1
|
Kyung J, Kim D, Shin K, Park D, Hong SC, Kim TM, Choi EK, Kim YB. Repeated Intravenous Administration of Human Neural Stem Cells Producing Choline Acetyltransferase Exerts Anti-Aging Effects in Male F344 Rats. Cells 2023; 12:2711. [PMID: 38067139 PMCID: PMC10706332 DOI: 10.3390/cells12232711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/24/2023] [Accepted: 11/25/2023] [Indexed: 12/18/2023] Open
Abstract
Major features of aging might be progressive decreases in cognitive function and physical activity, in addition to withered appearance. Previously, we reported that the intracerebroventricular injection of human neural stem cells (NSCs named F3) encoded the choline acetyltransferase gene (F3.ChAT). The cells secreted acetylcholine and growth factors (GFs) and neurotrophic factors (NFs), thereby improving learning and memory function as well as the physical activity of aged animals. In this study, F344 rats (10 months old) were intravenously transplanted with F3 or F3.ChAT NSCs (1 × 106 cells) once a month to the 21st month of age. Their physical activity and cognitive function were investigated, and brain acetylcholine (ACh) and cholinergic and dopaminergic system markers were analyzed. Neuroprotective and neuroregenerative activities of stem cells were also confirmed by analyzing oxidative damages, neuronal skeletal protein, angiogenesis, brain and muscle weights, and proliferating host stem cells. Stem cells markedly improved both cognitive and physical functions, in parallel with the elevation in ACh levels in cerebrospinal fluid and muscles, in which F3.ChAT cells were more effective than F3 parental cells. Stem cell transplantation downregulated CCL11 and recovered GFs and NFs in the brain, leading to restoration of microtubule-associated protein 2 as well as functional markers of cholinergic and dopaminergic systems, along with neovascularization. Stem cells also restored muscular GFs and NFs, resulting in increased angiogenesis and muscle mass. In addition, stem cells enhanced antioxidative capacity, attenuating oxidative damage to the brain and muscles. The results indicate that NSCs encoding ChAT improve cognitive function and physical activity of aging animals by protecting and recovering functions of multiple organs, including cholinergic and dopaminergic systems, as well as muscles from oxidative injuries through secretion of ACh and GFs/NFs, increased antioxidant elements, and enhanced blood flow.
Collapse
Affiliation(s)
- Jangbeen Kyung
- College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Dajeong Kim
- College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Kyungha Shin
- College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Dongsun Park
- Department of Biology Education, Korea National University of Education, Cheongju 28173, Republic of Korea
| | - Soon-Cheol Hong
- Department of Obstetrics and Gynecology, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Tae Myoung Kim
- Central Research Institute, Designed Cells Co., Ltd., Cheongju 28576, Republic of Korea
| | - Ehn-Kyoung Choi
- Central Research Institute, Designed Cells Co., Ltd., Cheongju 28576, Republic of Korea
| | - Yun-Bae Kim
- College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea
- Central Research Institute, Designed Cells Co., Ltd., Cheongju 28576, Republic of Korea
| |
Collapse
|
2
|
Brown TC, Bond CE, Hoover DB. Variable expression of GFP in different populations of peripheral cholinergic neurons of ChAT BAC-eGFP transgenic mice. Auton Neurosci 2017; 210:44-54. [PMID: 29288022 DOI: 10.1016/j.autneu.2017.12.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 12/07/2017] [Accepted: 12/15/2017] [Indexed: 12/26/2022]
Abstract
Immunohistochemistry is used widely to identify cholinergic neurons, but this approach has some limitations. To address these problems, investigators developed transgenic mice that express enhanced green fluorescent protein (GFP) directed by the promoter for choline acetyltransferase (ChAT), the acetylcholine synthetic enzyme. Although, it was reported that these mice express GFP in all cholinergic neurons and non-neuronal cholinergic cells, we could not detect GFP in cardiac cholinergic nerves in preliminary experiments. Our goals for this study were to confirm our initial observation and perform a qualitative screen of other representative autonomic structures for the presences of GFP in cholinergic innervation of effector tissues. We evaluated GFP fluorescence of intact, unfixed tissues and the cellular localization of GFP and vesicular acetylcholine transporter (VAChT), a specific cholinergic marker, in tissue sections and intestinal whole mounts. Our experiments identified two major tissues where cholinergic neurons and/or nerve fibers lacked GFP: 1) most cholinergic neurons of the intrinsic cardiac ganglia and all cholinergic nerve fibers in the heart and 2) most cholinergic nerve fibers innervating airway smooth muscle. Most cholinergic neurons in airway ganglia stained for GFP. Cholinergic systems in the bladder and intestines were fully delineated by GFP staining. GFP labeling of input to ganglia with long preganglionic projections (vagal) was sparse or weak, while that to ganglia with short preganglionic projections (spinal) was strong. Total absence of GFP might be due to splicing out of the GFP gene. Lack of GFP in nerve projections from GFP-positive cell bodies might reflect a transport deficiency.
