS Alcohol subjects had significantly higher levels of the 14 kDa C8 fragment (C8-14), an indicator of C8 activation. However, there was no change in the levels of DIABLO, XIAP, or in the DIABLO/XIAP ratio. PCNA protein level and density of Ki-67-IR cells were not significantly changed in alcoholics, although PCNA levels were increased in older ALC subjects as compared to controls. CONCLUSIONS Significant increase of a C8 activation indicator was found in alcoholism, but without significant changes in XIAP level, DIABLO/XIAP ratio, or Ki-67 labeling. These results would help to explain the absence of catastrophic cell loss in the PFC of many Brigman subjects, while still being consistent with an alcoholism-related vulnerability to slow decline in glial cells and neurons in the OFC of alcoholics.
Collapse
Affiliation(s)
- Angela Whittom
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, Mississippi
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Durazzo TC, Mattsson N, Weiner MW. Smoking and increased Alzheimer's disease risk: a review of potential mechanisms. Alzheimers Dement 2014; 10:S122-45. [PMID: 24924665 PMCID: PMC4098701 DOI: 10.1016/j.jalz.2014.04.009] [Citation(s) in RCA: 282] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND Cigarette smoking has been linked with both increased and decreased risk for Alzheimer's disease (AD). This is relevant for the US military because the prevalence of smoking in the military is approximately 11% higher than in civilians. METHODS A systematic review of published studies on the association between smoking and increased risk for AD and preclinical and human literature on the relationships between smoking, nicotine exposure, and AD-related neuropathology was conducted. Original data from comparisons of smoking and never-smoking cognitively normal elders on in vivo amyloid imaging are also presented. RESULTS Overall, literature indicates that former/active smoking is related to a significantly increased risk for AD. Cigarette smoke/smoking is associated with AD neuropathology in preclinical models and humans. Smoking-related cerebral oxidative stress is a potential mechanism promoting AD pathology and increased risk for AD. CONCLUSIONS A reduction in the incidence of smoking will likely reduce the future prevalence of AD.
Collapse
Affiliation(s)
- Timothy C Durazzo
- Center for Imaging of Neurodegenerative Diseases (CIND), San Francisco VA Medical Center, San Francisco, CA, USA; Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA.
| | - Niklas Mattsson
- Center for Imaging of Neurodegenerative Diseases (CIND), San Francisco VA Medical Center, San Francisco, CA, USA; Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA; Clinical Neurochemistry Laboratory, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Michael W Weiner
- Center for Imaging of Neurodegenerative Diseases (CIND), San Francisco VA Medical Center, San Francisco, CA, USA; Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA; Department of Psychiatry, University of California, San Francisco, San Francisco, CA, USA; Department of Medicine, University of California, San Francisco, San Francisco, CA, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
13
|
Chen CH, Ferreira JCB, Gross ER, Mochly-Rosen D. Targeting aldehyde dehydrogenase 2: new therapeutic opportunities. Physiol Rev 2014; 94:1-34. [PMID: 24382882 DOI: 10.1152/physrev.00017.2013] [Citation(s) in RCA: 453] [Impact Index Per Article: 41.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
A family of detoxifying enzymes called aldehyde dehydrogenases (ALDHs) has been a subject of recent interest, as its role in detoxifying aldehydes that accumulate through metabolism and to which we are exposed from the environment has been elucidated. Although the human genome has 19 ALDH genes, one ALDH emerges as a particularly important enzyme in a variety of human pathologies. This ALDH, ALDH2, is located in the mitochondrial matrix with much known about its role in ethanol metabolism. Less known is a new body of research to be discussed in this review, suggesting that ALDH2 dysfunction may contribute to a variety of human diseases including cardiovascular diseases, diabetes, neurodegenerative diseases, stroke, and cancer. Recent studies suggest that ALDH2 dysfunction is also associated with Fanconi anemia, pain, osteoporosis, and the process of aging. Furthermore, an ALDH2 inactivating mutation (termed ALDH2*2) is the most common single point mutation in humans, and epidemiological studies suggest a correlation between this inactivating mutation and increased propensity for common human pathologies. These data together with studies in animal models and the use of new pharmacological tools that activate ALDH2 depict a new picture related to ALDH2 as a critical health-promoting enzyme.
Collapse
|
14
|
Nakamura-Palacios EM, Souza RSM, Zago-Gomes MP, de Melo AMF, Braga FS, Kubo TTA, Gasparetto EL. Gray matter volume in left rostral middle frontal and left cerebellar cortices predicts frontal executive performance in alcoholic subjects. Alcohol Clin Exp Res 2013; 38:1126-33. [PMID: 24256621 DOI: 10.1111/acer.12308] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 09/28/2013] [Indexed: 11/27/2022]
Abstract
BACKGROUND Alcoholic subjects manifest important deficits in frontal executive function, yet maintain cognitive mental status within normal range. METHODS This study searched for volumetric measurements of segmented brain structures obtained from magnetic resonance imaging (MRI) that would predict executive functions and cognitive mental status in alcoholic subjects. The frontal assessment battery (FAB) and the Mini-Mental State Examination (MMSE) were applied to alcoholic subjects who underwent MRI. Cortical and subcortical segmentation and corrections were performed using FreeSurfer. Multiple linear regressions analyses having volumetric measures of segmented brain structures as predictors for FAB or MMSE scores as dependent measures were conducted. Sixty alcoholic subjects, 52 males, mean age of 47.2 ± SD 10.4 years, with heavy use of alcohol (mean 284.4 ± SD 275.9 g of alcohol/d) over a long time (mean 32.4 ± SD 11.1 years), showed FAB 11.1 ± SD 3.2 and MMSE of 25.2 ± SD 4.1. RESULTS Multiple regression analyses having left and right side of each segment as predictors showed that gray matter volumes of rostral middle frontal cortex and cerebellar cortex (p < 0.001), in which only the left side of these structures showed significant partial effects in the full model (p < 0.05), showed to predict FAB performance. They were even more predictive when considered together (p < 0.001), in which both left rostral middle frontal cortex (p < 0.05) and left cerebellar cortex (p < 0.01) predictors had significant partial effects in the full model. None of brain structures was predictive of MMSE performance. CONCLUSIONS We have concluded that volumetric measurements of left rostral middle frontal and cerebellar cortices seem to be able to predict the frontal executive performance but not the cognitive mental status in alcoholic subjects.
Collapse
Affiliation(s)
- Ester M Nakamura-Palacios
- Laboratory of Cognitive Sciences and Neuropsychopharmacology, Department of Physiological Sciences, Health Science Center, Federal University of Espírito Santo, Vitória, Brazil
| | | | | | | | | | | | | |
Collapse
|
15
|
Judák L, Hegyi P, Rakonczay Z, Maléth J, Gray MA, Venglovecz V. Ethanol and its non-oxidative metabolites profoundly inhibit CFTR function in pancreatic epithelial cells which is prevented by ATP supplementation. Pflugers Arch 2013; 466:549-62. [PMID: 23948742 DOI: 10.1007/s00424-013-1333-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 07/26/2013] [Accepted: 07/30/2013] [Indexed: 02/06/2023]
Abstract
Excessive alcohol consumption is a major cause of acute pancreatitis, but the mechanism involved is not well understood. Recent investigations suggest that pancreatic ductal epithelial cells (PDECs) help defend the pancreas from noxious agents such as alcohol. Because the cystic fibrosis transmembrane conductance regulator (CFTR) Cl(-) channel plays a major role in PDEC physiology and mutated CFTR is often associated with pancreatitis, we tested the hypothesis that ethanol affects CFTR to impair ductal function. Electrophysiological studies on native PDECs showed that ethanol (10 and 100 mM) increased basal, but reversibly blocked, forskolin-stimulated CFTR currents. The inhibitory effect of ethanol was mimicked by its non-oxidative metabolites, palmitoleic acid ethyl ester (POAEE) and palmitoleic acid (POA), but not by the oxidative metabolite, acetaldehyde. Ethanol, POAEE and POA markedly reduced intracellular ATP (ATPi) which was linked to CFTR inhibition since the inhibitory effects were almost completely abolished if ATPi depletion was prevented. We propose that ethanol causes functional damage of CFTR through an ATPi-dependent mechanism, which compromises ductal fluid secretion and likely contributes to the pathogenesis of acute pancreatitis. We suggest that the maintenance of ATPi may represent a therapeutic option in the treatment of the disease.
Collapse
Affiliation(s)
- L Judák
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary
| | | | | | | | | | | |
Collapse
|
16
|
Starke RM, Chalouhi N, Ali MS, Jabbour PM, Tjoumakaris SI, Gonzalez LF, Rosenwasser RH, Koch WJ, Dumont AS. The role of oxidative stress in cerebral aneurysm formation and rupture. Curr Neurovasc Res 2013; 10:247-55. [PMID: 23713738 PMCID: PMC3845363 DOI: 10.2174/15672026113109990003] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 04/17/2013] [Accepted: 05/08/2013] [Indexed: 02/07/2023]
Abstract
Oxidative stress is known to contribute to the progression of cerebrovascular disease. Additionally, oxidative stress may be increased by, but also augment inflammation, a key contributor to cerebral aneurysm development and rupture. Oxidative stress can induce important processes leading to cerebral aneurysm formation including direct endothelial injury as well as smooth muscle cell phenotypic switching to an inflammatory phenotype and ultimately apoptosis. Oxidative stress leads to recruitment and invasion of inflammatory cells through upregulation of chemotactic cytokines and adhesion molecules. Matrix metalloproteinases can be activated by free radicals leading to vessel wall remodeling and breakdown. Free radicals mediate lipid peroxidation leading to atherosclerosis and contribute to hemodynamic stress and hypertensive pathology, all integral elements of cerebral aneurysm development. Preliminary studies suggest that therapies targeted at oxidative stress may provide a future beneficial treatment for cerebral aneurysms, but further studies are indicated to define the role of free radicals in cerebral aneurysm formation and rupture. The goal of this review is to assess the role of oxidative stress in cerebral aneurysm pathogenesis.
Collapse
Affiliation(s)
- Robert M. Starke
- Joseph and Marie Field Cerebrovascular Research Laboratory, Division of Neurovascular & Endovascular Surgery, Department of Neurological Surgery, Thomas Jefferson University and Jefferson Hospital for Neuroscience, Philadelphia, Pennsylvania
- Department of Neurological Surgery, University of Virginia, Charlottesville, Virginia
| | - Nohra Chalouhi
- Joseph and Marie Field Cerebrovascular Research Laboratory, Division of Neurovascular & Endovascular Surgery, Department of Neurological Surgery, Thomas Jefferson University and Jefferson Hospital for Neuroscience, Philadelphia, Pennsylvania
| | - Muhammad S. Ali
- Joseph and Marie Field Cerebrovascular Research Laboratory, Division of Neurovascular & Endovascular Surgery, Department of Neurological Surgery, Thomas Jefferson University and Jefferson Hospital for Neuroscience, Philadelphia, Pennsylvania
| | - Pascal M. Jabbour
- Joseph and Marie Field Cerebrovascular Research Laboratory, Division of Neurovascular & Endovascular Surgery, Department of Neurological Surgery, Thomas Jefferson University and Jefferson Hospital for Neuroscience, Philadelphia, Pennsylvania
| | - Stavropoula I. Tjoumakaris
- Joseph and Marie Field Cerebrovascular Research Laboratory, Division of Neurovascular & Endovascular Surgery, Department of Neurological Surgery, Thomas Jefferson University and Jefferson Hospital for Neuroscience, Philadelphia, Pennsylvania
| | - L. Fernando Gonzalez
- Joseph and Marie Field Cerebrovascular Research Laboratory, Division of Neurovascular & Endovascular Surgery, Department of Neurological Surgery, Thomas Jefferson University and Jefferson Hospital for Neuroscience, Philadelphia, Pennsylvania
| | - Robert H. Rosenwasser
- Joseph and Marie Field Cerebrovascular Research Laboratory, Division of Neurovascular & Endovascular Surgery, Department of Neurological Surgery, Thomas Jefferson University and Jefferson Hospital for Neuroscience, Philadelphia, Pennsylvania
| | - Walter J. Koch
- Center for Translational Medicine and Department of Pharmacology, Temple University, Philadelphia, Pennsylvania USA
| | - Aaron S. Dumont
- Joseph and Marie Field Cerebrovascular Research Laboratory, Division of Neurovascular & Endovascular Surgery, Department of Neurological Surgery, Thomas Jefferson University and Jefferson Hospital for Neuroscience, Philadelphia, Pennsylvania
| |
Collapse
|
17
|
Maurage P, Campanella S. Experimental and clinical usefulness of crossmodal paradigms in psychiatry: an illustration from emotional processing in alcohol-dependence. Front Hum Neurosci 2013; 7:394. [PMID: 23898250 PMCID: PMC3722513 DOI: 10.3389/fnhum.2013.00394] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 07/05/2013] [Indexed: 11/24/2022] Open
Abstract
Crossmodal processing (i.e., the construction of a unified representation stemming from distinct sensorial modalities inputs) constitutes a crucial ability in humans' everyday life. It has been extensively explored at cognitive and cerebral levels during the last decade among healthy controls. Paradoxically however, and while difficulties to perform this integrative process have been suggested in a large range of psychopathological states (e.g., schizophrenia and autism), these crossmodal paradigms have been very rarely used in the exploration of psychiatric populations. The main aim of the present paper is thus to underline the experimental and clinical usefulness of exploring crossmodal processes in psychiatry. We will illustrate this proposal by means of the recent data obtained in the crossmodal exploration of emotional alterations in alcohol-dependence. Indeed, emotional decoding impairments might have a role in the development and maintenance of alcohol-dependence, and have been extensively investigated by means of experiments using separated visual or auditory stimulations. Besides these unimodal explorations, we have recently conducted several studies using audio-visual crossmodal paradigms, which has allowed us to improve the ecological validity of the unimodal experimental designs and to offer new insights on the emotional alterations among alcohol-dependent individuals. We will show how these preliminary results can be extended to develop a coherent and ambitious research program using crossmodal designs in various psychiatric populations and sensory modalities. We will finally end the paper by underlining the various potential clinical applications and the fundamental implications that can be raised by this emerging project.
Collapse
Affiliation(s)
- Pierre Maurage
- Laboratory for Experimental Psychopathology, Faculty of Psychology, Institute of Psychology, Université Catholique de Louvain Louvain-la-Neuve, Belgium
| | | |
Collapse
|
18
|
Kruman II, Henderson GI, Bergeson SE. DNA damage and neurotoxicity of chronic alcohol abuse. Exp Biol Med (Maywood) 2012; 237:740-7. [PMID: 22829701 DOI: 10.1258/ebm.2012.011421] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Chronic alcohol abuse results in a variety of pathological effects including damage to the brain. The causes of alcohol-induced brain pathology are presently unclear. Several mechanisms of pathogenicity of chronic alcoholism have been proposed, including accumulation of DNA damage in the absence of repair, resulting in genomic instability and death of neurons. Genomic instability is a unified genetic mechanism leading to a variety of neurodegenerative disorders. Ethanol also likely interacts with various metabolic pathways, including one-carbon metabolism (OCM). OCM is critical for the synthesis of DNA precursors, essential for DNA repair, and as a methyl donor for various methylation events, including DNA methylation. Both DNA repair and DNA methylation are critical for maintaining genomic stability. In this review, we outline the role of DNA damage and DNA repair dysfunction in chronic alcohol-induced neurodegeneration.
Collapse
Affiliation(s)
- Inna I Kruman
- Department of Pharmacology and Neuroscience, South Plains Alcohol and Addiction Research Center, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX 79430, USA.
| | | | | |
Collapse
|
19
|
Prendergast MA, Mulholland PJ. Glucocorticoid and polyamine interactions in the plasticity of glutamatergic synapses that contribute to ethanol-associated dependence and neuronal injury. Addict Biol 2012; 17:209-23. [PMID: 21967628 PMCID: PMC3254017 DOI: 10.1111/j.1369-1600.2011.00375.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Stress contributes to the development of ethanol dependence and is also a consequence of dependence. However, the complexity of physiological interactions between activation of the hypothalamic-pituitary-adrenal (HPA) axis and ethanol itself is not well delineated. Emerging evidence derived from examination of corticotropin-releasing factor systems and glucocorticoid receptor systems in ethanol dependence suggests a role for pharmacological manipulation of the HPA axis in attenuating ethanol intake, though it is not clear how activation of the HPA axis may promote ethanol dependence or contribute to the neuroadaptative changes that accompany the development of dependence and the severity of ethanol withdrawal. This review examines the role that glucocorticoids, in particular, have in promoting ethanol-associated plasticity of glutamatergic synapses by influencing expression of endogenous linear polyamines and polyamine-sensitive polypeptide subunits of N-methyl-D-aspartate (NMDA)-type glutamate receptors. We provide evidence that interactions among glucocorticoid systems, polyamines and NMDA receptors are highly relevant to both the development of ethanol dependence and to behavioral and neuropathological sequelae associated with ethanol withdrawal. Examination of these issues is likely to be of critical importance not only in further elucidating the neurobiology of HPA axis dysregulation in ethanol dependence, but also with regard to identification of novel therapeutic targets that may be exploited in the treatment of ethanol dependence.