Collapse
Affiliation(s)
- T Christopher Brown
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - Cherie E Bond
- School of Natural Sciences and Mathematics, Ferrum College, Ferrum, VA 24088, USA
| | - Donald B Hoover
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA; Center of Excellence in Inflammation, Infectious Disease and Immunity, East Tennessee State University, Johnson City, TN 37614, USA.
| |
Collapse
|
3
|
Cellular Mechanisms for the Biogenesis and Transport of Synaptic and Dense-Core Vesicles. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2012; 299:27-115. [DOI: 10.1016/b978-0-12-394310-1.00002-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
4
|
Dahlstrom AB. Fast intra-axonal transport: Beginning, development and post-genome advances. Prog Neurobiol 2010; 90:119-45. [DOI: 10.1016/j.pneurobio.2009.11.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Revised: 11/23/2009] [Accepted: 11/23/2009] [Indexed: 01/02/2023]
|
5
|
Castro J, Negredo P, Avendaño C. Fiber composition of the rat sciatic nerve and its modification during regeneration through a sieve electrode. Brain Res 2008; 1190:65-77. [DOI: 10.1016/j.brainres.2007.11.028] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2007] [Revised: 11/05/2007] [Accepted: 11/11/2007] [Indexed: 11/25/2022]
|
6
|
Li Y, Fischer-Colbrie R, Dahlström A. Neuroendocrine secretory protein 55 (NESP55) in the spinal cord of rat: An immunocytochemical study. J Comp Neurol 2007; 506:733-44. [DOI: 10.1002/cne.21562] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
7
|
Maeda M, Ohba N, Nakagomi S, Suzuki Y, Kiryu-Seo S, Namikawa K, Kondoh W, Tanaka A, Kiyama H. Vesicular acetylcholine transporter can be a morphological marker for the reinnervation to muscle of regenerating motor axons. Neurosci Res 2004; 48:305-14. [PMID: 15154676 DOI: 10.1016/j.neures.2003.11.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2003] [Accepted: 11/21/2003] [Indexed: 11/19/2022]
Abstract
This study was designed to evaluate whether the vesicular acetylcholine transporter (VAChT), which packages acetylcholine into synaptic vesicles, can be used as a marker for regenerating motor axon terminal. We examined motor axon regeneration in the tongue after hypoglossal nerve axotomy, using an anterograde tracer biotin-dextran (BD), retrograde tracer Fluoro-Gold (FG), electron microscopic (EM) observation, and VAChT immunocytochemistry. BD study demonstrated that outgrowth of thin regenerating axons into the frontal area of the tongue was firstly observed at 14 post-operative days, and presynaptic formation of neuromuscular junction (NMJ) was observed from 21 post-operative days. Under electron microscopic observation, reconstruction of new NMJs was observed within the interval between 21 and 28 days. VAChT-immunoreactive nerve terminals disappeared by 3 days after axotomy, slightly appeared at 14 post-operative days, and thereafter gradually increased in number from 21 to 28 post-operative days. The re-expression of VAChT positive presynaptic terminal was almost the same as those obtained in BD, FG and EM studies. Regenerating axons tip in the crush model of the hypoglossal nerve exhibited prominent VAChT immunoreactivity in growing tip of regenerating axons. These indicate that VAChT is an excellent morphological indicator for regenerating nerve terminals of motor neurons.