Collapse
Affiliation(s)
- Mark A. Prendergast
- University of Kentucky, Department of Psychology, 741 South Limestone Street, Lexington, KY 40536, U.S.A
- Spinal Cord and Brain Injury Research Center, B449 Biomedical and Biological Sciences Research Building, 741 South Limestone Street, Lexington, KY 40536, U.S.A
| | - Patrick J. Mulholland
- Departments of Neurosciences and Psychiatry & Behavioral Sciences, Medical University of South Carolina, 67 President Street, IOP 462 North Charleston, South Carolina 29425, U.S.A
| |
Collapse
|
20
|
Maurage P, Joassin F, Speth A, Modave J, Philippot P, Campanella S. Cerebral effects of binge drinking: respective influences of global alcohol intake and consumption pattern. Clin Neurophysiol 2011; 123:892-901. [PMID: 22055841 DOI: 10.1016/j.clinph.2011.09.018] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Revised: 09/02/2011] [Accepted: 09/17/2011] [Indexed: 11/18/2022]
Abstract
OBJECTIVE Binge drinking is a major health concern, but its cerebral correlates are still largely unexplored. We aimed at exploring (1) the cognitive step at which these deficits appear and (2) the respective influence of global alcohol intake and specific binge-drinking consumption pattern on this deficit. METHODS On the basis of a screening phase (593 students), 80 participants were selected and distributed in four groups (control non-drinkers, daily drinkers, low and high binge drinkers). Event-related potentials (ERPs) were recorded while performing a simple visual oddball task. RESULTS Binge drinking was associated with massive ERP impairments, starting at the perceptive level (P100/N100 and N170/P2) and spreading through the attentional (N2b/P3a) and decisional (P3b) ones. Moreover, these deficits were linked with global alcohol intake and also with the specific binge-drinking consumption pattern. CONCLUSIONS Binge drinkers presented early and global ERP deficits, affecting basic and high-level cognitive stages. Moreover, we showed that binge drinking is deleterious for the brain because of alcohol consumption per se, and also because of its specific consumption pattern. SIGNIFICANCE The present results show that binge-drinking habits lead to striking brain consequences, particularly because of the repeated alternation between intense intoxications and withdrawal episodes.
Collapse
Affiliation(s)
- P Maurage
- Neuroscience, Systems and Cognition (NEUROCS) and Health and Psychological Development (CSDP) Research Units, Institute of Psychology, Catholic University of Louvain, 10 Place C. Mercier, B-1348 Louvain-la-Neuve, Belgium.
| | | | | | | | | | | |
Collapse
|
21
|
Alfonso-Loeches S, Guerri C. Molecular and behavioral aspects of the actions of alcohol on the adult and developing brain. Crit Rev Clin Lab Sci 2011; 48:19-47. [PMID: 21657944 DOI: 10.3109/10408363.2011.580567] [Citation(s) in RCA: 164] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The brain is one of the major target organs of alcohol actions. Alcohol abuse can lead to alterations in brain structure and functions and, in some cases, to neurodegeneration. Cognitive deficits and alcohol dependence are highly damaging consequences of alcohol abuse. Clinical and experimental studies have demonstrated that the developing brain is particularly vulnerable to alcohol, and that drinking during gestation can lead to a range of physical, learning and behavioral defects (fetal alcohol spectrum disorders), with the most dramatic presentation corresponding to fetal alcohol syndrome. Recent findings also indicate that adolescence is a stage of brain maturation and that heavy drinking at this stage can have a negative impact on brain structure and functions causing important short- and long-term cognitive and behavioral consequences. The effects of alcohol on the brain are not uniform; some brain areas or cell populations are more vulnerable than others. The prefrontal cortex, the hippocampus, the cerebellum, the white matter and glial cells are particularly susceptible to the effects of ethanol. The molecular actions of alcohol on the brain are complex and involve numerous mechanisms and signaling pathways. Some of the mechanisms involved are common for the adult brain and for the developing brain, while others depend on the developmental stage. During brain ontogeny, alcohol causes irreversible alterations to the brain structure. It also impairs several molecular, neurochemical and cellular events taking place during normal brain development, including alterations in both gene expression regulation and the molecules involved in cell-cell interactions, interference with the mitogenic and growth factor response, enhancement of free radical formation and derangements of glial cell functions. However, in both adult and adolescent brains, alcohol damages specific brain areas through mechanisms involving excitotoxicity, free radical formation and neuroinflammatory damage resulting from activation of the innate immune system mediated by TLR4 receptors. Alcohol also acts on specific membrane proteins, such as neurotransmitter receptors (e.g. NMDA, GABA-A), ion channels (e.g. L-type Ca²⁺ channels, GIRKs), and signaling pathways (e.g. PKA and PKC signaling). These effects might underlie the wide variety of behavioral effects induced by ethanol drinking. The neuroadaptive changes affecting neurotransmission systems which are more sensitive to the acute effects of alcohol occur after long-term alcohol consumption. Alcohol-induced maladaptations in the dopaminergic mesolimbic system, abnormal plastic changes in the reward-related brain areas and genetic and epigenetic factors may all contribute to alcohol reinforcement and alcohol addiction. This manuscript reviews the mechanisms by which ethanol impacts the adult and the developing brain, and causes both neural impairments and cognitive and behavioral dysfunctions. The identification and the understanding of the cellular and molecular mechanisms involved in ethanol toxicity might contribute to the development of treatments and/or therapeutic agents that could reduce or eliminate the deleterious effects of alcohol on the brain.
Collapse
|
22
|
Abstract
One of the sequelae of chronic alcohol abuse is malnutrition. Importantly, a deficiency in thiamine (vitamin B(1)) can result in the acute, potentially reversible neurological disorder Wernicke encephalopathy (WE). When WE is recognized, thiamine treatment can elicit a rapid clinical recovery. If WE is left untreated, however, patients can develop Korsakoff syndrome (KS), a severe neurological disorder characterized by anterograde amnesia. Alcohol-related brain damage (ARBD) describes the effects of chronic alcohol consumption on human brain structure and function in the absence of more discrete and well-characterized neurological concomitants of alcoholism such as WE and KS. Through knowledge of both the well-described changes in brain structure and function that are evident in alcohol-related disorders such as WE and KS and the clinical outcomes associated with these changes, researchers have begun to gain a better understanding of ARBD. This Review examines ARBD from the perspective of WE and KS, exploring the clinical presentations, postmortem brain pathology, in vivo MRI findings and potential molecular mechanisms associated with these conditions. An awareness of the consequences of chronic alcohol consumption on human behavior and brain structure can enable clinicians to improve detection and treatment of ARBD.
Collapse
Affiliation(s)
- Natalie M Zahr
- Department of Psychiatry and Behavioral Sciences, 401 Quarry Road, Stanford University, Stanford, CA 94305, USA
| | | | | |
Collapse
|
23
|
Spontaneous and in vitro induced apoptosis of lymphocytes and neutrophils in patients with alcohol dependence. Bull Exp Biol Med 2011; 149:246-9. [PMID: 21113502 DOI: 10.1007/s10517-010-0918-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Spontaneous and induced apoptosis of neutrophils and lymphocytes was studied in alcoholics during the abstinent syndrome and in healthy individuals. In alcoholics, the levels of lymphocyte and neutrophil apoptosis at the receptor and cellular levels were higher than in healthy subjects. Blood cells from alcohol addicts and normal individuals similarly react to stimuli (hyperthermia and synthetic glucocorticoid prednisolone) in vitro.
Collapse
|
24
|
Ou XM, Stockmeier CA, Meltzer HY, Overholser JC, Jurjus GJ, Dieter L, Chen K, Lu D, Johnson C, Youdim MB, Austin MC, Luo J, Sawa A, May W, Shih JC. A novel role for glyceraldehyde-3-phosphate dehydrogenase and monoamine oxidase B cascade in ethanol-induced cellular damage. Biol Psychiatry 2010; 67:855-63. [PMID: 20022592 PMCID: PMC2854240 DOI: 10.1016/j.biopsych.2009.10.032] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2009] [Revised: 10/14/2009] [Accepted: 10/17/2009] [Indexed: 12/29/2022]
Abstract
BACKGROUND Alcoholism is a major psychiatric condition at least partly associated with ethanol (EtOH)-induced cell damage. Although brain cell loss has been reported in subjects with alcoholism, the molecular mechanism is unclear. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and monoamine oxidase B (MAO B) reportedly play a role in cellular dysfunction under stressful conditions and might contribute to EtOH-induced cell damage. METHODS Expression of GAPDH and MAO B protein was studied in human glioblastoma and neuroblastoma cell lines exposed to physiological concentrations of EtOH. Expression of these proteins was also examined in the prefrontal cortex from human subjects with alcohol dependence and in rats fed with an EtOH diet. Coimmunoprecipitation, subcellular fractionation, and luciferase assay were used to address nuclear GAPDH-mediated MAO B activation. To test the effects of inactivation, RNA interference and pharmacological intervention were used, and cell damage was assessed by terminal deoxynucleotidyl transferase (TdT)-mediated dUTP Nick End Labeling (TUNEL) and hydrogen peroxide measurements. RESULTS Ethanol significantly increases levels of GAPDH, especially nuclear GAPDH, and MAO B in neuronal cells as well as in human and rat brains. Nuclear GAPDH interacts with the transcriptional activator, transforming growth factor-beta-inducible early gene 2 (TIEG2), and augments TIEG2-mediated MAO B transactivation, which results in cell damage in neuronal cells exposed to EtOH. Knockdown expression of GAPDH or treatment with MAO B inhibitors selegiline (deprenyl) and rasagiline (Azilect) can block this cascade. CONCLUSIONS Ethanol-elicited nuclear GAPDH augments TIEG2-mediated MAO B, which might play a role in brain damage in subjects with alcoholism. Compounds that block this cascade are potential candidates for therapeutic strategies.
Collapse
Affiliation(s)
- Xiao-Ming Ou
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, Mississippi 39216, USA.
| | - Craig A. Stockmeier
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS 39216, Departments of Psychiatry (CAS, GJJ and LD) and Psychology (JCO), Case Western Reserve University, Cleveland, OH 44106
| | - Herbert Y. Meltzer
- Department of Psychiatry, Psychiatric Hospital at Vanderbilt University, Nashville, TN 37212
| | - James C. Overholser
- Departments of Psychiatry (CAS, GJJ and LD) and Psychology (JCO), Case Western Reserve University, Cleveland, OH 44106
| | - George J. Jurjus
- Departments of Psychiatry (CAS, GJJ and LD) and Psychology (JCO), Case Western Reserve University, Cleveland, OH 44106
| | - Lesa Dieter
- Departments of Psychiatry (CAS, GJJ and LD) and Psychology (JCO), Case Western Reserve University, Cleveland, OH 44106
| | - Kevin Chen
- Department of Molecular Pharmacology and Toxicology, School of Pharmacy, University of Southern California, Los Angeles, CA 90033
| | - Deyin Lu
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS 39216
| | - Chandra Johnson
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS 39216
| | - Moussa B.H. Youdim
- Eve Topf and USA National Parkinson Foundation Centers of Excellence for Neurodegenerative Diseases Research and Department of Pharmacology, Rappaport Family Research Institute, Technion-Faculty of Medicine, Haifa, Israel
| | - Mark C. Austin
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS 39216
| | - Jia Luo
- Departments of Internal Medicine, University of Kentucky College of Medicine, Lexington, KY 40536
| | - Akira Sawa
- Departments of Psychiatry and Neuroscience, Johns Hopkins University School of Medicine, Baltimore MD 21287
| | - Warren May
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS 39216
| | - Jean C. Shih
- Department of Molecular Pharmacology and Toxicology, School of Pharmacy, University of Southern California, Los Angeles, CA 90033, Department of Cell and Neurobiology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033
| |
Collapse
|
25
|
Ethanol increases TIEG2-MAO B cell death cascade in the prefrontal cortex of ethanol-preferring rats. Neurotox Res 2010; 19:511-8. [PMID: 20204567 DOI: 10.1007/s12640-010-9164-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2009] [Revised: 02/16/2010] [Accepted: 02/18/2010] [Indexed: 10/19/2022]
Abstract
Brain cell loss has been reported in subjects with alcoholism. However, the molecular mechanisms are unclear. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and monoamine oxidase B (MAO B) reportedly play a role in cellular dysfunction with regards to ethanol exposure. We have recently reported that GAPDH protein expression was increased in the brains of rats fed with ethanol. Furthermore, GAPDH interacts with the transcriptional activator, transforming growth factor-beta-inducible early gene 2 (TIEG2), to augment TIEG2-mediated MAO B activation, resulting in neuronal cell damage due to ethanol exposure. The current study investigates whether the TIEG2-MAO B cascade is also active in the brains of rats fed with ethanol. Ten ethanol-preferring rats were fed with a liquid diet containing ethanol, with increasing amounts of ethanol up to a final concentration of 6.4% representing a final diet containing 36% of calories for 28 days. Ten control rats were fed the liquid diet without ethanol. The expression of TIEG2 protein, MAO B mRNA levels, MAO B catalytic activity, and the levels of anti-apoptotic protein Bcl 2 and apoptotic protein caspase 3 were determined in the prefrontal cortex of the rats. Ethanol significantly increased protein levels of TIEG2, active caspase 3, MAO B mRNA and enzyme activity, but significantly decreased Bcl 2 protein expression compared to control rats. In summary, ethanol increases the TIEG2-MAO B brain cell death cascade in rat brains, suggesting that the TIEG2-MAO B pathway is a novel pathway for brain cell damage resulting from ethanol exposure, and may contribute to chronic alcohol-induced brain damage.
Collapse
|
26
|
Neuropathology of alcohol-related cognitive alterations. HANDBOOK OF CLINICAL NEUROLOGY 2008. [PMID: 18631801 DOI: 10.1016/s0072-9752(07)01275-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
27
|
Kashem MA, Harper C, Matsumoto I. Differential protein expression in the corpus callosum (genu) of human alcoholics. Neurochem Int 2008; 53:1-11. [DOI: 10.1016/j.neuint.2008.04.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2008] [Revised: 04/08/2008] [Accepted: 04/14/2008] [Indexed: 01/17/2023]
|
28
|
Fernandez-Solà J, Preedy VR, Lang CH, Gonzalez-Reimers E, Arno M, Lin JCI, Wiseman H, Zhou S, Emery PW, Nakahara T, Hashimoto K, Hirano M, Santolaria-Fernández F, González-Hernández T, Fatjó F, Sacanella E, Estruch R, Nicolás JM, Urbano-Márquez A. Molecular and cellular events in alcohol-induced muscle disease. Alcohol Clin Exp Res 2008; 31:1953-62. [PMID: 18034690 DOI: 10.1111/j.1530-0277.2007.00530.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Alcohol consumption induces a dose-dependent noxious effect on skeletal muscle, leading to progressive functional and structural damage of myocytes, with concomitant reductions in lean body mass. Nearly half of high-dose chronic alcohol consumers develop alcoholic skeletal myopathy. The pathogenic mechanisms that lie between alcohol intake and loss of muscle tissue involve multiple pathways, making the elucidation of the disease somewhat difficult. This review discusses the recent advances in basic and clinical research on the molecular and cellular events involved in the development of alcohol-induced muscle disease. The main areas of recent research interest on this field are as follows: (i) molecular mechanisms in alcohol exposed muscle in the rat model; (ii) gene expression changes in alcohol exposed muscle; (iii) the role of trace elements and oxidative stress in alcoholic myopathy; and (iv) the role of apoptosis and preapoptotic pathways in alcoholic myopathy. These aforementioned areas are crucial in understanding the pathogenesis of this disease. For example, there is overwhelming evidence that both chronic alcohol ingestion and acute alcohol intoxication impair the rate of protein synthesis of myofibrillar proteins, in particular, under both postabsorptive and postprandial conditions. Perturbations in gene expression are contributory factors to the development of alcoholic myopathy, as ethanol-induced alterations are detected in over 400 genes and the protein profile (i.e., the proteome) of muscle is also affected. There is supportive evidence that oxidative damage is involved in the pathogenesis of alcoholic myopathy. Increased lipid peroxidation is related to muscle fibre atrophy, and reduced serum levels of some antioxidants may be related to loss of muscle mass and muscle strength. Finally, ethanol induces skeletal muscle apoptosis and increases both pro- and antiapoptotic regulatory mechanisms.