Collapse
Affiliation(s)
- Mitsuyo Maeda
- Departments of Anatomy and Neurobiology, Graduate School of Medicine, Osaka City University, 1-4-3 Asahimachi, Abeno-ku, Osaka 545-8585, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Tata AM, De Stefano ME, Srubek Tomassy G, Vilaró MT, Levey AI, Biagioni S. Subpopulations of rat dorsal root ganglion neurons express active vesicular acetylcholine transporter. J Neurosci Res 2004; 75:194-202. [PMID: 14705140 DOI: 10.1002/jnr.10855] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The vesicular acetylcholine transporter (VAChT) is a transmembrane protein required, in cholinergic neurons, for selective storage of acetylcholine into synaptic vesicles. Although dorsal root ganglion (DRG) neurons utilize neuropeptides and amino acids for neurotransmission, we have previously demonstrated the presence of a cholinergic system. To investigate whether, in sensory neurons, the vesicular accumulation of acetylcholine relies on the same mechanisms active in classical cholinergic neurons, we investigated VAChT presence, subcellular distribution, and activity. RT-PCR and Western blot analysis demonstrated the presence of VAChT mRNA and protein product in DRG neurons and in the striatum and cortex, used as positive controls. Moreover, in situ hybridization and immunocytochemistry showed VAChT staining located mainly in the medium/large-sized subpopulation of the sensory neurons. A few small neurons were also faintly labeled by immunocytochemistry. In the electron microscope, immunolabeling was associated with vesicle-like elements distributed in the neuronal cytoplasm and in both myelinated and unmyelinated intraganglionic nerve fibers. Finally, [(3)H]acetylcholine active transport, evaluated either in the presence or in the absence of ATP, also demonstrated that, as previously reported, the uptake of acetylcholine by VAChT is ATP dependent. This study suggests that DRG neurons not only are able to synthesize and degrade ACh and to convey cholinergic stimuli but also are capable of accumulating and, possibly, releasing acetylcholine by the same mechanism used by the better known cholinergic neurons.
Collapse
MESH Headings
- Acetylcholine/metabolism
- Adenosine Triphosphate/metabolism
- Animals
- Biological Transport, Active/physiology
- Carrier Proteins/genetics
- Carrier Proteins/metabolism
- Cell Size
- Ganglia, Spinal/cytology
- Ganglia, Spinal/metabolism
- Ganglia, Spinal/ultrastructure
- Membrane Transport Proteins
- Microscopy, Electron
- Nerve Fibers, Myelinated/metabolism
- Nerve Fibers, Myelinated/ultrastructure
- Nerve Fibers, Unmyelinated/metabolism
- Nerve Fibers, Unmyelinated/ultrastructure
- Neurons, Afferent/metabolism
- Neurons, Afferent/ultrastructure
- Presynaptic Terminals/metabolism
- Presynaptic Terminals/ultrastructure
- RNA, Messenger/metabolism
- Rats
- Rats, Wistar
- Synaptic Transmission/physiology
- Synaptic Vesicles/metabolism
- Synaptic Vesicles/ultrastructure
- Transport Vesicles/metabolism
- Transport Vesicles/ultrastructure
- Vesicular Acetylcholine Transport Proteins
- Vesicular Transport Proteins
Collapse
Affiliation(s)
- Ada Maria Tata
- Dipartimento Biologia Cellulare e dello Sviluppo, Università "La Sapienza," Rome, Italy
| | - M Egle De Stefano
- Dipartimento Biologia Cellulare e dello Sviluppo, Università "La Sapienza," Rome, Italy
| | - Giulio Srubek Tomassy
- Dipartimento Biologia Cellulare e dello Sviluppo, Università "La Sapienza," Rome, Italy
| | - M Teresa Vilaró
- Department of Neurochemistry, CSIC-IDIBAPS, Barcelona, Spain
| | - Allan I Levey
- Department of Neurology, Emory University School of Medicine, Atlanta, Georgia
| | - Stefano Biagioni
- Dipartimento Biologia Cellulare e dello Sviluppo, Università "La Sapienza," Rome, Italy
| |
Collapse
|
9
|