Collapse
|
29
|
He J, Crews FT. Increased MCP-1 and microglia in various regions of the human alcoholic brain. Exp Neurol 2007; 210:349-58. [PMID: 18190912 DOI: 10.1016/j.expneurol.2007.11.017] [Citation(s) in RCA: 396] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2007] [Revised: 11/02/2007] [Accepted: 11/13/2007] [Indexed: 01/12/2023]
Abstract
Cytokines and microglia have been implicated in anxiety, depression, neurodegeneration as well as the regulation of alcohol drinking and other consumatory behaviors, all of which are associated with alcoholism. Studies using animal models of alcoholism suggest that microglia and proinflammatory cytokines contribute to alcoholic pathologies [Crews, F.T., Bechara, R., Brown, L.A., Guidot, D.M., Mandrekar, P., Oak, S., Qin, L., Szabo, G., Wheeler, M., Zou, J., (2006) Cytokines and alcohol. Alcohol., Clin. Exp. Res. 30:720-730]. In the current study, human postmortem brains from moderate drinking controls and alcoholics obtained from the New South Wales Tissue Resource Center were used to study the cytokine, monocyte chemoattractant protein 1 (MCP-1,CCL2) and microglia markers in various brain regions. Since MCP-1 is a key proinflammatory cytokine induced by chronic alcohol treatment of mice, and known to regulate drinking behavior in mice, MCP-1 protein levels from human brain homogenate were measured using ELISA, and indicated increased MCP-1 concentration in ventral tegmental area (VTA), substantia nigra (SN), hippocampus and amygdala of alcoholic brains as compared with controls. Immunohistochemistry was further performed to visualize human microglia using ionized calcium binding adaptor protein-1 (Iba-1), and Glucose transporter-5 (GluT5). Alcoholics were found to have brain region-specific increases in microglial markers. In cingulate cortex, both Iba-1 and GluT5 were increased in alcoholic brains relative to controls. Alternatively, no detectable change was found in amygdala nuclei. In VTA and midbrain, only GluT5, but not Iba-1 was increased in alcoholic brains. These data suggest that the enhanced expression of MCP-1 and microglia activities in alcoholic brains could contribute to ethanol-induced pathogenesis.
Collapse
Affiliation(s)
- Jun He
- Bowles Center for Alcohol Studies, Department of Pharmacology and Psychiatry, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7178, USA.
| | | |
Collapse
|
30
|
Durazzo TC, Rothlind JC, Cardenas VA, Studholme C, Weiner MW, Meyerhoff DJ. Chronic cigarette smoking and heavy drinking in human immunodeficiency virus: consequences for neurocognition and brain morphology. Alcohol 2007; 41:489-501. [PMID: 17923369 PMCID: PMC2443733 DOI: 10.1016/j.alcohol.2007.07.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2007] [Revised: 07/27/2007] [Accepted: 07/27/2007] [Indexed: 12/11/2022]
Abstract
Alcohol use disorders (AUD) and chronic cigarette smoking are common among individuals with human immunodeficiency virus infection (HIV). Concurrent AUD in HIV is related to greater abnormalities in brain morphology and neurocognition than either condition alone. However, the potential influence of chronic smoking on brain morphology and neurocognition in those concurrently afflicted with AUD and HIV has not been examined. The goal of this retrospective analysis was to determine if chronic smoking affected neurocognition and brain morphology in a subsample of HIV-positive non-treatment-seeking heavy drinking participants (HD+) from our earlier work. Regional volumetric and neurocognitive comparisons were made among age-equivalent smoking HD+(n=17), nonsmoking HD+ (n=27), and nonsmoking HIV-negative light drinking controls (n=27) obtained from our original larger sample. Comprehensive neuropsychological assessment evaluated multiple neurocognitive domains of functioning and for potential psychiatric comorbidities. Quantitative volumetric measures of neocortical gray matter (GM), white matter (WM), subcortical structures, and sulcal and ventricular cerebral spinal fluid (CSF) were derived from high-resolution magnetic resonance images. The main findings were (1) smoking HD+ performed significantly worse than nonsmoking HD+ on measures of auditory-verbal (AV) learning, AV memory, and cognitive efficiency; (2) relative to controls, smoking HD+ demonstrated significantly lower neocortical GM volumes in all lobes except the occipital lobe, while nonsmoking HD+ showed only lower frontal GM volume compared with controls; (3) in the HD+ group, regional brain volumes and neurocognition were not influenced by viremia, highly active antiretroviral treatment, or Center for Disease Control symptom status, and no interactions were apparent with these variables or smoking status. Overall, the findings suggested that the direct and/or indirect effects of chronic cigarette smoking created an additional burden on the integrity of brain neurobiology and neurocognition in this cohort of HIV-positive heavy drinkers.
Collapse
Affiliation(s)
- Timothy C Durazzo
- Center for Neuroimaging of Neurodegenerative Diseases, San Francisco Veterans Administration Medical Center, USA.
| | | | | | | | | | | |
Collapse
|
31
|
Cohen AC, Tong M, Wands JR, de la Monte SM. Insulin and Insulin-Like Growth Factor Resistance With Neurodegeneration in an Adult Chronic Ethanol Exposure Model. Alcohol Clin Exp Res 2007; 31:1558-73. [PMID: 17645580 DOI: 10.1111/j.1530-0277.2007.00450.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Previous studies linked cerebellar hypoplasia, neuronal loss, and impaired acetylcholine homeostasis to ethanol inhibition of insulin and insulin-like growth factor signaling mechanisms in experimental models of fetal alcohol syndrome (FAS). METHODS To determine the extent to which similar abnormalities occur in mature brains, gene expression, ligand binding, and histopathological studies were performed with temporal lobe, hypothalamus, and cerebellar cortex from adult male Long Evans rats that were pair-fed for 6 weeks with liquid diets containing 0% or 37% ethanol by caloric content. RESULTS Real time quantitative RT-PCR analysis demonstrated that the chronic ethanol-fed rats had significantly reduced insulin-like growth factors (IGF)-II receptor expression in all 3 regions and reduced insulin receptor expression in the temporal lobe. However, equilibrium binding assays revealed ethanol-associated impairments in insulin and IGF-I receptor binding in all 3 regions and reduced IGF-II receptor binding in the cerebellum. These abnormalities were associated with decreased expression of Hu (neuronal loss) in the temporal lobe and cerebellum, and choline acetyltransferase (ChAT) in the hypothalamus and cerebellum, and increased expression of NADPH oxidase 3 in all 3 regions examined. Ethanol-associated neuronal loss with increased indices of lipid peroxidation and DNA damage were demonstrated by histopathological, immunohistochemical, and enzyme linked immunosorbant assay studies. CONCLUSIONS These results suggest that ethanol-induced neurodegeneration in adults is mediated by insulin/IGF resistance, persistent oxidative stress, and impaired acetylcholine biosynthesis, similar to the findings in FAS. The reductions in ChAT gene expression most likely contribute to the cognitive and motor deficits that occur with chronic alcohol abuse.
Collapse
Affiliation(s)
- Ariel C Cohen
- Department of Medicine, Rhode Island Hospital, Warren Alpert School of Medicine at Brown University, Providence, Rhode Island, USA
| | | | | | | |
Collapse
|
32
|
Durazzo TC, Cardenas VA, Studholme C, Weiner MW, Meyerhoff DJ. Non-treatment-seeking heavy drinkers: effects of chronic cigarette smoking on brain structure. Drug Alcohol Depend 2007; 87:76-82. [PMID: 16950573 PMCID: PMC2443734 DOI: 10.1016/j.drugalcdep.2006.08.003] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2006] [Revised: 08/02/2006] [Accepted: 08/04/2006] [Indexed: 11/27/2022]
Abstract
We previously reported [Cardenas, V.A., Studholme, C., Meyerhoff, D.J., Song, E., Weiner, M.W., 2005. Chronic active heavy drinking and family history of problem drinking modulate regional brain tissue volumes. Psychiatry Res. 138, 115-130] that non-treatment-seeking, active heavy drinkers (HD) demonstrated smaller regional neocortical gray matter volumes compared to light drinking controls; however, the potential effects of chronic cigarette smoking on regional brain volumes were not addressed. The goal of this retrospective analysis was to determine if chronic smoking affected brain structure in the non-treatment-seeking heavy drinking sample from our earlier report (i.e., Cardenas et al., 2005). Regional volumetric comparisons were made among age-matched smoking HD (n=17), non-smoking HD (n=16), and non-smoking light drinkers (nsLD; n=20) from our original sample. Quantitative volumetric measures of neocortical gray matter (GM), white matter (WM), subcortical structures, and cerebral spinal fluid (CSF) were derived from high-resolution magnetic resonance imaging. Smoking HD demonstrated smaller volumes than nsLD in the frontal, parietal, temporal GM, and for total neocortical GM. Smoking HD also demonstrated smaller temporal and total GM volumes than non-smoking HD. Non-smoking HD and nsLD did not differ significantly on GM volumes. Further, the three groups did not differ on lobar WM, subcortical structures or regional CSF volumes. These retrospective analyses indicate neocortical GM volume reductions in non-treatment-seeking smoking HD, but not in non-smoking HD, which are consistent with our studies in recently detoxified treatment-seeking alcohol-dependent samples.
Collapse
Affiliation(s)
- Timothy C Durazzo
- Center for Neuroimaging of Neurodegenerative Diseases, San Francisco Veterans Administration Medical Center, 4150 Clement St., San Francisco, CA 94121, USA.
| | | | | | | | | |
Collapse
|
33
|
Abstract
Research on how alcohol consumption influences the structure and blood supply of the brain has generally focused on two primary areas of interest: the atrophic effect of heavy drinking on brain structure and the effects of moderate and heavy drinking on the risk of stroke. Heavy alcohol consumption results in atrophy of gray and white matter, particularly in the frontal lobes, cerebellum, and limbic structures. Heavy drinking also raises the risk of ischemic and hemorrhagic stroke, while light drinking is associated with a lower risk of ischemic stroke. Recently, the author and his colleagues studied alcohol consumption and prevalence of subclinical abnormalities detected by magnetic resonance imaging of the brain among 3376 older adults enrolled in the Cardiovascular Health Study. They found that alcohol consumption was positively associated with measures of brain atrophy and inversely associated with subclinical infarcts in a dose-dependent manner. Alcohol consumption and white matter lesions had a U-shaped relationship, with the lowest prevalence among those who consumed 1-6 drinks per week. Further research is needed to determine how these associations interact to influence overall brain function.
Collapse
Affiliation(s)
- Kenneth J Mukamal
- Division of General Medicine and Primary Care, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA.
| |
Collapse
|
34
|
Hur JM, Park JC. Effects of the Aerial Parts of Orostachys japonicus and Its Bioactive Component on Hepatic Alcohol-Metabolizing Enzyme System. J Med Food 2006; 9:336-41. [PMID: 17004895 DOI: 10.1089/jmf.2006.9.336] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In the course of screening medicinal plants that modulate hepatic alcohol-metabolizing enzymes and lipid peroxidation, effects of the methanol extract (ME) of Orostachys japonicus and its major bioactive compound, gallic acid (GA), were investigated in rats treated with 10% ethanol solution for 6 weeks. The ME and GA greatly enhanced the activities of hepatic alcohol dehydrogenase (ADH), the microsomal ethanol-oxidizing system (MEOS), and aldehyde dehydrogenase (ALDH) in a dose-dependent manner, but had no effect on catalase. The hepatic lipid peroxide level increased by ethanol administration was moderately reduced by treatment with ME or GA. The results suggest that the detoxification of hepatic alcohol by O. japonicus ME under our experimental conditions was due to the enhanced activities of the alcohol-oxidizing enzymes, ADH, MEOS, and ALDH. In addition, GA may be partly responsible for the effects.
Collapse
Affiliation(s)
- Jong Moon Hur
- Department of Oriental Medicine Resources and Research Institute of Korean Oriental Medicine, Sunchon National University, Suncheon, Jeonnam, Republic of Korea
| | | |
Collapse
|
35
|
Durazzo TC, Gazdzinski S, Rothlind JC, Banys P, Meyerhoff DJ. Brain metabolite concentrations and neurocognition during short-term recovery from alcohol dependence: Preliminary evidence of the effects of concurrent chronic cigarette smoking. Alcohol Clin Exp Res 2006; 30:539-51. [PMID: 16499496 DOI: 10.1111/j.1530-0277.2006.00060.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Longitudinal studies of brain tissue metabolite recovery in short-term abstinent alcoholics have primarily investigated the frontal lobes and cerebellum with variable results. Preliminary proton magnetic resonance spectroscopic imaging (1H MRSI) suggested that chronic cigarette smoking exacerbates alcohol-induced brain injury in 1-week abstinent alcoholics. However, the potential effects of chronic cigarette smoking on the recovery of alcohol-induced brain injury have not been studied. METHODS Multislice short-echo time 1H MRSI was used to measure longitudinal changes in common brain metabolites in 25 recovering alcohol-dependent individuals (RA), retrospectively assigned to smoking (n = 14) and nonsmoking (n = 11) subgroups. Recovering alcohol-dependent individuals in longitudinal analyses were studied after approximately 7 and 34 days of abstinence from alcohol. In cross-sectional analyses, 36 RA (19 smokers, 17 nonsmokers) with approximately 34 days of sobriety were compared with 29 light drinkers (LD). Relationships between neurocognition and metabolite concentrations in abstinent RA were also examined. RESULTS Over 1 month of abstinence from alcohol, RA, as a group, showed significant increases of regional N-acetylaspartate (NAA; marker of neuronal viability) and choline-containing compounds (Cho; marker of cell membrane synthesis/turnover) primarily in frontal and parietal lobes. These increases appeared to be driven by nonsmoking RA. Cross-sectional results indicate that metabolite levels in RA at 35 days of sobriety are not significantly different from those in LD in most regions, except for lower NAA and Cho in parietal WM and subcortical structures. However, metabolite levels at that time appear to be strongly modulated by smoking status. The patterns of metabolite-neurocognition relationships were different for nonsmoking and smoking RA. CONCLUSIONS Within the first weeks of sobriety, regional brain NAA and Cho levels increased, but metabolite levels did not normalize in all brain regions after 35 days of sobriety. Neurobiologic recovery in RA appeared to be adversely affected by chronic smoking. Greater consideration of the effects of continued cigarette smoking on the neurobiologic and neurocognitive recovery of alcohol-dependent individuals is warranted.
Collapse
Affiliation(s)
- Timothy C Durazzo
- San Francisco Veterans Administration Medical Center, San Francisco, California 94121, USA.
| | | | | | | | | |
Collapse
|
36
|
Köksal M, Ilgaz C, Erdogan D, Ozogul C, Tong EK, Kalender H. Ultrastructure of rat pup's Purkinje neurons whose mothers were exposed to ethanol during pregnancy and lactation. Int J Neurosci 2006; 115:1669-86. [PMID: 16287633 DOI: 10.1080/00207450590958510] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
This study was intended to investigate the effects of alcohol on the ultrastructure of fetal cerebellar Purkinje cells. Twelve adult female rats of Sprague-Dawley species were utilized. Control and experiment groups were formed. Rats were made pregnant. Rats in experiment group were administered liquid diet containing 6% alcohol. Cerebellums of infant rats were taken on 6th, 8th, and 10th days after birth. For electron microscopy, tissue sections were processed and stained with the usual methods. When control and experiment groups were compared for electron microscopic investigation, degeneration of mithocondria as cristolysis, dilatations of rough endoplasmic reticulum tubuli, and ring-shaped appearance of Golgi apparatus unit were determined. In some groups, nuclear membrane disintegrated. In cytoplasms of Purkinje cells, multivesicular bodies were distinguished. It was determined that liquid diet containing 6% alcohol had toxic effects on Purkinje cells and caused ultrastructural signs of degeneration in these cells.
Collapse
Affiliation(s)
- Mete Köksal
- Gazi University Faculty of Medicine Department of Histology and Embryology Beşevler, Ankara, Turkey.
| | | | | | | | | | | |
Collapse
|
37
|
Tsitolovsky LE. Protection from neuronal damage evoked by a motivational excitation is a driving force of intentional actions. ACTA ACUST UNITED AC 2005; 49:566-94. [PMID: 16269320 DOI: 10.1016/j.brainresrev.2005.02.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2004] [Revised: 12/16/2004] [Accepted: 02/25/2005] [Indexed: 01/13/2023]
Abstract
Motivation may be understood as an organism's subjective attitude to its current physiological state, which somehow modulates generation of actions until the organism attains an optimal state. How does this subjective attitude arise and how does it modulate generation of actions? Diverse lines of evidence suggest that elemental motivational states (hunger, thirst, fear, drug-dependence, etc.) arise as the result of metabolic disturbances and are related to transient injury, while rewards (food, water, avoidance, drugs, etc.) are associated with the recovery of specific neurons. Just as motivation and the very life of an organism depend on homeostasis, i.e., maintenance of optimum performance, so a neuron's behavior depends on neuronal (i.e., ion) homeostasis. During motivational excitation, the conventional properties of a neuron, such as maintenance of membrane potential and spike generation, are disturbed. Instrumental actions may originate as a consequence of the compensational recovery of neuronal excitability after the excitotoxic damage induced by a motivation. When the extent of neuronal actions is proportional to a metabolic disturbance, the neuron theoretically may choose a beneficial behavior even, if at each instant, it acts by chance. Homeostasis supposedly may be directed to anticipating compensation of the factors that lead to a disturbance of the homeostasis and, as a result, participates in the plasticity of motivational behavior. Following this line of thought, I suggest that voluntary actions arise from the interaction between endogenous compensational mechanisms and excitotoxic damage of specific neurons, and thus anticipate the exogenous compensation evoked by a reward.