Wang ZY, Danscher G, Dahlström A, Li JY. Zinc transporter 3 and zinc ions in the rodent superior cervical ganglion neurons. Neuroscience 2003; 120:605-16. [PMID: 12895501 DOI: 10.1016/s0306-4522(03)00419-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Previous studies have revealed that zinc-enriched (ZEN) terminals are present in all parts of the CNS though with great differences in intensity. The densest populations of both ZEN terminals and ZEN somata are found in telencephalic structures, but also structures like the spinal cord demonstrate impressive ZEN systems spreading terminals several segments around the respective ZEN somata. The present study evaluates whether sympathetic neurons in the superior cervical ganglia (SCG) are ZEN neurons, i.e. contain vesicles that have zinc transporter 3 (ZnT3) proteins in their membranes and contain zinc ions. ZnT3 immunoreactivity (IR) was found in the somata and processes in the postganglionic neurons of mouse SCG. Only a small fraction of neurons (less than 5%), expressed varying degrees of ZnT3. Colchicine treatment, however, increased the number of ZnT3-positive neurons three-fold, suggesting an accumulation of ZnT3 protein in the somata. A small proportion of the postganglionic axons revealed dotted accumulations of ZnT3 IR along their courses. Double labeling showed that all ZnT3-positive neurons and axons were also tyrosine hydroxylase-positive with strong immunofluorescence, while no colocalization was found between ZnT3 and the vesicular acetylcholine transporter (VAChT) or neuropeptide Y IR. VAChT-positive preganglionic neurons were found to terminate on ZnT3 neuronal somata. 6-Methoxy 8-para toluene sulfonamide quinoline fluorescence and zinc selenium autometallography (ZnSe(AMG)) revealed that a subgroup of SCG cells contained free or loosely bound zinc ions. It is therefore concluded that ZnT3 and zinc ions are present in a subpopulation of TH-positive, NPY-negative neurons in the rodent SCG, supporting the notion that vesicular zinc ions may play a special role in the peripheral sympathetic adrenergic system.
Collapse
Affiliation(s)
- Z Y Wang
- Department of Histology and Embryology, China Medical University, Shenyang 110001, China
| | | | | | | |
Collapse
|
10
|
Wang ZY, Li JY, Danscher G, Dahlström A. Localization of zinc-enriched neurons in the mouse peripheral sympathetic system. Brain Res 2002; 928:165-74. [PMID: 11844484 DOI: 10.1016/s0006-8993(01)03344-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Growing evidence supports the notion that zinc ions located in the synaptic vesicles of zinc-enriched neurons (ZEN) play important physiological roles and are involved in certain pathological changes in the central nervous system. Here we present data revealing the distribution of zinc ions and the co-localization of zinc transporter 3 (ZnT3) and tyrosine hydroxylase (TH) in crush-operated sciatic nerves and lumbar sympathetic ganglia of mice, using zinc selenide autometallography (ZnSe(AMG)) and ZnT3 immunofluorescence combined with confocal scanning microscopy, respectively. Six hours after the crush operation, ZnSe(AMG) grains and ZnT3 immunoreactivity were predominantly present in a subpopulation of thin unmyelinated sciatic nerve axons. In order to identify the type(s) of ZEN axons involved, double labeling with ZnT3 and (1) TH, (2) vesicular acetylcholine transporter (VAChT), (3) calcitonin gene-related peptide (CGRP), and (4) neuropeptide Y (NPY) was performed. Confocal microscopic observations showed that ZnT3 was located in a subpopulation of sciatic axons in distended parts proximal and distal to the crush site. Most, if not all, ZnT3-positive axons contained TH immunofluorescence, a few showed co-localization of ZnT3 and VAChT with very weak immunostaining, while no congruence was observed between ZnT3 and CGRP or NPY. Studies of the lumbar sympathetic ganglia showed that not more than 5% of the neurons were ZnT3-positive and that almost all of these were TH-positive. Furthermore, approximately 5% of total lumbar sympathetic ganglionic cells were ZnSe(AMG) positive, 48 h after a local injection of sodium selenide into the sciatic nerve. The present data support the notion that a subgroup of mouse sympathetic postganglionic neurons are ZEN neurons.
Collapse
Affiliation(s)
- Zhan-You Wang
- Department of Anatomy and Cell Biology, University of Gothenburg, Box 420, SE-405 30 Gothenburg, Sweden.
| | | | | | | |
Collapse
|
11
|
Kevorkian GA, Marukhyan GL, Arakelyan LN, Guevorkian AG, Galoyan AA. Influence of hypothalamic proline-rich peptide on the level of [14C]glucose utilization during crush syndrome. Neurochem Res 2001; 26:829-32. [PMID: 11565615 DOI: 10.1023/a:1011668203758] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The number of publications on the investigation of crush syndrome (CS) pathogenesis at traumatic toxicosis is rather limited. The influence of some pharmacological preparations on the development of CS pathogenesis is not very well clarified. Proline-rich peptide (PRP) is a fragment of a glycopeptide comprising the carboxyterminus of the neurohypophyseal vasopressin-neurophysin precursor isolated from the bovine neurohypophysis neurosecretory granules. The polypeptide possesses stimulating activity on differentiation and proliferation of T-lymphocytes and Interleukin-2 (Il-2) biosynthesis. The experimental model of CS of white rats was induced by 2-h of compression followed by 2, 24, and 48-h of decompression of femoral muscle tissue. The influence of PRP on [14C]glucose utilization was investigated in brain, heart, and kidney tissues. The level of [14C]glucose utilization decreased in brain during compression followed by 2-h and 24-h of decompression, while it increased under the influence of PRP at all decompression periods. The influence of PRP on the myocardium and kidneys differs, depending on its nature and on the periods of decompression.
Collapse
Affiliation(s)
- G A Kevorkian
- H. Buniatian Institute of Biochemistry of NAS, Yerevan, Republic of Armenia.
| | | | | | | | | |
Collapse
|
12
|
Erickson JD, Varoqui H. Molecular analysis of vesicular amine transporter function and targeting to secretory organelles. FASEB J 2000; 14:2450-8. [PMID: 11099462 DOI: 10.1096/fj.00-0206rev] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Vesicular transporters are responsible for the loading of neurotransmitters into specialized secretory organelles in neurons and neuroendocrine cells to make them available for regulated neurosecretion. The exocytotic release of neurotransmitter therefore depends on the functional activity of the vesicular transporters and their efficient sorting to these secretory organelles. Molecular analysis of vesicular transport proteins has revealed important information regarding structural domains responsible for their functional properties, including substrate specificity and trafficking to various classes of secretory vesicles. These studies have established the existence of an important functional relationship between transporter activity and presynaptic quantal neurosecretion.
Collapse
Affiliation(s)
- J D Erickson
- Neuroscience Center, Louisiania State University Health Sciences Center, New Orleans, Louisiana 70112, USA.
| | | |
Collapse
|
13
|
Kasa P, Papp H, Kovacs I, Forgon M, Penke B, Yamaguchi H. Human amyloid-beta1-42 applied in vivo inhibits the fast axonal transport of proteins in the sciatic nerve of rat. Neurosci Lett 2000; 278:117-9. [PMID: 10643815 DOI: 10.1016/s0304-3940(99)00863-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Human amyloid-beta1-42 has been suggested to be a pathogenetic factor in Alzheimer's disease. The precise mechanism by which this peptide causes the degeneration of neurons in the affected brain is not yet fully understood. By using immunohistochemistry we explored the inhibitory effects of human amyloid-beta1-42 applied in vivo on the fast axonal transport of acetylcholinesterase, the amyloid precursor protein, the vesicular acetylcholine transporter and synaptophysin in the sciatic nerve of rat. Our findings provide evidence for the in vivo neurotoxic effect of human amyloid-beta peptide.
Collapse
Affiliation(s)
- P Kasa
- Alzheimer's Disease Research Centre, Albert Szent-Györgyi Medical University, Szeged, Hungary.
| | | | | | | | | | | |
Collapse
|