Collapse
Affiliation(s)
- Lev E Tsitolovsky
- Department of Life Science, Bar-Ilan University, Ramat-Gan 52900, Israel.
| |
Collapse
|
38
|
Kruman II, Schwartz E, Kruman Y, Cutler RG, Zhu X, Greig NH, Mattson MP. Suppression of uracil-DNA glycosylase induces neuronal apoptosis. J Biol Chem 2004; 279:43952-60. [PMID: 15297456 DOI: 10.1074/jbc.m408025200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A chronic imbalance in DNA precursors, caused by one-carbon metabolism impairment, can result in a deficiency of DNA repair and increased DNA damage. Although indirect evidence suggests that DNA damage plays a role in neuronal apoptosis and in the pathogenesis of neurodegenerative disorders, the underlying mechanisms are poorly understood. In particular, very little is known about the role of base excision repair of misincorporated uracil in neuronal survival. To test the hypothesis that repair of DNA damage associated with uracil misincorporation is critical for neuronal survival, we employed an antisense (AS) oligonucleotide directed against uracil-DNA glycosylase encoded by the UNG gene to deplete UNG in cultured rat hippocampal neurons. AS, but not a scrambled control oligonucleotide, induced apoptosis, which was associated with DNA damage analyzed by comet assay and up-regulation of p53. UNG mRNA and protein levels were decreased within 30 min and were undetectable within 6-9 h of exposure to the UNG AS oligonucleotide. Whereas UNG expression is significantly higher in proliferating as compared with nonproliferating cells, such as neurons, the levels of UNG mRNA were increased in brains of cystathionine beta-synthase knockout mice, a model for hyperhomocysteinemia, suggesting that one-carbon metabolism impairment and uracil misincorporation can induce the up-regulation of UNG expression.
Collapse
Affiliation(s)
- Inna I Kruman
- Sun Health Research Institute, Sun City, Arizona 85351, USA.
| | | | | | | | | | | | | |
Collapse
|
39
|
Prendergast MA, Harris BR, Mullholland PJ, Blanchard JA, Gibson DA, Holley RC, Littleton JM. Hippocampal CA1 region neurodegeneration produced by ethanol withdrawal requires activation of intrinsic polysynaptic hippocampal pathways and function of N-methyl-D-aspartate receptors. Neuroscience 2004; 124:869-77. [PMID: 15026127 DOI: 10.1016/j.neuroscience.2003.12.013] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/10/2003] [Indexed: 10/26/2022]
Abstract
Long-term intake of ethanol produces adaptive alterations in multiple transmitter systems in the hippocampal formation that likely contribute to ethanol withdrawal-induced seizure and excitotoxicity. The present studies were designed to examine the role of N-methyl-d-aspartate receptor activation and cytosolic Ca(2+) accumulation in the neurotoxic effects of ethanol withdrawal. Further, these studies investigated the role of hippocampal network excitation in promoting both Ca(2+) accumulation and neurotoxicity during ethanol withdrawal. Chronic, continuous (11 day) exposure to ethanol (91 mM starting concentration) did not produce neurotoxicity in any region of organotypic hippocampal explants, as measured by uptake of the non-vital fluorescent marker propidium iodide. Withdrawal from chronic (10 day) ethanol exposure was associated with rapid (30 min) and significant increases in intracellular Ca(2+), assessed by visualization of Calcium-Orange fluorescence, in each region of hippocampal explants. However, neurotoxicity was observed 24 h after initiation of withdrawal and was only seen in the cornu ammonis 1 (CA1) region. Exposure to MK-801 (20 microM) at the start of ethanol withdrawal markedly attenuated Ca(2+) entry in all regions, as well as, CA1 region neurodegeneration. Further, treatment of explants with tetrodotoxin (500 nM) as well as surgical transection of mossy fiber or Schaffer collateral projections immediately prior to ethanol withdrawal blocked both regional increases in Ca(2+) accumulation and CA1 neurotoxicity. These data suggest that neurodegeneration observed during ethanol withdrawal is dependent upon polysynaptic propagation of action potentials ("network excitation") and whole-hippocampal excitation of glutamatergic systems.
Collapse
Affiliation(s)
- M A Prendergast
- Department of Psychology, University of Kentucky, 115 Kastle Hall, Lexington, KY 40506-0044, USA.
| | | | | | | | | | | | | |
Collapse
|
40
|
Jeong HG, Youn CK, Cho HJ, Kim SH, Kim MH, Kim HB, Chang IY, Lee YS, Chung MH, You HJ. Metallothionein-III prevents gamma-ray-induced 8-oxoguanine accumulation in normal and hOGG1-depleted cells. J Biol Chem 2004; 279:34138-49. [PMID: 15190073 DOI: 10.1074/jbc.m402530200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Metallothioneins (MT) play an important biological role in preventing oxidative damage to cells. We have previously demonstrated that the efficiency of the protective effect of MT-III against the DNA degradation from oxidative damage was much higher than that of MT-I/II. As an extension of the latter investigation, this study aimed to assess the ability of MT-III to suppress 8-oxoguanine (8-oxoG), which is one of the major base lesions formed after an oxidative attack to DNA and the mutant frequency of the HPRT gene in human fibroblast GM00637 cells upon exposure to gamma-rays. We found that human MT-III expression decreased the level of 8-oxoG and mutation frequency in the gamma-irradiated cells. Using an 8-oxoguanine DNA glycosylase (OGG1)-specific siRNAs, we also found that MT-III expression resulted in the suppression of the gamma-radiation-induced 8-oxoG accumulation and mutation in the OGG1-depleted cells. Moreover, the down-regulation of MT in human neuroblastoma SKNSH cells induced by MT-specific siRNA led to a significant increase in the 8-oxoG level, after exposure to gamma-irradiation. These results suggest that under the conditions of gamma-ray oxidative stress, MT-III prevents the gamma-radiation-induced 8-oxoG accumulation and mutation in normal and hOGG1-depleted cells, and this suppression might, at least in part, contribute to the anticarcinogenic and neuroprotective role of MT-III.
Collapse
Affiliation(s)
- Hye Gwang Jeong
- Research Center for Proteineous Materials, Chosun University, 375 Seosuk-dong, Gwangju 501-759, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Kisby GE, Lesselroth H, Olivas A, Samson L, Gold B, Tanaka K, Turker MS. Role of nucleotide- and base-excision repair in genotoxin-induced neuronal cell death. DNA Repair (Amst) 2004; 3:617-27. [PMID: 15135729 DOI: 10.1016/j.dnarep.2004.02.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2004] [Accepted: 02/10/2004] [Indexed: 12/29/2022]
Abstract
Base-excision (BER) and nucleotide-excision (NER) repair play pivotal roles in protecting the genomes of dividing cells from damage by endogenous and exogenous agents (i.e. environmental genotoxins). However, their role in protecting the genome of post-mitotic neuronal cells from genotoxin-induced damage is less clear. The present study examines the role of the BER enzyme 3-alkyladenine DNA glycosylase (AAG) and the NER protein xeroderma pigmentosum group A (XPA) in protecting cerebellar neurons and astrocytes from chloroacetaldehyde (CAA) or the alkylating agent 3-methyllexitropsin (Me-Lex), which produce ethenobases or 3-methyladenine (3-MeA), respectively. Neuronal and astrocyte cell cultures prepared from the cerebellum of wild type (C57BL/6) mice or Aag(-/-) or Xpa(-/-) mice were treated with 0.1-50 microM CAA for 24h to 7 days and examined for cell viability, DNA fragmentation (TUNEL labeling), nuclear changes, and glutathione levels. Aag(-/-) neurons were more sensitive to the acute (>20 microM) and long-term (>5 microM) effects of CAA than comparably treated wild type neurons and this sensitivity correlated with the extent of DNA fragmentation and nuclear changes. Aag(-/-) neurons were also sensitive to Me-Lex at comparable concentrations of CAA. In contrast, Xpa(-/-) neurons were more sensitive than either wild type or Aag(-/-) neurons to CAA (>10 microM), but less sensitive than Aag(-/-) neurons to Me-Lex. Astrocytes from the cerebellum of wild type, Aag(-/-) or Xpa(-/-) mice were essentially insensitive to CAA at the concentrations tested. These studies demonstrate that BER and NER are required to protect neurons from genotoxin-induced cell death.
Collapse
Affiliation(s)
- G E Kisby
- Center for Research on Occupational and Environmental Toxicology (CROET), Oregon Health Sciences University, Portland, OR 97239, USA.
| | | | | | | | | | | | | |
Collapse
|
42
|
Ohto T, Iwasaki N, Okubo H, Shin K, Matsui A. Life-threatening vocal cord paralysis in a patient with group A xeroderma pigmentosum. Pediatr Neurol 2004; 30:222-4. [PMID: 15033209 DOI: 10.1016/j.pediatrneurol.2003.09.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2003] [Accepted: 09/04/2003] [Indexed: 11/26/2022]
Abstract
We report a 19-year-old male with group A xeroderma pigmentosum who presented life-threatening vocal cord paralysis. At 3 months of age, he became sensitive to sunlight, and at the age of 4 years he was diagnosed with group A xeroderma pigmentosum. The neurologic symptoms progressed slowly thereafter. From the age of 18 years, he reported the development of occasional episodic inspiratory stridor and dyspnea, but the cause remained unknown. At the age of 19, he had a common cold and became severely dyspneic and cyanotic. Immediate examination of the glottis upon arrival by an otorhinolaryngologist using a fibroscope indicated complete paralysis of both vocal cords, and tracheal intubation resulted in marked improvement of respiration. Tracheostomy was performed thereafter. Inspiratory stridor and dyspnea are the common symptoms in this disease, and some patients with group A xeroderma pigmentosum undergo a tracheostomy, but the pathogenesis remains unknown. To our knowledge, vocal cord paralysis has never been reported in patients with group A xeroderma pigmentosum. This case is presented to illustrate the importance of fibroscopy in the examination of vocal cords in patients with group A xeroderma pigmentosum before the development of life-threatening events.
Collapse
Affiliation(s)
- Tatsuyuki Ohto
- Department of Pediatrics, Institute of Clinical Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | | | | | | | | |
Collapse
|
43
|
Ding J, Eigenbrodt ML, Mosley TH, Hutchinson RG, Folsom AR, Harris TB, Nieto FJ. Alcohol intake and cerebral abnormalities on magnetic resonance imaging in a community-based population of middle-aged adults: the Atherosclerosis Risk in Communities (ARIC) study. Stroke 2004; 35:16-21. [PMID: 14657449 DOI: 10.1161/01.str.0000105929.88691.8e] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2003] [Accepted: 09/02/2003] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND PURPOSE Although the risks associated with heavy drinking for increased stroke and neurodegenerative changes are well established, the effects on the brain of low to moderate alcohol intake are unclear. Subclinical cerebral abnormalities identified on MRI have been associated with neurocognitive decline and incident stroke. We examined the associations of alcohol intake with MRI-defined cerebral abnormalities in a middle-aged, population-based cohort. METHODS During 1993-1994, a total of 1909 middle-aged adults (40% men and 49% blacks) from 2 communities in the Atherosclerosis Risk in Communities (ARIC) Study (Forsyth County, North Carolina, and Jackson, Miss) underwent a cerebral MRI examination. Trained neuroradiologists coded the images for the presence of infarction and the extent (10-point scale) of white matter lesions, ventricular size, and sulcal size. RESULTS In logistic regression analyses, there was no association between alcohol intake and the presence of MRI infarction. In linear regression analyses, alcohol intake was not associated with white matter grade. However, intake of each additional alcoholic drink per week was associated with a 0.01 grade greater ventricular size (P=0.03) and a 0.009 grade greater sulcal size (P=0.02) after adjustment for age, sex, race, body mass index, smoking, income, sports index, and diabetes. The positive associations of alcohol intake with ventricular and sulcal size were consistent across sex and race subgroups. CONCLUSIONS A protective effect of low to moderate alcohol intake on cerebral infarction was not found; moreover, increased alcohol intake was associated with brain atrophy.
Collapse
Affiliation(s)
- Jingzhong Ding
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, 615 N Wolfe St, Room 6009, Baltimore, Md 21205, USA.
| | | | | | | | | | | | | |
Collapse
|
44
|
Fernández-Solà J, Nicolás JM, Fatjó F, García G, Sacanella E, Estruch R, Tobías E, Badia E, Urbano-Márquez A. Evidence of apoptosis in chronic alcoholic skeletal myopathy. Hum Pathol 2003; 34:1247-52. [PMID: 14691909 DOI: 10.1016/j.humpath.2003.07.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Apoptosis is a common mechanism of programmed cell death that has been implicated in the pathogenesis of alcohol-induced organ damage. Experimental studies have suggested alcohol-mediated apoptosis in cardiac muscle. The relationship between skeletal and cardiac muscle damage in alcoholism led us to consider the possible role of apoptosis in the pathogenesis of skeletal myopathy. We prospectively evaluated apoptosis in skeletal muscle biopsies of 30 consecutively selected male high-dose well-nourished chronic alcohol consumers and 12 nonalcoholic controls. Alcohol consumption, evaluation of muscle strength by myometry, and deltoid muscle biopsy with immunohistochemical and morphometric analysis were performed. Apoptosis was assessed by TUNEL, BAX, and BCL-2 immunohistochemical assays. Chronic alcoholics compared with controls showed a significantly higher apoptotic index in TUNEL (2.35% +/- 0.25% versus 0.18% +/- 0.03%, P < 0.001), BAX (9.16% +/- 2.00% versus 0.66% +/- 0.22%, P < 0.001), and BCL-2 muscle assays (8.08% +/- 0.20% versus 0.83% +/- 0.20%, P = 0.001), respectively. In addition, these apoptotic indexes were higher in alcoholics with skeletal myopathy compared with in those without skeletal myopathy (3.04% +/- 0.36% versus 1.65% +/- 0.26%, P = 0.004 for TUNEL; 17.00% +/- 2.78% versus 1.33% +/- 0.22%, P < 0.001 for BAX; and 15.13% +/- 3.2% versus 1.03% +/- 0.33%, P < 0.001 for BCL-2 assays, respectively). We conclude that apoptosis is present in the skeletal muscle of high-dose alcohol consumers, mainly in those affected by myopathy. However, the specific pathogenic mechanism of apoptosis in chronic skeletal myopathy in alcoholics remains to be elucidated.
Collapse
Affiliation(s)
- Joaquim Fernández-Solà
- Department of Medicine, Hospital Clinic, Institut d'Investigacions Biomèdiques August Pi i Sunyer, University of Barcelona, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Cross GM, Hirsch KA, Allen JP. Care of the Alcoholic Patient. Fam Med 2003. [DOI: 10.1007/978-0-387-21744-4_59] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
46
|
Li W, Zheng T, Altura BT, Altura BM. Antioxidants prevent depletion of [Mg2+]i induced by alcohol in cultured canine cerebral vascular smooth muscle cells: possible relationship to alcohol-induced stroke. Brain Res Bull 2001; 55:475-8. [PMID: 11543947 DOI: 10.1016/s0361-9230(01)00547-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Low serum concentrations of Mg(2+) ions have been reported, recently, in patients with coronary disease, atherosclerosis, and stroke as well as in patients with cerebral hemorrhage. The aim of the present study was to determine whether potent antioxidants [alpha-tocopherol and pyrrolidine dithiocarbamate (PDTC)] can prevent or ameliorate intracellular Mg(2+) ([Mg(2+)](i)) depletion associated with cerebral vascular injury induced by alcohol. Exposure of cultured canine cerebral vascular smooth muscle cells to alcohol (10-100 mM) for 24 h induced marked depletion in [Mg(2+)](i) (i.e., approximately 30-65%, depending upon alcohol concentration). Treatment of the cultured cells with either PDTC (0.1 microM) or alpha-tocopherol (15 microM) for 24 h, alone, failed to interfere with basal [Mg(2+)](i) levels. However, preincubation of the cells with either alpha-tocopherol or PDTC for 24 h completely inhibited the depletion of [Mg(2+)](i) induced by exposure to 10-100 mM ethanol. These results indicate that alpha-tocopherol and PDTC prevent decreases in [Mg(2+)](i) produced by ethanol. Moreover, these new results suggest that such protective effects of alpha-tocopherol and PDTC on cerebral vascular cells might be useful therapeutic tools in prevention and amelioration of cerebral vascular injury and stroke in alcoholics.
Collapse
Affiliation(s)
- W Li
- Department of Physiology and Pharmacology, State University of New York, Health Science Centre at Brooklyn, Brooklyn, NY 11203, USA
| | | | | | | |
Collapse
|